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Abstract

It is well understood that client-master communication can be a primary bottleneck in
federated learning (FL). In this work, we address this issue with a novel client subsampling
scheme, where we restrict the number of clients allowed to communicate their updates back
to the master node. In each communication round, all participating clients compute their
updates, but only the ones with “important” updates communicate back to the master. We
show that importance can be measured using only the norm of the update and give a formula
for optimal client participation. This formula minimizes the distance between the full update,
where all clients participate, and our limited update, where the number of participating
clients is restricted. In addition, we provide a simple algorithm that approximates the optimal
formula for client participation, which allows for secure aggregation and stateless clients, and
thus does not compromise client privacy. We show both theoretically and empirically that for
Distributed SGD (DSGD) and Federated Averaging (FedAvg), the performance of our approach
can be close to full participation and superior to the baseline where participating clients are
sampled uniformly. Moreover, our approach is orthogonal to and compatible with existing
methods for reducing communication overhead, such as local methods and communication
compression methods.

1 Introduction

We consider the standard cross-device federated learning (FL) setting (Kairouz et al) [2019), where the
objective is of the form

min [f(x) = Zwifi(m)] ; (1)

z€ERY

where 2 € R represents the parameters of a statistical model we aim to find, n is the total number of clients,
each f;: R¢ — R is a continuously differentiable local loss function which depends on the data distribution
D; owned by client i via fi(z) = Ee¢up, [f(2,€)], and w; > 0 are client weights such that Y., w; = 1.
We assume the classical FL setup in which a central master (server) orchestrates the training by securely
aggregating updates, i.e., it only accesses sum of updates, from clients without seeing the raw data.

1.1 Motivation: Communication Bottleneck in Federated Learning

It is well understood that communication cost can be the primary bottleneck in cross-device FL since
typical clients are mobile phones or different IoT devices that have limited bandwidth and availability
for connection (Van Berkel, 2009; Huang et al., [2013]). Indeed, wireless links and other end-user internet
connections typically operate at lower rates than intra-datacenter or inter-datacenter links and can be
potentially expensive and unreliable. Moreover, the capacity of the aggregating master and other FL system
considerations imposes direct or indirect constrains on the number of clients allowed to participate in each
communication round. These considerations have led to significant interest in reducing the communication
bandwidth of FL systems.

Local Methods. One of the most popular strategies is to reduce the frequency of communication and
put more emphasis on computation. This is usually achieved by asking the devices to perform multiple
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local steps before communicating their updates. A prototype method in this category is the Federated
Averaging (FedAvg) algorithm (McMahan et al., 2017), an adaption of local-update to parallel SGD, where
each client runs some number of SGD steps locally before local updates are averaged to form the global update
for the global model on the master. The original work was a heuristic, offering no theoretical guarantees,
which motivated the community to try to understand the method and various existing and new variants
theoretically (Stich, 2019; Lin et al., 2018} Karimireddy et al., 2019; |Stich & Karimireddy, 2020; Khaled|
let al.l |2020} [Hanzely & Richtérik, [2020).

Communication Compression Methods. Another popular approach is to reduce the size of the object
(typically gradients) communicated from clients to the master. This approach is referred to as gradi-
ent/communication compression. In this approach, instead of transmitting the full-dimensional gradi-
ent/update vector g € R?, one transmits a compressed vector C(g), where C : R? — R? is a (possibly
random) operator chosen such that C(g) can be represented using fewer bits, for instance by using limited
bit representation (quantization) or by enforcing sparsity (sparsification). A particularly popular class of
quantization operators is based on random dithering (Goodall, |1951; Roberts| [1962)); see [Alistarh et al.|
(2017); Wen et al.| (2017); Zhang et al. (2017)); Ramezani-Kebrya et al. (2019). A new variant of random
dithering developed in (Horvath et al., 2019) offers an exponential improvement on standard dithering. Sparse
vectors can be obtained by random sparsification techniques that randomly mask the input vectors and
preserve a constant number of coordinates (Wangni et al., [2018; [Koneény & Richtarikl 2018; [Stich et al., 2018
Mishchenko et al., 2019; [Vogels et al.| 2019). There is also a line of work (Horvath et all [2019; Basu et al.
12019) which propose to combine sparsification and quantization to obtain a more aggressive combined effect.

Client Sampling/Selection Methods. In the situation where partial participation is desired and a budget
on the number of participating clients is applied, careful selection of the participating clients can lead to
better communication complexity, and hence faster training. In other words, some clients will have “more
informative” updates than others in any given communication round, and thus the training procedure will
benefit from capitalizing on this fact by ignoring some of the worthless updates. See Section [.1] for discussions
on existing client sampling methods in FL and their limitations.

1.2 Contributions

We show that the ideas presented in the previous works on efficient sampling (Horvath & Richtarik, [2019)
and sparsification (Wang et all, 2018} [Wangni et al] [2018) can be adapted to be compatible with FL and can
be used to construct a principled optimal client sampling scheme which is capable of identifying the most
informative clients in any given communication round. This scheme works by minimizing the variance of the
stochastic gradient produced by the partial participation procedure, which then translates to a reduction in
the number of communication rounds. This non-trivial contribution leads to several significant theoretical
and practical advances in FL, as discussed below.

Our contributions can be summarized as follows:

o Inspired by |[Horvath & Richtarik| (2019), we propose a adaptive partial participation strategy for
reducing communication in FL, which relies on a careful selection of the clients that are allowed to
communicate their updates back to the master node in any given communication round.

o We extend the result of Horvath & Richtarik| (2019)) to FL and show that this adaptive client sampling
procedure is optimal in the sense that it minimizes the variance of the master update for any budget

0

m on the number of participating clients, which generalizes the theoretical results in 8 g
(2015) that only applies to m = 1.

o We show that the greedy algorithm of [Wangni et al.| (2018), originally designed for gradient spar-
sification, can be used to obtain an approximation to our optimal sampling strategy which only
requires aggregation, fulfilling some core privacy requirements of FL. To our knowledge, our method
is the first principled importance client sampling strategy that allows for both secure aggregation and
stateless clients.
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e The considered method is orthogonal to and hence compatible with existing approaches to communi-
cation reduction such as communication compression and/or local updates (see Section [3.2)).

o We provide convergence guarantees for our approach with DSGD and FedAvg, and show both theoreti-
cally and empirically that the performance of our approach is superior to uniform sampling and can
be close to full participation.

e We show both theoretically and empirically that our approach allows for larger learning rates for
DSGD and FedAvg algorithms than the baseline which performs uniform client sampling, which results
in better communication complexity and hence faster convergence.

2 Smart Client Sampling for Reducing Communication

This section describes and gives intuitions about the optimal client sampling strategy for reducing the
communication bottleneck in federated learning.

Before proceeding with our theory, we provide an intuition by discussing the problem setting and introducing
the arbitrary sampling paradigm. In FL, each client ¢ participating in round k& computes an update vector
U¥ € R?. For simplicity and ease of exposition, we assume that all clients i € [n] := {1,2,...,n} are available
in each rouncﬂ In our framework, only a subset of clients communicates their updates to the master node in
each communication round in order to reduce the number of transmitted bits.

In order to provide an analysis in this framework, we consider a general partial participation frame-
work (Horvath & Richtarik, |2020), where we assume that the subset of participating clients is determined by
an arbitrary random set-valued mapping S (i.e., a “sampling”) with values in 2[7 A sampling S is uniquely
defined by assigning probabilities to all 2™ subsets of [n]. With each sampling S we associate a probability
matriz P € R"*™ defined by P;; .= Prob({i,j} C S). The probability vector associated with S is the vector
composed of the diagonal entries of P: p = (p1,...,pn) € R™, where p; := Prob(i € S). We say that S
is proper if p; > 0 for all i. It is easy to show that b := E[|S|] = Trace (P) = >_"", p;, and hence b can
be seen as the expected number of clients participating in each communication round. Given parameters
P1,---,Pn € [0,1], consider a random set S C [n] generated as follows: for each i € [n], we include ¢ in S with
probability p;. This is called independent sampling, since the event 7 € S is independent of j € S for any i # j.

While our client sampling strategy can be adapted to essentially any underlying learning method, we give
details here for DSGD as an illustrative example:

ot =k —pFGE, GF = Z %Uf, (2)
iesk Pi

where S* ~ S* and U¥ = gF is an unbiased estimator of V f;(z*). The scaling factor ﬁ is necessary in order

to obtain an unbiased estimator of the true update, i.e., Egr [Gk] = Z?:l wiUf.

2.1 Optimal Client Sampling

A simple observation is that the variance of our gradient estimator G* can be decomposed into

2 2

B||GE - viah)|’] = HG"'—zn:wiUf +E , (3)

i=1

S w U - V()
=1

where the second term on the right-hand side is independent of the sampling procedure, and the first term
is zero if every client sends its update (i.e., if p¥ = 1 for all 7). In order to provide meaningful results, we
restrict the expected number of clients to communicate in each round by bounding b* = S p¥ by some
positive integer m < n. This raises the following question: What is the sampling procedure that minimizes

1This is not a limiting factor, as all presented theory can be easily extended to the case of partial participation with an
arbitrary proper sampling distribution. See Appendix E for a sketch.
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for any given m? To answer this question, we connect Equation to previous works on importance
sampling (Horvath & Richtarik, [2019) and gradient sparsification (Wangni et al., 2018} [Wang et al.| |2018Dﬂ
Despite difference in motivation, these works solve up to a scale the equivalent mathematical problem, based
on which we answer the aforementioned question by the following technical lemma (see Appendix [A|for a
proof):

Lemma 2.1. (Generalization of Lemma 1 in (Horvdth & Richtarik, |2019)) Let (1,Ca, ...,y be vectors in
R? and wi,ws, . .., w, be non-negative real numbers such that Z?:l w; = 1. Define ¢ == Z?:l w;(;. Let S be
a proper sampling. If v € R™ is such that

P —pp' < Diag(piv1,pava, .- -, Pntn), (4)
then
a A&
w; G ~ (% 2
B === | <D wi G, (5)
ies iz P

where the expectation is taken over S. Whenever holds, it must be the case that v; > 1 — p;.

It turns out that given probabilities {p;}, among all samplings S satisfying p; = Prob(i € S), the independent
sampling (i.e., p;; = Prob(i,j € S) = Prob(i € S) Prob(j € S) = p;p;) minimizes the left-hand side of ().
This is due to two nice properties: a) any independent sampling admits optimal choice of v, i.e., v; =1 — p;
for all ¢, and b) for independent sampling holds as equality. In the context of our method, these properties
can be written as

2 n

1—pk
Sl ||Uf||2] | ©

i=1 Di

E| =E

Gk — zn: wZUf
i=1

It now only remains to find the parameters {pf} defining the optimal independent sampling, i.e., one that
minimizes @ subject to the constraints 0 < pf <1 and bF = Z?:l pf < m. It turns out that this problem
has the following closed-form solution (see Appendix :

m —n,HUif” ifi ¢ Ax
I S 78 M ")

1, ifi € AF

ST

where UF = w;U¥, and U(kj)

=%
|96l

indices 4 such that ||(~JfH > HUﬁ“) H We summarize this procedure in Algorithm

is the j-th smallest value in {HUZ’“H}ZL:17 [ is the largest integer for which

O<m+I-—n< (note that this inequality at least holds for [ = n —m + 1), and A* contains

Remark. Optimizing the left-hand side of does not guarantee the proposed sampling to be optimal with
respect to the right-hand side in the general case. For this to hold, our sampling needs to be independent,
which is not a very restrictive condition, especially considering that enforcing independent sampling across
clients accommodates the privacy requirements of FL. In addition, since is tight, our sampling is optimal
if one is allowed to communicate only norms (i.e., one float per client) as extra information. We stress that
requiring optimality with respect to the left-hand side of in the full general case is not practical, as it
cannot be obtained without revealing, i.e., communicating, all clients’ full updates to the master.

2.2 Ensuring Compatibility with Secure Aggregation and Stateless Clients

Tk
In the case [ = n, the optimal probabilities p¥ = %
j=1 J

the norm of each update and then sends the sum back to the clients. However, if [ < n, in order to compute

can be computed easily: the master aggregates

2IVVangni et al,| (12018[) consider a slightly different problem, where they minimize the communication budget while putting
constraints on the variance.
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Algorithm 1 Optimal Client Sampling (0CS).

Input: expected batch size m

each client 7 computes a local update U¥ (in parallel)

each client i sends the norm of its update u¥ = w; ||U¥|| to the master (in parallel)
master computes optimal probabilities p¥ using equation

master broadcasts p¥ to all clients

each client i sends its update %Uf to the master with probability p¥ (in parallel)

optimal probabilities, the master would need to identify the norm of every update and perform partial sorting,
which can be computationally expensive and also violates the client privacy requirements in FL, i.e., one
cannot use the secure aggregation protocol (Du & Atallah| 2001} |Goryczka & Xiong, 2015; Bonawitz et al.)
[2017; |So et all [2021)) where the master only sees the sum of the updates. Therefore, we create an algorithm
for approximately solving this problem, which only requires to perform aggregation at the master node
without compromising the privacy of any client. We build upon the greedy algorithm from
, where the main motivation for the presented approach comes from the fact that we solve almost
Tk
equivalent mathematical problem. We first set pF = % and p¥ = min{p¥, 1}. In the ideal situation
j=111"3

where every p¥ equals the optimal solution @, this would be sufficient. However, due to the truncation

. . . Uk . .
operation, the expected mini-batch size b* = Dy pf <>h, W:Hilnl = m can be strictly less than m if

A
ﬁf > 1 holds true for at least one i. Hence, we employ an iterative procedure to fix this gap by rescaling
the probabilities which are smaller than 1, as summarized in Algorithm [2] This algorithm is much easier
to implement and computationally more efficient on parallel computing architectures. In addition, it only
requires a secure aggregation procedure on the master, which is essential in privacy preserving FL, and thus
it is compatible with existing FL software and hardware.

Extra Communications in Algorithm [2l We acknowledge that Algorithm [2] brings extra communication
costs, as it requires all clients to send the norms of their updates uf’s and probabilities pf’s in each round.
However, since these are single floats, this only costs O(jmax) extra floats for each client. Picking jmax = O(1),
this is negligible for large models of size d. We also acknowledge that engaging in multiple synchronous
rounds of communication (as in Algorithm [2) can be a bottleneck (Huba et al] [2022). This is not an issue in
our work, as we focus on reducing the total communication cost. However, Algorithm 2] may be less useful
under different setups or metrics.

Fairness. Based on our sampling strategy, it might be tempting to assume that the obtained solution could
exhibit fairness issues. In our convergence analyses below, we show that this is not the case, as our proposed
methods converge to the optimal solution. Hence, as long as the original objective has no inherent issue with
fairness, our methods do not exhibit any fairness issues. Besides, our algorithm can be used in conjunction

with other “more fair” objectives, e.g., Tilted ERM (Li et all [2021)), if needed.

3 Convergence Guarantees

This section provides convergence analyses for DSGD and FedAvg with our optimal client sampling scheme
in both convex and non-convex settings. We compare the convergence results of our scheme with those
of full participation and independent uniform sampling with sample size m. We match the forms of our
convergence bounds to those of the existing bounds in the literature to make them directly comparable. We
do not compare the sample complexities of these methods, as such comparisons would be difficult due to their
dependence on the actual updates which are unknown in advance and do not follow a specific distribution in
general. Intuitively, our method can be thought of as uniform sampling with m € [m, n] effective sampled
clients, while only m clients are actually sampled in expectation, which indicates that it cannot be worse than
uniform sampling and can be as good as full participation. The actual value of m depends on the updates.
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Algorithm 2 Approximate Optimal Client Sampling (AOCS).

Input: expected batch size m, maximum number of iteration jmax
each client i computes an update U¥ (in parallel)
each client i sends the norm of its update u¥ = w; ||U¥|| to the master (in parallel)
master aggregates ub = Z?=1 uf
master broadcasts u” to all clients
cach client ¢ computes pf = min{"%
for j=1,-, jmaz do
each client i sends t¥ = (1, pF) to the master if p¥ < 1; else sends t¥ = (0,0) (in parallel)
master aggregates (I*, PF) =" | tF
m=n+tI*
Pk
master broadcasts C* to all clients

each client 4 recalibrates p¥ = min{C¥p¥ 1} if pF < 1 (in parallel)

if C* <1 then

14: break

15:  end if

16: end for

17: each clients ¢ sends its update ;”—ka to master with probability p¥ (in parallel)

! ,1} (in parallel)

H
@

master computes C*F =

_ = e
W

We use standard assumptions (Karimi et al., [2016), assuming throughout that f has a unique minimizer
x* with f* = f(a*) > —oo and f;’s are L-smooth, i.e., f;’s have L-Lipschitz continuous gradients. We first
define convex functions and L-smooth functions.

Definition 3.1 (Convexity). f:R? — R is y-strongly convex with p > 0 if
f4) = f@) + (Vi@)y —a) + Slly—al®, voy e R (8)
f:R% = R is convex if it satisfies with = 0.
Definition 3.2 (Smoothness). f:R? — R is L-smooth if
IVf(z) = Vil <Llz—yl, VzyeR? (9)

We now state standard assumptions of the gradient oracles for DSGD and FedAvg.

Assumption 3.3 (Gradient oracle for DSGD). The stochastic gradient estimator gF = V fi(a*) + £F of the
local gradient V f;(z*), for each round k and all i = 1,...,n, satisfies

E[¢f] =0 and E {Hff“z |mﬂ <M Hsz(xk)H2 + o, for some M > 0. (10)
This further implies that E [1 3" | g& | 2¥] = V f(2*).
Assumption 3.4 (Gradient oracle for FedAvg). The stochastic gradient estimator g;(yf,) = V f;(yF,) + &£,
of the local gradient Vfi(yzl-fr), for each round k, each local step r =0,..., R and all t = 1,... n, satisfies

E [ fr] =0 and E [HﬁfTHz |yfr} <M ||Vfl(yfr)H2 + o2, for some M >0, (11)

where yﬁo = z¥ and yf’r = yfﬂ_l — nlgi(yﬁr), forr=1,---,R.

For non-convex objectives, one can construct counter-examples that would diverge for both DSGD and FedAvg
if the sampling variance is not bounded. Therefore, we need to employ the following standard assumption of
local gradients for bounding the sampling varianceﬂ

3This assumption is not required for convex objectives, as one can show that the sampling variance is bounded using
smoothness and convexity.
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Assumption 3.5 (Similarity among local gradients). The gradients of local loss functions f; satisfy

Zwi IV fi(z) = Vf(@)|]> < p, for some p > 0. (12)
i=1

Some works employ a more restrictive assumption which requires ||V f;(z) — Vf(z)| < p, Vi, from which
Assumption can be derived, since E?:l w; = 1. Therefore, Assumption can be seen as an assumption
on similarity among local gradients. Furthermore, this assumption does not require w;’s to be lower-bounded,
as clients with w; = 0 will never be sampled and thus can be removed from the objective.

We also define three quantities, which will appear in our convergence analyses:

W = m?)]({wi}, Zi = fi(a*) — fr, rF=ak -2, (13)
S

where f7 is the functional value of f; at its optimum, Z; represents the mismatch between the local and
global minimizer, and r* captures the distance between the current point and the minimizer of f.

We are now ready to proceed with our convergence analyses. We define the improvement factor
]
2:| ’
where S* ~ S¥ with p¥ defined in and U* ~ U is an independent uniform sampling with p! = 7m/n. By
construction, af < 1, as S¥ minimizes the variance term (see Appendix . Note that o* can reach zero
in the case where there are at most m non-zero updates. If o = 0, our method performs as if all updates
were communicated. In the worst-case o = 1, our method performs as if we picked m updates uniformly
at random, and one could not do better in theory due to the structure of the updates Uf . In the following

subsections, we provide convergence analyses of specific methods for solving the optimization problem .
The proofs of the theorems are deferred to Appendices [C|and [D] For simplicity of notation, we denote

E {Hziesk BUk - YT 0, U
k .__ @

(14)

. |:szeUk ;,Ul}’ U =30, wiU}

% m m
=— —,1 =0,...,K—1. 1
7 ak(n—m)—l—me[n’ }’ k=0,..., (15)

3.1 Distributed SGD (DSGD) with Optimal Client Sampling

We obtain analyses for DSGD with optimal client sampling in both convex and non-convex settings.

Theorem 3.6. Let f; be L-smooth and convex fori=1,...,n. Let f be p-strongly convex. Suppose that

Assumptionn holds. Choose n* € (0, %] . Define

Bri=Y w!QRL(+M)Z;+0°) and Bp:=2LY wiZ:. (16)
i=1 =1

The iterates of DSGD with optimal client sampling satisfy
B I+ < = e [ + 2 (5 - ). an

Interpretation. We first look at the best and worst case scenarios. In the best case scenario, we have
v% =1 for all k’s. This implies that there is no loss of speed comparing to the method with full participation.
It is indeed confirmed by our theory as our obtained recursion recovers the best-known rate of DSGD in the
full participation regime (Gower et al., 2019, Theorem 3.1). To provide a better intuition, we include a full
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derivation in this case. For simplicity, let M = 0 and w; = 1/n. In full participation, we have v* = 1 for all
k’s. Then, taking the same step size 7 for all k leads to

B 7] < (1= g [J4] + 2% (19)

Applying the above recursively yields
2
K 2 . K 0 2 a
B{[[r)*] < (= pm)<E [[|r°]] fuo (19)

which is equivalent to the result in |Gower et al.| (2019).

Similarly, in the worst case, we have v¥ = m/,, for all ks, which corresponds to uniform sampling with sample
size m, and our recursion recovers the best-known rate for DSGD in this regime. This is expected as
implies that every update U¥ is equivalent, and thus it is theoretically impossible to obtain a better rate
than that of uniform sampling in the worst case scenario. In the general scenario, our obtained recursion sits
somewhere between full and uniform partial participation, where the actual position is determined by ~*’s
which capture the distribution of updates (here gradients) on the clients. For instance, with a larger number
of v¥’s tending to 1, we are closer to the full participation regime. Similarly, with more v*’s tending to 7/n,
we are closer to the rate of uniform partial participation.

Theorem 3.7. Let f; be L-smooth fori=1,...,n. Suppose that Assumptions and hold. Let n* be
the step size and define

B = % ((1+M—vk>Wp+Zw?o2>~ (20)
i=1
The iterates of DSGD with optimal client sampling satisfy
M)L
B[] < B ()]~ (1= R0 ) B [9s6hl] + a2 (21)

Interpretation. The iterate (21]) recovers the standard form of the convergence result of DSGD for one
recursion step in the non-convex setting. Similar to the previous results, this convergence bound sits between
the best-known rate of full participation and uniform sampling [Theorem 4.8](Bottou et al., 2018]).

3.2 Federated Averaging (FedAvg) with Optimal Client Sampling

Pseudo-code that adapts the standard FedAvg algorithm to our framework is provided in Algorithm 3] We
obtain analyses for FedAvg with optimal client sampling in both convex and non-convex settings.

Theorem 3.8. Let f; be L-smooth and p-strongly convex for i = 1,....,n. Suppose that Assump-

tion |3.4| holds. Let n* = Rm’“n_’; be the effective step-size and 775 > /Z - Choose n* ¢

)8 L+M/R) A+ WQA+M/RNE [ |
252 M n M\ —
k. Z 2 k Z 2. — 2 E : 7
ﬁl = P}/kiR — ’U}i + 4] (R + 1-— Yy ) 2 U}i Zz and /82 = 72L (1 + R) 2 ’LU7IZZ. (22)
The iterates of FedAvg (R > 2) with optimal client sampling @ satisfy

2 (06 - 1) < o (1220 B [117] - SB[ st
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Algorithm 3 FedAvg with Optimal Client Sampling.

1: Input: initial global model !, global and local step-sizes 777;, ny
2: for each round k=1,..., K do

3:  master broadcasts z¥ to all clients i € [n]

4:  for each client ¢ € [n] (in parallel) do

5 initialize local model yllfo — P

6: forr=1,...,Rdo

7 compute mini-batch gradient gi(yprl)

8

9

update yf, < y¥, | —nfgi(ys, 1)

: end for
10: compute U¥ := AyF = 2k — ¢k,
11: compute p¥ using Algorithm (1| or
12: send ;’—kAyf to master with probability p¥

13:  end for

14:  master computes AzF = D icsk %Ayf

15:  master updates global model 21 « 2* — ngAxk
16: end for

Theorem 3.9. Let f; be L-smooth for all i = 1,...,n. Suppose that Assumptions and [3.5 hold. Let
nk = Rnlkn;f be the effective step-size and 77;@C > /425:7)1”2. Choose 0% € (O, m] The iterates of

FedAvg (R > 2) with optimal client sampling @) satisfy

k k 9 k o2 n
E[f(*)] <E [f)] - 2L (1 - 10’?’) L) E [HW(:::’“)H ] + % +(n*)? (Z R Zw2> L. (24)

8

Interpretation. The convergence guarantees from Theorems |3.8| and sit somewhere between those for
full and uniform partial participation. The actual position is again determined by the distribution of the
updates which are linked to *’s. In the edge cases, i.e., ¥* = 1 (best case) or v*¥ = m/s, (worst case), we
recover the state-of-the-art complexity guarantees provided in (Karimireddy et al. 2019, Thorem I.) in both
regimes. Note that our results are slightly more general, as [Karimireddy et al.| (2019) assumes M = 0 and
w; = 1/n.

4 Related Work

4.1 Importance Client Sampling in Federated Learning

Several recent works have studied efficient importance client sampling methods in FL (Cho et al.| [2020;
[Nguyen et all [2020; Ribero & Vikalo, 2020} [Lai et al. 2021} [Luo et al., 2022). Unfortunately, none of these
methods is principled, as they rely on heuristics, historical losses, or partial information. Furthermore, they
violate at least one of the core privacy requirements of FL (secure aggregation and stateless clients). For
example, while work of (Cho et al., [2020) is compatible with the secure aggregation it is not compatible
with stateless clients due to biased client selection towards clients with higher local loss. Other works on
FL importance sampling includes [Lai et al.| , where the client selection is based on the system and
statistical utility of clients, and [Ribero & Vikalo| (2020)) models the progression of the model’s weights by an
Ornstein-Uhlenbeck process based on partial information.

In contrast, our proposed method is the first principled optimal client sampling strategy in the sense that it
minimizes the variance of the master update and is compatible with the core privacy requirements of FL. We
note that other mentioned techniques could also be compatible with the methods presented in Section [2}, but
they would not lead to the optimal method.
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4.2 Importance Sampling in Stochastic Optimization

Importance sampling methods for optimization have been studied extensively in the last few years in several
contexts, including convex optimization and deep learning. LASVM developed in (Bordes et al., 2005) is
an online algorithm that uses importance sampling to train kernelized support vector machines. The first
importance sampling for randomized coordinate descent methods was proposed in a seminal paper (Nesterov,
2012)). It was showed in (Richtarik & Takac, |2014) that the proposed sampling is optimal. Later, several
extensions and improvements followed (Shalev-Shwartz & Zhang), 2014; [Lin et al., |2014; |Fercoq & Richtarikl
2015; IQu et al., |2015} [Allen-Zhu et al., 2016; Stich et al), [2017). Another branch of work studies sample
complexity. In[Needell et al.| (2014); [Zhao & Zhang| (2015)), the authors make a connection with the variance
of the gradient estimates of SGD and show that the optimal sampling distribution is proportional to the
per-sample gradient norm. However, obtaining this distribution is as expensive as computing the full gradient
in terms of computation, and thus it is not practical. For simpler problems, one can sample proportionally
to the norms of the inputs, which can be linked to the Lipschitz constants of the per-sample loss function
for linear and logistic regression. For instance, it was shown in (Horvath & Richtarik], |2019) that static
optimal sampling can be constructed even for mini-batches and the probability is proportional to these
Lipschitz constants under the assumption that these constants of the per-sample loss function are known.
Unfortunately, importance measures such as smoothness of the gradient are often hard to compute/estimate
for more complicated models such as those arising in deep learning, where most of the importance sampling
schemes are based on heuristics. For instance, a manually designed sampling scheme was proposed in (Bengio
et al.l [2009). It was inspired by the perceived way that human children learn; in practice, they provide
the network with examples of increasing difficulty in an arbitrary manner. In a diametrically opposite
approach, it is common for deep embedding learning to sample hard examples because of the plethora of easy
non-informative ones (Schroff et al., [2015} |Simo-Serra et al., |2015)). Other approaches use a history of losses
for previously seen samples to create the sampling distribution and sample either proportionally to the loss
or based on the loss ranking (Schaul et al.l 2015 [Loshchilov & Hutter}, 2015). (Katharopoulos & Fleuret,
2018) proposes to sample based on the gradient norm of a small uniformly sampled subset of samples.

Although our proposed optimal sampling method adapts and extends the importance sampling results from
(Horvath & Richtarik, |2019)) to the distributed setting of FL, it does not suffer from any of the limitations
discussed above, since the motivation of our work is to reduce communication rather than computation. In
particular, our method allows for any budge m < n on the number of participating clients, which generalizes
the theoretical results from [Zhao & Zhang| (2015) which only applies to the case m = 1.

5 Experiments

5.1 Setup

We empirically evaluate our optimal client sampling method on standard federated datasets from LEAF
(Caldas et al., 2018)). We compare our method with 1) the baseline where participating clients are sampled
uniformly from available clients in each round and 2) full participation where all available clients participate.
We chose not to compare with other client sampling methods, as such comparisons would be unfair. This
is because they violate the privacy requirements of FL: our method is the only importance client sampling
strategy that is deployable to real-world FL systems (see Section . We simulate the cross-device FL
distributed setting and train our models using TensorFlow Federated (TFF). We conclude our evaluations
using FedAvg with Algorithm [2] as it supports stateless clients and secure aggregatiorﬁ We extend the
TFF implementation of FedAvg| to fit our framework. For all three methods, we report validation accuracy
and (local) training loss as a function of the number of communication rounds and the number of bits
communicated from clients to the masterﬂ . Each figure displays the mean performance with standard

4We compared the results of Algorithms [1] and [2] for all experiments as a subroutine. Their results are identical, so we only
show results for Algorithm El and argue that the performance loss caused by its approximation is negligible.

5The communication from the master to clients is not considered as a bottleneck and thus not included in the results. This is
a standard consideration for distributed systems, as one-to-many communication primitives (i.e., from the master to clients) are
several orders of magnitude faster than many-to-one communication primitives (i.e., from clients to the master). This gap is
further exacerbated in FL due to the large number of clients and slow client connections.
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Figure 1: Distributions of the three modified Federated EMNIST training sets.

1.0 2 1 2.
N w
Zo.g %2.0 308 §20
H E 3 °
A ) 3
206 D £1.5) 0.6 51,5
A \ @ c c
< N [ S =
204 — optimal sampiing (m=3.n=32) | = 1.0 0.4 c1o0
= T 2 S |}
S0 Sos, $0.2 305 L
full paticipation (m=32, n=32) T it
0020 40 60 80 100 120 140 160 20 4060 80 100 120 140 Teo O 2 27 2° 2 Fd 0 2 27 25 2 20
Bits Communicated from Clients to the Master (x10%) Bits Communicated from Clients to the Master (x10%)

Communication Round Communication Round
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communication rounds and the number of bits communicated from clients to the master.
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Figure 3: (FEMNIST Dataset 2) Validation accuracy and (local) training loss as a function of the number of
communication rounds and the number of bits communicated from clients to the master.
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Figure 4: (FEMNIST Dataset 3) Validation accuracy and (local) training loss as a function of the number of
communication rounds and the number of bits communicated from clients to the master.

deviation over 5 independent runs for each of the three compared methods. For a fair comparison, we use the
same random seed for all three methods in a single run and vary random seeds across different runs. Detailed
experimental settings and extra results can be found in Appendices and [F-2] Our code together with
datasets is included in the supplementary material.

5.1.1 Federated EMNIST Dataset

We first evaluate our method on the Federated EMNIST (FEMNIST) image dataset for image classification.
Since it is a well-balanced dataset with data of similar quality on each client, we modify its training set by
removing some images from some clients, in order to better simulate the conditions in which our proposed
method brings significant theoretical improvements. As a result, we produce three unbalanced training
setd’] as summarized in Figure[1] We use the same CNN model as the one used in (McMahan et all, [2017).
For validation, we use the unchanged EMNIST validation set, which consists of 40,832 images. In each

6The aim of creating various unbalanced datasets is to show that optimal sampling has more performance gains over uniform
sampling on more unbalanced datasets, since a*’s (defined in Equation (14))) are more likely to be close to zero in this case.
These datasets are created using the following procedure. Let g € (0,1) and a,b € N4 with a < b. For a given client with n.
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Figure 5: (Shakespeare Dataset) Validation accuracy and (local) training loss as a function of the number of
communication rounds and the number of bits communicated from clients to the master.

communication round, n = 32 clients are sampled uniformly from the client pool, each of which then performs
several SGD steps on its local training images for 1 epoch with batch size 20. For partial participation, the
expected number of clients allowed to communicate their updates back to the master is set to m € {3,6}. We
use vanilla SGD optimizers with constant step sizes for both clients and the master, with 7, = 1 and n; tuned
on a holdout set. For full participation and optimal sampling, it turns out that 7 = 273 is the optimal local
step size for all three datasets. For uniform sampling, the optimal is 7, = 27° for Dataset 1 and 1 = 274
for Datasets 2 and 3. We set jnax = 4 and include the extra communication costs in our results. The main
results are shown in Figures and [

5.1.2 Shakespeare Dataset

We also evaluate our method on the Shakespeare text dataset for next character prediction. Unlike in
the FEMNIST dataset, we do not change the number of examples held by each client in this dataset.
The vocabulary set for this task consists of 86 unique characters. The dataset contains 715 clients, each
corresponding to a character in Shakespeare’s plays. We divide the text into batches such that each
batch contains 8 example sequences of length 5. We use a two-layer GRU model. We set n = 32, m €
{2,4,6}, Jmasz = 4 and run several SGD steps for 1 epoch on each client’s local dataset in every communication
round. We use vanilla SGD optimizers with constant step sizes, with ny = 1 and 7; tuned on a holdout set.
For full participation and optimal sampling, it turns out that the optimal is 7; = 272. For uniform sampling,
the optimal is 7; = 273. The main result is shown in Figure

5.2 Discussions

As predicted by our theory, the performance of FedAvg with our proposed optimal client sampling strategy is
in between that with full and uniform partial participation. For all datasets, the optimal sampling strategy
performs slightly worse than but is still competitive with the full participation strategy in terms of the number
of communication rounds: it almost reached the performance of full participation while only less than 10% of
the available clients communicate their updates back to the master in the cases m = 2,3. As we increase the
expected number m of sampled clients, the performance of optimal sampling increases accordingly, which is
consistent with the theory, e.g., Theorem and (Yang et al.l [2021), and becomes almost identical to that of
full participation. Note that the uniform sampling strategy performs significantly worse, which indicates that
a careful choice of sampling probabilities can go a long way towards closing the gap between the performance
of naive uniform sampling and full participation.

More importantly, and this was the main motivation of our work, our optimal sampling strategy is significantly
better than both the uniform sampling and full participation strategies when we compare validation accuracy
as a function of the number of bits communicated from clients to the master. For instance, on FEMNIST
Dataset 1 (Figure , while our optimal sampling approach reached around 85% validation accuracy after
26 x 10% communicated bits, neither the full nor the uniform sampling strategies are able to exceed 40%
validation accuracy within the same communication budget. Indeed, to reach the same 85% validation
accuracy, full participation approach needs to communicate more than 2° x 108 bits, i.e., 8x more, and
uniform sampling approach needs to communicate about the same number of bits as full participation or

examples, we keep this client unchanged if n. < a or n. > b, otherwise we remove this client from the dataset with probability ¢
or only keep a randomly sampled examples in this client with probability 1 — q.
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even more. The results for FEMNIST Datasets 2 and 3 and for the Shakespeare dataset are of a similar
qualitative nature, showing that these conclusions are robust across the datasets considered.

Finally, it is also worth noting that the empirical results from Sections [5.1.1] and confirm that our
optimal sampling strategy allows for larger step sizes than uniform sampling, as the hyperparameter search
returns larger step sizes n; for optimal sampling than for uniform sampling.

6 Conclusion and Future Work

In this work, we have proposed a principled optimal client sampling strategy to address the communication
bottleneck issue of federated learning. Our optimal client sampling can be computed by a closed-form
formula using only the norms of the updates. Furthermore, our method is the first principled importance
client sampling strategy that is compatible with stateless clients and secure aggregation. We have obtained
convergence guarantees for our method with DSGD and FedAvg, and have performed empirical evaluations of
our method on federated datasets from the LEAF database. The empirical results show that our method is
superior to uniform sampling and close to full participation, which corroborates our theoretical analysis.

Some limitations and directions for future work are as follows: 1) A straightforward extension is to combine
our proposed approach with communication compression methods to further reduce the sizes of communicated
updates. 2) In the settings where the communication latency is high, our proposed method may not be
effective in reducing the real communication time. It would be interesting to extend our optimal client
sampling strategy to take into account the constraints of local clients (e.g., computational speed and network
bandwidth/communication latency).
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A Proof of Lemma 2.1l

Proof. Our proof technique can be seen as an extended version of that in (Horvath & Richtarik, [2019)). Let
lies = 1if i € S and 1ljeg = 0 otherwise. Likewise, let 1; jeg = 1if 4,5 € S and 1; jes = 0 otherwise. Note

that E[l;cs] = p; and E[1; jes] = pij. Next, let us compute the mean of X =3, ¢ “’p—g
w; G - w;G; wzCz
E[X]:E Z =E Z 1i€S :Z zGS szCz—
ies Pi i P i Pi
Let A = [ay,...,a,] € R¥*" where a; = wf, and let e be the vector of all ones in R™. We now write the
variance of X in a form which will be convenient to establish a bound:
2 2 2
E|I1X - BIX]|*] = E[IX]°] - IE[X]|
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=E |12 el
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= (pij — pipj)a] a;
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=e (P—pp")oAT Ae.
Since, by assumption, we have P — pp' < Diag(p o v), we can further bound
(P —ppT)o AT A)e < ¢ (Diag(pov)o AT A)e = 3 piv aill”.
i=1

To obtain , it remains to combine this with . The inequality v; > 1 — p; follows by comparing the
diagonal elements of the two matrices in . Consider now the independent sampling. Clearly,

pl(l_pl) 0 0
0 pz(l—pg) 0 .
P —pp = : . - . = Dlag(plvh o 7ann)a
0 0 o pn(1=pn)

which implies v; = 1 — p;. O

B The Improvement Factor for Optimal Client Sampling

By Lemma [2.1] H the independent sampling (which operates by independently flipping a coin and with
probability p; includes element ¢ into S) is optimal. In addition, for independent sampling, . ) holds as
equality. Thus, letting Uk = w; U¥ we have

2 2

dgr = waUk Zw,Uk =E||Y = L ZU’“ —E

i1€Sk P iegk pz
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The optimal probabilities are obtained by optimizing subject to the constraints 0 < pf < 1 and

m > bk = Sy pf using KKT conditions. Using a similar argument in (Horvath & Richtérik} 2019) (Lemma

2) gives the following solution

Ul o &

(m—i—l—n)”il if i ¢ A",

p? = Z | m” (27)
1, if i € AF,

where HU(”C]) H is the j-th largest value among the values ||(7{C
ook
which 0 < m+1l—n < W (note that this inequality at least holds for I = n —m+1), and A* contains
)
indices ¢ such that ||Ulk|| > U(Ii+1) H

Plugging the optimal probabilities obtained in into gives
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dgk :E

2
i) -l

With m |0, [ < 7 [|OF], we have

1 n 2 n 9 1 n 2 Zn |Uk||2
& —B | = Uk _ Uk —E ( ﬁf) (1_mi—1~i>
e (S500) - S00t] e a (S000) (-

nmy (iuﬁfn)Q

=1

IN

For independent uniform sampling U* ~ U (p{ = ™ for all i), we have

2
n

e || 3 B S, :E[zlﬂ o

€Uk =1 n

ZHUkH

Putting them together gives the improvement factor:

2
o B[S ottt [ ey
o = = = k|12 T
. {szem ;%Uf — 2 wiUy 2] e [Zy:l HUZCH ]

e ’

The upper bound is attained when all Hf]ik H are identical. Note that the lower bound 0 can also be attained
in the case where the number of non-zero updates is at most m. These considerations are discussed in the
main paper.

C DSGD with Optimal Client Sampling

C.1 Proof of Theorem

Proof. L-smoothness of f; and the assumption on the gradient imply that the inequality

B [[lgf]°] <2201+ M)(fila®) = fi(a") + Z) + o
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holds for all k > 0. We first take expectations over zF*1 conditioned on z* and over the sampling S*:

2
B[] = I - 20

(3 st >] USRS

ieSk ©t icSk Py
2
n
= ||rk||2_2nk <Vf(g;k)7rk>—|-(nk)2 E Z %gf—z'wlgzk +E |:
ieSk *t i=1 i

< (1= p®) |74 = 20* (f(a*) -

where

2

> Shek -

€Sk

[ n
— e[S
Li=1

S|t (1o - A 9]

=t E ;wf(\f P+ 1v5:)]7)

k=

< PPN (20(1+ M) (fila®) — file®) +

m
i=1

<aotl ;@m <2WL(1 + M)(f(2*) —

i=1
and

2

gt +||VrEh)|)?

n 2 n
E =E
i=1 i=1

Zwigf -
=Y E[|wigf —wiVfie
i=1
= > wfE [l |] + [Vt
i=1

O] + v

<Y w}RLM(fi(2*) — f7) + 0®) + 2L(f (=) — %)
=1

=2L(1+WM) (f(=*) — f*) + zn: w?(2LM Z; + o?).

i=1
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Therefore, we obtain

B[] < (= ) r#]* - 20* (£G4 - £)

+ (n*)? <2L (1+WM)(f(z*)— )+ znj w?(2LM Z; + 02)>

i=1

+ (n")2at (zwm SN - 1)+ YL+ M+ a2>>

=1

2 a(n—m)+m)(1+WM)L
pe0(n—m)+m [~ 2 207 N 2
+ (") > w}RL(+ M)Zi+0”) | = ()20 Y w}Zi.
i=1 i=1
Now choose any 0 < n* < (ak(7l_m)+”72)(1+WM)L and define
— - 2 ) 2 — - 2 k. m m
By = ;wl(QL(1+M)ZZ Y 0?), fo= 2L;wlzﬂ = T T [n ,1] .
Taking full expectation yields the desired result:
k41|12 k k|2 k B
B[] < (1= o )E [I4]7] + o (Wk —52) |
O
C.2 Proof of Theorem 3.7
Proof. Using equation , we have
F@*) = f(a* = n*G")
k)2
= f(a*) =" (GF,V f(z")) + % (GF, V2f(2*)GF), for some 2" € R%.

Since all f;’s are L-smooth, f is also L-smooth. Therefore, we have —LI < V2f(x) < LI for all x € R
Combining this with the fact that G¥ is an unbiased estimator of V f(z*), we have

k\2
B < 1) ot Vi) + e et (28)

where the expectations are conditioned on z*. In Appendix we already obtained the upper bound for
the last term in equation :

B |Gk’ < ((1 + Myah = 4 M> Zn:wf IV £ + (a’f”;m + 1) Zn:w502 + ||V £ (")
i=1

i=1

I

1+ M S 1 ¢
(B ) T TR+ 5 Sue + |7
i=1 i=1

By Assumption we further bound

S w? [VAEH|P < WS w || Vi)
i=1 i=1

<w (Z wi[| Vi) = Vi h) [P+ [V ) “2>
i=1
<Wot |[ViEh)|.
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Combining the inequalities above and taking full expectation yields equation . O

D FedAvg with Optimal Client Sampling

Lemma D.1 ((Karimireddy et al., 2019)). For any L-smooth and u-strongly conver function h : RY — R
and any x,y, z € R?, the following inequality holds

(Vh(x),z =) > h(=) = hiy) + 5 |y = 2II° = L]z = |)*. (29)

Proof. For any given x, y, and z, the two inequalities below follows by the smoothness and strong convexity
of the function h:

L
T2
(Vh(a),x = y) 2 he) = hiy) + 5 lly - al|*.

(Vh(z),z = x) = h(z) — h(z) Iz —=z|?,

Further, applying the relaxed triangle inequality gives
Sly=al* = Sy =21 = £ llz =211 -

Combining all these inequalities together we have

L L+p
(Vh(z),z —y) > h(z) — h(y) + 1 ly — =|* - — (B

The lemma follows by L > pu. O

D.1 Proof of Theorem 3.8

Proof. The master update during round k can be written as (superscript k is dropped from here onward)

w;
ngAx = % Z fgi(yz‘,rq) and E[n,Az| = %ZwiE Vfi(yir—1)]-
ieS,r " ir

Summations are always over i € [n] and r € [R] unless stated otherwise. Taking expectations over x
conditioned on the results prior to round k£ and over the sampling S gives

2

E{ A «12] _ w2 20 v x 772E w;
|z —ngAz — 27| = ||z — =7 _EZ@% fi(Yir—1),2 — >+ﬁ Z igi(yi,rfl)

iy ieS,r

A pe

Applying Lemma [D.T with h = w; fi, © = yi,—1, y = 2* and z = x gives

A

2n M N
A= R Z (wifi(x) —w; fi(x*) + wzz |z — x ||2 —w;L ||z — yi7r_1||2>
@,

A

< -2 (f(m) — [+ % |z — :c*||2) +2LnE,

where £ is the drift caused by the local updates on the clients:

= ;ZwE [l = vl (30)
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Bounding As, we obtain

2
%AQ - |: Z Zgz Yi,r— 1 Zwiézgi(yi,rfl)

1€S
n—m
< ’B
Sa— ;wl E [
) 2 . 2
E *Zé-i,rfl +E *vai(yi,rq)
R T R T
1 ? 1
E [ ZwiEZ&,rq ] +E [ Zwiﬁzvfi(yi,rfl) ] :
i T % T
Using independence, zero mean and bounded second moment of the random variables ; ., we obtain

-
? (RIQZE [I\&,T_ln?] +E ;vaym_l) )
2] )

szfz Yir— 1

Z w@% Z 9i(Yi,r—1)

2

|

Z wz% Z 9i(Yi,r—1)

|

2
% ggi(yi,rq)

]

1 —
*2./42 S O[n
n

S V)

w2l g ZE [lgir—1I] +E “
<ol Yl ((ﬁf + 1) SB[V + ;)

+3oud (RQZE[HW% OIP] + >+E ‘ ]
= g St (G (+1) o) St p TR (19 e) - D10+ VA1
| |
< Xute (o (Fe)ett) S (;ZE (19 £:0151) - VA@)P] + 28 [||Vfi<x>|2}>

+2E U

Combining the smoothness of f;’s, the definition of £, and Jensen’s inequality with definition v :=
we obtain

1 M M
= Az,R Zw +2(R+(R+1>
+2L25+4L(f( ) — f(z¥))

—Z +2L2< W)+I/:<A]§+1>>€+4L( <M+1>—1>Zw

+4L ((1 ~ W)+ g (J\g +1>> (f(z) = f7).

& S Vi) ~ Vi) + V(@)

% S (Vfilyir—1) = Vi)

] + 2B |V /@)

____m
a(n—m)+m’

— m) <WL25 +2WL(f(x) = f*)+2L) w?Zi>
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Putting these bounds on A; and As together and using the fact that 1 — W < 1/ yields

B[le —nyaz —a**] < (1= EL) Jlo —a|* — 2 (1—2LZ (W (A;+1> +1>) (f(x) - 1)
“72(;;2 +4L<1<M+1>1>Zw22>
+<1+nL ((1W)+I;V<]g+1>)>2Ln5.

Let 1 < srrwarmpr» then

which in turn yields

E [lle — Az - 7] < (1 ) o — a2~ S5 (a) - 1)

(el () 1))
- <1+77L ((1 — W) + g (R +1>)> 2LneE. (31)

Next, we need to bound the drift £. For R > 2, we have

B {lysr = 20] = E [lpir1 — 2 = milir)|]
< E|lyir—1 — o =V filir—0) IP] + L[V Filyir-) P+ 0?)

1 r -
< (1 + R—l) E _”yi,r—l - 33||2_ + (R+ M2V fi(yir—1)|I” + nio?

20.2

R2n2

I
/N
[t
—+
m
| =
—_
N——
=

- . M 7]2
s =t + (14 5 ) o 195l +

1 [ 1 MY 272
1+ }%_1> E ||yi,7"—1 — 5[,‘”2_ 4 <1 —+ R> R vaz(yz r_ 1) vfz(z)HQ

M s 102
1+) IV fi(x)]|” +
( R ) Ri? R2ip2

1 M\ 2n?L? ) M no?
1 _ 1 _— E i,r—1 — 1 o) Vl '
g+ (14 5) T ) Bl ol + (14 5 ) 2 IVA@I + 1o

If we further restrict n < m, then for any 7y > 1, we have

M\ 2p°L% 202 1 1 1
14— << o<
R) Rnp? ~ Ry264L2 ~ 32R ~ 32(R— 1)
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and therefore,

33 9 M 9 n?0?
E | lyir —2l*| < (14 o5 ) B | 19ir-1 - 1+ — i
[ =o17] < (1+ gy ) B llrms —ol] + (14 ) R VA + o
r—1 T
33 M\ 2n? s n%0?
< 1422 1+ = | 2L vy
<X (14 qmen) ((1+5) 717+ 5

M 2 7720'2
< 1 i
<su((1+5) Ro VA1 + o

g9

M 8no?
16(1+—)n* |V
(145 ) P IVA@I+ S

Hence, the drift is bounded by

M 2 2
£<16 <1+R> sz IV fi(z)|” ;8 n?
<52 (14 3) L St~ 11+

R Rn?

M 2 * 2 2 2
32<1+R>nL(f(x)f)+32<1 > sz,z+—

<4n(f(x)—f*)+32<1 ;‘{) 2LZw,Z+SZ“§.

Due to the upper bound on the step size n < m, we have the inequalities

W (M 9
1 L{(1-W —_ 1 — d 8pL <1.
1 (( >+7(R+)) Y and spL<

Plugging these to 7 we obtain

x n 3 x
B|lle —nya —a**] < (1= EL) o — 2| = Sn(f(@) - 1)
2
ot LY w? +4L( +1-— >Zw2Z
YR \ng %
M
+ n®72L? (1 + R) ZwiZi~
i
Rearranging the terms in the last inequality, taking full expectation and including superscripts lead to
3 Hn k k+1 2
2 (06 - < o (1= B0 ) B et - o] - B It -]
K o (A 2 M 2
+0f | o | Y wi | +4L Z -1 sz
N
M
+ (n*)?72L? <1 + R) zi:w,zz

Plugging the assumption n’g“ > Z’ka2 into the RHS of the above inequality completes the proof.
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D.2 Proof of Theorem

Proof. We drop superscript k& and write the master update during round k as:

n Ww;
ngA@’:E Z zg(yu 1) =nA.
i€S,r

Summations are always over ¢ € [n] and r € [R] unless stated otherwise. Taking expectations conditioned on
z and using a similar argument as in the proof in Appendix [C.2] we have

B[ (z —nyA2)) < f(2) ~n (Vf(2). B [A]) + TLE [|A)]
= 1(&) = IV F@I7 + 0 (V). V() ~ £ [A]) + L [|1A)°]
< 1) = 11 @) + 18[9 @) - Bs [A])] + L 1A )]

where the last inequality follows since (a,b) < 3 llall” + i 16>, Va,b € RY. Since f;’s are L-smooth, by the
(relaxed) triangular inequality, we have

2

I8 (Ivs@ - [A]F] = 26 || 5 > (V(a) = Vi)

nL? { } nL
< 4 —
= 9R § wz ‘.27 Yir— IH 2 )

where &£ is the drift caused by the local updates on the clients as defined in .

In Appendix , we already obtained the upper bound for 17%,42 =E {HAHQ]

<12 o? M M n
BlIAI°] < 2= S w?+2w (2 + (5 +1

3] < g St +ow (364 (3 1)
Together with Assumption [3.5] that

S wlVA@I IV @I < EusIV4ia) = V@) <

_m) <L25 D w ||sz-<x>||2) +2L%€ + 2| V()]

we have

~ 2
BIAI] < - Tut+ 2 (F +1-0) (B2 + V@I +5) +20%€ + 21T

Combining the above inequalities gives

E[f(z —n,Azx)] < f(x) +n2g;§wa +nL? (nL ((1 - W)+ g (1+ R)> + 2) £
+

9

+n<nL<(1W)+V:<1
n(ﬁL((l—W)+I;V<1+ ))—nL)p.

Now, applying inequality gives

2 2 2
B(f(r —nyAn)] < f2) + LIES w2 4 2 30 g ()2 4 1

1—8nL
R T —snL)p.
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In Appendix we also obtained the upper bound for the drift &:

2
<€'<16<1 ) sznwz ||+ 772

g

M 9 8202
<16 (14— ) »?
<16 1+ 5 ) USSP +)+ T2
Since 8nL < 8nL(1+ M/Rr) <1, we have
517 3.9 9 5n3L20?
<10n°L? (1 2
e a0z (14 ) (VI + 00+
57) L 51 Lo?
——(IVf@)I* +p) + SR

This further simplifies the iterate to

20.2
B{f(r— )] < f(x) & (1— L) V51 + g1+ 22 p+ L7 E (f;+2w?>.

%

Applying the assumption that g > / and taking full expectations completes the proof:

0'2 -
Elf(@ — n,A0)] < B[f(@)] - 2 (1—nL)E[|Vf< ] + 0% +n? (Z*m;”‘U?)L

E Sketch of Results on Partial Participation

This section discusses how our analysis can be extended to the case where not all clients participate in each
round. As an illustrative example, we consider distributed gradient descent (DSGD), i.e., U¥ = g¥.

If not all clients participate in each single round, we will assume that there is a known distribution of client
participation Q such that in each step a subset QF ~ Q of clients participates in a given communication
round k. We denote the probability that client i participates in the current run by g;, i.e., ¢; = Prob(i € QF).
Under this setting, we can apply twice tower property of the expectation and obtain the following variance
decomposition:

Bl|6* - vih|] =& |E -y w’Uk o +E||Y wlU’“ ZwlUk
icor & icor 1
(33)
n 2
> wilf = Vf(z*)

i=1

where we update the definition of G*

ah= Y B (34)

ieskcor 4iPi

Note that S* C QF as we can only sample from available clients. Furthermore, in the particular case of full
participation, the above equations are identical to the ones we present in the main paper.

Upper-bounding Equation in an analogous way as we proceed in our analysis in Appendices |C| and @l
would complete the proof of convergence for these settings.
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Figure 6: (FEMNIST Dataset 1) current best validation accuracy as a function of the number of communication
rounds and the number of bits communicated from clients to the master.
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Figure 7: (FEMNIST Dataset 2) current best validation accuracy as a function of the number of communication
rounds and the number of bits communicated from clients to the master.
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Figure 8: (FEMNIST Dataset 3) current best validation accuracy as a function of the number of communication
rounds and the number of bits communicated from clients to the master.
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Figure 9: (Shakespeare Dataset) current best validation accuracy as a function of the number of communication
rounds and the number of bits communicated from clients to the master.
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F Experimental Details

F.1 Federated EMNIST Dataset

We detail the hyper-parameters used in the experiments on the FEMNIST datasets. For each experiment, we
run 151 communication rounds, reporting (local) training loss every round and validation accuracy every
5 rounds. In each round, n = 32 clients are sampled from the client pool, each of which then performs
SGD for 1 epoch on its local training images with batch size 20. For partial participation, the expected
number of clients allowed to communicate their updates back to the master is set to m € {3,6}. We use
vanilla SGD and constant step sizes for all experiments, where we set n, = 1 and tune 7; from the set of
value {271,272,273,274 2751 If the optimal step size hits a boundary value, then we try one more step
size by extending that boundary and repeat this until the optimal step size is not a boundary value. For
full participation and optimal sampling, it turns out that 7, = 272 is the optimal local step size for all three
datasets. For uniform sampling, the optimal is 1; = 27° for Dataset 1 and 7; = 2~ for Datasets 2 and 3. For
the extra communications in Algorithm [2] we set jinaz = 4.

We also present some additional figures of the experiment results. Figures [0} [7] and [§] show the current
best validation accuracy as a function of the number of communication rounds and the number of bits
communicated from clients to the master on Datasets 1, 2 and 3, respectively.

F.2 Shakespeare Dataset

We detail the hyper-parameters used in the experiments on the Shakespeare dataset. For each experiment,
we run 151 communication rounds, reporting (local) training loss every round and validation accuracy every
5 rounds. In each round, n = 32 clients are sampled from the client pool, each of which then performs SGD
for 1 epoch on its local training data with batch size 8 (each batch contains 8 example sequences of length 5).
For partial participation, the expected number of clients allowed to communicate their updates back to the
master is set to m € {2,4,6}. We use vanilla SGD and constant step sizes for all experiments, where we set
ny = 1 and tune 7; from the set of value {271,272,273 274 275} If the optimal step size hits a boundary
value, then we try one more step size by extending that boundary and repeat this until the optimal step
size is not a boundary value. For full participation and optimal sampling, it turns out that 7; = 272 is the
optimal local step size. For uniform sampling, the optimal is 7, = 272. For the extra communications in
Algorithm [2] we set jyqz = 4.

We also present an additional figure of the experiment result. Figure [J] shows the current best validation
accuracy as a function of the number of communication rounds and the number of bits communicated from
clients to the master.
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