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ABSTRACT

Optimism in the face of uncertainty is a principled approach for provably efficient
exploration for reinforcement learning in tabular and linear settings. However,
such an approach is challenging in developing practical exploration algorithms
for Deep Reinforcement Learning (DRL). To address this problem, we propose
an Optimistic Exploration algorithm with Backward Bootstrapped Bonus (OEB3)
for DRL by following these two principles. OEB3 is built on bootstrapped deep
Q-learning, a non-parametric posterior sampling method for temporally-extended
exploration. Based on such a temporally-extended exploration, we construct an
UCB-bonus indicating the uncertainty of Q-functions. The UCB-bonus is further
utilized to estimate an optimistic Q-value, which encourages the agent to explore
the scarcely visited states and actions to reduce uncertainty. In the estimation of
Q-function, we adopt an episodic backward update strategy to propagate the future
uncertainty to the estimated Q-function consistently. Extensive evaluations show
that OEB3 outperforms several state-of-the-art exploration approaches in MNIST
maze and 49 Atari games.

1 INTRODUCTION

In Reinforcement learning (RL) (Sutton & Barto, 2018) formalized by the Markov decision process
(MDP), an agent aims to maximize the long-term reward by interacting with the unknown environment.
The agent takes actions according to the knowledge of experiences, which leads to the fundamental
problem of the exploration-exploitation dilemma. An agent may choose the best decision given
current information or acquire more information by exploring the poorly understood states and
actions. Exploring the environment may sacrifice immediate rewards but potentially improves future
performance. The exploration strategy is crucial for the RL agent to find the optimal policy.

The theoretical RL offers various provably efficient exploration methods in tabular and linear MDPs
with the basic value iteration algorithm: least-squares value iteration (LSVI). Optimism in the face
of uncertainty (Auer & Ortner, 2007; Jin et al., 2018) is a principled approach. In tabular cases,
the optimism-based methods incorporate upper confidence bound (UCB) into the value functions
as bonuses and attain the optimal worst-case regret (Azar et al., 2017; Jaksch et al., 2010; Dann &
Brunskill, 2015). Randomized value function based on posterior sampling chooses actions according
to the randomly sampled statistically plausible value functions and is known to achieve near-optimal
worst-case and Bayesian regrets (Osband & Van Roy, 2017; Russo, 2019). Recently, the theoretical
analyses in tabular cases are extended to linear MDP where the transition and the reward function
are assumed to be linear. In linear cases, optimistic LSVI (Jin et al., 2020) attains a near-optimal
worst-case regret by using a designed bonus, which is provably efficient. Randomized LSVI (Zanette
et al., 2020) also attains a near-optimal worst-case regret.

Although the analyses in tabular and linear cases provide attractive approaches for efficient explo-
ration, these principles are still challenging in developing a practical exploration algorithm for Deep
Reinforcement Learning (DRL) (Mnih et al., 2015), which achieves human-level performance in
large-scale tasks such as Atari games and robotic tasks. For example, in linear cases, the bonus in
optimistic LSVI (Jin et al., 2020) and nontrivial noise in randomized LSVI (Zanette et al., 2020)
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are tailored to linear models (Abbasi-Yadkori et al., 2011), and are incompatible with practically
powerful function approximations such as neural networks.

To address this problem, we propose the Optimistic Exploration algorithm with Backward Boot-
strapped Bonus (OEB3) for DRL. OEB3 is an instantiation of optimistic LSVI (Jin et al., 2020) in
DRL by using a general-purpose UCB-bonus to provide an optimistic Q-value and a randomized
value function to perform temporally-extended exploration. We propose an UCB-bonus that repre-
sents the disagreement of bootstrapped Q-functions (Osband et al., 2016) to measure the epistemic
uncertainty of the unknown optimal value function. Q-value added by UCB-bonus becomes an
optimistic Q+ function that is higher than Q for scarcely visited state-action pairs and remains close
to Q for frequently visited ones. The optimistic Q+ function encourages the agent to explore the
states and actions with high UCB-bonuses, signifying scarcely visited areas or meaningful events
in completing a task. We propose an extension of episodic backward update (Lee et al., 2019) to
propagate the future uncertainty to the estimated action-value function consistently within an episode.
The backward update also enables OEB3 to perform highly sample-efficient training.

Comparing to existing count-based and curiosity-driven exploration methods (Taiga et al., 2020),
OEB3 has several benefits. (1) We utilize intrinsic rewards to produce optimistic value function and
also take advantage of bootstrapped Q-learning to perform temporally-consistent exploration while
existing methods do not combine these two principles. (2) The UCB-bonus measures the disagreement
of Q-values, which considers the long-term uncertainty in an episode rather than the single-step
uncertainty used in most bonus-based methods (Pathak et al., 2019; Burda et al., 2019b). Meanwhile,
the UCB-bonus is computed without introducing additional modules compared to bootstrapped DQN.
(3) We provide a theoretical analysis showing that OEB3 has theoretical consistency with optimistic
LSVI in linear cases. (4) Extensive evaluations show that OEB3 outperforms several state-of-the-art
exploration approaches in MNIST maze and 49 Atari games.

2 BACKGROUND

In this section, we introduce bootstrapped DQN (Osband et al., 2016), which we utilize in OEB3 for
temporarily-extended exploration. We further introduce optimistic LSVI (Jin et al., 2020), which we
instantiate via DRL and propose OEB3.

2.1 BOOTSTRAPPED DQN

We consider an episodic MDP represented as (S,A, T,P, r), where T ∈ Z+ is the episode length, S
is the state space, A is the action space, r is the reward function, and P is the unknown dynamics. In
each timestep, the agent obtains the current state st, takes an action at, interacts with the environment,
receives a reward rt, and updates to the next state st+1. The action-value function Qπ(st, at) :=

Eπ
[∑T−1

i=t γ
i−tri] represents the expected cumulative reward starting from state st, taking action at,

and thereafter following policy π(at|st) until the end of the episode. γ ∈ [0, 1) is the discount factor.
The optimal value function Q∗ = maxπ Q

π , and the optimal action a∗ = arg maxa∈AQ
∗(s, a).

DeepQ-Network (DQN) uses a deep neural network with parameters θ to approximate theQ-function.
The loss function takes the form of L(θ) = E[(yt − Q(st, at; θ))

2
∣∣(st, at, rt, st+1) ∼ D], where

yt = rt + γmaxa′ Q(st+1, a
′; θ−) is the target value, and θ− is the parameter of the target network.

The agent accumulates experiences (st, at, rt, st+1) in a replay buffer D and samples mini-batches
in training.

Bootstrapped DQN (Osband et al., 2016; 2018) is a non-parametric posterior sampling method, which
maintains K estimations of Q-values to represent the posterior distribution of the randomized value
function. Bootstrapped DQN uses a multi-head network that contains a shared convolution network
and K heads. Each head defines a Qk-function. Bootstrapped DQN diversifies different Qk by using
different random initialization and individual target networks. The loss for training Qk is

L(θk) = E
[(
rt + γmax

a′
Qk(st+1, a

′; θk−)−Qk(st, at; θ
k)
)2∣∣∣(st, at, rt, st+1) ∼ D

]
. (1)

The k-th head Qk(s, a; θk) is trained with its own target network Qk(s, a; θk−). If k-th head is
sampled at the start of an episode when interacting with the environment, the agent will follow Qk to
choose actions in the whole episode, which provides temporally-consistent exploration for DRL.
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Algorithm 1 Optimistic LSVI in linear MDP
1: Initialize: Λt ← λ · I and wh ← 0
2: for episode m = 0 to M − 1 do
3: Receive the initial state s0

4: for step t = 0 to T − 1 do
5: Take action at = arg maxa∈AQt(st, a) and observe st+1.
6: end for
7: for step t = T − 1 to 0 do
8: Λt ←

∑m
τ=0 φ(xτt , a

τ
t )φ(xτt , a

τ
t )> + λ · I

9: wt ← Λ−1
t

∑m
τ=0 φ(xτt , a

τ
t )[rt(x

τ
t , a

τ
t ) + maxaQt+1(xτt+1, a)]

10: Qt(·, ·) = min{w>t φ(·, ·) + α[φ(·, ·)>Λ−1
t φ(·, ·)]1/2, T}

11: end for
12: end for

2.2 OPTIMISTIC LSVI

Optimistic LSVI (Jin et al., 2020) uses an optimistic Q-value with LSVI in linear MDP. We denote
the feature map of the state-action pair as φ : S ×A → Rd. The transition kernel and reward function
are assumed to be linear in φ. Optimistic LSVI shown in Algorithm 1 consists of two parts. In the
first part (line 3-6), the agent executes the policy according to Qt for an episode. In the second part
(line 7-11), the parameter wt of Q-function is updated in closed-form by following the regularized
least-squares problem

wt ← arg min
w∈Rd

∑m

τ=0

[
rt(s

τ
t , a

τ
t ) + max

a∈A
Qt+1(sτt+1, a)− w>φ(sτt , a

τ
t )
]2

+ λ‖w‖2, (2)

where m is the number of episodes, and τ is the episodic index. The least-squares problem has the
explicit solution wt = Λ−1

t

∑m
τ=0 φ(xτt , a

τ
t )
[
rt(x

τ
t , a

τ
t ) + maxaQt+1(xτt+1, a)

]
(line 9), where Λt

is the Gram matrix. Then the value function is estimated by Qt(s, a) ≈ w>t φ(s, a).

Optimistic LSVI uses a bonus α[φ(s, a)>Λ−1
t φ(s, a)]1/2 (line 10) to measure the uncertainty of

state-action pairs. We can intuitively consider u := (φ>Λ−1
t φ)−1 as a pseudo count of state-action

pair by projecting the total features that have observed (Λt) to the direction of the curresponding
feature φ. Thus, the bonus α/√u represents the uncertainty along the direction of φ. By adding the
bonus to Q-value, we obtain an optimistic value function Q+, which serves as an upper bound of
Q to encourage exploration. The bonus in each step is propagated from the end of the episode by
the backward update of Q-value (line 7-11), which follows the principle of dynamic programming.
Theoretical analysis (Jin et al., 2020) shows that optimistic LSVI achieves a near-optimal worst-case
regret of Õ(

√
d3T 3L3) with proper selections of α and λ, where L is the total number of steps.

3 PROPOSED METHOD

Optimistic LSVI (Jin et al., 2020) provides an atractive approach for efficient exploration. Neverthe-
less, developing a practical exploration algorithm for DRL is challenging, since (i) the UCB-bonus
utilized by Optimistic LSVI is tailored for linear MDPs, and (ii) optimistic LSVI utilizes backward
update of Q-functions (line 7-11 in Alg. 1) to aggregate uncertainty. To this end, we propose the
following approaches, which are the building blocks of OEB3.

• We propose a general-purpose UCB-bonus for optimistic exploration. More specifically, we
utilize bootstrapped DQN to construct a general-purpose UCB-bonus, which is theoretically
consistent with optimistic LSVI for linear MDPs. We refer to Section 3.1 for the details.

• We propose a sample-efficient learning algorithm to integrate bootstrapped DQN and UCB-bonus
into the backward update, which faithfully follows the principle of dynamic programming. More
specifically, we extend Episodic Backward Update (EBU) (Lee et al., 2019) from ordinary Q-
learning to bootstrapped Q-learning, which we abbreviate by BEBU (Bootstrapped EBU). BEBU
allows sample-efficient learning and fast propagation of the future uncertainty to the estimated Q-
value consistently. We further propose OEB3 by combining BEBU and the UCB-bonus obtained
via bootstrapped Q-learning. We refer to Section 3.2 for the details.
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Figure 1: Illustration of UCB-bonus by using bootstrapped estimates in the regression task. The green
dots represent 60 data points. (a) Regression curves of 20 neural networks. (b) Mean estimate (black)
and uncertainty measurement (shadow). (c) The optimistic value (red) and mean value (black).

3.1 UCB-BONUS IN OEB3

Optimistic exploration uses an optimistic action-value functionQ+ to incentive exploration by adding
a bonus term to the ordinary Q-value. Thus Q+ serves an upper bound of ordinary Q. The bonus
term represents the epistemic uncertainty that results from lacking experiences of the corresponding
states and actions. In this paper, we use an UCB-bonus B(st, at) by measuring the disagreement of
the bootstrapped Q-values {Qk(st, at)}Kk=1 of the state-action pair (st, at) in bootstrapped DQN,
which takes the following form,

B(st, at) := σ̃
(
Qk(st, at)

)
=

√√√√ 1

K

K∑
k=1

(
Qk(st, at)− Q̄(st, at)

)2

, (3)

where Q̄(st, at) is the mean of bootstrapped Q-values. The similar measurement was first used in
Chen et al. (2017). We further establish connection between the UCB-bonus defined in Eq. (3) and
the bonus in optimistic-LSVI.
Theorem 1 (Informal Version of Theorem 2). In linear function approximation, the UCB-bonus
B(st, at) in OEB3 is equivalent to the bonus-term [φ>t Λ−1

t φt]
1/2 in optimistic-LSVI, where Λt ←∑m

τ=0 φ(xτt , a
τ
t )φ(xτt , a

τ
t )> + λ · I, and m is the current episode.

We refer to Appendix A for the proof and a detailed discussion. Implementing the UCB-bonus
B(st, at) defined in Eq. (3) in DRL is desirable for exploration for the following reasons.

• Bootstrapped DQN is a non-parametric posterior sampling method, which can be implemented
via deep neural networks (Osband et al., 2019).
• The UCB-bonus B(st, at) defined in Eq. (3) quantifies the epistemic uncertainty of a specific

state-action pair adequately. More specifically, due to the non-convexity nature of optimizing
neural network and independent initialization, if (st, at) is scarcely visited, the UCB-bonus
B(st, at) obtained via bootstrapped DQN is high. Moreover, the UCB-bonus converges to zero
asymptotically as the sample size increases to infinity.

• The UCB-bonus is computed in a batch when performing experience replay, which is more effi-
cient than other optimistic methods that change the action-selection scheme in each timestep (Chen
et al., 2017; Nikolov et al., 2019).

The optimistic Q+ is obtained by summing up the UCB-bonus and the estimated Q-function, which
takes the following form,

Q+(st, at) := Q(st, at) + αB(st, at). (4)

We use a simple regression task with neural networks to illustrate the proposed UCB-bonus, as
shown in Figure 1. We use 20 neural networks with the same network architecture to solve the same
regression problem. Each network contains three residual blocks with two fully-connected layers each.
According to (Osband et al., 2016), the difference between the outcome of fitting the neural networks
is a result of different initialization. For a single input x, the networks yield different estimations
{gi(x)}20

i=1 as shown in Figure 1. It follows from Figure 1(a) that the estimations {gi(x)}20
i=1 behave

similar in the region with rich observations, resulting in small disagreement of the estimations,
but vary in the region with scarce observations, resulting in large disagreement of the estimations.
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In Figure 1(b), we illustrate the confidence bound of the regression results ḡ(x) ± σ̃(gi(x)) and
ḡ(x)± 2σ̃(gi(x)), where ḡ(x) and σ̃(gi(x)) are the mean and standard deviation of the estimations.
The standard deviation σ̃(gi(x)) captures the epistemic uncertainty of regression results. Figure 1(c)
shows the optimistic estimation as g+(x) = ḡ(x) + σ̃(gi(x)) by adding the uncertainty measured by
standard deviation. It can be seen that the optimistic estimation g+ is close to ḡ in the region with
rich observations, and higher than ḡ in the region with scarce observations.

In DRL, the bootstrapped Q-functions {Qk(st, at)}Kk=1 obtained by fitting the target Q-function per-
form similarly as {gi(x)}20

i=1 in the regression task. A higher UCB-bonus B(st, at) := σ̃(Qk(st, at))
indicates a higher epistemic uncertainty of the action-value function with (st, at). The estimated
Q-function augmented with the UCB-bonus yields Q+, which produces optimistic estimation for
novel state-action pairs and behaves similar to the target Q-function in areas that are well explored
by the agent. Hence, the optimistic extimation Q+ incentives the agent to explore the potentially
informative states and actions efficiently.

3.2 UNCERTAINTY BACKWARD IN OEB3

There are two major reasons for updating the action-value function through Bootstrapped Episodic
Backward Update (BEBU) in OEB3.

• The backward propagation utilizes a complete trajectory from the replay buffer. Such an approach
allows OEB3 to infer the long-term effect of decision making from the replay buffer. In contrast,
DQN and Bootstrapped DQN utilize the replay buffer by random sampling one-step transitions,
which loses the information containing such a long-term effect (Lee et al., 2019).
• The backward propagation is required to propagate the future uncertainty to the estimated action-

value function consistently via UCB-bonus within an episode. For instance, let t2 > t1 be the
indices of two steps in an episode. If the update of Qt2 occurs after the update of Qt1 within
an episode, then it can occur that the uncertainty propagated into Qt1 is not consistent with the
uncertainty that Qt2 contains.

To integrate the UCB-bonus into bootstrapped Q-learning, we propose a novel Q-target in update by
adding the bonus term in both the immediate reward and the next-Q value. The proposed Q-target
needs to be suitable for BEBU in training. Formally, the Q-target for updating Qk is defined as

ykt :=
[
r(st, at) + α1B(st, at; θ)

]
+ γ
[
Qk(st+1, a

′; θk−) + α21a′ 6=at+1 B̃k(st+1, a
′; θ−)

]
, (5)

where a′ = arg maxaQ
k(st+1, a; θk−). The choice of a′ is determined by the targetQ-value without

considering the bonus. The immediate reward is added by B(st, at; θ) with a factor α1, where the
bonus B is computed by bootstrapped Q-network with parameter θ. The next-Q value is added by
1a′ 6=at+1 B̃k(st+1, a

′; θ−) with factor α2, where the bonus B̃k is computed by the target network
with parameter θ−. We assign different bonus B̃k of next-Q value to different heads, since the choice
of action a′ are different among the heads. Meanwhile, we assign the same bonus B of immediate
reward for all the heads. We introduce the indicator function 1a′ 6=at+1 to suit the backward update of
Q-values. More specifically, in the t-th step, the action-value function Qk is updated optimistically at
the state-action pair (st+1, at+1) due to the backward update. Thus, we ignore the bonus of next-Q
value in the update of Qk when a′ is equal to at+1.

We use an example to explain the process of backward update. We store and sample the experiences
in episodes, and perform update in episodes rather than uniformly sampled transitions. We consider
an episode containing three time steps, (s0, a0)→ (s1, a1)→ (s2, a2). We thus update the Q-value
in the head k in the backward manner, namely Q(s2, a2)→ Q(s1, a1)→ Q(s0, a0) from the end of
the episode. We describe the process as follows.

1. First, we update Q(s2, a2)← r(s2, a2) + α1B(s2, a2). Note that in the last time step, we do not
need to consider the next-Q value.

2. Then, Q(s1, a1) ← [r(s1, a1) + α1B(s1, a1)] + [Q(s2, a
′) + α21a′ 6=a2 B̃(s2, a

′)] by following
Eq. (5), where a′ = arg maxaQ(s2, a). Since Q(s2, a2) is updated optimistically in step 1, we
ignore the bonus-term B̃ in next-Q value when a′ = a2. The UCB-bonus is augmented in update
by adding B and B̃ to the immediate reward and next-Q value, respectively.
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3. The update of Q(s0, a0) follows the same principle. The optimistic Q-value is Q(s0, a0) ←
[r(s0, a0) + α1B(s0, a0)] + [Q(s1, a

′) + α21a′ 6=a1 B̃(s1, a
′)], where a′ = arg maxaQ(s1, a).

In practice, the episodic update typically leads to instability in DRL due to the strong correlation in con-
secutive transitions. Hence, we propose a diffusion factor β ∈ [0, 1] in BEBU to prevent instability as
in Lee et al. (2019). The Q-value is therefore computed as the weighted sum of the current value and
the back-propagated estimation scaled with factor β. We consider an episodic experience that contains
T transitions, denoted by E = {S,A,R,S′}, where S = {s0, . . . , sT−1}, A = {a0, . . . , aT−1},
R = {r0, . . . , rT−1} and S′ = {s1, . . . , sT }. We initialize a Q-table Q̃ ∈ RK×|A|×T by Q(·; θ−)
to store the next Q-values of all the next states S′ and valid actions for K heads. We initialize
y ∈ RK×T to store the Q-target for K heads and T steps. We use bootstrapped Q-network with
parameters θ to compute the bonus B = [B(s0, a0), . . . ,B(sT−1, aT−1)] for immediate reward, and
use the target network with parameters θ− to compute bonus B̃k = [B̃k(s1, a

′
1), . . . , B̃k(sT , a

′
T )]

for next-Q value in each head, where a′t = arg maxaQ
k(st, a; θk−). The bonus vector B ∈ RT is

the same for all Q-heads, while B̃ ∈ RK×T contains different values for different heads because the
choices of a′t are different.

In the training of head k, we initialize theQ-target in the last step by y[k, T −1] = RT−1 +α1BT−1.
We then perform a recursive backward update to get allQ-target values. The elements of Q̃[k, at+1, t]
for step t in head k is updated by using its corresponding Q-target y[k, t+ 1] with the diffusion factor
as follows,

Q̃[k, at+1, t]← βy[k, t+ 1] + (1− β)Q̃[k, at+1, t]. (6)

Then, we update y[k, t] in the previous time step based on the newly updated t-th column of Q̃[k] as
follows,

y[k, t]←
(
Rt + α1Bt

)
+ γ
(
Q̃[k, a′, t] + α21a′ 6=at+1

B̃[k, t]
)
, (7)

where a′ = arg maxa Q̃[k, a, t]. In practice, we construct a matrix Ã = arg maxa Q̃[·, a, ·] ∈ RK×T
to gather all the actions a′ that correspond to the next-Q. We then construct a mask matrix M ∈
RK×T to store the information whether Ã is identical to the executed action in the corresponding
timestep or not. The bonus of next-Q is the element-wise product of M and B̃ with factor α2. After
the backward update, we compute the Q-value of (S,A) as Q = Q(S,A; θ) ∈ RK×T . The loss
function takes the form of L(θ) = E

[
(y −Q)2|(st, at, rt, st+1) ∈ E, E ∼ D

]
, where the episodic

experience E is sampled from replay buffer to perform gradient descent. The gradient of all heads
can be computed simultaneously via BEBU. We refer the full algorithm of OEB3 to Appendix B.

The theory in optimistic-LSVI requires a strong linear assumption in the transition dynamics. To
make it works empirically, we make several adjustments in the implementation details. First, in
each training step of optimistic-LSVI, all historical samples are utilized to update the weight of
Q-function and calculate the confidence bonus. While in OEB3, we use samples from a batch of
episodic trajectories from the replay buffer in each training step. Such a difference in implementation
is imposed to achieve computational efficiency. Second, in OEB3, the target-network has a relatively
low update frequency, whereas, in Optimistic LSVI, the target Q function is updated in each iteration.
Such implementation techniques are commonly used in most existing (off-policy) DRL algorithms.

We use BEBU to propagate the future uncertainty in an episode, which is an extension of EBU (Lee
et al., 2019). Compared to EBU, BEBU requires extra tensors to store the UCB-bonus for immediate
reward and next-Q value, which are integrated to propagate uncertainties. Meanwhile, integrating
uncertainty into BEBU needs special design by using the mask. The previous works do not propagate
the future uncertainty and, therefore, does not capture the core benefit of utilizing UCB-bonus for the
exploration of MDPs. We highlight that OEB3 propagates future uncertainty in a time-consistent
manner based on BEBU, which exploits the theoretical analysis established by Jin et al. (2020).
The backward update significantly improves the sample-efficiency by allowing bonuses and delayed
rewards to propagate through transitions of the sampled episode, which we demonstrate in the sequel.

4 RELATED WORK

One practical principle for exploration in DRL is maintaining epistemic uncertainty of action-value
functions and learning to reduce the uncertainty. Epistemic uncertainty appears due to the missing
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knowledge of the environment, and disappears with the progress of exploration. Bootstrapped
DQN (Osband et al., 2016; 2018) samples Q-values from the randomized value function to encourage
exploration through Thompson sampling. Chen et al. (2017) proposes to use the standard-deviation of
bootstrapped Q-functions to measure the uncertainty. While the uncertainty measurement is similar
to that of OEB3, our method is different from Chen et al. (2017) in the following aspects. First,
our approach propagates the uncertainty through time by the backward update, which allows for
deep exploration for the MDPs. Second, Chen et al. (2017) does not use the bonus in the update
of Q-functions. The bonus is computed when taking the actions. Third, we establish a theoretical
connection between the UCB-bonus and the bonus in optimistic-LSVI. SUNRISE (Lee et al., 2020)
extends Chen et al. (2017) to continuous control through confidence reward and weighted Bellman
backup. Information-Directed Sampling (IDS) (Nikolov et al., 2019) is based on bootstrapped DQN,
and chooses actions by balancing the instantaneous regret and information gain. OAC (Ciosek et al.,
2019) uses two Q-networks to get lower and upper bounds of Q-value to perform exploration in
continuous control tasks. These methods seek to estimate the epistemic uncertainty and choose the
optimistic actions. In contrast, we use the uncertainty of value function to construct intrinsic rewards
and perform backward update, which propagates future uncertainty to the estimated Q-value.

Uncertainty Bellman Equation (UBE) and Exploration (O’Donoghue et al., 2018) proposes an upper
bound on the variance of the posterior of the Q-values, which are further utilized for optimism
in exploration. UBE uses posterior sampling for exploration, whereas OEB3 uses optimism for
exploration. Bayesian-DQN (Azizzadenesheli et al., 2018) modifies the linear regression of the last
layer in Q-network and uses Bayesian Linear Regression (BLR) instead, which estimates an posterior
of the Q-function. These methods use parametric distributions to describe the posterior while OEB3
uses a non-parametric method to estimate the confidence bonus. UBE and BLR require inverting a
large matrix in training. Previous methods also utilize the epistemic uncertainty of dynamics through
Bayesian posterior (Ratzlaff et al., 2020) and ensembles (Pathak et al., 2019). Nevertheless, these
works consider single-step uncertainty, while we consider the long-term uncertainty in an episode.

To measure the novelty of states for constructing count-based intrinsic rewards, previous methods
use density model (Bellemare et al., 2016; Ostrovski et al., 2017), static hashing (Tang et al., 2017;
Choi et al., 2019; Rashid et al., 2020), episodic curiosity (Savinov et al., 2019; Badia et al., 2020),
representation changes (Raileanu & Rocktäschel, 2020), curiosity-bottleneck (Kim et al., 2019b),
information gain (Houthooft et al., 2016) and RND (Burda et al., 2019b). The curiosity-driven
exploration based on prediction-error of environment models such as ICM (Pathak et al., 2017;
Burda et al., 2019a), EMI (Kim et al., 2019a), variational dynamics (Bai et al., 2020) and learning
progress (Kim et al., 2020) enable the agents to explore in a self-supervised manner. According Taiga
et al. (2020), although bonus-based methods show promising results in hard exploration tasks like
Montezuma’s Revenge, they do not perform well on other Atari games. Meanwhile, NoisyNet (Fortu-
nato et al., 2018) performs significantly better than popular bonus-based methods evaluated by the
whole Atari suit. Taiga et al. (2020) suggests that the real pace of progress in exploration may have
been obfuscated by good results on several hard exploration games. We follow this principle and
evaluate OEB3 on the whole Atari suit with 49 games.

Beyond model-free methods, model-based RL also uses optimism for planning and exploration (Nix
& Weigend, 1994). Model-assisted RL (Kalweit & Boedecker, 2017) uses ensembles to make use of
artificial data only in cases of high uncertainty. Buckman et al. (2018) uses ensemble dynamics and
Q-functions to use model rollouts when they do not cause large errors. Planning to explore (Sekar
et al., 2020) seeks out future uncertainty by integrating uncertainty to Dreamer (Hafner et al., 2020).
Ready Policy One (Ball et al., 2020) optimizes policies for both reward and model uncertainty
reduction. Noise-Augmented RL (Pacchiano et al., 2020) uses statistical bootstrap to generalize the
optimistic posterior sampling (Agrawal & Jia, 2017) to DRL. Hallucinated UCRL (Curi et al., 2020)
reduces optimistic exploration to exploitation by enlarging the control space. The model-based RL
needs to estimate the posterior of dynamics, while OEB3 relies on the posterior of Q-functions.

5 EXPERIMENTAL RESULTS

5.1 ENVIRONMENTAL SETUP

We evaluate the algorithms in high-dimensional image-based tasks, including MNIST Maze and 49
Atari games. We refer Appendix C for the experiments on MNIST Maze, and discuss the experiments

7
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on Atari games in the sequel. Comparing OEB3 with bootstrapped DQN-based baselines directly
incur performance bias, since OEB3 uses backward update for training, which is different from
bootstrapped DQN. To this end, we re-implement all bootstrapped DQN-based baselines with BEBU-
based update. In our experiments, we compare the following methods: (1) OEB3. The proposed
optimistic exploration method with UCB-bonus and backward update in this work. (2) BEBU.
The re-implementation of bootstrapped DQN (Osband et al., 2016) with BEBU-based training.
(3) BEBU-UCB. BEBU with optimistic action-selection according to the upper bound of Q (Chen
et al., 2017). (4) BEBU-IDS. Integrating homoscedastic IDS (Nikolov et al., 2019) into BEBU
without distributional RL. We refer to Appendix B for the algorithmic comparison between all
methods.

According to EBU (Lee et al., 2019), the backward update is significantly more sample-efficient than
ordinary Q-learning by using 20M training frames to achieve the mean human-normalized score
of DQN with 200M training frames. We follow this setting by training all BEBU-based methods
with 20M frames. In our experiments, 20M frames in OEB3 is sufficient to produce strong empirical
results and achieve competitive results with several baselines in 200M frames. After training, an
ensemble policy by a majority vote of Q-heads is used for 30 no-op evaluation. The majority-vote
combines all the heads into a single ensemble policy, which follows the same evaluation method
as in Osband et al. (2016). We use the popular human-normalized score ScoreAgent−ScoreRandom

|Scorehuman−Scorerandom| to
perform the comparison. In tackling Atari games, Osband et al. (2016) observes that the bootstrapping
does not contribute much in performance. Empirically, Bootstrapped DQN uses the same samples to
train all Q-heads in each training step. This empirical simplification is also adopted by Chen et al.
(2017); Osband et al. (2018); Nikolov et al. (2019). We use such an simplification for OEB3 and all
Bootstrapped DQN-based baselines.
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Figure 2: Visualizing UCB-bonus in Breakout

We set α1 and α2 to the same value of
0.5× 10−4 by searching coarsely. We use
diffusion factor β = 0.5 for all methods
by following Lee et al. (2019). OEB3 re-
quires much less training time than BEBU-
UCB and BEBU-IDS because the con-
fidence bound used in BEBU-UCB and
regret-information ratio used in BEBU-IDS
are both computed in each time step when
interacting with the environment, while the
UCB-bonuses in OEB3 are calculated in
episodes when performing batch training.
The number of environmental interaction
steps L1 are typically set to be much larger
than the number of training steps L2 (e.g.,
in DQN, L1 ≈ 4L2). We refer to Ap-
pendix D for the detailed specifications. The code is available at https://bit.ly/33jv1ab.

5.2 RESULT COMPARISON

In Table 1, we additionally report the performance of DQN (Mnih et al., 2015), NoisyNet (Fortunato
et al., 2018), Bootstrapped DQN (Osband et al., 2016), and IDS (Nikolov et al., 2019) in 200M
training frames. We choose NoisyNet as a baseline since it is shown (Taiga et al., 2020) to perform
substantially better than existing bonus-based methods evaluated by the whole Atari suit (instead of
several hard exploration games), including CTS-counts (Bellemare et al., 2016), PixelCNN-counts
(Ostrovski et al., 2017), RND (Burda et al., 2019b), and ICM (Pathak et al., 2017). UBE (O’Donoghue

Table 1: Summary of human-normalized scores in 49 Atari games. BEBU, BEBU-UCB, BEBU-IDS
and OEB3 are trained for 20M frames with RTX-2080Ti GPU for 5 random seeds.

Frames 200M 20M
DQN UBE BootDQN NoisyNet BootDQN-IDS BEBU BEBU-UCB BEBU-IDS OEB3

Mean 241% 440% 553% 651% 757% 553% 610% 622% 765%
Median 93% 126% 139% 172% 187% 36% 38% 44% 50%

8
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et al., 2018) uses a parametric method to describe the posterior of Q-values, which are utilized for
optimism in exploration. We also use UBE as a baseline. According to Table 1, BootDQN-IDS
performs better than UBE, BootDQN, and NoisyNet. Thus, BootDQN-IDS outperforms existing
bonus-based exploration methods that perform worse than NoisyNet. We re-implement BootDQN-
IDS with BEBU-based update and observe that OEB3 outperforms BEBU-IDS in both mean and
medium scores, thus outperforming the bonus-based methods that performs worse than NoisyNet. We
report the raw scores in Appendix F. Moreover, Appendix G shows that OEB3 outperforms BEBU,
BEBU-UCB, and BEBU-IDS in 36, 34, and 35 games out of all 49 games, respectively.

0 5M 10M 15M 20M
Training Frames

0

4

8

12 mean UCB-bonus

Figure 3: The change of mean
UCB-bonus in Breakout

To understand the proposed UCB-bonus, we use a trained OEB3
agent to interact with the environment for an episode in Break-
out and record the UCB-bonuses at each step. The curve in
Figure 2 shows the UCB-bonuses of the subsampled steps in
the episode. We choose 8 spikes with high UCB-bonuses and
visualize the corresponding frames. The events in spikes cor-
respond to scarcely visited areas or crucial events, which are
important for the agent to obtain rewards: digging a tunnel (1),
throwing the ball to the top of bricks (2,3), rebounding the ball
(4,5,6), eliminating all bricks and starting a new round (7,8).
We provide more examples of visualization in Appendix E. We
further record the the mean of UCB-bonus of the training batch

in the learning process, which is shown in Figure 3. The UCB-bonus is low at the beginning since
the networks are randomly initialized. When the agent starts to explore the environment, the mean
UCB-bonus rises rapidly to incentive exploration. As more experiences of states and actions are
gathered, the mean UCB-bonus reduces gradually, which indicates that the bootstrapped value func-
tions concentrate around the optimal value and the epistemic uncertainty decreases. Nevertheless, the
UCB-bonuses are relatively high at scarcely visited areas or crucial events, according to Figure 2,
which motivates the agent to enhance exploration at the corresponding events.

Table 2: Ablation Study
Backward Bonus Qbert SpaceInvaders Freeway

OEB3 X UCB 4275.0 904.9 32.1
BootDQN-UCB - UCB 3284.7 731.8 20.5
BEBU X - 3588.4 814.4 21.5
BootDQN - - 2206.8 649.5 18.3
BEBU-RND X RND 3702.5 832.7 22.6

We conduct an ablation study to
better comprehend the importance
of backward update and bonus
term in OEB3. We refer to Table 2
for the outcomes. We observe that:
(1) when we use the ordinary up-
date strategy by sampling transi-
tions instead of episodes in train-
ing, OEB3 reduces to BootDQN-UCB with significant performance loss. Hence, the backward update
is crucial in OEB3 for sample-efficient training. (2) When the UCB-bonus is set to 0, OEB3 reduces
to BEBU. We observe that OEB3 outperforms BEBU in 36 out of all 49 games. (3) When both
the backward update and UCB-bonus are removed, OEB3 reduces to standard BootDQN, which
performs poorly in 20M training frames. (4) To illustrate the effect of UCB-bonus, we substitute
UCB-bonus with the popular RND-bonus (Burda et al., 2019b). Specifically, we use an independent
RND network to generate RND-bonus for each state in training. The RND-bonus is added to both the
immediate reward and next-Q. The result shows that UCB-bonus outperforms RND-bonus without
introducing additional modules compared to BootDQN.

6 CONCLUSION

In this work, we propose OEB3, which has theoretical underpinnings from optimistic LSVI. We
propose a UCB-bonus to capture the epistemic uncertainty of Q-function and an BEBU algorithm
for sample-efficient training. We demonstrate OEB3 empirically by solving MNIST maze and Atari
games and show that OEB3 outperforms several strong baselines. The visualizations suggest that high
UCB-bonus corresponds to informative experiences for exploration. As far as we are concerned, our
work seems to establish the first empirical attempt of uncertainty propagation in deep RL. Moreover,
we observe that such a connection between theoretical analysis and practical algorithm provides
relatively strong empirical performance in Atari games and outperforms several strong baselines,
which hopefully gives useful insights on combining theory and practice to the community.
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A UCB BONUS IN OEB3

Recall that we consider the following regularized least-square problem,

wt ← arg min
w∈Rd

m∑
τ=0

[
rt(s

τ
t , a

τ
t ) + max

a∈A
Qt+1(sτt+1, a)− w>φ(sτt , a

τ
t )
]2

+ λ‖w‖2. (8)

In the sequel, we consider a Bayesian linear regression perspective of (8) that captures the intuition
behind the UCB-bonus in OEB3. Our objective is to approximate the action-value function Qt via
fitting the parameter w, such that

w>φ(st, at) ≈ rt(st, at) + max
a∈A

Qt+1(st+1, a),

where Qt+1 is given. We assume that we are given a Gaussian prior of the initial parameter
w ∼ N (0, I/λ). With a slight abuse of notation, we denote by wt the Bayesian posterior of the
parameter w given the set of independent observations Dm = {(sτt , aτt , sτt+1)}τ∈[0,m]. We further
define the following noise with respect to the least-square problem in (8),

ε = rt(st, at) + max
a∈A

Qt+1(st+1, a)− w>φ(st, at), (9)

where (st, at, st+1) follows the distribution of trajectory. The following theorem justifies the UCB-
bonus in OEB3 under the Bayesian linear regression perspective.
Theorem 2 (Formal Version of Theorem 1). We assume that ε follows the standard Gaussian
distribution N (0, 1) given the state-action pair (st, at) and the parameter w. Let w follows the
Gaussian prior N (0, I/λ). We define

Λt =

m∑
τ=0

φ(xτt , a
τ
t )φ(xτt , a

τ
t )> + λ · I. (10)

It then holds for the posterior of wt given the set of independent observations Dm =
{(sτt , aτt , sτt+1)}τ∈[0,m] that

Var
(
φ(st, at)

>wt
)

= Var
(
Q̃t(st, at)

)
= φ(st, at)

>Λ−1
t φ(st, at), ∀(st, at) ∈ S ×A.

Here we denote by Q̃t = w>t φ the estimated action-value function.

Proof. The proof follows the standard analysis of Bayesian linear regression. See, e.g., West (1984)
for a detailed analysis. We denote the target of the linear regression in (8) by

yt = rt(st, at) + max
a∈A

Qt+1(st+1, a).

By the assumption that ε follows the standard Gaussian distribution, we obtain that

yt | (st, at), w ∼ N
(
w>φ(st, at), 1

)
. (11)

Recall that we have the prior distribution w ∼ N (0, I/λ). Our objective is to compute the posterior
density wt = w | Dm, where Dm = {(sτt , aτt , sτt+1)}τ∈[0,m] is the set of observations. It holds from
Bayes rule that

log p(w | Dm) = log p(w) + log p(Dm |w) + Const., (12)
where p(·) denote the probability density function of the respective distributions. Plugging (11) and
the probability density function of Gaussian distribution into (12) yields

log p(w | Dm) = −‖w‖2/2−
m∑
τ=1

‖w>φ(sτt , a
τ
t )− yτt ‖2/2 + Const.

= −(w − µt)>Λ−1
t (w − µt)/2 + Const., (13)

where we define

µt = Λ−1
t

m∑
τ=1

φ(sτt , a
τ
t )yτt , Λt =

m∑
τ=0

φ(xτt , a
τ
t )φ(xτt , a

τ
t )> + λ · I.

Thus, by (13), we obtain that wt = w | Dm ∼ N (µt,Λ
−1
t ). It then holds for all (st, at) ∈ S ×A that

Var
(
φ(st, at)

>wt
)

= Var
(
Q̃t(st, at)

)
= φ(st, at)

>Λ−1
t φ(st, at),

which concludes the proof of Theorem 2.
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B ALGORITHMIC DESCRIPTION

Algorithm 2 OEB3 in DRL
1: Initialize: replay buffer D, bootstrapped Q-network Q(·; θ) and target network Q(·; θ−)
2: Initialize: total training frames H = 20M, current frame h = 0
3: while h < H do
4: Pick a bootstrapped Q-function to act by sampling k ∼ Unif{1, . . . ,K}
5: Reset the environment and receive the initial state s0

6: for step i = 0 to Terminal do
7: With ε-greedy choose ai = arg maxaQ

k(si, a)
8: Take action and observe ri and si+1, then save the transition in buffer D
9: if h % training frequency = 0 then

10: Sample an episodic experience E = {S,A,R,S′} with length T from D
11: Initialize a Q-table Q̃ = Q(S′,A; θ−) ∈ RK×|A|×T by the target Q-network
12: Compute the UCB-bonus for immediate reward for all steps to construct B ∈ RT
13: Compute the action matrix Ã = arg maxa Q̃[·, a, ·] ∈ RK×T to gather all a′ of next-Q
14: Compute the UCB-bonus for next-Q for all heads and all steps to construct B̃ ∈ RK×T
15: Compute the mask matrix M ∈ RK×T where M[k, t] = 1Ã[k,t] 6=At+1

16: Initialize target table y ∈ RK×T to zeros, and set y[·, T − 1] = RT−1 + α1BT−1

17: for t = T − 2 to 0 do
18: Q̃[·, at+1, t]← βy[·, t+ 1] + (1− β)Q̃[·, at+1, t]

19: y[·, t]←
(
Rt + α1Bt

)
+ γ
(
Q̃[·, a′, t] + α2M[·, t] ◦ B̃[·, t]

)
where a′ = Ã[·, t]

20: end for
21: Compute the Q-value of (S,A) for all heads as Q = Q(S,A; θ) ∈ RK×T
22: Perform a gradient descent step on (y −Q)2 with respect to θ
23: end if
24: Every C steps reset θ− ← θ
25: h← h+ 1
26: end for
27: end while

We summarize the closely related works in Table 3.

Table 3: Algorithmic Comparison of Related Works

Bonus or Poste-
rior Variance

Update Method Uncertainty Characterization

EBU (Lee et al., 2019) - backward update -
Bootstrapped DQN (Osband et al.,
2016)

bootstrapped on-trajectory update bootstrapped distribution

BEBU (base of our work) bootstrapped backward update bootstrapped distribution
Optimistic LSVI (Jin et al., 2020) closed form backward update optimism
OEB3 (ours) bootstrapped backward update optimism
UBE (O’Donoghue et al., 2018) closed form on-trajectory update posterior sampling
Bayesian-DQN (Azizzadenesheli
et al., 2018)

closed form on-trajectory update posterior sampling
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Algorithm 3 BEBU & BEBU-UCB & BEBU-IDS
1: Input: Algorithm Type (BEBU, BEBU-UCB, or BEBU-IDS)
2: Initialize: replay buffer D, bootstrapped Q-network Q(·; θ) and target network Q(·; θ−)
3: Initialize: total training frames H = 20M, current frame h = 0
4: while h < H do
5: Pick a bootstrapped Q-function to act by sampling k ∼ Unif{1, . . . ,K}
6: Reset the environment and receive the initial state s0

7: for step i = 0 to Terminal do
8: if Algorithm type is BEBU then
9: With ε-greedy choose ai = arg maxaQ

k(si, a)
10: else if Algorithm type is BEBU-UCB then
11: With ε-greedy choose ai = arg maxa[Q̄(si, a) + α · σ(Q(si, a))], where Q̄(si, ai) =

1
K

∑K
k=1Q

k(si, ai) and σ(Q(si, ai)) =
√

1
K

∑K
k=1(Qk(si, ai)− Q̄(si, ai))2 are the

mean and standard deviation of the bootstrapped Q-estimates
12: else if Algorithm type is BEBU-IDS then
13: With ε-greedy choose ai = arg mina

∆̂i(si,a)2

Ii(si,a) by following the regret-information

ratio, where ∆̂i(si, ai) = maxa′∈A ui(si, a
′) − li(si, ai) is the expected regret, and

[li(si, ai), ui(si, ai)] is the confidence interval. In particular, ui(si, ai) = Q̄(si, ai) +
λids · σ(Q(si, ai)) and li(si, ai) = Q̄(si, ai)− λids · σ(Q(si, ai)). I(si, ai) = log(1 +
σ(Q(si,ai))

2
/ρ2) + εids measures the uncertainty, where ρ and εids are constants.

14: else
15: Algorithm type error.
16: end if
17: Take action and observe ri and si+1, then save the transition in buffer D
18: if h % training frequency = 0 then
19: Sample an episodic experience E = {S,A,R,S′} with length T from D
20: Initialize a Q-table Q̃ = Q(S′,A; θ−) ∈ RK×|A|×T by the target Q-network
21: Compute the action matrix Ã = arg maxa Q̃[·, a, ·] ∈ RK×T to gather all a′ of next-Q
22: Initialize target table y ∈ RK×T to zeros, and set y[·, T − 1] = RT−1 + α1BT−1

23: for t = T − 2 to 0 do
24: Q̃[·, at+1, t]← βy[·, t+ 1] + (1− β)Q̃[·, at+1, t]

25: y[·, t]← Rt + γQ̃[·, a′, t] where a′ = Ã[·, t]
26: end for
27: Compute the Q-value of (S,A) for all heads as Q = Q(S,A; θ) ∈ RK×T
28: Perform a gradient descent step on (y −Q)2 with respect to θ
29: end if
30: Every C steps reset θ− ← θ
31: h← h+ 1
32: end for
33: end while
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C ADDITIONAL EXPERIMENT: MNIST MAZE
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(c) Wall density of 50%

Figure 4: Results of 200K steps training of MNIST maze with different wall-density setup.
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Figure 5: An example MNIST maze (left) and
the UCB-bonuses in the agent’s path (right).

We use 10× 10 MNIST maze with randomly placed
walls to evaluate our method. The agent starts from
the initial position (0, 0) in the upper-left of the maze
and aims to reach the goal position (9, 9) in the
bottom-right. The state of position (i, j) is repre-
sented by stacking two randomly sampled images
with label i and j from the MNIST dataset. When
the agent steps to a new position, the state represen-
tation is reconstructed by sampling images. Hence
the agent gets different states even stepping to the
same location twice, which minimizes the correlation
among locations. We further add some stochasticity
in the transition probability. The agent has a probabil-
ity of 10% to arrive in the adjacent locations when taking an action. For example, when taking action
‘left’, the agent has a 10% chance of transiting to ‘up’, and a 10% chance of transiting to ‘down’. The
agent gets a reward of -1 when bumping into a wall, and gets 1000 when reaching the goal.

We use the different setup of wall-density in the experiment. The wall-density means the proportion
of walls in all locations. Figure 5 (left) shows a generated maze with wall-density of 50%. The
gray positions represent walls. We train all methods with wall-density of 30%, 40%, and 50%. For
each setup, we train 50 independent agents for 50 randomly generated mazes. The relative length
defined by lagent/lbest is used to evaluate the performance, where lagent is the length of the agent’s
path in an episode (maximum steps are 1000), and lbest is the length of the shortest path. The
performance comparison is shown in Figure 4. OEB3 performs best in all methods, and BEBU-IDS
is a strong baseline. We use a trained OEB3 agent to take action in the maze of Figure 5 (left). The
UCB-bonuses of state-action pairs in the agent’s path are computed and visualized in Figure 5 (right).
The state-action pairs with high UCB-bonus show the bottleneck positions in the path. For example,
the state-action pairs in location (3, 3) and (6, 7) produce high UCB-bonus to guide the agent to
choose the right direction. The UCB-bonus encourages the agent to walk through these bottleneck
positions correctly. We give more examples of visualization in Appendix E.
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D IMPLEMENTATION DETAIL

D.1 MNIST MAZE

Hyper-parameters of BEBU. BEBU is the basic algorithm of BEBU-UCB and BEBU-IDS. BEBU
uses the same network-architecture as Bootstrapped DQN (Osband et al., 2016). The diffusion
factor and other training parameters are set by following EBU paper (Lee et al., 2019). Details are
summarized in Table 4.

Table 4: Hyper-parameters of BEBU for MNIST-Maze
Hyperparameters Value Description

state space 28× 28× 2 Stacking two images sampled from MNIST dataset with
labels according to the agent’s current location.

action space 4 Including left, right, up, and down.
K 10 Number of bootstrapped heads.
network-
architecture

conv(64,4,4)
conv(64,3,1)
dense{512, 4}Kk=1

Using convolution (channels, kernel size, stride) layers first,
then fully connected into K bootstrapped heads. Each head
has 512 ReLUs and 4 linear units.

gradient norm 10 The gradient is clipped by 10. The gradient of each head is
normalize by 1/K according to bootstrapped DQN.

learning starts 10000 The agent takes actions according to the initial policy before
learning starts.

replay buffer size 170 A simple replay buffer is used to store episodic experience.
training frequency 50 Number of action-selection step between successive gradient

descent steps.
H 200,000 Total timesteps to train a single maze.
target network up-
date frequency

2000 The target-network is updated every 2000 steps.

optimizer Adam Adam optimizer is used for training. Detailed parameters:
β1 = 0.9, β2 = 0.999, εADAM = 10−7.

learning rate 0.001 Learning rate for Adam optimizer.
ε (h−H)2

H2 Exploration factor. H is the total timesteps for training, and
h is the current timestep. ε starts from 1 and is annealed to 0
in a quadratic manner.

γ 0.9 Discount factor.
β 1.0 Diffusion factor of backward update.
wall density 30%, 40%, and 50% Proportion of walls in all locations of the maze.
reward -1 or 1000 Reward is -1 when bumping into a wall, and 1000 when

reaching the goal.
stochasticity 10% Has a probability of 10% to arrive in the adjacent locations

when taking an action.
evaluation metric lrel = lagent/lbest Ratio between length of the agent’s path and the best length.

Hyper-parameters of BEBU-UCB. BEBU-UCB uses the upper-bound of Q-values to select actions.
In particular, a = arg maxa∈A [µ(s, a) + λucbσ(s, a)], where µ(s, a) and σ(s, a) are the mean and
standard deviation of bootstrapped Q-values {Qk(s, a)}Kk=1. We use λucb = 0.1 in our experiment.

Hyper-parameters of BEBU-IDS. The action-selection in IDS (Nikolov et al., 2019) follows the
regret-information ratio as at = arg mina∈A

∆̂t(s,a)2

It(s,a) , which balances the regret and exploration.

∆̂t(s, a) is the expected regret that indicates the loss of reward when choosing a suboptimal action
a. IDS uses a conservative estimate of regret as ∆̂t(s, a) = maxa′∈A ut(s, a

′) − lt(s, a), where
[lt(s, a), ut(s, a)] is the confidence interval of action-value function. In particular, ut(s, a) =
µ(s, a)+λidsσ(s, a) and lt(s, a) = µ(s, a)−λidsσ(s, a), where µ(s, a) and σ(s, a) are the mean and
standard deviation of bootstrapped Q-values {Qk(s, a)}Kk=1. The information gain It(a) measures
the uncertainty of action-values as I(s, a) = log(1 + σ(s,a)2

ρ(s,a)2 ) + εids, where ρ(s, a) is the variance of
the return distribution. ρ(s, a) is measured by C51 (Bellemare et al., 2017) in distributional RL and
becomes a constant in ordinary Q-learning. We use λids = 0.1, ρ(s, a) = 1.0, and εids = 10−5 in
our experiment.
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Hyper-parameters of OEB3. We set α1 and α2 to the same value of 0.01. We find that adding a
normalizer to UCB-bonus B̃ of the next Q-value enables us to get more stable performance. B̃ is
smoothed by dividing a running estimate of its standard deviation. Because the UCB-bonuses for
next-Q are different for each Q-head, the normalization is useful in most cases by making the value
function have a smooth and stable update.

D.2 ATARI GAMES

Hyper-parameters of BEBU. The basic setting of the Atari environment is the same as Nature
DQN (Mnih et al., 2015) and EBU (Lee et al., 2019) papers. We use the different network architecture,
environmental setup, exploration factor, and evaluation scheme from MNIST maze experiment.
Details are summarized in Table 5.

Table 5: Hyper-parameters of BEBU for Atari games
Hyperparameters Value Description

state space 84× 84× 4 Stacking 4 recent frames as the input to network.
action repeat 4 Repeating each action 4 times.
K 10 The number of bootstrapped heads.
network-
architecture

conv(32,8,4)
conv(64,4,2)
conv(64,3,1)
dense{512, |A|}Kk=1

Using convolution(channels, kernel size, stride) layers first,
then fully connected into K bootstrapped heads. Each head
has 512 ReLUs and |A| linear units.

gradient norm 10 The gradient is clipped by 10, and also be normalize by 1/K
for each head by following bootstrapped DQN.

learning starts 50000 The agent takes random actions before learning starts.
replay buffer size 1M The number of recent transitions stored in the replay buffer.
training frequency 4 The number of action-selection step between successive gra-

dient descent steps.
H 20M Total frames to train an environment.
target network up-
date frequency

10000 The target-network is updated every 10000 steps.

optimizer Adam Adam optimizer is used for training. Detailed parameters:
β1 = 0.9, β2 = 0.999, εADAM = 10−7.

mini-batch size 32 The number of training cases for gradient decent each time.
learning rate 0.00025 Learning rate for Adam optimizer.
initial exploration 1.0 Initial value of ε in ε-greedy exploration.
final exploration 0.1 Final value of ε in ε-greedy exploration.
final exploration
frames

1M The number of frames that the initial value of ε linearly
annealed to the final value.

γ 0.99 Discount factor.
β 0.5 Diffusion factor of backward update.
εeval 0.05 Exploration factor in ε-greedy for evaluation.
evaluation policy ensemble vote The same evaluation method as in Bootstrapped DQN Os-

band et al. (2016).
evaluation length 108000 The policy is evaluated for 108000 steps.
evaluation fre-
quency

100K The policy is evaluated every 100K steps.

max no-ops 30 Maximum number no-op actions before an episode starts.

Hyper-parameters of BEBU-UCB. BEBU-UCB selects actions by a =
arg maxa∈A [µ(s, a) + λucbσ(s, a)]. The detail is given in Appendix D.1. We use λucb = 0.1 in
our experiment by searching coarsely.

Hyper-parameters of BEBU-IDS. The action-selection follows the regret-information ratio as
at = arg mina∈A

∆̂t(s,a)2

It(s,a) . The details are given in Appendix D.1. We use λids = 0.1, ρ(s, a) = 1.0

and εids = 10−5 in our experiment by searching coarsely.

Hyper-parameters of OEB3. We set α1 and α2 to the same value of 0.5× 10−4. The UCB-bonus
B̃ for the next Q-value is normalized by dividing a running estimate of its standard deviation to have
a stable performance.
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E VISUALIZING OEB3

OEB3 uses the UCB-bonus that indicates the disagreement of bootstrapped Q-estimates to measure
the uncertainty of Q-functions. The state-action pairs with high UCB-bonuses signify the bottleneck
positions or meaningful events. We provide visualization in several tasks to illustrate the effect
of UCB-bonuses. Specifically, we choose Mnist-maze and two popular Atari games Breakout and
Mspacman to analyze.

E.1 MNIST-MAZE

Figure 6 illustrates the UCB-bonus in four randomly generated mazes. The mazes in Figure 6(a)
and 6(b) have a wall-density of 40%, and in Figure 6(c) and 6(d) have a wall-density of 50%. The
left of each figure shows the map of maze, where the black blocks represent the walls. We do not
show the MNIST representation of states for simplification, and MNIST states are used in training.
A trained OEB3 agent starts at the upper-left, then takes actions to achieve the goal at bottom-right.
The UCB-bonuses of state-action pairs in the agent’s path are computed and shown on the right of
each figure. The value is normalized to 0 ∼ 1 for visualization. We show the maximal value if the
agent appears several times in the same location.

The positions with UCB-bonuses that higher than 0 draw the path of the agent. The path is usually
winding and includes positions beyond the shortest path because the state transition has stochasticity.
The state-action pairs with high UCB-bonuses show the bottleneck positions in the path. In maze 6(a),
the agent slips from the right path in position (4, 7) to (4, 9). The state-action in position (4, 8)
produces high bonus to guide the agent back to the right path. In maze 6(b), the bottleneck state in
(3, 2) has high bonus to avoid the agent from entering into the wrong side of the fork. The other
two mazes also have bottleneck positions, like (3, 3) in maze 6(c) and (7, 6) in maze 6(d). Selecting
actions incorrectly in these important locations is prone to failure. The UCB-bonus encourages the
agent to walk through these bottleneck positions correctly.
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Figure 6: Visualization of UCB-bonus in Mnist-maze

E.2 BREAKOUT

In Breakout, the agent uses walls and the paddle to rebound the ball against the bricks and eliminate
them. We use a trained OEB3 agent to interact with the environment for an episode in Breakout. The
whole episode contains 3445 steps, and we subsample them every 4 steps for visualization. The curve
in Figure 7 shows the UCB-bonus in 861 sampled steps. We choose 16 spikes with high UCB-bonuses
and visualize the corresponding frames. The events in spikes usually mean meaningful experiences
that are important for the agent to get rewards. In step 1, the agent is hoping to dig a tunnel and get
rewards faster. After digging a tunnel, the balls appear on the top of bricks in steps 2, 3, 4, 5, 6, 9,
and 12. Balls on the top are easier to hit bricks. The agents rebound the ball and throw it over the
bricks in steps 7, 8, 10, and 11. In state 13, the agent eliminates all bricks and then comes to a new
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round, which is novel and promising to get more rewards. The agents in steps 14, 15, and 16 rebound
the ball and try to dig a tunnel again. The UCB-bonus encourages the agent to explore the potentially
informative and novel state-action pairs to get high rewards. We record 15 frames after each spike for
further visualization. The video is available at https://youtu.be/VptBkHyMt8g.
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Figure 7: Visualization of UCB-bonus in Breakout

E.3 MSPACMAN

In MsPacman, the agent earns points by avoiding monsters and eating pellets. Eating an energizer
causes the monsters to turn blue, allowing them to be eaten for extra points. We use a trained
OEB3 agent to interact with the environment for an episode. Figure 8 shows the UCB bonus in
all 708 steps. We choose 16 spikes to visualize the frames. The spikes of exploration bonuses
correspond to meaningful events for the agent to get rewards: starting a new scenario (1,2,9,10),
changing direction (3,4,13,14,16), eating energizer (5,11), eating monsters (7,8,12), and entering
the corner (6,15). These state-action pairs with high UCB-bonuses make the agent explore the
environment efficiently. We record 15 frames after each spike, and the video is shown at https:
//youtu.be/C_8NHKpBNXM.
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Figure 8: Visualization of UCB-bonus in MsPacman
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F RAW SCORES OF ALL 49 ATARI GAMES

Table 6: Raw scores for Atari games. Each game is trained for 20M frames with a single RTX-2080Ti
GPU. Bold scores signify the best score out of all methods.

Random Human BEBU BEBU-UCB BEBU-IDS OEB3
Alien 227.8 6,875.0 1,118.0 811.1 857.9 916.9
Amidar 5.8 1676.0 81.7 166.4 148.1 94.0
Assault 222.4 1,496.0 1,377.0 3,574.5 2,441.8 2,996.2
Asterix 210.0 8,503.0 2,315.0 2,709.3 2,433.9 2,719.0
Asteroids 719.1 13,157.0 962.8 1,025.0 868.8 959.9
Atlantis 12,850.0 29,028.0 3,020,500.0 3,191,600.0 3,144,440.0 3,146,300.0
Bank Heist 14.2 734.4 331.8 277.0 361.6 378.6
Battle Zone 2,360.0 37,800.0 5,446.4 16,348.8 10,520.0 13,454.5
BeamRider 363.9 5,775.0 2,930.0 3,208.3 3,391.0 3,736.7
Bowling 23.1 154.8 29.9 30.7 40.2 30.0
Boxing 0.1 4.3 72.4 68.3 69.8 75.1
Breakout 1.7 31.8 473.2 382.3 412.7 423.1
Centipede 2,090.9 11,963.0 2,547.2 2,377.9 3,328.4 2,661.8
Chopper Command 811.0 9,882.0 930.6 1,013.4 1,100.0 1,100.3
Crazy Climber 10,780.5 35,411.0 49,735.7 39,187.5 42,242.9 53,346.7
Demon Attack 152.1 3,401.0 6,506.3 6,840.4 7,080.0 6,794.6
Double Dunk -18.6 -15.5 -18.9 -16.5 -17.0 -18.2
Enduro 0.0 309.6 504.1 697.8 513.6 719.0
Fishing Derby -91.7 5.5 -56.7 -83.8 -53.3 -60.1
Freeway 0.0 29.6 21.5 21.6 21.3 32.1
Frostbite 65.2 4,335.0 393.4 470.4 466.2 1,277.3
Gopher 257.6 2,321.0 4,842.6 7,211.8 7,171.5 6,359.5
Gravitar 173.0 2,672.0 256.1 321.0 283.3 393.6
H.E.R.O 1,027.0 25,763.0 2,951.4 2,905.0 3,059.4 3,302.5
Ice Hockey -11.2 0.9 -5.4 -6.5 -4.6 -4.2
Jamesbond 29.0 406.7 650.0 360.3 302.1 434.3
Kangaroo 52.0 3,035.0 3624.2 2,711.1 4,448.0 2,387.0
Krull 1,598.0 2,395.0 15,716.7 11,499.0 10,818.0 45,388.8
Kung-Fu Master 258.5 22,736.0 56.0 20,738.9 26,909.7 16,272.2
Montezuma’s Revenge 0.0 4,376.0 0.0 0.0 0.0 0.0
Ms. Pacman 307.3 15,693.0 1,723.8 1,706.8 1,615.5 1,794.9
Name This Game 2,292.3 4,076.0 8,275.3 6,573.9 8,925.0 8,576.8
Pong -20.7 9.3 18.1 18.5 17.2 18.7
Private Eye 24.9 69,571.0 1,185.8 1,925.2 1,897.1 1,174.1
Q*Bert 163.9 13,455.0 3,588.4 3,783.2 3,696.0 4,275.0
River Raid 1,338.5 13,513.0 3,127.5 3,617.7 3,169.1 2,926.5
Road Runner 11.5 7,845.0 11,483.0 20,990.7 17,281.4 21,831.4
Robotank 2.2 11.9 10.3 13.3 10.7 13.5
Seaquest 68.4 20,182.0 447.0 492.3 332.4 332.1
Space Invaders 148.0 1,652.0 814.4 782.2 794.7 904.9
Star Gunner 664.0 10,250.0 1,467.2 1,201.5 1,158.9 1,290.2
Tennis -23.8 -8.9 -1.0 -2.0 -1.0 -1.0
Time Pilot 3,568.0 5,925.0 2,622.1 3,321.2 1,950.6 3,404.5
Tutankham 11.4 167.6 167.0 151.0 80.5 297.0
Up and Down 533.4 9,082.0 5,954.8 4,530.2 4,619.7 5,100.8
Venture 0.0 1,188.0 42.9 3.4 150.0 16.1
Video Pinball 16,256.9 17,298.0 26,829.6 48,959.1 58,398.3 80,607.0
Wizard of Wor 563.5 4,757.0 810.8 1,316.7 578.2 480.7
Zaxxon 32.5 9,173.0 1,587.5 2,104.8 1,594.2 2,842.0
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G PERFORMANCE COMPARISON

We use the relative scores as

ScoreAgent − ScoreBaseline

max{Scorehuman,Scorebaseline} − Scorerandom

to compare OEB3 with baselines. The results of OEB3 comparing with BEBU, BEBU-UCB, and
BEBU-IDS is shown in Figure 9, Figure 10, and Figure 11, respectively.
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Figure 9: Relative score of OEB3 compared to BEBU in percents (%).
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Figure 10: Relative score of OEB3 compared to BEBU-UCB in percents (%).
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Figure 11: Relative score of OEB3 compared to BEBU-IDS in percents (%).

H FAILURE ANALYSIS

Table 7: Comparison of scores in Montezuma’s Revenge.
Frames 200M 20M

DQN BootDQN NoisyNet BootDQN-IDS BEBU BEBU-UCB BEBU-IDS OEB3
Scores 0 100 3 0 0 0 0 0

Our method does not have a good performance on Montezuma’s Revenge (see Table 7) because the
epistemic uncertainty-based methods are not particularly tweaked for this domain. IDS, NoisyNet
and BEBU-based methods all fail in this domain and score zero. Bootstrapped DQN achieves 100
points, which is also very low and does not indicate successful learning in Montezuma’s revenge.
In contrast, the bonus-based methods achieve significantly higher scores in this tasks (e.g., RND
achieves 8152 points). However, according to Taiga et al. (2020) and Table 1, NoisyNet and IDS
significantly outperform several strong bonus-based methods evaluated by the mean and median
scores of 49 Atari games.
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