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Abstract
Despite the impressive advancements in modern
machine learning, achieving robustness in Do-
main Generalization (DG) tasks remains a signif-
icant challenge. In DG, models are expected to
perform well on samples from unseen test distribu-
tions (also called domains), by learning from mul-
tiple related training distributions. Most existing
approaches to this problem rely on single-valued
predictions, which inherently limit their robust-
ness. We argue that set-valued predictors could
be leveraged to enhance robustness across unseen
domains, while also taking into account that these
sets should be as small as possible. We intro-
duce a theoretical framework defining success-
ful set prediction in the DG setting, focusing on
meeting a predefined performance criterion across
as many domains as possible, and provide theo-
retical insights into the conditions under which
such domain generalization is achievable. We
further propose a practical optimization method
compatible with modern learning architectures,
that balances robust performance on unseen do-
mains with small prediction set sizes. We evaluate
our approach on several real-world datasets from
the WILDS benchmark, demonstrating its poten-
tial as a promising direction for robust domain
generalization.

1. Introduction
In recent years, Machine Learning (ML) methods, particu-
larly deep neural networks (DNNs), have achieved remark-
able success in various tasks, including language under-
standing and image recognition. However, despite these
advancements, many models struggle in real-world scenar-
ios when the data comes from a different distribution than
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the data the model was trained on (Nagarajan et al., 2020;
Miller et al., 2020; Recht et al., 2019). These distributions
are referred to as “domains”, and the challenge of general-
izing to domains unseen during training time is known as
Out-Of-Distribution (OOD) generalization, or Domain Gen-
eralization (DG) (Li et al., 2018a; Krueger et al., 2021). DG
is especially important in high-stakes fields like medicine,
where, for instance, a disease diagnosis system might be
trained on data from a specific group of patients, each with
records from multiple visits to health centers, or multiple
medical scans. Such a system must be effective on new
patients for which it has no prior data. Moreover, beyond
merely performing well on average, it is desirable that such
a system provide robust performance across all new pa-
tients, requiring worst-case performance guarantees across
domains rather than average-case performance.

Recent efforts to address this challenge have focused on
learning “stable” predictors that focus only on domain-
invariant features, discarding information that might be
domain-specific (Peters et al., 2016; Arjovsky et al., 2019;
Heinze-Deml & Meinshausen, 2021; Veitch et al., 2021;
Wald et al., 2021). While these methods have made strides
in maintaining stability across various domains, achieving
this stability remains challenging, and sometimes infeasible
(Chen et al., 2021; Kamath et al., 2021). Furthermore, stabil-
ity often comes at the cost of sub-optimal and even poorly-
performing predictors, as “overly stable” predictors might
ignore valuable parts of the data (Rosenfeld et al., 2021;
2022; Zhao et al., 2019; Stojanov et al., 2021). As an illus-
tration, a disease diagnosis system that consistently achieves
only 60% accuracy, despite being stable across different pa-
tient populations, may not be practically viable.

We propose an alternative approach for dealing with the
considerable challenge of DG: employing predictors with
set-valued outputs. Our set-valued framework for OOD
problems recognizes that a key challenge in distribution-
shift problems is the absence of a single, universally optimal
prediction across all domains, as different domains induce
different probabilistic relationships between features X and
label Y . To handle these variations, our approach provides
set-valued outputs that capture a range of potential relation-
ships learned from the training domains. Such an approach
is sensible for multi-domain settings, where expecting a
single predictor to perform optimally across all domains is
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often impractical, yet worst-case performance guarantees
are still desirable.

A useful set-valued prediction should not only include the
correct label with high probability, it should ideally output
small prediction sets. Consider a degenerate predictor that
always predicts the entire label space Y . While it would
always include the correct label, such a predictor will have
no practical value. Therefore, it is essential to aim for a
predictor that achieves a desirable performance level, while
keeping the prediction set size to a minimum. This obser-
vation represents our learning objective: instead of seeking
to maximize performance with a singleton set, we suggest
targeting a predefined performance level while minimizing
the prediction set size.

To summarize, our contributions in the paper are as follows:
In Section 2 we introduce a learning paradigm for DG
problems with set-valued predictors, where the goal is to
achieve a predefined coverage level across unseen domains.
In Section 3 we formulate and prove generalization bounds
with respect to the above paradigm, giving conditions which
guarantee robust performance on unseen domains.
In Section 4 we propose practical methods for learning set-
valued predictors within the above paradigm.
Finally, in Section 5 we demonstrate the effectiveness of
our proposed methods using real-world datasets from the
WILDS benchmark (Koh et al., 2021).

2. Multi Domain Set Valued Learning
2.1. Problem Setting
Consider features X ∈ X , a label Y ∈ Y , and a domain e ∈
E coupled with a distribution Pe over (X ,Y). In this work,
we focus on classification tasks, meaning Y is a known finite
set. Let also D be a distribution over the set of domains
E . This setting can be viewed as a meta-learning problem,
where the data generation process is hierarchical, involving
distributions at both the domain and instance levels.

We assume that during training we observe a set Etrain of
m domains drawn according to D. From each domain e ∈
Etrain, we observe a sample Se of ne instances, sampled
according to Pe. This brings us to an overall sample S =⋃

e∈Etrain
Se of N =

∑m
i=1 ne instances of (Xi, Yi, ei). At

test time, we observe an instance X sampled from some
domain etest (sampled according to D), which may differ
from any of the training domains. We note that while we
observe the value of e during training, it is neither required
nor utilized at test time.

Throughout this paper we consider set-valued predictors.
Such predictors take inputs from X , and output a subset of
Y , i.e h : X −→ P(Y).

2.2. Learning Objective
To formalize our learning objective, we first define a per-
domain loss function L(h, e), which measures the perfor-
mance of a set-valued predictor h within a specific domain e.
For set-valued predictors, the loss function should evaluate
the coverage of the prediction set. Since set-valued predic-
tors can be decomposed into per-label binary classifiers, it
is natural to require that each of these classifiers performs
well, especially when worst-case performance is desirable.
For instance, in disease diagnosis it is crucial to prioritize
per-label recall for each y ∈ Y , to avoid missed diagnoses.
The following loss function captures this focus on per-label
recall:

Lrecall(h, e) = max
y∈Y

Pe[y /∈ h(X)|Y = y].

Balancing this loss with the size of the prediction set ensures
that set-valued predictors include each correct label Y when
appropriate while refraining from including incorrect ones,
ensuring that the prediction sets are both informative and
concise. This balance mirrors the trade-off between recall
and precision in single valued predictors.
The focus on recall loss for set-valued predictors is also
adapted by other works on set-valued predictors, such as
Mauricio Sadinle & Wasserman (2019); Wang & Qiao
(2018); Guan & Tibshirani (2022).

Returning to the disease prediction example, when devel-
oping a model to predict diseases using data from multiple
patients each with multiple visits, it is desirable that the
model performs robustly on new patients, rather than merely
perform well on average. To obtain this, we begin by defin-
ing a performance indicator for a loss function L and a
threshold γ as: 1L,γ(h, e) = 1[L(h, e) ≥ γ]. Our objective
then becomes:

min
h∈H

E
e∼D

1L,γ(h, e) = min
h∈H

P
e∼D

[L(h, e) ≥ γ].

Achieving a zero objective implies that our predictor de-
livers a satisfying performance (according to L, γ) across
all domains. For example, with Lrecall loss, achieving an
objective value of zero would mean our predictor achieves
at least 1− γ recall for all labels in Y , across all domains.
In practice, we aim for a low objective value, though not
necessarily zero. With generalization bounds on∣∣∣ E

e∼D
1L,γ(h, e)−

1

N

∑
e∈Etrain

1L,γ(h, e)
∣∣∣,

we can bound the expected fraction of domains where a pre-
dictor does not deliver satisfying performance. A significant
advantage of this approach is that it frames the robustness
problem as a mean optimization problem, allowing to lever-
age established methods from classical ML and adapt them
to the multi-domain context. An example using the concept
of VC dimension is presented in Section 3.
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2.3. Related Work
Set-valued predictions are well studied in the single-domain
framework, often through the lens of conformal prediction
- a widely used method for constructing set-valued predic-
tions with a predefined level of coverage guarantee (Shafer
& Vovk, 2008; Vovk et al., 2005); see also Section 4.2.
In the single-domain scenario, Mauricio Sadinle & Wasser-
man (2019) and Lei (2014) tackle the challenge of aiming at
set-valued predictions with a pre-defined level of coverage,
while keeping the prediction sets small. They present that
challenge as a constrained optimization problem and define
its solution using acceptance regions, leveraging Neyman-
Pearson Lemma to construct optimal regions.
Wang & Qiao (2018; 2023a) tackle the same constrained
optimization problem using support vector machines, build-
ing another method for set-valued predictions in the single-
domain scenario.

Dunn et al. (2018) suggest set-valued predictions for DG
tasks, however they focus on optimizing average risk over
domains, instead of worst-case type risk as we do in our
work. In addition, the work of Dunn et al. (2018) does not
consider the size of the prediction set, and does not aim at
small prediction sets.
Wang & Qiao (2023b) also use set-valued predictions in
OOD setting, continuing the work on support vector ma-
chines for optimal set-valued predictions. However, they
assume the conditional distribution Pe[X|Y ] is constant
across domains, and specifically tackle OOD detection of
unseen classes, when unlabeled data from the test domain is
available. For this setting, they derive an empirical optimiza-
tion problem similar to the one we derive for our setting,
which is presented in section 4.1.
Guan & Tibshirani (2022) tackle an OOD problem with a
single train domain and a single test domain, where unla-
beled data from the test domain is available, and use confor-
mal prediction to achieve per-label recall guarantee.

One work that approaches worst-case robustness in DG
tasks with a single-valued predictor is that of Eastwood
et al. (2022) which suggests the Quantile Risk Minimization
(QRM) method for minimizing the α-quantile risk among
domains. This method is built upon an assumption that there
exists a high-level distribution over the domains, same as we
do in our work. However, the applicability of this method
is constrained by its reliance on single-valued predictions,
which, as discussed in Section 1, can lead to suboptimal and
degraded performance in certain domains.

3. Generalization Bounds
In the previous section we introduced the concept of
a performance indicator 1L,γ(h, e) measuring whether
the predictor h gives satisfactory performance in do-
main e (w.r.t. L, γ), and set forth the objective of

minimizing E[1L,γ(h, e)]. We argued that bounding
|Ee∼D 1L,γ(h, e)− 1

N

∑
e∈Etrain

1L,γ(h, e)| will allow us
to focus on minimizing the empirical average of the perfor-
mance indicator over training domains.

This concept mirrors the way Probably Approximately Ac-
curate (PAC) bounds provide a foundation for Empirical
Risk Minimization (ERM) in classical ML (Shalev-Shwartz
& Ben-David, 2014). We therefore explore how classical
machine learning tools can be adapted to the hierarchical
structure of domains. In this section, we will formally define
the concept of VC-dimension within our hierarchical frame-
work and derive generalization bounds based on this defini-
tion. While definitions and generalization bounds adapt nat-
urally from classical ML to our setting, we show that in the
multi-domain set-valued context, even basic hypothesis sets
like linear hypotheses, which have a finite VC-dimension in
standard supervised learning, have infinite VC-dimension
when no assumptions on E are made. Nevertheless, we
also demonstrate that under certain assumptions on E , such
hypothesis sets retain finite VC-dimension.

3.1. VC-dim In Meta Learning - Definitions and
Generalization Bounds

One of the classical results in the context of standard ML
considers generalization of binary classifiers with regard to
0-1 loss L0−1(h, (x, y)). The L0−1 loss serves as a measure
for whether an hypothesis h performs well on a data point
(x, y). The VC-dimension quantifies the ability of an hy-
pothesis setH to exactly classify any subset of points from a
finite set in X ×Y . To adapt the idea of VC-dimension, and
its implications on generalization, we start by replacing the
L0−1 loss with the performance indicator 1L,γ(h, e) as the
measure of how well an hypothesis h performs on a domain
e. Then, we define the VC-dimension such that it measures
the ability of an hypothesis set H to perform perfectly on
any subset of domains from a finite set in E .

Definition 3.1 (Shattering). Given a hypotheses set H, a
finite set C ⊆ E , a loss function L, and a threshold γ, we
say thatH shatters C with respect to L, γ if for any subset
Ĉ ⊆ C there exists h ∈ H such that

e ∈ Ĉ −→ 1L,γ(h, e) = 1 e ∈ C\Ĉ −→ 1L,γ(h, e) = 0.

Definition 3.2 (VC-Dimension). The VC-dimension of a
hypothesis class H with respect to L, γ is the maximum
size M such that there exists a set C ⊂ E with |C| = M
that H can shatter with respect to L, γ. We denote it by
V CdimL,γ(H).

Definition 3.3 (Uniform Convergence). We say that a hy-
pothesis class H has the uniform convergence property
with respect to loss function L and threshold γ if, for ev-
ery δ, ϵ ∈ (0, 1), there exists an integer m(δ, ϵ) such that
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for every distribution D over E , if S ⊂ E is a sample of
|S| > m(δ, ϵ) domains drawn i.i.d according to D, then,
with probability at least 1 − δ (over the sample of S) the
following holds:

∀h ∈ H,
∣∣∣ E
e∼D

[1L,γ(h, e)]−
1

|S|
∑
e∈S

1L,γ(h, e)
∣∣∣ ≤ ϵ.

Theorem 3.4. A hypothesis class H has the uniform con-
vergence property with respect to a loss function L and
threshold γ if and only if V CdimL,γ(H) < ∞. More-
over, if d = V CdimL,γ(H) <∞, the sample size from the
uniform-convergence definition is m(δ, ϵ) = Θ(d+log(1/δ)

ϵ2 ).

Theorem 3.4 is proved in appendix A.1, and provides a way
to derive generalization bounds for the hierarchical setting
by demonstrating a finite VC-dimension for a hypothesis
class H, analogous to how the VC-dimension is used in
classical machine learning. While Theorem 3.4 closely
mirrors classical VC-dimension theory, its proof requires
special care due to two key differences from the standard
setting. First, instead of using the 0-1 loss on individual data
points, we work with a performance indicator 1L,γ(h, e)
that measures whether a hypothesis achieves satisfactory
performance on an entire domain e. Second, classical results
apply to distributions over input-label pairs X × {0, 1},
whereas our setting involves distributions over domains E ,
which are more complicated objects. These differences
necessitate a careful adaptation of the uniform convergence
argument, including a mapping to a derived hypothesis class
over E ×{0, 1} to apply classical VC theory. Further details
are outlined in appendix A.1.

Proving a finite VC-dimension for certain hypothesis sets
in the hierarchical context with the Lrecall loss requires
assumptions on the structure of E , as we show in sections
3.2 and 3.3. This is unlike standard results in the classic
framework, where assumptions on the inputs are usually
not required. Informally, this difference can be seen as
stemming from the fact that the space of all domains is of in-
finite dimension, while in the classical framework inputs are
typically considered to belong to finite-dimensional space.
In accordance with that, the restrictions on E that we ex-
plore in section 3.3 limit the domains to a finite-dimensional
subspace.

In this section, we focus on generalization from training
domains to new, unseen domains. We do not address gener-
alization within individual domains, which can be viewed as
effectively assuming an infinite sample size for each domain.
In appendix B, we provide a comprehensive analysis of both
the number of domains required for effective generalization
and the sample size needed within each domain.

3.2. Failure To shatter By Linear Hypotheses Set
In the following sections, we will consider hypothesis sets
of set-valued predictors. These predictors can be defined
using |Y| binary classifiers hy : X −→ {0, 1} for y ∈ Y in
the following manner: h(X) = {y ∈ Y : hy(X) = 1}. If
each hy adheres to a particular structure (e.g., hy is a linear
classifier), we say that h possesses this structure.

We demonstrate the divergence between classic supervised
learning and multi-domain set-valued learning using the
example of linear hypotheses sets. In the classical sense
of shattering, a linear hypotheses set cannot shatter more
than d+1 points (Shalev-Shwartz & Ben-David, 2014), thus
having a finite VC dimension. However, in the multi-domain
set-valued setting, without imposing structural assumptions
on the domains in E , the finiteness of the VC dimension
depends on the dimensionality d.

Theorem 3.5. For d = 1, linearH cannot shatter more than
2|Y| domains with respect to Lrecall and any 0 < γ < 1.

According to Definition 3.2 this means that for linearH and
d = 1, we have V CdimLrecall,γ(H) ≤ 2|Y|.
Proof for theorem 3.5 is given in appendix A.2.

Theorem 3.6. For d > 1, and any size m, there exists a set
of m domains that can be shattered by linear hypothesesH
with respect to Lrecall and any 0 < γ < 1.

According to Definition 3.2 this means that for linearH and
d > 1, we have V CdimLrecall,γ(H) =∞.
Proof for theorem 3.6 is given in appendix A.3.

3.3. Imposing Restrictions on E
The previous results may seem discouraging, as an infinite
VC-dimension suggests that generalization from observed to
new domains via uniform convergence is impossible. How-
ever, when real-world data is collected from various environ-
ments, it is reasonable to assume that the Data Generation
Processes (DGP) of these environments share some com-
mon structure. Thus, we examine cases where restrictions
are placed on E . Following Wald et al. (2021); Rosenfeld
et al. (2022) we examine the assumption that all domains in
E are conditionally Gaussian:

∀e ∈ E ∀y ∈ Y [X|Y = y]
Pe∼N(µe,y,Σe,y).

While the previous subsection shows negative results for
learnability when there are no restrictions on the domains,
the following result suggests that with some restrictions
as mentioned above, learnability is possible with sufficient
training domains.

Theorem 3.7. If domains are restricted to being Condition-
ally Gaussian, and there exist ∀y∈Y Σy ∈ Rd×d such that
for each e, y Σe,y = σe,yΣy for some σe,y ∈ R, then for
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each ϵ, δ > 0 there exist m = Θ( |Y|2(d+log(|Y|/δ))
ϵ2 ) such

that if |Etrain| ≥ m then with probability higher than 1− δ
over the training domains sample Etrain, and regardless of
the distribution D over E , for any linear hypothesis h

∀e∈Etrain 1Lrecall,γ(h, e) = 0 −→ E
e∼D

[1Lrecall,γ(h, e)] ≤ ϵ.

The proof is provided in Appendix A.4, building on Theo-
rem 3.4.

Theorem 3.7 provides a rigorous justification for seeking
a linear predictor h ∈ H that achieves Lrecall(h, e) < γ
for each e ∈ Etrain. In the next section, we will intro-
duce practical methods to find such predictors h, while
also considering the efficiency of the set sizes generated by
h.

While the result of 3.7 is strictly valid for linear predictors,
we experimentally evaluate its applicability to neural net-
works.
In addition, a limitation of Theorem 3.7 lies in its assump-
tion that for each label y ∈ Y , the Gaussian DGPs across all
domains share the same covariance structure, up to a scaling
factor σe,y. In Appendix E.3, we empirically demonstrate
that generalization is achievable even without this assump-
tion. Specifically, we report the results of experiments on
synthetic data with Gaussian DGPs that feature separate
random covariance matrix for each domain. Additionally,
in Section 5.2 we empirically evaluate the generalization
capability of our proposed method (introduced in the next
section) to new domains with complex DGPs using real-
world datasets.

4. Practical Optimization Methods
In previous sections we discussed the necessity of finding
a set-predictor h that consistently delivers satisfactory per-
formance across all training domains, as measured by a loss
function L(h, e), while also minimizing the size of the pre-
diction set. In this section, we introduce our method, SET
Coverage Optimized with Empirical Robustness (SET-
COVER), which addresses this dual objective. In addition,
we present a series of baseline predictors that leverage con-
formal prediction for DG.

To ground our discussion, we will focus on the per-label
recall metric as our performance criterion, continuing the
earlier discussion on disease diagnosis system. However, the
methods we develop can be naturally extended to other per-
formance metrics. Throughout the next sections we will call
this metric “min-recall”, since achieving a required recall
level for all labels simultaneously implies that the minimum
recall across labels meets the required threshold.

We begin by introducing some key notations. Given a
training dataset S =

⋃
e∈Etrain

Se, we define: Ge,y =

{i ∈ Se : Yi = y}, and Gy = {i ∈ S : Yi = y} =⋃
e∈Etrain

Ge,y .

4.1. SET-COVER: Optimized Set Prediction
Our goal is to minimize prediction set size while maintaining
the required min-recall level. We formalize the following
constrained optimization problem:

min
h∈H

1

N

∑
i∈S

|h(xi)|

s.t.
1

|Ge,y|
∑

i∈Ge,y

1[y /∈ h(Xi)] ≤ γ, ∀e ∈ Etrain ∀y ∈ Y.

Since |h(X)| =
∑

y∈Y hy(X), this problem can be solved
for each label y individually:

min
h∈H

1

N

∑
i∈S

hy(Xi)

s.t
1

|Ge,y|
∑

i∈Ge,y

1[hy(Xi) = 0] ≤ γ ∀e ∈ Etrain. (1)

Problem 1 is non-smooth and becomes computationally in-
tractable for high dimensions and large datasets. To leverage
standard gradient-based optimization methods, we introduce
a relaxation of the optimization problem along with a pa-
rameterization of the predictor. Suppose the hypothesis
class H is parameterized by θ ∈ Rq (where q may differ
from the feature dimension d), such that hy(X) = 1 if and
only if hθ

y(X) ≥ 0. This leads us to the following relaxed
optimization problem:

min
θ

∑
i∈S

max{0, 1 + hθ
y(Xi)}

s.t ∀e ∈ E
1

|Ge,y|
∑

i∈Ge,y

max{0, 1− hθ
y(Xi)} ≤ γ. (2)

In appendix C we provide detailed derivations for this re-
laxation and show that its objective is a surrogate for the
objective of problem (1), and that its constraints are also
surrogate for those in the original formulation. We note
that Wang & Qiao (2023b) derive a similar optimization
problem for a setting of OOD class detection with two do-
mains.

We solve problem 2 by introducing Lagrange multipliers
C ∈ Rm×|Y| and define the Lagrangian:

Ly(θ, C) =
∑
i∈S

max{0, 1 + hθ
y(Xi)}+

∑
e∈Etrain

Ce,y

 1

|Ge,y|
∑

i∈Ge,y

max{0, 1− hθ
y(Xi)} − γ

 .

Gradient descent can then be performed on θ, combined
with a gradient ascent on C.
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To optimize θ, we focus on the relevant part of the La-
grangian:

Ly(θ, C) =
∑
i∈S

max{0, 1 + hθ
y(Xi)}+

∑
e∈Etrain

Ce,y
1

|Ge,y|
∑

i∈Ge,y

max{0, 1− hθ
y(Xi)}.

This can be simplified further by absorbing the 1
|Ge,y| fac-

tor into Ce,y, resulting in the following loss function for
optimizing θ:

Ly(θ, C) =
∑
i∈S

max{0, 1 + hθ
y(Xi)}+∑

e∈Etrain

1i∈Ge,yCe,y max{0, 1− hθ
y(Xi)}.

For wrong classification, the above loss will punish the
predictor h. For correct classification, the second term will
not punish it, but the first term will do (specifically for true
positives). We found during experimentation that changing
the first term to punish only wrong classifications helps
stabilizing the learning process (Further details are given
in Appendix E.6.2). Therefore we further adjust the loss to
be

Ly(θ, C) =
∑
i ̸∈Gy

max{0, 1 + hθ
y(Xi)}+∑

e∈Etrain

1i∈Ge,y
Ce,y max{0, 1− hθ

y(Xi)}.

To optimize C, we suggest updating it once every few
batches (the frequency is treated as a training hyper-
parameter) and at the end of each epoch. The updates are
aimed to increase Ce,y when the recall of hθ

y in domain e
and label y is lower than 1−γ, and decrease Ce,y otherwise.
The implementation details of these updates are outlined in
Algorithm 1 (in Appendix D).

We call this approach SET Coverage Optimized with Empir-
ical Robustness (SET-COVER) and outline it in Algorithm
1 (in Appendix D). In Section 5 we demonstrate the effec-
tiveness of this algorithm through experiments on synthetic
and real-world data.

4.2. Conformal Prediction Baselines
To evaluate the performance of SET-COVER, we present
several set-prediction baselines that extend conformal pre-
diction to DG and compare SET-COVER to them. Confor-
mal prediction models have gained popularity in recent years
for providing well-grounded prediction sets with strong
marginal coverage guarantees (Gibbs & Candes, 2021; Ro-
mano et al., 2020; Tibshirani et al., 2019). The central
idea behind conformal prediction for classification tasks is

to train a base model and use its predicted logits as “con-
formal scores” – a measure of how well input features X
relate to each of the labels in Y . Then, a calibration pro-
cess produces thresholds for these conformal scores, so that
prediction sets that include labels for which the conformal
scores fall within these thresholds guarantee a certain level
of marginal coverage (Shafer & Vovk, 2008; Vovk et al.,
2005). Conformal predictors have been widely used for
providing set-valued predictions in single-domain settings,
offering marginal coverage guarantees (Lei et al., 2013;
Fontana et al., 2023).

4.2.1. ROBUST CONFORMAL FOR DOMAIN
GENERALIZATION

We suggest an adaptation of conformal prediction to pro-
vide robust performance across domains, calling it Robust
Conformal Prediction:

• We first train a single classifier on the pooled data
from all training domains and use its output logits as
conformal scores for each label separately. We denote
this as f(x) =

〈
f(x)1, ..., f(x)|Y|

〉
.

• For each training domain separately, we calibrate
thresholds so that conformal scores within these thresh-
olds provide the desired coverage in that specific do-
main. To achieve 1− γ recall for each label in Y and
for each training domain, we define the following set
of thresholds:

te,y = inf{α :
1

|Ge,y|
∑

i∈Ge,y

1[f(Xi)y > α] ≥ 1−γ}.

• At prediction time, a label is added to the prediction
set if its conformal score exceeds the threshold in any
of the training domains:
hy(Xi) = maxe∈Etrain

1[f(Xi)y > te,y].

4.2.2. POOLING CDFS

Dunn et al. (2018) proposed Pooling-CDFs for regression
tasks, a DG approach based on conformal prediction. Unlike
robust conformal methods, Pooling-CDFs aims to achieve
average coverage across domains. In Pooling-CDFs a base
model is trained on a pooled training data, gathered from
several training domains. Then, the calibration is done on
calibration data, gathered from different calibration domains,
and thresholds are calculated to provide an average coverage
guarantee across domains.

For our experiments, we adapt Pooling-CDFs to our min-
recall objective by calculating thresholds for each label
individually, aiming for 90% recall across domains. Addi-
tionally, we test a variant that performs both training and
calibration on the full dataset available during training. We
call this variant Pooling CDFs – Train Calibration (TrainC),
and the original variant we call Pooling CDFs – Cross Vali-
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dated Calibration (CVC).

5. Experiments
We conduct several experiments to evaluate the performance
of five different approaches to the problem of DG. In line
with the setup presented in previous sections, we aim to
achieve a 90% recall for each label and each domain, while
keeping the prediction set size as small as possible. We
evaluate the following predictors:

ERM: We train a Neural Network (NN) to make single-
valued predictions by minimizing a cross-entropy loss across
the entire shuffled training dataset. This method represents
the conventional method for training and deploying machine
learning models.
Pooling CDFs (TrainC) and Pooling CDFs (CVC): We
implement the two variants of Pooling CDFs as described
in section 4.2.2, building on the ERM classifier as the base
model.
Robust Conformal: We implement a robust conformal pre-
dictor as described in Section 4.2.1, again building on the
ERM classifier as the base model.
SET-COVER: We train a NN using the optimization pro-
cess outlined in Section 4.1, with the aim of producing a
model with a small prediction set size while maintaining the
desired coverage.

Evaluating set-valued predictions presents challenges since
models need to balance coverage with prediction set size. It
also complicates model comparisons because it is unclear
which metric should be prioritized. We choose to tackle this
by presenting the following comparisons. First, we compare
models on two key aspects: (1) the average size of prediction
sets and (2) the minimum recall per domain. We visualize
these results using cross-plots where the y-axis represents
min-recall, and the x-axis represents average set size. Each
cross shows the median and the 25th and 75th percentiles
for both metrics across domains, as shown in Figures 1 and
2. Additionally, we present in Table 1 the percentage of
domains achieving at least 90% min-recall, which is our
predefined performance target. All our experiments in this
section are repeated with five different random seeds, with
results averaged across the seeds.

While the experiments in this section compare mainly set
predictors (with ERM as the singleton-prediction baseline),
in Appendix E.5 we also compare SET-COVER to few com-
mon singleton-prediction OOD baselines.

5.1. Synthetic Data
We first evaluate our proposed methods on synthetic data.
We follow a data generation process proposed by Heinze-
Deml & Meinshausen (2021), that incorporates both in-
variant features, i.e. features that do not depend on the
domain, and domain-dependent features. However, unlike

Heinze-Deml & Meinshausen (2021)’s original setup, where
invariant features alone were sufficient for optimal predic-
tion, we adjusted the data generation process, ensuring that
ignoring variant features would lead to a decline in perfor-
mance.

The DGP is as follows:

Ze ∼ U [ulow, uhigh] ; Y ∼ Bernoulli(0.5)

X ∼ Y (µ+ Zeν) +N(0,Σ)

where µ, ν ∈ Rd.

We experiment with d = 10, 50. For all methods we used a
2-layer multi-layer perceptron (MLP) as the base architec-
ture. See details in Appendices E.1 and E.2.

The results in Figure 1 consistently show that both the robust
conformal method and the SET-COVER method achieve the
required coverage in test domains. As expected, the SET-
COVER approach maintains a smaller average prediction
set size.

(a) 50d (b) 10d

Figure 1. Min Recall distribution VS Mean Set Size distri- bution.
Blue represents ERM predictor, Orange represents Pooling CDFs
(TrainC), Grey represents Pooling CDFs (CVC), Green represents
robust conformal predictor, and Pink represents SET-COVER. The
horizontal solid line represents the 90% recall target value.

In Appendix E.3 we conduct experiments on a similar DGP
where the covariance matrices vary randomly across do-
mains. The results show that the performance of the models,
including SET-COVER, remains stable even with domain-
dependent covariance.

5.2. WILDS Data
We evaluate set-valued models on benchmarks from the
WILDS (Koh et al., 2021) suite of benchmarks, which is
designed to test models against real-world distribution shifts
across various datasets and modalities. The benchmarks we
use include:

Camelyon (Bandi et al., 2018): This dataset consists of
pathological scans from 43 patients across 5 hospitals. Each

7
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scan is divided into thousands of patches, each labeled as 1
if it contains a tumor and 0 otherwise. Patients are treated as
domains, and the task of predicting whether a tumor appears
in a patch (an image) is a binary classification.
FMoW (Christie et al., 2018): A satellite image dataset
categorized by different land or building use types. Images
come from different geographic areas and years, with each
area-year pair defining a domain. We focus on the three
most prevalent categories, constructing a multi-class classi-
fication task.
iWildCam (Beery et al., 2020): This dataset includes im-
ages of animals in the wild, taken from different locations,
with the locations defining the domains. We again focus
on the three most prevalent classes. The original images in-
clude a frame that reveals its domain, so we crop the images
to discard these frames.
Amazon (Ni et al., 2019): A dataset of textual reviews, each
is associated with a star rating from 1 to 5. The reviews are
written by different reviewers, each has multiple reviews in
the dataset. Each reviewer is considered a different domain,
and the task is to predict the star rating of a review, i.e a
multi-class classification task.

We discard data instances if they come from any (domain, la-
bel) pair with less than 100 samples. For Camelyon, FMoW,
and iWildCam data sets, we use a pre-trained ResNet-18
network (He et al., 2016), fine-tuning it on the training
set. For the Amazon dataset we use the embeddings of a
pre-trained Bert (bert-base-uncased) model (Devlin et al.,
2018) to calculate average embedding of the input text, and
then pass it through a 2-layer MLP. All training sets are
composed of randomly sampled instances from randomly
sampled domains, and for all data sets the methods are eval-
uated on unseen test domains. Further experimental details
are available at Appendix E.1. Training time comparisons
are provided in Appendix E.6.3.

Results Figure 2 and Table 1 show consistently that both
the robust conformal predictor and the SET-COVER pre-
dictor improve coverage in test domains, compared to the
other methods. Furthermore, SET-COVER maintains a sig-
nificantly smaller prediction set size compared to the ro-
bust conformal predictor. These results suggest that the
SET-COVER method might be a promising step towards an
efficient set-valued domain generalization.

Table 1. Summary of OOD Results on Wilds Datasets

Model
Camelyon

Median
Min Recall ↑

Median
Avg Size ↓

Recall ≥ 90%

Pctg ↑

ERM 0.93 ± 0.04 1.0 ± 0 0.63 ± 0.11
CDF Pooling-
(TrainC) 0.88 ± 0.03 1.07 ± 0.15 0.45 ± 0.10

CDF Pooling-
(CVC) 0.81 ± 0.14 1.24 ± 0.17 0.33 ± 0.19

Robust
Conformal 0.98 ± 0.01 1.79 ± 0.16 0.93 ± 0.05

SET-COVER 0.96 ± 0.03 1.05 ± 0.03 0.71 ± 0.14

Model
FMoW

Median
Min Recall ↑

Median
Avg Size ↓

Recall ≥ 90%

Pctg ↑

ERM 0.76 ± 0.06 1.0 ± 0.00 0.08 ± 0.06
CDF Pooling-
(TrainC) 0.81 ± 0.01 1.01 ± 0.05 0.07 ± 0.04

CDF Pooling-
(CVC) 0.83 ± 0.03 1.10 ± 0.02 0.23 ± 0.10

Robust
Conformal 0.89 ± 0.01 1.17 ± 0.07 0.43 ± 0.15

SET-COVER 0.91 ± 0.02 1.10 ± 0.04 0.72 ± 0.22

Model iWildCam
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑

ERM 0.99 ± 0.00 1.0 ± 0.00 0.71 ± 0.03
CDF Pooling-
(TrainC) 0.92 ± 0.03 0.92 ± 0.03 0.53 ± 0.06

CDF Pooling-
(CVC) 0.99 ± 0.01 1.14 ± 0.12 0.73 ± 0.06

Robust
Conformal 0.99 ± 0.01 2.00 ± 0.63 0.86 ± 0.07

SET-COVER 0.99 ± 0.00 1.01 ± 0.02 0.82 ± 0.09

Model Amazon
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑

ERM 1.0 ± 0.00 1.0 ± 0.00 0.68 ± 0.06
CDF Pooling-
(TrainC) 0.94 ± 0.01 4.31 ± 0.17 0.63 ± 0.02

CDF Pooling-
(CVC) 0.99 ± 0.00 2.48 ± 0.53 0.70 ± 0.06

Robust
Conformal 1.0 ± 0.00 4.68 ± 0.28 0.99 ± 0.00

SET-COVER 1.0 ± 0.00 2.43 ± 0.09 0.96 ± 0.02
8
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(a) Camelyon (b) FMoW

(c) iWildCam (d) Amazon

Figure 2. Each figure represents Min-Recall over Avg Set Size
cross. y-axis represents min-recall, and x-axis represents average
set size. Each cross shows the median and the 25th and 75th per-
centiles for both metrics across domain. Blue represents ERM
predictor, Orange represents Pooling CDFs (TrainC), Grey repre-
sents Pooling CDFs (CVC), Green represents robust conformal
predictor, and Pink represents SET-COVER. The horizontal solid
line represents the 90% recall target value, and dashed yellow di-
agonal line represents performance of a random predictor.

Reproducibility Code
We release all code and evaluation scripts at https:
//github.com/ront65/set-valued-ood to facil-
itate reproducibility.
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A. Proofs For Theoretical Claims
A.1. Proof of Theorem 3.4
The definitions we provide for uniform convergence and shattering in the multi-domain setting differ slightly from those
in classical machine learning. First, in classical ML, the connection between VC-dimension and uniform convergence is
typically defined with respect to the 0-1 loss, whereas in our case, it is defined in terms of a performance indicator. Second,
while classical ML defines uniform convergence with respect to distributions over X × {0, 1}, in our setting, it is defined
over distributions on E alone. These distinctions require careful consideration when linking VC-dimension to uniform
convergence in the multi-domain framework, as we do in Theorem 3.4. We will now address this and provide a proof for the
theorem.

Theorem 3.4. A hypothesis classH has the uniform convergence property with respect to a loss function L and threshold γ
if and only if V CdimL,γ(H) <∞. Moreover, if d = V CdimL,γ(H) <∞, the sample size from the uniform-convergence
definition is m(δ, ϵ) = Θ(d+log(1/δ)

ϵ2 ).

Proof. First Direction: We start by proving that ifH has the uniform convergence property, then V CdimL,γ(H) <∞.
AssumeH possesses the uniform convergence property. This means that for any 0 < ϵ, δ < 0.5 there exists m(ϵ, δ) such that
for any distribution D over E and for any training sample S ⊂ E drawn according to D with |S| ≥ m(ϵ, δ) the probability
(over the draw of S) that

∃h ∈ H s.t
∣∣∣ E
e∼D

[1L,γ(h, e)]−
1

|S|
∑
e∈S

1L,γ(h, e)
∣∣∣ > ϵ

is less than δ.

Now, suppose by contradiction that V CdimL,γ(H) =∞. This means that there exist a set C ⊂ E with |C| = 2m(ϵ, δ) that
can be shattered byH. Let us define a distribution D over E such that:

D(e) =

{
1
|C| if e ∈ C

0 otherwise

SinceH shatters C, for any subset S ⊂ C with |S| = m(ϵ, δ) = |C|
2 there exist hs ∈ H such that:

1L,γ(hs, e) =

{
0 if e ∈ S

1 else

For this hypothesis hs, we have

1

|S|
∑
e∈S

1L,γ(hs, e) = 0 and E
e∼D

[1L,γ(hs, e)] = 0.5

Thus, for a specific choice of S we have shown that:

∃hs ∈ H . | E
e∼D

[1L,γ(h, e)]−
1

|S|
∑
e∈S

1L,γ(h, e)| = 0.5 > ϵ.

Since this holds for any sample S, the probability of the above condition occuring is 1 > δ, which contradicts the uniform
convergence property. Therefore, our assumption that V CdimL,γ(H) =∞ must be false.

Second direction: Next, we will prove that if V CdimL,γ(H) <∞, thenH has the uniform convergence property.

Let 0 < ϵ, δ < 1. Given a hypothesis setH, loss function L and 0 ≤ γ ≤ 1 we define a new hypothesis setH∗ as follows:

H∗ =
{
1L,γ(h, ·) : h ∈ H

}
.

Each hypothesis 1L,γ(h, ·) inH∗ maps elements of E to {0, 1}.

It is straight forward from the definitions that if V CdimL,γ(H) < ∞ according to definition 3.2 of VCdim, than
V Cdim(H∗) < ∞ according to the classical definition of VCdim, and that both VCdim values are equal (we denote
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them as d). By classical results on VCdim, this implies that H∗ has the uniform convergence property, with sample size
m(δ, ϵ) = Θ(d+log(1/δ)

ϵ2 ).

We would like to argue that ifH∗ has the uniform convergence property (according to the classical definition), so doesH
according to our definition 3.3. However, there are two subtle differences in the definitions that require special care.

• First, the uniform convergence ofH∗ is with regard to destributions D∗ over E × {0, 1}. Therefore we will translate
our distribution D, which is over E , to a destribution D∗ as required, and explain the connection between them.

• Second, the uniform convergence ofH∗ is with regard to L0−1 loss. Therefore we will need to connect the L0−1 loss
ofH∗ to our expression of interest, 1L,γ(h, e).

We will now tackle these two points to prove uniform convergence ofH.

First, let D be a distribution over E , and define D∗ to be a distribution over the space E × I where I = {0, 1} such that:

D∗(e, i) =

{
D(e) if i = 0

0 else

In words, D∗ has the same density over E as D when i = 0, and zero density otherwise.

By the uniform convergence property ofH∗, for a sample S ⊂ E × I with |S| ≥ m(ϵ, δ) = Θ(d+log(1/δ)
ϵ2 ) drawn according

to D∗, it holds with probability at least 1− δ over S that :

∀ 1L,γ(h, ·) ∈ H∗
∣∣∣ E
e,i∼D∗

[
L0−1

(
1L,γ(h, e), i

)]
− 1

|S|
∑
e,i∈S

L0−1

(
1L,γ(h, e), i

)∣∣∣ ≤ ϵ

Since D∗ is constructed such that i = 0 always, we have :

L0−1[1L,γ(h, e), i] = 1L,γ(h, e)

thus, we can rewrite the above as:

∀ h ∈ H . | E
e∼D

[1L,γ(h, e)]−
1

|S|
∑
e∈S

1L,γ(h, e)| ≤ ϵ

Overall we have shown that whenever |S| ≥ m(ϵ, δ) = Θ(d+log(1/δ)
ϵ2 ), for any distribution D over E the above condition

holds with probability at least 1− δ, which precisely matches the definition of uniform convergence as outlined in Definition
3.3.

A.2. Proof of Theorem 3.5
Theorem 3.5. For d = 1, linearH cannot shatter more than 2|Y| domains with respect to Lrecall and any 0 < γ < 1.

Proof. Let X ∈ R and y ∈ Y . Consider any set of n domains: Ê = {e1, e2, ...en}.

A linear classifier hy is of one of the forms:

hy(x) =

{
0 if x ≥ a

1 otherwise
hy(x) =

{
0 if x < a

1 otherwise
.

We start by showing that for each of these options, there is a domain in Ê such that if hy archives a “good” coverage in that
domain (i.e pe[hy(X) = 1|Y = y] ≥ 1− γ), it must also achieve such coverage in all Ê . From this, we willl conclude that
there exists a subset of domains in Ê such that achieving a “good” recall-loss within this subset will necessarily result in a
“good” recall-loss across all of Ê .

For each domain we can consider the conditional CDF Fei |Y=y(x) = P ei [X < x|Y = y]. Note that F−1
ei |Y=y(q) is the

value x ∈ R such that P ei [X < x|Y = y] = q.

13
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Assume hy is of the form

hy(x) =

{
0 if x ≥ a

1 otherwise

Let us define:
imax,y = argmax

i∈[n]
F−1
ei |Y=y(1− γ)

Now assume that:
peimax,y

[hy(X) = 1|Y = y] ≥ 1− γ

Then for each i ∈ [n] is holds that

a ≥ F−1
eimax,y

|Y=y(1− γ) ≥ F−1
ei |Y=y(1− γ) =⇒ pei [hy(X) = 1|Y = y] ≥ 1− γ

In a similar way, if hy is of the form

hy(x) =

{
0 if x < a

1 otherwise

Let us define:
imin,y = arg min

i∈[n]
F−1
ei |Y=y(γ)

and assume that:
peimin,y

[hy(X) = 1|Y = y] ≥ 1− γ

Then for each i ∈ [n] is holds that

a ≤ F−1
eimin,y

|Y=y(γ) ≤ F−1
ei |Y=y(γ) =⇒ pei [hy(X) = 1|Y = y] ≥ 1− γ

We see that whenever the recall condition, given Y = y, holds for both imin,y and imax,y , then it holds for all i ∈ [n]. Now,
if n > 2|Y|, there must be some i ∈ [n] such that i ̸= imin,y and i ̸= imax,y for any y ∈ Y .
From the above results, it holds that it is not possible to achieve any assignment such that

∀y∈Y 1Lrecall,γ(h, eimin,y
) = 1

∀y∈Y 1Lrecall,γ(h, eimax,y
) = 1

1Lrecall,γ(h, ei) = 0

Therefore, linear classifiers cannot shatter any set of n > 2|Y| domains in the case of X ⊆ R.

A.3. Prof of Theorem 3.6
Theorem 3.6. For d > 1, and any size n, there exists a set of n domains that can be shattered by linear hypothesesH with
respect to Lrecall and any 0 < γ < 1.

Proof. To prove this, it is enough to consider the case of d = 2, as for d > 2 we can always consider domains that represent
degenerate distributions on a 2d subspace with linear classifiers that practically operate in that subspace.

In R2 we can consider domains such that their feature distributions (i.e the marginal distributions over X ) have a support on
the unit circle, and linear classifiers that pass through the origin. It is not hard to see that in that case the problem reduces to
distributions in the interval [0, 2π] ⊂ R with classifiers that are rectangles of length π. In Lemma A.1 we prove that for any
n ∈ N there are n domains that can be shattered by rectagles. That proof also holds when we limit the distributions to be on
a closed interval I ⊂ R, with classifiers that are rectangles of a fixed length (no matter what the length is, as long as it is
smaller than the length of I). Therefore, the same proof holds in our reduced case.

14
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Lemma A.1. For any d and any size n, there is a set of n domains that can be shattered by rectangularH with respect to
Lrecall and any 0 < γ < 1.

Proof. For a given n ∈ N we need to present a set of n domain C = {e1, ..., en} such that:

∀I⊆[n] ∃h∈Hrect s.t ∀y∈YPei [y ∈ h(X)|Y = y] ≥ 1− γ ⇐⇒ i ∈ I

We consider few simplifications for the proof:

• First, it is enough to show the above for d = 1. This is because for d > 1 we can always define the domains in C to be
degenerate distributions on a 1d subspace, and then follow the same construction as will be presented here for d = 1.

• We can define the domains in C to be such that Pe[X|Y = y] will not depend on the value of y. Then, because h can
be break down to hy , it is enough to show that for some y ∈ Y

∀I⊆[n] ∃hy∈Hy−rect
s.t Pei [y ∈ h(X)|Y = y] ≥ 1− γ ⇐⇒ i ∈ I

WhereHy−rect is the set of rectangular hypothesis for hy . This is true because we can use the same function hy for all
values of y to get the original goal.

We will now define distributions for X|Y = y for the domains in C and show that our simplified goal holds.

Consider some order on all the subsets of [n] such that the first subset is the empty one:

I0 = ∅, I1, ..., I2n ∈ P([n])

We need to construct domains for C and show that for each 0 ≤ j ≤ 2n − 1 there is a rectangular classifier hj
y such that

Pei [h
j
y(X) = 1|Y = y] ≥ 1− γ ⇐⇒ i ∈ Ij

The idea of our construction is as follows. We will define the density of X on the interval (0, 3). We split the intervals (0, 1)
and (2, 3) to 2n sub-intervals, and recognize these sub-intervals with the subgroups I of [n]. Then, we will look at a sliding
window, such that each progress of the window adds one sub-interval from (2, 3) to the cover, and discards one interval from
(0, 1). We will spread the density between the sub-intervals such that the sub-interval that is being discarded causes the
associated domains to loss cover, while the sub-interval that is being included causes the associated domains to gain required
coverage. This way our sliding window represents rectangular classifies that can achieve any assignment for the domains.

The formal construction is as follows:

Pei [X|Y = y] =



2n

2n−1+10.01(1− γ) if ∃0≤j≤2n−1
j
2n ≤ X ≤ j+1

2n & i ∈ Ij

0.99(1− γ) if 1 ≤ X ≤ 2
2n

2n−1+10.01(1− γ) if ∃1≤j≤2n−1 (2 +
j−1
2n ) ≤ X ≤ (2 + j

2n ) & i ∈ Ij

a if − 2 ≤ X ≤ −1
0 otherwise

Where we assume that 1 − γ is small enough such that the total integral for X > 0 is less than 1, and a completes the
density to totally integral to 1. If 1− γ is not small enough we just need to modify the factors 0.99 and 0.01 of the density,
so WLOG we assume 1− γ is small enough.

We will now prove by induction that for 0 ≤ j ≤ 2n − 1 we have:

i ∈ Ij =⇒ Pei

[ j

2n
≤ X ≤ 2 +

j

2n

∣∣∣Y = y
]
= 1− γ

i ̸∈ Ij =⇒ Pei

[ j

2n
≤ X ≤ 2 +

j

2n

∣∣∣Y = y
]
=

2n−1

2n−1 + 1
0.01(1− γ) + 0.99(1− γ) < 1− γ

Therefore, for the rectangular binary classifier hj
y(X) = 1 ⇐⇒ j

2n ≤ X ≤ 2 + j
2n we have

Pei [h
j
y(X) = 1|Y = y] ≥ 1− γ ⇐⇒ i ∈ Ij

15



Set Valued Predictions For Robust Domain Generalization

This will conclude the proof, as it means that rectangular classifiers can shatter the set C as required.

Induction base case, j=0. Each domain takes part in 2n−1 of the subgroups I , therefore from the domains construction the
followng holds for each domain:

Pei [0 ≤ X ≤ 1|Y = y] = 2n−1 1

2n
2n

2n−1 + 1
0.01(1− γ) =

2n−1

2n−1 + 1
0.01(1− γ)

Therefore for each domain ei,

Pei

[ j

2n
≤ X ≤ 2 +

j

2n

∣∣∣Y = y
]
= Pei [0 ≤ X ≤ 2|Y = y] =

2n−1

2n−1 + 1
0.01(1− γ) + 0.99(1− γ) < 1− γ

Together with the fact that I0 = ∅ this proves the base case.

Induction step, j −→ j+1. From the induction assumption we know that

i ∈ Ij =⇒ Pei

[ j

2n
≤ X ≤ 2 +

j

2n

∣∣∣Y = y
]
= 1− γ

i ̸∈ Ij =⇒ Pei

[ j

2n
≤ X ≤ 2 +

j

2n

∣∣∣Y = y
]
=

2n−1

2n−1 + 1
0.01(1− γ) + 0.99(1− γ)

From the domains construction we have:

i ∈ Ij =⇒ Pei

[ j

2n
≤ X ≤ j + 1

2n

∣∣∣Y = y
]
=

1

2n
2n

2n−1 + 1
0.01(1− γ)

i ̸∈ Ij =⇒ Pei

[ j

2n
≤ X ≤ j + 1

2n

∣∣∣Y = y
]
= 0

Putting these together will give us:

i ∈ Ij =⇒ Pei

[j + 1

2n
≤ X ≤ 2 +

j

2n

∣∣∣Y = y
]
= 1− γ − 1

2n
2n

2n−1 + 1
0.01(1− γ) =

= 0.99(1− γ) + 0.01(1− γ)− 1

2n−1 + 1
0.01(1− γ) =

2n−1

2n−1 + 1
0.01(1− γ) + 0.99(1− γ)

i ̸∈ Ij =⇒ Pei

[j + 1

2n
≤ X ≤ 2 +

j

2n

∣∣∣Y = y
]
=

2n−1

2n−1 + 1
0.01(1− γ) + 0.99(1− γ)

i.e, we have for each domain

Pei

[j + 1

2n
≤ X ≤ 2 +

j

2n

∣∣∣Y = y
]
=

2n−1

2n−1 + 1
0.01(1− γ) + 0.99(1− γ)

Now, from the construction of the domains we have

i ∈ Ij+1 =⇒ Pei

[
2 +

j

2n
≤ X ≤ 2 +

j + 1

2n

∣∣∣Y = y
]
=

1

2n
2n

2n−1 + 1
0.01(1− γ)

i ̸∈ Ij+1 =⇒ Pei

[
2 +

j

2n
≤ X ≤ 2 +

j + 1

2n

∣∣∣Y = y
]
= 0

Therefore, we have

i ∈ Ij+1 =⇒Pei

[j + 1

2n
≤ X ≤ 2 +

j + 1

2n

∣∣∣Y = y
]
=

=
2n−1

2n−1 + 1
0.01(1− γ) + 0.99(1− γ) +

1

2n
2n

2n−1 + 1
0.01(1− γ) =

=
2n−1 + 1

2n−1 + 1
0.01(1− γ) + 0.99(1− γ) = 1− γ

i ̸∈ Ij+1 =⇒ Pei

[j + 1

2n
≤ X ≤ 2 +

j + 1

2n

∣∣∣Y = y
]
=

2n−1

2n−1 + 1
0.01(1− γ) + 0.99(1− γ) + 0

That completes our induction.
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A.4. Proof of Theorem 3.7
Theorem 3.7. If domains are restricted to being conditionally Gaussian, and there exists ∀y∈Y Σy ∈ Rd×d such that

for each e, y Σe,y = σe,yΣy for some σe,y ∈ R, then for each ϵ, δ > 0 there exist m = Θ( |Y|2(d+log(|Y|/δ))
ϵ2 ) such that

if |Etrain| ≥ m than with probability higher than 1 − δ over the training domains sample Etrain, and regardless of the
distribution D over E , any linear hypothesis h such that

∀e∈Etrain 1Lrecall,γ(h, e) = 0

will also have
E

e∼D
[1Lrecall,γ(h, e)] ≤ ϵ.

Proof. We begin by reminding that for a set-valued h to be a linear hypothesis means it can be decomposed into
|Y| linear binary classifiers hy. We will break the proof into two stages. First, we define for each y ∈ Y a loss
Ly(hy, e) = Pe[hy(X) = 0|Y = y] and show that linear binary classifiers cannot shatter more than d+ 1 domains with
regard to Ly, γ. Then, we will use this result to show that linear binary classifiers have the uniform convergence property
with regard to Ly, γ, and with that in hand we will conclude the theorem.

Lemma A.2. In the terms of theorem A.2, linear binary classifiers cannot shatter more than d+ 1 domains with respect to
Ly and any 0 < γ < 1

We start by proving the Leamma.
As this Lemma focuses on a specific value of y, we will omit y from some notations where it is clear from the context.
We assume hy is a linear binary classifiers, i.e there exists θ ∈ Rd such that

hy(X) = 1 ⇐⇒ θTX ≥ 0

Let C = {e1, e2, ..., en} be a set of n = d+ 2 domains that are conditionally normal, i.e

∀1 ≤ i ≤ n [X|Y = y] ∼Pei N(µi, σi · Σ).

We will mark
1i = 1 if Pei [hy(X) = 1|Y = y] ≥ 1− γ else 0

and show that there must be an assignment of {1i}ni=1 ∈ {0, 1}n that cannot be achieved.

Given θ ∈ Rd let us consider the variable Z = θTX . For each domain, this is a conditionally normal 1d variable:

[Z|Y = y] ∼ei N(θTµi, σiθ
TΣθ).

Therefore,

P ei [Z > 0|Y = y] = P ei
[ Z − θTµi√

σiθTΣθ
≥ − θTµi√

σiθTΣθ

∣∣∣Y = y
]
=

= ϕ
( θTµi√

σiθTΣθ

)
where ϕ(·) is the CDF of a standaridized normal variable. Letting c be such that ϕ(c) = 1− γ, we have

1i = 1 ⇐⇒ P ei [Z > 0|Y = y] ≥ 1− γ ⇐⇒ θTµi√
σiθTΣθ

≥ c ⇐⇒ θTµi − c
√
σiθTΣθ ≥ 0.

Defining θ̂ = (θ, c
√
θTΣθ) ∈ Rd+1, νi = (µi,

√
σi) ∈ Rd+1 we get

1i = 1 ⇐⇒ θ̂T νi ≥ 0
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We note that the fact that θ̂ does not depend on i at all, and that νi does not depend on θ is important, as will be seen next.
Now, as we have d+ 2 domains in C, we have d+ 2 corresponding vectors νi in Rd+1, so there must be one vector that is a
non-trivial linear combination of the others. WLOG assume that vector is ν1:

ν1 =
∑
i>1

αiνi

Now, let us consider the following assignment for 1i:

1i =


1 if αi ≥ 0

0 if αi < 0

0 i = 1

Assuming there is a θ̂ that achieves this assignment would mean that:

i > 1 =⇒ αiθ̂
T νi ≥ 0

θ̂T ν1 =
∑
i>1

αiθ̂
T νi ≥ 0 =⇒ 11 = 1

which contradicts the requirement of 11 = 0. As θ̂ depends solely on θ (and on c,Σ, which are constants), and does not
depend on i, this means that θ cannot satisfy the above assignment. As the suggested assignment is not dependent on θ (it
depends only on the set of {νi}, which are not dependent on θ), it means that we have found an assignment that no θ can
satisfy.

We have shown that no θ can satisfy the above assignment, which means linear classifiers are not able to shatter the set C, as
required.

This proves the Lemma. Now, consider ϵ, δ from the theorem statement. An immediate result of Lemma A.2 and theorem
3.4 is that, focusing on a single y ∈ Y , the hypothesis set Hy of linear binary classifiers have the uniform convergence
property with regard to Ly, γ, i.e there exists my(

ϵ
|Y| ,

δ
|Y| ) = Θ( |Y|2(d+log(|Y|/δ))

ϵ2 ) such that with probability higher than
1− δ

|Y|

|S| > my(
ϵ

|Y|
,
δ

|Y|
) −→ ∀hy ∈ Hy E

e∼D
[1Ly,γ(h, e)] <

1

|S|
∑
e∈S

[1Ly,γ(h, e)] +
ϵ

|Y|
.

If we take m = maxy∈Y my(
ϵ

|Y| ,
δ
|Y| ) = Θ( |Y|2(d+log(|Y|/δ))

ϵ2 ) than the above holds simultaneously for all y ∈ Y with
probability higher than 1− δ.

Now, we note that Lrecall(h, e) = maxy∈Y Ly(h, e), therefore if |S| > m we have with proaility at least 1− δ

∀h∈H E
e∼D

[1Lrecall,γ(h, e)] = P
e∼D

[Lrecall(h, e) > γ] ≤
∑
y∈Y

P
e∼D

[Ly(h, e) > γ] ≤

≤
∑
y∈Y

( 1

|S|
∑
e∈S

[1Ly,γ(h, e)] +
ϵ

|Y|
)
≤ 1

|S|
∑
e∈S

∑
y∈Y

[1Ly,γ(h, e)] + ϵ

And finally, as
1Lrecall,γ(h, e) = 0 −→ ∀y∈Y1Ly,γ(h, e) = 0

for any h such that
∀e∈Etrain1Lrecall,γ(h, e) = 0

it also holds that

E
e∼D

[1Lrecall,γ(h, e)] ≤
1

|S|
∑
e∈S

∑
y∈Y

[1Ly,γ(h, e)] + ϵ ≤ 1

|S|
∑
e∈S

∑
y∈Y

0 + ϵ ≤ ϵ
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B. Sample Size Analysis
In this section, we examine the sample size requirements for achieving generalization from training domains with finite
samples to new, unseen domains. We start with some notations:

• We recall the definition of performance indicator:1L,γ(h, e) = 1[L(h, e) ≥ γ]

• We denote the training set, collected from the training domains Etrain, as S =
⋃

e∈Etrain
Se, where Se is the sample

set from domain e.

B.1. Sample Size Within Domains - General Case
In this subsection we assume L(h, e) = E(x,y)∼Pe

[l(h(x), y)] for some cost function l.

Theorem B.1. LetH, L, γ follow the definitions from theorem 3.4 . Assume that:

1. H has the uniform-convergence property with respect to L, γ according to definition 3.3 with sample size m(δ, ϵ).

2. H has also the uniform-convergence property according to the classical definition (in a single domain setting) with
sample size n(δ, ϵ).

For each ϵ1, ϵ2, δ > 0, if |Etrain| ≥ m( δ2 , ϵ2) := m, and ∀e ∈ Etrain |Se| ≥ n( δ
2m , ϵ1) := n, than with probability higher

than 1− δ, and regardless of the distribution D over E and all the distributions Pe for e ∈ Etrain, it holds that:

∀h ∈ H [∀e∈Etrain

1

|Se|
∑
i∈Se

l(h(Xi), yi) ≤ γ] =⇒ E
e∼D

[1L,γ+ϵ1(h, e)] ≤ ϵ2.

Proof. let ϵ1, ϵ2, δ > 0 be positive numbers, and assume S =
⋃

e∈Etrain
Se such that |Etrain| ≥ m and for each e ∈ Etrain

|Se| ≥ n.
From the uniform-convergence ofH in the classical, single-domain, sense, we know for each domain e ∈ Etrain that with
probability at least 1− δ

2m it holds that:

∀h ∈ H L(h, e) ≤ 1

|Se|
∑
i∈Se

l(h(Xi), yi) + ϵ1

And so,

∀h ∈ H 1

|Se|
∑
i∈Se

l(h(Xi), yi) ≤ γ =⇒ L(h, e) ≤ γ + ϵ1 =⇒ 1L,γ+ϵ1(h, e) = 0

This is true for each e ∈ Etrain, therefore with probability at leat 1− δ
2 it is true for all training domains at once:

∀h ∈ H [∀e∈Etrain

1

|Se|
∑
i∈Se

l(h(Xi), yi) ≤ γ] =⇒ 1

|Etrain|
∑

e∈Etrain

1L,γ+ϵ1(h, e) = 0

From the uniform-convergence property ofH in the OOD sense, we know that with probability at least 1− δ
2 it holds that

∀h ∈ H
∣∣∣ E
e∼D

[1L,γ+ϵ1(h, e)]−
1

|Etrain|
∑

e∈Etrain

1L,γ+ϵ1(h, e)
∣∣∣ ≤ ϵ2.

And it the case of 1
|Etrain|

∑
e∈Etrain

1L,γ+ϵ1(h, e) = 0 we get:

∀h ∈ H
∣∣∣ E
e∼D

[1L,γ+ϵ1(h, e)]
∣∣∣ ≤ ϵ2.

Overall, we have shown that with probability at least 1− δ:

∀h ∈ H ∀e∈Etrain

1

|Se|
∑
i∈Se

l(h(Xi), yi) ≤ γ =⇒
∣∣∣ E
e∼D

[1L,γ+ϵ1(h, e)]
∣∣∣ ≤ ϵ2.

19



Set Valued Predictions For Robust Domain Generalization

B.2. Sample Size Within Domains - Recall Loss
Now we focus on Lrecall. We start by reminding its definition:

Lrecall(h, e) = max
y∈Y

Pe[y /∈ h(X)|Y = y].

Now we also assume thatH is an hypothesis set of set-prediction hypotheses, where each h ∈ H can be decomposed to |Y| bi-
nary classifiers hy as presented in the paper. We assume also that the hy binary classifiers come from someH∗ hypothesis set.

The following result differs from that of section B.1 mainly because Lrecall is not an expectation over some other loss l.
The result we derive for Lrecall is almost the same as in the previous section, with only one change: Instead of requiring a
sample size of n( δ

2m , ϵ1) at each training domain, we need to require a sample size of n( δ
2m|Y| , ϵ1) for each training domain

and each label y ∈ Y . For completeness we present here the full result for Lrecall and provide a full proof for it.

We add a single notation to this section:
Se,y = {i ∈ Se : Yi = y}

Theorem B.2. LetH, Lrecall, γ follow the definitions from the paper . Assume that:

1. H has the uniform-convergence property with respect to Lrecall, γ according to definition 3.3 with sample size m(δ, ϵ).

2. H∗ has the uniform-convergence property according to the classical definition (in a single domain setting) with sample
size n(δ, ϵ).

For each ϵ1, ϵ2, δ > 0, if |Etrain| ≥ m( δ2 , ϵ2) := m, and ∀e ∈ Etrain∀y ∈ Y |Se,y| ≥ n( δ
2m|Y| , ϵ1) := n, than with

probability higher than 1 − δ, and regardless of the distribution D over E and all the distributions Pe for e ∈ Etrain, it
holds that:

∀h ∈ H
[
∀e∈Etrain ∀y∈Y

1

|Se,y|
∑

i∈Se,y

[1− hy(Xi)] ≤ γ
]
=⇒ E

e∼D
[1Lrecall,γ+ϵ1(h, e)] ≤ ϵ2.

Proof. The main difference in this proof will be to show that with high probability

∀h ∈ H Lrecall(h, e) ≤ max
y∈Y

1

|Se,y|
∑

i∈Se,y

[1− hy(Xi)] + ϵ1

For completness we provide below the full proof.

Let ϵ1, ϵ2, δ > 0 be positive numbers, and assume S =
⋃

e∈Etrain
Se such that |Etrain| ≥ m and ∀e ∈ Etrain∀y ∈

Y |Se,y| ≥ n.
From the uniform-convergence ofH∗ in the classical, single-domain, sense, we know for each domain e ∈ Etrain and for
each y ∈ Y that with probability at least 1− δ

2m|Y| it holds that:

∀h ∈ H∗ Pe[h(X) ̸= 1|Y = y] = Ee[1− h(X)|Y = y] ≤ 1

|Se,y|
∑

i∈Se,y

[1− h(Xi)] + ϵ1

This is true for each y separately, so with probability at least 1− δ
2m this is true for all y at once:

∀h ∈ H∗ ∀y ∈ Y Pe[h(X) ̸= 1|Y = y] ≤ 1

|Se,y|
∑

i∈Se,y

[1− h(Xi)] + ϵ1

We note that the above is true for hypotheses fromH∗, which are binary classifiers.

Now, for a given h ∈ H, which is a set-valued predictor, let

y′ = argmax
y∈Y

Pe[y /∈ h(X)|Y = y].
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Then, with probability at least 1− δ
2m it holds that:

Lrecall(h, e) = max
y∈Y

Pe[y /∈ h(X)|Y = y] = Pe[hy′(X) ̸= 1|Y = y′] ≤

≤ 1

|Se,y′ |
∑

i∈Se,y′

[1− hy′(Xi)] + ϵ1 ≤ max
y∈Y

1

|Se,y|
∑

i∈Se,y

[1− hy(Xi)] + ϵ1

Overall, we have shown that with probability at least 1− δ
2m :

∀h ∈ H Lrecall(h, e) ≤ max
y∈Y

1

|Se,y|
∑

i∈Se,y

[1− hy(Xi)] + ϵ1

And so,

∀h ∈ H max
y∈Y

1

|Se,y|
∑

i∈Se,y

[1− hy(Xi)] ≤ γ =⇒ Lrecall(h, e) ≤ γ + ϵ1 =⇒

=⇒ 1Lrecall,γ+ϵ1(h, e) = 0

This is true for each e ∈ Etrain, therefore with probability at leat 1− δ
2 it is true for all training domains at once:

∀h ∈ H [∀e∈Etrain max
y∈Y

1

|Se,y|
∑

i∈Se,y

[1− hy(Xi)] ≤ γ] =⇒ 1

|Etrain|
∑

e∈Etrain

1Lrecall,γ+ϵ1(h, e) = 0

From the uniform-convergence property ofH in the OOD sense, we know that with probability at least 1− δ
2 it holds that

∀h ∈ H
∣∣∣ E
e∼D

[1Lrecall,γ+ϵ1(h, e)]−
1

|Etrain|
∑

e∈Etrain

1Lrecall,γ+ϵ1(h, e)
∣∣∣ ≤ ϵ2.

And it the case of 1
|Etrain|

∑
e∈Etrain

1Lrecall,γ+ϵ1(h, e) = 0 we get:

∀h ∈ H
∣∣∣ E
e∼D

[1Lrecall,γ+ϵ1(h, e)]
∣∣∣ ≤ ϵ2.

Overall, we have shown that with probability at least 1− δ:

∀h ∈ H ∀e∈Etrain ∀y∈Y
1

|Se,y|
∑

i∈Se,y

[1− hy(Xi)] ≤ γ =⇒ E
e∼D

[1Lrecall,γ+ϵ1(h, e)] ≤ ϵ2.

B.3. Sample Size Within Domains - Recall Loss With Linear Hypotheses
finally, we show the sample complexity for Lrecall whenH is the set of linear hypotheses.

Theorem B.3. Let H be the hypothesis set of linesr set predictors in Rd. Assume domains are restricted to being
Conditionally Gaussian as described in theorem 3.7.
For each ϵ1, ϵ2, δ > 0, if |Etrain| ≥ Θ( |Y|2(d+log(2|Y|/δ))

ϵ22
) := m, and ∀e ∈ Etrain∀y ∈ Y |Se,y| ≥ Θ(d+log(2m|Y|/δ))

ϵ21
),

than with probability higher than 1−δ, and regardless of the distribution D over E and all the distributions Pe for e ∈ Etrain,
it holds that:

∀h ∈ H
[
∀e∈Etrain ∀y∈Y

1

|Se,y|
∑

i∈Se,y

[1− hy(Xi)] ≤ γ
]
=⇒ E

e∼D
[1Lrecall,γ+ϵ1(h, e)] ≤ ϵ2.
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Proof. Let ϵ1, ϵ2, δ > 0 be positive numbers, and assume S =
⋃

e∈Etrain
Se such that |Etrain| ≥ Θ( |Y|2(d+log(2|Y|/δ))

ϵ22
)

and ∀e ∈ Etrain∀y ∈ Y |Se,y| ≥ Θ(d+log(2m|Y|/δ))
ϵ21

).

In the classical, single-domain context, linear hypotheses have V C − dim = d+ 1, and they hold the uniform-convergence
property with n(δ, ϵ) = Θ(d+log(1/δ))

ϵ2 ) (Shalev-Shwartz & Ben-David, 2014).

It holds that:

∀e ∈ Etrain∀y ∈ Y |Se,y| ≥ Θ(
d+ log(2m|Y|/δ))

ϵ21
) =⇒ |Se,y| ≥ n(

δ

2m|Y|
, ϵ1)

Following the exact same steps from the proof of the previous section, we can derive that with probability at leat 1− δ
2 :

∀h ∈ H [∀e∈Etrain
max
y∈Y

1

|Se,y|
∑

i∈Se,y

[1− hy(Xi)] ≤ γ] =⇒ ∀e ∈ Etrain1Lrecall,γ+ϵ1(h, e) = 0

Now, from theorem 3.7 we know that with probability at leat 1− δ
2 :

∀h ∈ H ∀e ∈ Etrain1Lrecall,γ+ϵ1(h, e) = 0 =⇒ E
e∼D

[1Lrecall,γ+ϵ1(h, e)] ≤ ϵ2.

Together, we get that with probability at least 1− δ:

∀h ∈ H [∀e∈Etrain
max
y∈Y

1

|Se,y|
∑

i∈Se,y

[1− hy(Xi)] ≤ γ] =⇒ E
e∼D

[1Lrecall,γ+ϵ1(h, e)] ≤ ϵ2.

C. Developing set-size optimization method
In section 4.1 we presented our learning objective as a constrained optimization problem for each y ∈ Y separately:

min
h∈H

1

N

∑
i∈S

hy(Xi)

s.t ∀e ∈ Etrain
1

|Ge,y|
∑

i∈Ge,y

1[hy(Xi) = 0] ≤ γ.

This problem can also be written as:

min
h∈H

1

N

N∑
i=1

hy(Xi)

s.t ∀e ∈ Etrain
1

|Ge,y|
∑

i∈Ge,y

(
1− hy(Xi)

)
≤ γ.

(3)

We now investigate the problem and further develop it, until we get a lagrangian that approximates the original problem, and
which is possible to optimize using common methods.

C.1. Relaxed Problem
In order to leverage common gradient-based optimization methods, we parameterize our predictors as mentioned in section
4.1 and present slack variables to form the following relaxed problem:
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min
θ

1

N

∑
i

ξi

s.t ∀i hθ
y(X) ≤ −1 + ξi

∀i ∈ Gy hθ
y(X) ≥ 1− ζi

∀e ∈ E
1

Ge,y

∑
i∈Ge,y

ζi ≤ ϵ

∀i ζi ≥ 0

∀i ξi ≥ 0

(4)

Theorem C.1. The objective of the relaxed problem (4) is a surrogate for the objective of the original problem (3)

Proof. From the first constraint of (4) we have for each θ

ξi ≥ 1 ⇐⇒ hθ
y(Xi) ≥ 0 ⇐⇒ hy(xi) = 1

0 ≤ ξi < 1 ⇐⇒ hθ
y(Xi) < 0 ⇐⇒ hy(xi) = 0

Thus, ξi ≥ hy(Xi), making
∑

i ξi a surrogate loss for
∑

i hy(Xi).

Theorem C.2. The recall constraint of the relaxed problem (4) is a surrogate for the recall constraint of the original
problem 3)

Proof. From the second constraint of (4) we have for i ∈ Gy:

ζi ≥ 1 ⇐⇒ hθ
y(Xi) ≤ 0 ⇐⇒ hy(xi) = 0 ⇐⇒ 1− hY (Xi) = 1

0 ≤ ζi < 1 ⇐⇒ hθ
y(Xi) > 0 ⇐⇒ hy(xi) = 1 ⇐⇒ 1− hY (Xi) = 0

Thus, ζi ≥ 1− hY (Xi) for i ∈ Gy , making 1
|Ge,y|

∑
i∈Ge,1

ζi a surrogate loss for 1
|Ge,y|

∑
i∈Ge,y

1− hY (Xi).

C.2. Lagrangian Form
Solving the relaxed problem for ξi and ζi we get:

ξi = max[0, 1 + hθ
y(Xi)]

ζi = max[0, 1− hθ
y(Xi)]

Where the expression for ζi is one of the optimal solutions for it (there are additional optimal solutions).
Substituting these into the optimization problem (4) yields:

min
θ

∑
i

max[0, 1 + hθ
y(Xi)]

s.t ∀e ∈ E
1

|Ge,1|
∑

i∈Ge,y

max[0, 1− hθ
y(Xi)] ≤ γ

(5)

This problem can be optimized using common methods like Stochastic Gradient Descent (SGD) by defining the la-
grangian:

L(θ, C) =
∑
i

max[0, 1 + hθ
y(Xi)] +

∑
e∈Etrain

Ce,y(
1

|Ge,y|
∑

i∈Ge,y

max[0, 1− hθ
y(Xi)]− γ)

23



Set Valued Predictions For Robust Domain Generalization

Solving minθ maxC L(θ, C) will give θ that solves the constrained optimization problem 5. common approach is to use
gradient descent on θ, and gradient ascent on C. This is being done by SET-COVER, as described in section 4.1

D. SET-COVER Pseudo Code
Algorithm 1 SET-COVER

Initialize θ, C
for i from 1 to NUM EPOCHS do

for b in batches do
Call COMPUTE Ly(θ, C)
L(θ, C) =

∑
y∈Y Ly(θ, C)

perform GD step for θ with respect to L(θ, C)
IF i % C UPDATE FREQUENCY == 0 do

Call UPDATE C
end for
Call UPDATE C

end for
Subroutine: COMPUTE Ly(θ, C)

Ly(θ, C) =
∑
i∈b

1Yi ̸=y max{0, 1 + hθ
y(Xi)}+

1Yi=y · Cei,y ·max{0, 1− hθ
y(Xi)}

Subroutine: UPDATE C
for e ∈ Etrain do

for y ∈ Y do
coverage← 1

|Ge,y|
∑

i∈Ge,y
1[hθ

y(Xi) > 0]

ν ← 1− (coveragee,y − (1− γ))
s← 2 if ν > 1 else 1
Ce,y ← Ce,y · s · ν

end for
end for

E. Experiments
E.1. Experiments Hyper-Parameters

Table 2. hyper-parameters used for our experiments
Hyper-Parameter Camelyon Fmow Iwildcam Amazon Synthetic

Batch Size 128 64 64 128 128
Learning Rate 0.001 0.001 0.001 0.001 0.001

Number of Epochs 5 5 5 5 30
Number of train domains 20 20 80 500 25
Number of test domains 20 18 40 100 25
Max train domain size 6,000 4,500 3,000 1,000 2,000
Max test domain size 2,000 3,000 1,000 1,000 1,000

Relevant for SET-COVER:
Initial C value 5 5 5 5 5

Frequency of C values update 500 500 500 500 500

Table 3. Hidden dimension of 2-layer MLP (in the relevant experiments)
Synthetic, d=10 Synthetic, d=50 Amazon

Hidden dim 5 25 10
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E.2. Synthetic Data Generarion Process Parameters
We set Σ to be a diagonal covariance matrix with σ value on the diagonal. σ is detailed in table 4 below.
Also, we set ν ∈ Rd to be a concatenation of two vectors ν1, ν2 ∈ R0.5d, i.e ν = (ν1, ν2). ν1, ν2 are detailed in table 4
below.

Table 4. Synthetatic data generation parameters.
dimension d ulow uhigh µ ∈ Rd ν1 ∈ R0.5d ν2 ∈ R0.5d σ

d = 10 -0.5 0.5 (0.1, ... , 0.1) (1, ... , 1) (-1, ... , -1) 0.2
d = 50 -0.3 0.3 (0.05, ... , 0.05) (1, ... , 1) (-1, ... , -1) 0.25

E.3. Additional Synthetic Data Experiments
In Theorem 3.7 we have shown a theoretical generalization result, but under the limitation of shared covariance structure
across domains (up to a scaling factor). Our results in the synthetic data experiment, presented in section 5.1 empirically
support this result. In this section we want to test whether the generalization to new domains can hold also in DGPs where
the covariance between domains does not share exactly same structure. To this end, we recall the DGP presented in section
5.1:

Ze ∼ U [ulow, uhigh]

Y ∼ Bernoulli(0.5)

X ∼ Y (µ+ Zeν) +N(0,Σ)

In the following experiment we change the covariance matrix to be domain-specific in the following way:

1. We sample for each domain a diagonal matrix, De, with diagonal values sampled from a normal distribtuion with
µ = σ and std = 0.05 (this process generates std values, which are than squared to form the diagonal values of De). σ
values are the same as set in the original experiment from section 5.1.

De = diag([D2
e,1, ..., D

2
e,d]

∀1 ≤ i ≤ d De,i ∼ N(σ, 0.05)

2. For each domain we sample uniformly a rotation matrix Qe.

3. For each domain we set the covaraince matrix Σe = QT
e DeQe

All other experiments’ hyper-parameters are the same as the original experiment from section 5.1. The results are presented
in Figure 3 and Table 5.

Table 5. OOD Performance on synthetic Datasets with Random Covariance

Model 10d 50d
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑
ERM 0.88 1.0 0.39 0.90 1.0 0.52
CDF Pooling-
(TrainC) 0.87 1.02 0.30 0.86 0.98 0.19

CDF Pooling-
(CVC) 0.87 1.04 0.32 0.86 1.04 0.27

Robust-
Conformal 0.94 1.24 0.94 0.90 1.24 0.71

SET-COVER 0.94 1.23 0.92 0.91 1.18 0.68
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(a) 50d (b) 10d

Figure 3. Min Recall distribution VS Mean Set Size distribution. Blue represents ERM model, Orange represents Pooling CDFs (TrainC),
Grey represents Pooling CDFs (CVC), Green represents robust conformal, and Pink represents SET-COVER. The horizontal solid line
represents the 90% recall target value.
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E.4. Exploring Different γ Values
The γ parameter sets the desired recall level, and is supposed to be set in practice by practitioners according to task
requirement. In our main experiments, which are presented at the body of this work, we targeted at a 0.9 recall level, which
is associated with γ = 0.1. In this subsection we present results also for targeted recall levels of 0.8 and 0.95.

E.4.1. 0.8 RECALL

(a) Camelyon (b) FMoW

(c) iWildCam (d) Amazon

Figure 4. Results for recall target of 0.8 (γ = 0.2)
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Table 6. Summary of OOD Results for recall level of 0.8 (γ = 0.2)

Model
Camelyon FMoW

Median
Min Recall ↑

Median
Avg Size ↓

Recall ≥ 90%

Pctg ↑
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑

ERM 0.91 1.0 0.75 0.75 1.0 0.42
CDF Pooling-
(TrainC) 0.74 0.81 0.38 0.67 0.84 0.05

CDF Pooling-
(CVC) 0.67 1.09 0.45 0.72 0.94 0.16

Robust
Conformal 0.95 1.77 0.90 0.79 1.00 0.50

SET-COVER 0.91 1.00 0.71 0.89 1.01 0.94

Model iWildCam Amazon
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑

ERM 0.99 1.0 0.71 1.0 1.0 0.69
CDF Pooling-
(TrainC) 0.91 0.91 0.60 0.83 3.75 0.56

CDF Pooling-
(CVC) 0.95 1.01 0.70 0.99 2.40 0.70

Robust
Conformal 0.98 1.31 0.76 1.0 4.41 1.0

SET-COVER 0.99 1.00 0.71 1.0 2.72 0.98
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E.4.2. 0.95 RECALL

(a) Camelyon (b) FMoW

(c) iWildCam (d) Amazon

Figure 5. Results for recall target of 0.95 (γ = 0.05)
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Table 7. Summary of OOD Results for recall level of 0.95 (γ = 0.05)

Model
Camelyon FMoW

Median
Min Recall ↑

Median
Avg Size ↓

Recall ≥ 90%

Pctg ↑
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑

ERM 0.91 1.0 0.48 0.75 1.0 0.03
CDF Pooling-
(TrainC) 0.95 1.53 0.5 0.90 1.21 0.07

CDF Pooling-
(CVC) 0.88 1.39 0.26 0.89 1.29 0.14

Robust
Conformal 0.99 1.94 0.93 0.96 2.13 0.64

SET-COVER 0.95 1.15 0.65 0.94 1.22 0.53

Model iWildCam Amazon
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑

ERM 0.99 1.0 0.70 1.0 1.0 0.69
CDF Pooling-
(TrainC) 0.93 0.94 0.45 0.98 4.54 0.69

CDF Pooling-
(CVC) 0.99 1.14 0.72 1.0 3.07 0.72

Robust
Conformal 0.99 2.34 0.85 1.0 4.69 1.0

SET-COVER 0.99 1.07 0.77 1.0 3.02 0.97

E.4.3. RELATIONSHIP BETWEEN RECALL AND SET SIZE

In Figure 6 we illustrate how varying the recall target affects the resulting prediction set size, across methods and datasets.
The results are based on the three γ values presented earlier, corresponding to target recall levels of 0.8, 0.9, and 0.95. As
expected, increasing the desired recall level generally leads to a corresponding increase in set size. This trade-off reflects
the fundamental tension between coverage and specificity: higher recall necessitates larger prediction sets to ensure that
the correct label is included. The trend is consistent across datasets and methods, although the magnitude of the size
increase varies. Notably, SET-COVER tends to achieve high recall with relatively smaller increases in set size, indicating
better efficiency in balancing recall and compactness. These observations reinforce the importance of selecting γ (and the
associated recall target) with awareness of the practical constraints and cost associated with larger prediction sets.

Figure 6. Relationship between recall and set size. Each curve corresponds to a method and shows results for three target recall levels
(γ ∈ {0.2, 0.1, 0.05}, corresponding to target recalls of 0.8, 0.9, and 0.95). The Y-axis indicates the actual minimum recall achieved,
while the X-axis shows the corresponding prediction set size.
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E.5. Experiments on Other OOD Baselines
For the main experiments of this work we chose the ERM method as the single-prediction basekine, due to its vast popularity
in real-world applications, and its superior, or at least compatible performance in various OOD baselines (Koh et al., 2021;
Gulrajani & Lopez-Paz, 2020). In the next section we compare SET-COVER to additional common OOD baselines. These
include IRM (Arjovsky et al., 2019), VREx (Krueger et al., 2021), MMD (Li et al., 2018b), and CORAL (Sun & Saenko,
2016). We use the DomainBed (Gulrajani & Lopez-Paz, 2020) package to train these models.

The results show that common single-prediction baselines do not maintain the 90% min-recall target across most OOD
domains. SET-COVER presents an advantage in getting the target min-recall level across unseen domains, suggesting that
set-valued predictors may be a step in the right direction for robust OOD generalization.

(a) Camelyon (b) FMoW (c) iWildCam

Figure 7. Each figure represents Min-Recall over Avg Set Size cross. y-axis represents min-recall, and x-axis represents average set size.
Each cross shows the median and the 25th and 75th percentiles for both metrics across domain. The horizontal solid line represents the
90% recall target value, and dashed yellow diagonal line represents performance of a random predictor.

(a) Camelyon (b) FMoW (c) iWildCam

Figure 8. Percentage of OOD domains where the min-recall is higher than 90%. Each bar represents a different model.
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(a) Camelyon (b) FMoW (c) iWildCam

Figure 9. Boxplots represent the distribution of min-recall across OOD domains.

Table 8. Summary of OOD Results for different OOD baselines.

Model
Camelyon FMoW

Median
Min Recall ↑

Median
Avg Size ↓

Recall ≥ 90%

Pctg ↑
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑

ERM 0.91 1.0 0.61 0.75 1.0 0.09
IRM 0.17 1.00 0.13 0.22 1.00 0.03
VREx 0.90 1.00 0.60 0.82 1.00 0.11
MMD 0.48 1.00 0.50 0.84 1.00 0.20
CORAL 0.50 1.00 0.50 0.83 1.00 0.18
SET-COVER 0.95 1.05 0.68 0.93 1.12 0.81

Model iWildCam
Median

Min Recall ↑
Median

Avg Size ↓
Recall ≥ 90%

Pctg ↑

ERM 0.99 1.0 0.71
IRM 0.88 1.00 0.50
VREx 0.94 1.00 0.60
MMD 0.78 1.00 0.44
CORAL 0.98 1.00 0.68
SET-COVER 1.00 1.02 0.87

E.6. Additional Results of Main Experiments
We present here additional results of the WILDS experiments presented in section 5.2.
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E.6.1. COVERAGE GENERALIZATION PLOT

(a) Camelyon (b) Fmow (c) Iwildcam (d) Amazon

Figure 10. Y-axis represents the percentage of domains with min-recall ≥ 90%. X-axis represents average set size. Blue represents
ERM predictor, Orange represents Pooling CDFs (TrainC), Grey represents Pooling CDFs (CVC), Green represents robust conformal
predictor, and Pink represents SET-COVER.

E.6.2. SET-COVER LOSS VARIATIONS COMPARISSON

In section 4.1 we argue that SET-COVER should not penalize a correctly predicted label in the set-size loss term of the
Lagrangian (the first addend of the Lagrangian). This led us to update the Lagrangian we optimize from

Ly(θ, C) =
∑
i∈S

max{0, 1 + hθ
y(Xi)}+∑

e∈Etrain

1i∈Ge,yCe,y max{0, 1− hθ
y(Xi)},

to

Ly(θ, C) =
∑
i ̸∈Gy

max{0, 1 + hθ
y(Xi)}+∑

e∈Etrain

1i∈Ge,yCe,y max{0, 1− hθ
y(Xi)}.

Here we compare the two variants. The first variant we call “Full Set Penalty”, as it penalizes also the correct label in the
set-size term of the Lagrangian. The second variant is called “Wrong Prediction Penalty”, as it only penalizes the wrong
labels in the prediction set. Figure 11 shows that the “Full Set Penalty” does not consistently improve set size, and in
Camelyon and Iwildcam it even outputs somewhat larger sets. In addition, it does not lead to an improvement in coverage,
and in Camelyon and Iwildcam it even leads to a moderate degradation in coverage.
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(a) Camelyon (b) Fmow (c) Iwildcam (d) Amazon

Figure 11. Each figure represents Min-Recall over Avg Set Size cross. y-axis represents min-recall, and x-axis represents average set
size. Each cross shows the median and the 25th and 75th percentiles for both metrics across domain. Pink represents SET-COVER as
presented in the paper, i.e the “Wrong Prediction Penalty” variant. Yellow represents SET-COVER with loss penalizing entire set size,
including correct labels, i.e the “Full Set Penalty”.

E.6.3. TRAINING TIME AND COMPUTATIONAL COST

We report the average training times (measured on a single NVIDIA GPU) for ERM and SET-COVER on each dataset in
Table 9. SET-COVER incurs a moderate increase in training time (approximately 30% on average) compared to ERM,
primarily due to the optimization of Lagrange multipliers (C in our algorithm). Aside from this, SET-COVER shares
similar computational requirements with ERM, relying on hinge-loss-based optimization without substantial architectural
complexity.

Table 9. Average training times (in minutes) for ERM and SET-COVER across datasets.

Dataset ERM (min) SET-COVER (min)

Camelyon 98 133
FMoW 45 56
iWildCam 46 58
Amazon 12 15

The current implementation of SET-COVER can be further optimized by, for example, exploiting GPU parallelism more
effectively. We anticipate that such improvements would significantly reduce the additional computational overhead.

Other set-valued predictors (Pooling CDFs, Robust Conformal) are trained in two stages where the first stage involves
training an ERM classifier, which dominates the overall runtime. For simplicity, we approximate their training time by that
of ERM. Additionally, some OOD baselines discussed in Appendix E.5 rely on DomainBed implementations, which apply
various runtime optimizations, making direct training time comparisons inconsistent.

E.6.4. CROSS PLOTS ON TRAINING DOMAINS

We present in Figure 12 the cross-plot that is presented in Figure 2, Section 5.2, but here we present it for Train set and
In-Domain test set, alongside the OOD test set (which is also presented in Figure 2).
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(a) Camelyon

(b) Fmow

(c) Iwildcam

(d) Amazon

Figure 12. Cross Plots For All Data Sets
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