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ABSTRACT

Large language models have been successfully applied to programming assistance
tasks, such as code completion, code insertion, and instructional code editing. How-
ever, these applications remain insufficiently automated and struggle to effectively
integrate various types of information during the programming process, including
coding history, current code, and user instructions. In this work, we propose a
new conversational framework that comprehensively integrates these information
sources, collect data to train our models and evaluate their performance. Firstly,
to thoroughly evaluate how well models align with different types of information
and the quality of their outputs, we introduce a new benchmark, APEval (As-
sist Programming Eval), to comprehensively assess the performance of models
in programming assistance tasks. Then, for data collection, we develop a data
generation pipeline, Programming-Instruct, which synthesizes training data from
diverse sources, such as GitHub and online judge platforms. This pipeline can auto-
matically generate various types of messages throughout the programming process.
Finally, using this pipeline, we generate 219K samples, fine-tune multiple models,
and develop the CursorCore series. We show that CursorCore outperforms other
models of comparable size. This framework unifies applications such as inline chat
and automated editing, contributes to the advancement of coding assistants.

1 INTRODUCTION

Since the rise of large language models (LLMs), AI-assisted programming technology has developed
rapidly, with many powerful LLMs being applied in this field Zan et al. (2022); Liang et al. (2024);
Yang et al. (2024). The technology mainly takes two forms. One form involves completing a
specified code snippet at the end or inserting corresponding code at a designated position, typically
accomplished by foundation models that support relevant input formats Chen et al. (2021); Bavarian
et al. (2022). The other form involves generating or editing code snippets based on natural language
instructions or reflections through interaction with the environment, usually carried out by instruction
models that have been further aligned Shinn et al. (2023); Cassano et al. (2023b); Muennighoff et al.
(2024); Paul-Gauthier (2024). Figure 1 shows simple examples of these forms.

Assist (Ours)Complete

def function(s):
frequency = {c: s.count(c) for c in set(s)}

Here is a Python implementation:
def function(s):

frequency = {c: s.count(c) for c in set(s)}
return frequency

return frequency

frequency = {c: s.count(c) for c in set(s)}
def function(s):

return frequency

Write a function that calculates the frequency of each 

character in a string using Python.

frequency[c] = frequency[c] + 1

def function(s):
frequency = {c: s.count(c) for c in set(s)}
return frequency

We uses a dict comprehension to count the occurrences. 

It is more concise and readable compared to before.

def function(s):

def function(s):
for c in s:
frequency[c] = frequency[c] + 1

Insert

Instruct

Implement it concisely.

def function(s):
for c in s:
frequency[c] += 1

History(H):

Code changes

Current(C):

Current code

User(U):

User instructions

Assistant(A):

Expected output

C

C

C

C

A

A

A

AU
U

H1

H2

H3

Figure 1: Different forms of programming assistance. The common uses of current LLMs are shown
on the left. Our framework is shown on the right.
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However, in practical applications, neither the completion or insertion mode nor the instruction-
based mode is perfect. The completion or insertion mode generates based on the current code
context, but in actual coding, we are continuously editing the code rather than just completing and
inserting. We prefer that the model predicts the upcoming edits, as neither completion nor insertion
accurately reflects the coding process, and requires programmers to perform additional operations.
The instruction-based mode allows for code editing, but it also has drawbacks, such as writing
prompts for specific tasks may be slower or challenging. The process is not automated enough,
programmers would prefer a model that can proactively predict future changes without needing extra
prompts. In our view, the core issue lies in the limitations of the input and output in both forms
of programming assistance. These forms either just align the output with the current code context,
limiting completion or insertion instead of editing, or align the output with the user’s natural language
instructions. However, to effectively assist with programming, an AI programming assistant needs
to utilize anything throughout the programming process. It should be capable of aligning with the
history of code changes, the current content of the code, and any instructions provided by the user,
predicting the required responses and corresponding changes, reducing any actions required by users.

To solve these issues, in this paper, we introduce a new framework of AI-assisted programming
task: Assistant-Conversation to align anything during programming process. To comprehensively
evaluate the alignment of models with different information in the programming process and the
quality of the corresponding outputs, we propose a new benchmark, APEval (Assist Programming
Eval), to comprehensively assess the performance of models in assisting programming. For the
Assistant-Conversation framework, we build a data generation pipeline, Programming-Instruct, to
synthesize corresponding training data from various data sources. This data generation method can
produce any types of messages throughout the programming process, without any additional human
annotation and does not rely on specific models. We use this pipeline to generate 219K data points
and use them to fine-tune multiple models, resulting in the CursorCore series. These models achieve
state-of-the-art results when compared with other models of comparable size.

In conclusion, our main contributions are:

• Assistant-Conversation: A new framework to align anything during programming process.
• Programming-Instruct: Data synthesis pipeline to produce any types of messages throughout

the programming process, and 219K data collected using it.
• APEval: A benchmark for assessing the ability to utilize various types of information to

assist programming.
• CursorCore: One of the best model series with the same number of parameters for AI-

assisted programming tasks.

2 ASSISTANT-CONVERSATION: NEW CONVERSATION FRAMEWORK FOR
PROGRAMMING ASSISTANTS

In this section, we introduce a new conversational framework, Assistant-Conversation, aimed at
simplifying the programming process. The framework leverages all available information during
programming to streamline work for programmers. By precisely defining various types of information
and their formats, Assistant-Conversation directly aligns with the input and output requirements of
applications such as automated editing and inline chat. This framework facilitates model alignment,
enabling fast and accurate generation and parsing.

2.1 FRAMEWORK FORMULATION

We introduce the constituent elements of Assistant-Conversation: System (S), History (H), Current
(C), User (U), and Assistant (A). The Assistant (A) represents the output of the model, while the
inputs consist of the System (S), History (H), Current (C), and User (U). Figures 1 and 2 shows
several examples of them. These definitions will be referenced throughout the rest of this work.

System S (Optional) The system instruction provided to the model at the beginning, which
configures the answering style, overall task description and other behaviors. In this work, we fix it to
a simple “You are a helpful programming assistant.” and omit it from the subsequent discussion.
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from typing import List

def generate_range(start: int, end: int, step: int) ->
List[int]:

l = []
i = start
while (step > 0 and i < end) or (step < 0 and i > end):
l.append(i)
i += step

return l

Based on the previous revisions and the current code, it appears 

that… The loop condition is (step > 0 and i < end) or (step 

< 0 and i > end), and there is an additional check for step == 0

inside the loop. However, this check is redundant because the loop 

condition already ensures that the loop will not run if step is zero.

Therefore, the predicted modification is to remove the redundant 

check for step == 0 inside the loop, simplifying the code without 

changing its functionality. This will make the function more 

concise and easier to understand.
...

while (step > 0 and i < end) or (step < 0 and i > end):
l.append(i)
if step == 0:
break

i += step
return l

from typing import List

def generate_range(start: int, end: int, step: int) ->
List[int]:

...
l = []
i = start
while True:
l.append(i)
# Decide the condition to break the loop
if (step > 0 and i >= end) or (step < 0 and i <= end):
break

i += step
return l

...
while (step > 0 and i < end) or (step < 0 and i > end) 

or step == 0:
l.append(i)
if step == 0:
break

...

H1

H2

H3

C

A

Model Input: Model Output:

module.exports = function(ctx) {
ctx.cookies.set('returning', 'true', { maxAge:

10 * 365 * 24 * 60 * 60 * 1000 })
}

C

Model Input:

Fix returning user cookie to not be HTTP-only. U

module.exports = function(ctx) {
ctx.cookies.set('returning', 'true', { maxAge:

10 * 365 * 24 * 60 * 60 * 1000, httpOnly: false })
}

To make the cookie not HTTP-only, we need to explicitly set the 

httpOnly option to false. This will allow the cookie to be 

accessed by client-side scripts.

Here's the plan:

1. Locate the ctx.cookies.set method call in the current code.

2. Add the httpOnly: false option to the options object passed to 

the set method.

A

Model Output:

Figure 2: Examples of Assistant-Conversation from our training data. The top example demonstrates
predicting the corresponding edits and explanations based on historical edits and the current code.
The bottom example demonstrates predictions based on the current code and user instructions.

History H (Optional) The program’s editing history, consisting of multiple pieces of code. These
may include several snippets or may not be present at all. We refer to them as H1, · · ·, Hn.

Current C The code currently being processed, along with temporary information like cursor
position or selected code area.

User U (Optional) User instructions related to the code, either written by the programmer or
generated as feedback based on interactions with external environments (such as a code interpreter).

Assistant A The output of the model, consists of modified code and chat-style interaction with the
programmer. In this work, we mainly focus on the prediction of modified code.

2.2 COMPARISONS OF ASSISTANT-CONVERSATION

Completion and insertion modes face challenges when modeling both C and H Although they
can utilize C, they fail to capture H, limiting the modeling of future changes in C, and are incapable
of deleting or editing code. Although user instructions and reflection information can be used through
comments and assert statements, this capability is weak and unstable.

Chat models are not ideal for all programming assistance tasks These models focus on user
input rather than the code content, while the input should primarily be centered on C instead of
just user instructions. In traditional conversational frameworks, the sole input source is U, which
works for chatbots but not for application assistants. Input sources should include C, H, and U, as
both H and U are related to C. Although instruction models can represent the interaction history
between users and assistants, they struggle to capture the historical changes in the application’s
content. Prompt engineering can integrate some of this information into existing models, but the
impact is limited. Constructing prompts with numerous tokens increases cost and reduces efficiency,
and models may also lack alignment and proper training for such inputs.

3
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Our framework addresses these issues We use multiple input sources to harness all relevant
information from the programming process. For the output, we divide it into two parts: modified
code and chat-style communication with the programmer, aligning with the common practices of
users. When the user only requires responses based on U, similar to instruction models, we can omit
H and C, suppress code modifications, and provide only chat output to ensure compatibility with past
chat modes.

2.3 SPECIFICATIONS AND IMPLEMENTATION

To represent a piece of code like C, we can either use it directly or wrap it in a markdown code block.
However, representing code changes, such as H or changes in A, is more complex. We can either
use the whole code, patches that alter the code, or records of both the modification locations and the
specific changes. Some methods work well but experience issues when handling longer texts, such as
outputting the entire modified code, which can be slow. Other methods output minimal content, like
providing only the modification locations and changes. These are faster but still not optimal in terms
of performance. We represent code changes in the experiments of the main body using the whole code
format, and we investigate different ways to represent these modifications, as detailed in Appendix B.
Additionally, we explore methods for compressing historical code changes in Appendix G.

In some cases, programmers assign assistants to focus on specific areas of code. They might use the
cursor to mark a general location or directly select a range of code, as shown in Figure 2. We handle
this by treating them as special tokens (see Appendix E for further details).

We structure conversations in the order of S-H-C-U-A to match the actual workflow. This mirrors the
chronological sequence in which information is generated during the programming process. By doing
so, we maximize prefix overlap across multiple requests, utilizing prefix caching to reduce redundant
kv-cache computations and improve efficiency Zheng et al. (2023a). A is organized in code-chat
order, prioritizing code edits due to their importance in real-time applications where speed is crucial.

3 APEVAL: BENCHMARK FOR ASSISTED PROGRAMMING

3.1 BENCHMARK OVERVIEW

Table 1: APEval Statistics. Present
statistical information about H, C, and
U in our benchmark.

Statistics Sample Num
Total 164
Each type 41 / 41 / 41 / 41
H Statistics Mean / Max
Num (Snippets) 2.8 / 10
Num (Lines) 21.7 / 139
Num (Chars) 0.6K / 5.1K
C Statistics Mean / Max
Num (Lines) 8.4 / 31
Num (Chars) 0.3K / 1.4K
U Statistics Mean / Max
Num (Lines) 3.2 / 19
Num (Chars) 0.2K / 1.2K

Past benchmarks assessing LLM code capabilities have ef-
fectively evaluated tasks like program synthesis Chen et al.
(2021); Austin et al. (2021), code repair Muennighoff et al.
(2024); Jimenez et al. (2024), and instructional code edit-
ing Cassano et al. (2023b); Paul-Gauthier (2024); Guo et al.
(2024b). However, they fall short in fully assessing how
models use various types of information to assist in program-
ming. This gap calls for a new benchmark.

As discussed in Section 2.1, programming assistance can
involve different types of information, with H and U being
optional. Thus, there are four possible combinations of
information: H, C, U; H, C; C, U; and only C. HumanEval
Chen et al. (2021) is a well-known benchmark for evaluating
code completion. It has been extended to assess other tasks
such as code insertion Bavarian et al. (2022), instruction-
based tasks CodeParrot (2023); Muennighoff et al. (2024),
and multilingual generation Zheng et al. (2023b); Cassano
et al. (2023a). We refer to these works and further extend
it to comprehensively evaluate the model’s ability to assist
programming. We randomly categorize each task into one of
the four types, then manually implement the functions and
simulate the potential instructions that programmers might
give to an LLM during the process, collecting all interactions.
We invite programmers with varying levels of experience to annotate the data. After processing, we
get the new benchmark, Assist Programming Eval (APEval). Detailed statistics are shown in Table 1.

4
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Specific details regarding the collection process and examples of our benchmark can be found in
Appendix C.

3.2 EVALUATION PROCESS AND METRICS

In all tasks, we use the classic Pass@1 metric to execute the generated code, which is the simplest
version of the Pass@k metric Chen et al. (2021). Since APEval is an extension of HumanEval, we
use the test set created by EvalPlus Liu et al. (2023). We report the results from both the basic and
extra tests. We provide the model with relevant information during the programming process, and
the model immediately returns the modified code. Some methods may improve performance by
increasing the number of output tokens to model the thinking process; we discuss this further in
Appendix F.

4 PROGRAMMING-INSTRUCT: COLLECT ANY DATA DURING PROGRAMMING

To align models with programming-related data, relevant training data must be collected. While large
amounts of unsupervised code Kocetkov et al. (2023) and instruction data Wei et al. (2023b); Luo
et al. (2024b) have been gathered, there remains a significant lack of data on the coding process.
Manually annotating the coding process is expensive, so we propose Programming-Instruct, a method
to automate this data collection.

4.1 DATA SOURCES

To ensure both quality and diversity in the coding process data, we collect information from three
different sources: AIprogrammer, Git commit, and Online Submit.

AIprogrammer For each code snippet, we use LLMs to generate the corresponding coding history.
Since human coding approaches vary widely, we utilize several LLMs, each guided by three distinct
prompts, representing novice, intermediate, and expert programmers. The LLMs then return their
version of the coding process. Prompts used are shown in Appendix L.

Git Commit Some software can automatically track changes, such as Git. We use Git commit data
from Github, which captures users’ code edits and modification histories.

Online Submit Many online coding platforms like Leetcode allow users to submit code for
execution and receive feedback. During this process, users continuously modify their code until it is
finalized. We also make use of this data.

Through these sources, we obtain a large number of samples, each consisting of multiple code
snippets. The last snippet in each sample is referred to as the final snippet (F). Examples of data
sources are shown in Figure 3.

AI Programmer

Git Commit

Online Submit

Git commit: Change the order of return values

Problem: Write a function that accepts an integer and checks 

whether it is odd or even. If the number is even, the function 

should return true; if is odd, it should return false.

Example Input: 2 Example Output: true

def min_max(arr):
return max(arr),min(arr)

def min_max(arr):
return min(arr),max(arr)

1 F

function isEven(number) {
return number / 2 = 0;

}

function isEven(number) {
return number;

}1 2

query {
users {
user

}
}

query {
users {
name

}
}

query {
users {
id
name

}
}

query {
users {
id
name

}
}

Create

History

1 2F F

function isEven(number) {
return number % 2 == 0;

}

function isEven(number) {
return number % 2 === 0;

}3 F

Figure 3: Samples from AIprogrammer, Git Commit and Online Submit.

4.2 DATA PROCESSING

After collecting a large number of coding processes, we process them to meet the requirements of
Assistant-Conversation. Figure 4 shows the steps of data processing. First, we randomly select a time

5
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@faster

def pow(a,b):

def pow(a,b):
return a^b

# Name

def pow(a,b):
return a**b

1

2

3

4

# Name

@faster
def pow(a,b):
return a**b

F

-@faster
+def pow(a,b):

+ return a^b

def pow(a,b):
return a^b

C

H1

H2

+# Name

- return a^b
+ return a**b

+@faster

M1

M2

M3

def pow(a,b):
return a^b

C

-@faster
+def pow(a,b):

H1

+ return a^b H2

×
×
√C

H1

H2

M1

M2

M3

w H   

Judge

U

C

H1

H2

M1

M2

M3

w H/U   

Create

×

√C

H1

H2

M1

M2

M3

w H/C   

Judge

U

C

H1

H2

M1

M2

M3

w H/C/U   

Create

√

@faster
def pow(a,b):
return a**b

A

Figure 4: Data processing pipeline. The randomly selected time point is the third, and the randomly
selected data type is H and C.

point in the coding process, referred to as C. As mentioned in Section 2.1, H and U are optional, we
need to collect four types of data distinguished according to input data types: H, C, U; H, C; C, U;
and only C. For each sample, we randomly designate one type. If the selected type includes H, We
use the preceding edits of C as the historical records H.

We then handle each type of data based on whether U is available. For cases without U, we segment
the changes from C to F based on continuity, referring to them as M, and let LLMs judge whether
each segment of M aligns with user’s purpose through principle-driven approaches Bai et al. (2022);
Sun et al. (2023); Lin et al. (2024). This approach accounts for ambiguity in user intent when inferring
from H or C. For example, if a programmer actively adds some private information at the beginning
of the code without it being mentioned in the previous records, LLMs should not predict this change.
We discard segments deemed irrelevant, and merge the remaining ones as outputs that models need to
learn to predict. For cases with U, we follow the instruction generation series methods Wang et al.
(2023); Wei et al. (2023b); Luo et al. (2024b) by inputting both the historical edits and current code
into the LLM, prompting it to generate corresponding instructions.

In addition to the above, we model selected code regions, cursor positions, and make LLMs create
chat-style interactions with users. Further details are provided in Appendix D.

5 CURSORCORE: FINE-TUNE LLMS TO ALIGN ANYTHING

5.1 BASE MODELS

We fine-tune existing base LLMs to assist with programming tasks. Over the past few years, many
open-source foundation models have been trained on large code corpora sourced from GitHub and
other platforms, demonstrating strong performance in coding. We choose the base versions of
Deepseek-Coder Guo et al. (2024a), Yi-Coder AI et al. (2024) and Qwen2.5-Coder Hui et al. (2024)
series, as fine-tuning is generally more effective when applied to base models rather than instruction
models. After training, we refer to them as CursorCore-DS, CursorCore-Yi and CursorCore-QW2.5
series. Deepseek-Coder has achieved state-of-the-art performance on numerous coding-related
benchmarks over the past year, gaining wide recognition. Yi-Coder and Qwen2.5-Coder are the most
recently released models at the start of our experiments and show the best performance on many
benchmarks for code now. These models are widely supported by the community, offering a good
balance between size and performance, making them suitable for efficient experimentation. For
ablation experiments, we use the smallest version, Deepseek-Coder-1.3B, to accelerate the process.
We use a chat template adapted from ChatML OpenAI (2023) to model Assistant-Conversation during
training, as detailed in Appendix J.

5.2 TRAINING DATA

We use Programming-Instruct to collect data. For AIprogrammer, we gather code snippets from
datasets such as the stack Kocetkov et al. (2023) and oss-instruct Wei et al. (2023b), then prompt
LLMs to generate the programming process. For Git commit data, we collect relevant information
from editpackft Cassano et al. (2023b) (a filtered version of commitpackft Muennighoff et al. (2024))
and further refine it through post-processing and filtering. Regarding online submission data, we
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Table 2: Statistics of our training data.

Sample Language History Snippets Input Length Output Length
Num Num Mean / Max Mean / Max Mean / Max

AIprogrammer 70.9K - 2.0 / 17 0.6K / 25K 1.0K / 5.2K

Git Commit 88.0K 14 1.5 / 15 1.5K / 19.9K 1.4K / 5.2K

Online Submit 60.5K 44 3.8 / 96 4.8K / 357.2K 1.9K / 35.1K

source the programming process from the Codenet dataset Puri et al. (2021). First, we group all
submissions by user for each problem, then exclude invalid groups without correct submissions to
obtain complete programming processes. These are then fed into the processing pipeline to generate
the final training data. In total, we accumulate 219K samples, with detailed statistics and distributions
shown in Tables 2 and 3 and Figures 5 to 8. AIprogrammer data has the shortest average length, while
Online Submit data has the longest. To ensure compatibility with previous chatbot-style interactions
and further improve model performance, we also incorporate the evol-instruct dataset ISE-UIUC
(2023) collected using the GPT series Ouyang et al. (2022), which has been widely recognized for its
high quality during training. Following StarCoder’s data processing approach Li et al. (2023), we
decontaminate our training data.

Table 3: The proportion of four combinations of infor-
mation during programming in our training data.

C H, C C, U H, C, U
AIprogrammer 24.1 22.2 25.4 28.3

Git Commit 25.9 20.0 28.0 26.1

Online Submit 27.5 19.7 29.4 23.4

During data collection, we randomly utilize
two powerful open-source LLMs: Mistral-
Large-Instruct and Deepseek-Coder-V2-
Instruct Mistral-AI (2024b); DeepSeek-AI
et al. (2024). These models have demon-
strated performance comparable to strong
closed-source models like GPT-4o across
many tasks, and are currently the only two
open-source models scoring over 90% on
the classic HumanEval benchmark at the
start of our experiment. Additionally, they
are more cost-effective and offer easier re-
producibility than GPT-4o. For Mistral-Large-Instruct, we quantize the model using the GPTQ
Frantar et al. (2022) algorithm and deploy it locally with sglang Zheng et al. (2023a) and marlin
kernel Frantar et al. (2024) on 4 Nvidia RTX 4090 GPUs. For Deepseek-Coder-V2-Instruct, we use
the official API for integration.
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Figure 5: The distribution of programming lan-
guage in the training data.
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Figure 6: The distribution of history snippets in
the training data.

5.3 TRAINING DETAILS

Our models are trained for 2 epochs using the Transformers library Wolf et al. (2020). We enhance
memory efficiency and speed with techniques such as Deepspeed ZeRO3 Rajbhandari et al. (2019),
ZeRO Offload Ren et al. (2021), FlashAttention2 Dao (2024), and triton kernels Hsu et al. (2024).
We calculate the maximum sequence length that can be processed per batch based on the available
VRAM. Using the First-Fit Decreasing algorithm Kundu et al. (2024), we pack training samples to

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00
36

00
38

00
40

00
42

00
44

00
46

00
48

00
50

00
>5

00
00

5000

10000

15000

20000

25000

30000

Sa
m

pl
e 

N
um

AIprogrammer
Git Commit
Online Submit

Figure 7: The distribution of input lengths in the
training data.
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Figure 8: The distribution of output lengths in
the training data.

ensure that each batch reaches its maximum sequence length, thereby optimizing training speed. The
training process employs the Adafactor optimizer Shazeer & Stern (2018) with a learning rate of
5e-5, coupled with a cosine scheduler featuring 15 warm-up steps.

6 EVALUATION AND RESULTS

In this section, we evaluate the CursorCore models. We begin by describing the experimental setup
and then present and analyze the results.

6.1 EXPERIMENTAL SETUP

We conduct the data selection ablation and primary evaluation on our APEval benchmark, and
provide results on well-known benchmarks such as Python program synthesis, automated program
repair, and instructional code editing, which are detailed in Appendix H. We choose prominent
open-source and closed-source LLMs as our baselines. For all benchmarks, we use greedy decoding
to generate evaluation results. CursorCore natively supports various inputs in APEval, whereas
base and instruction LLMs require additional prompts for effective evaluation. We design few-shot
prompts separately for base and instruction models, as detailed in Appendix K.

6.2 DATA SELECTION ABLATION

0 5 10 15 20 25 30 35 40
Pass@1(%)

Ours

AIprogrammer +
Evol-Instruct

Evol-Instruct

AIprogrammer +
Git-Commit (Py)

AIprogrammer

Git-Commit (Py)

Git-Commit

Online-Submit (Py)

Online-Submit

Base
Extra tests
Base tests

Figure 9: Data Selection Ablation on APEval.

We train the smallest model Deepseek-Coder-1.3B
on different combinations of datasets to determine
the optimal data mix. The results of the ablation
study are shown in Figure 9.

AIprogrammer has the highest data quality
Among the various data sources, the model trained
on the AIprogrammer dataset achieve the best per-
formance on APEval. We believe this is primar-
ily because the data aligns well with the required
format of APEval. Moreover, unlike other data
sources such as Git Commit, the AIprogrammer
data is almost entirely synthesized by LLMs, ex-
cept for the initial code. As LLMs have advanced,
the quality of their generated data has generally
surpassed that of data collected and filtered from
human-created sources.

Importance of mixing data with different in-
formation types We find that using high-quality
chat-style data alone, such as the Evol-Instruct dataset, does not achieve the desired performance; it
underperforms compared to the AIprogrammer dataset. However, when combining both datasets, the
model shows a notable improvement. This indicates that to better align the model with a variety of
data and information, it is necessary to use datasets containing diverse types of information.
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Table 4: Evaluation results of LLMs on APEval.

Model C H, C C, U H, C, U Avg.
Closed Models

GPT-4o-Mini 17.1 (17.1) 36.6 (31.7) 78.0 (70.7) 53.7 (43.9) 46.3 (40.9)
GPT-4o 68.3 (63.4) 61.0 (56.1) 75.6 (75.6) 56.1 (53.7) 65.2 (62.2)

10B+ Models
Codestral-V0.1-22B 68.3 (56.1) 41.5 (41.5) 75.6 (73.2) 48.8 (46.3) 58.5 (54.3)
DS-Coder-33B-Base 31.7 (31.7) 26.8 (22.0) 43.9 (36.6) 24.4 (24.4) 31.7 (28.7)
DS-Coder-33B-Inst 63.4 (56.1) 56.1 (48.8) 70.7 (63.4) 51.2 (48.8) 60.4 (54.3)

Qwen2.5-72B 63.4 (61.0) 36.6 (34.1) 75.6 (63.4) 39.0 (34.1) 53.7 (48.2)
Qwen2.5-72B-Inst 73.2 (68.3) 53.7 (51.2) 78.0 (70.7) 56.1 (56.1) 65.2 (61.6)

Mistral-Large-123B-Inst 65.9 (58.5) 56.1 (46.3) 73.2 (68.3) 48.8 (48.8) 61.0 (55.5)
DS-Coder-V2-236B-Base 41.5 (39.0) 36.6 (31.7) 58.5 (56.1) 36.6 (34.1) 43.3 (40.2)
DS-Coder-V2-236B-Inst 78.0 (65.9) 48.8 (43.9) 68.3 (61.0) 53.7 (48.8) 62.2 (54.9)

6B+ Models
Llama-3.1-8B 12.2 (12.2) 17.1 (14.6) 19.5 (19.5) 22.0 (17.1) 17.7 (15.9)

Llama-3.1-8B-Inst 24.4 (24.4) 31.7 (29.3) 53.7 (51.2) 39.0 (34.1) 37.2 (34.8)
Gemma-2-9B 22.0 (22.0) 19.5 (17.1) 17.1 (19.5) 22.0 (17.1) 20.1 (18.9)

Gemma-2-9B-It 56.1 (53.7) 41.5 (36.6) 51.2 (46.3) 36.6 (29.3) 46.3 (41.5)
Codegeex4-All-9B 43.9 (41.5) 34.1 (31.7) 73.2 (61.0) 34.1 (34.1) 46.3 (42.1)

DS-Coder-6.7B-Base 29.3 (24.4) 26.8 (22.0) 41.5 (31.7) 22.0 (19.5) 29.9 (24.4)
DS-Coder-6.7B-Inst 56.1 (53.7) 41.5 (36.6) 70.7 (61.0) 34.1 (29.3) 50.6 (45.1)

Yi-Coder-9B 29.3 (26.8) 26.8 (22.0) 17.1 (17.1) 29.3 (26.8) 25.6 (23.2)
Yi-Coder-9B-Chat 56.1 (51.2) 39.0 (36.6) 73.2 (70.7) 36.6 (36.6) 51.2 (48.8)
Qwen2.5-Coder-7B 56.1 (53.7) 41.5 (36.6) 65.9 (56.1) 31.7 (29.3) 48.8 (43.9)

Qwen2.5-Coder-7B-Inst 22.0 (19.5) 46.3 (39.0) 75.6 (65.9) 41.5 (39.0) 46.3 (40.9)
CursorCore-DS-6.7B 68.3 (63.4) 41.5 (39.0) 68.3 (63.4) 36.6 (31.7) 53.7 (49.4)

CursorCore-Yi-9B 53.7 (53.7) 46.3 (43.9) 75.6 (68.3) 43.9 (36.6) 54.9 (50.6)
CursorCore-QW2.5-7B 65.9 (61.0) 41.5 (39.0) 65.9 (63.4) 48.8 (43.9) 55.5 (51.8)

1B+ Models
Llama-3.2-1B 0.0 (0.0) 14.6 (12.2) 2.4 (4.9) 14.6 (12.2) 7.9 (7.3)

Llama-3.2-1B-Instruct 7.3 (7.3) 14.6 (14.6) 19.5 (19.5) 22.0 (19.5) 15.9 (15.2)
Llama-3.2-3B 14.6 (14.6) 12.2 (9.8) 26.8 (19.5) 22.0 (17.1) 18.9 (15.2)

Llama-3.2-3B-Instruct 14.6 (14.6) 22.0 (19.5) 29.3 (26.8) 34.1 (31.7) 25.0 (23.2)
Gemma-2-2B 7.3 (7.3) 4.9 (2.4) 12.2 (12.2) 14.6 (9.8) 9.8 (7.9)

Gemma-2-2B-It 14.6 (14.6) 22.0 (19.5) 29.3 (26.8) 34.1 (31.7) 25.0 (23.2)
Phi-3.5-3.8B-Inst 24.4 (22.0) 19.5 (14.6) 34.1 (34.1) 39.0 (34.1) 29.3 (26.2)

DS-Coder-1.3B-Base 0.0 (0.0) 12.2 (12.2) 17.1 (12.2) 19.5 (14.6) 12.2 (9.8)
DS-Coder-1.3B-Inst 39.9 (36.6) 39.0 (36.6) 39.0 (29.3) 34.1 (34.1) 37.8 (34.1)

Yi-Coder-1.5B 2.4 (0.0) 2.4 (2.4) 14.6 (14.6) 12.2 (7.3) 7.9 (6.1)
Yi-Coder-1.5B-Chat 31.7 (31.7) 4.9 (4.9) 51.2 (41.5) 26.8 (22.0) 28.7 (25.0)
Qwen2.5-Coder-1.5B 43.9 (36.6) 26.8 (26.8) 51.2 (41.5) 36.6 (34.1) 39.6 (34.8)

Qwen2.5-Coder-1.5B-Inst 14.6 (14.6) 17.1 (14.6) 43.9 (34.1) 31.7 (29.3) 26.8 (23.2)
CursorCore-DS-1.3B 36.6 (31.7) 39.0 (31.7) 53.7 (46.3) 26.8 (22.0) 39.0 (32.9)
CursorCore-Yi-1.5B 46.3 (39.0) 34.1 (29.3) 68.3 (58.5) 36.6 (34.1) 46.3 (40.2)

CursorCore-QW2.5-1.5B 46.3 (43.9) 48.8 (43.9) 65.9 (61.0) 39.0 (36.6) 50.0 (46.3)

Our final selection We combine data from all sources for training. Since our focus is on Python,
and training on multilingual data leads to a decrease in APEval scores, we use only the Python part
of the Git Commit and Online Submit datasets. As a result, we get CursorCore series models.

6.3 EVALUATION RESULTS ON APEVAL

In Table 4, we present the results of evaluating CursorCore series models and other LLMs on APEval.
It includes both the average results and the results across four different types of information within
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the benchmark, each item in the table is the score resulting from running the base tests and extra tests.
We also report the evaluation results of other well-known models, which can be found in Appendix I.

CursorCore outperforms other models of comparable size CursorCore consistently outperforms
other models in both the 1B+ and 6B+ parameter sizes. It achieves the highest average score, with
the best 1B+ model surpassing the top scores of other models by 10.4%, and even by 11.5% when
running extra tests. Similarly, the best 6B+ model exceeds by 4.3%, and by 3.0% in the case of extra
tests. Additionally, across various information types, CursorCore consistently demonstrates optimal
performance among all similarly sized models.

Instruction models mostly outperform base models For most model series, instruction-tuned
models outperform their corresponding base models, as instruction fine-tuning generally enhances
model capabilities Ouyang et al. (2022); Longpre et al. (2023). The only exception observed in
our experiments is the latest model, Qwen2.5-Coder. Its base model achieves a very high score,
while the instruction-tuned model performes worse. We attribute the base model’s high performance
to its extensive pre-training, which involved significantly more tokens than previous models Hui
et al. (2024). This training on a wide range of high-quality data grants it strong generalization
abilities, enabling it to effectively handle the newly defined APEval task format. In contrast, the
instruction-tuned model is not specifically aligned with this task, leading to a decrease in its APEval
score. This highlights the challenges of aligning models with numerous diverse tasks, especially
small models.

Performance difference between general and code LLMs is strongly related to model size
In 1B+ parameter models, general LLMs significantly underperform code LLMs. Even the best-
performing general model scores over 10% lower compared to the best-performing code model,
despite having more parameters. For models with 6B+ parameters, while general LLMs still lag
behind code LLMs, the performance gap narrows considerably, with general LLMs even surpassing in
certain cases involving specific information types. When it comes to 10B+ models, the performance
difference between general and code LLMs becomes negligible. We think that smaller models, due to
their limited parameter capacity, tend to focus on a single domain, such as programming assistance,
while larger models can encompass multiple domains without compromising generalizability.

Gap between closed models and the best open models is smaller Historically, open-source
models significantly lag behind closed-source models, like those in the GPT series, leading to
a preference for closed-source models in synthetic data generation and other applications Taori
et al. (2023); Xu et al. (2023). However, with the continuous advancement of open-source LLMs,
increasingly powerful models have emerged. On APEval, the best open-source models—such
as Qwen2.5-72B-Instruct, Mistral-Large-Instruct, and Deepseek-Coder-V2-Instruct—demonstrate
performance that closely approaches that of the leading GPT series model, GPT-4o. This indicates
that the performance gap between open-source and closed-source LLMs has considerably narrowed,
encouraging the development of more interesting applications based on open-source LLMs. Despite
this progress, GPT-4o remains more comprehensive than open-source LLMs. It utilizes H far more
effectively than any other model, demonstrating its strong capability to process and align with various
types of information. This is an area where open-source LLMs still need to improve.

7 CONCLUSION

This work explores how LLMs can maximize the use of any available information during program-
ming process to assist coding. We introduce Assistant-Conversation to model the diverse types of
information involved in programming. We present APEval, a new benchmark that includes various
historical edits and instructions, providing a comprehensive evaluation of the model’s programming
assistance capabilities. Additionally, we propose Programming-Instruct, which is designed to collect
data for training LLMs to assist programming, along with their corresponding data sources. Further-
more, we train CursorCore, which demonstrate outstanding performance in assisting programming
tasks while achieving a good balance between efficiency and cost. We also conduct extensive ablation
experiments and analyzes. Beyond enhancing traditional approaches of programming assistance, we
plan to extend this approach to support models capable of assisting with repository-level development
as well as other applications.
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A RELATED WORK

A.1 AI-ASSISTED PROGRAMMING

AI-assisted programming has a long history, encompassing various tasks such as clone detection Lu
et al. (2021), code summarization Sun et al. (2024), program synthesis Chen et al. (2021); Austin
et al. (2021), automatic program repair Gulwani et al. (2016), code editing Wei et al. (2023a),
and code optimization Shypula et al. (2024). These tasks attempt to incorporate a wide range of
information into their processes, such as historical edits Gupta et al. (2023); Zhang et al. (2022)
and user instructions Cassano et al. (2023b). In the past, however, they were typically addressed by
custom-built models, which were difficult to scale across different tasks and types of information.
With the rise of LLMs, AI-assisted programming increasingly leverages LLMs to handle multiple
types of tasks simultaneously. Numerous high-quality open-source and closed-source products, such
as Continue Continue-Dev (2024), Aider Paul-Gauthier (2024), Copilot Github-Copilot (2022) and
Cursor Cursor-AI (2023), are based on this approach.

A.2 CODE MODELS

Recently, LLMs have attracted significant attention in the research community for their impact on
enhancing various aspects of code intelligence. Open-source code LLMs like CodeLlama Rozière
et al. (2023); Touvron et al. (2023), Deepseek-Coder Guo et al. (2024a); DeepSeek-AI et al. (2024),
StarCoder Li et al. (2023); Lozhkov et al. (2024), Codegemma Team et al. (2024), Codestral Mistral-
AI (2024a), Codegeex Zheng et al. (2023b), Yi-Coder AI et al. (2024), and Qwen-Coder Hui
et al. (2024) have made substantial contributions by utilizing large code corpora during training.
Some models, such as WizardCoder Luo et al. (2024b), OctoCoder Muennighoff et al. (2024),
CodeLlama-Instruct, Deepseek-Coder-Instruct, MagiCoder Wei et al. (2023b), Yi-Coder-Chat, and
Qwen-Coder-Instruct, have been fine-tuned using instruction data collected through methods like Self-
Instruct Wang et al. (2023); Taori et al. (2023), Evol-Instruct, and OSS-Instruct. These models are
specifically trained on code-related instructions, improving their ability to follow coding instructions.
They have made significant breakthroughs in tasks like code completion and editing.

A.3 CODE BENCHMARKS

HumanEval Chen et al. (2021) is one of the most well-known benchmarks in the code domain,
featuring several variants that extend it to different programming languages, extra tests, and broader
application scenarios. Other notable benchmarks include MBPP Austin et al. (2021) for program
synthesis, DS1000 Lai et al. (2022) for data science tasks, SWE-Bench Jimenez et al. (2024) for
real-world software engineering problems, and CanItEdit / CodeEditorBench Cassano et al. (2023b);
Guo et al. (2024b) for code editing. Additionally, LiveCodeBench Jain et al. (2024) focuses on
contamination-free evaluations, while Bigcodebench Zhuo et al. (2024) and Naturecodebench Zhang
et al. (2024b) provide comprehensive program synthesis assessments. CRUXEval Gu et al. (2024)
targets reasoning, CrossCodeEval Ding et al. (2023) focuses on repository-level code completion,
and Needle in the code Hui et al. (2024) is designed for long-context evaluations.

B CODE MODIFICATION REPRESENTATION

As discussed in Section 2.3, there are various ways to represent code modifications. Many previous
works have explored techniques for instruction-based code editing Wei et al. (2023a); Muennighoff
et al. (2024); Paul-Gauthier (2024); Sweep-AI (2024). We build upon these works with the following
formats, as shown in Figure 10:

Whole file format (WF) We use the entire code, allows for a straightforward representation of
the modifications. However, when only small parts of the code are changed, this method leads to
redundancy, especially for long code files. Certain mitigation can be achieved through technologies
such as retrieval-based speculative decoding Yang et al. (2023); He et al. (2024).

Unified diff format (UD) The diff format is a common way to represent code changes, widely
adopted for its efficiency and readability. Among various diff formats, unified diff is one of the most
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popular, as it efficiently shows code changes while reducing redundancy. It is commonly used in
software tools such as git and patch.

Location-and-change format (LC) To further reduce redundancy, we consider further simplify
the diff formats by showing only the location and content of the changes. The location is based on
line numbers. Some reports indicate that LLMs often struggle with localization, so we insert line
numbers into the code to assist them.

Search-and-replace format (SR) Another option is to eliminate the need for localization altogether
by simply displaying the part to be modified alongside the updated version. This format eliminates
the need for line numbers.

We conduct experiments using Deepseek-Coder-1.3B with these formats. For quick experiments, we
train the model on data generated by AIprogrammer. We then evaluate their performance on APEval,
with results shown in Figure 11. In programming assistance tasks, where real-time performance is
critical, such as in tasks like auto completion or editing, the generation speed becomes particularly
important. The number of tokens in both input and output directly affects the model’s speed, and the
editing format greatly impacts the token count. Therefore, we also report the average input-output
token count for each format in Figure 12.

def func(s):
s = s[::-1]
return s

1

2

3

def func(s):
return s[::-1]

@@ -2,2 +2 @@
- s = s[::-1]
- return s
+ return s[::-1]

WF UD

LC

1,3
---------------

return s[::-1]

s = s[::-1]
return s

----------------
return s[::-1]

SR

Figure 10: Different formats for represent-
ing code modifications.
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Figure 11: Performance of
models using different for-
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Figure 12: Context length
for models using different
formats on APEval.

The results show that using WF yields the best performance, followed by SR and LC, with UD
performing the worst. In terms of token usage, LC uses the fewest tokens, followed by SR and UD,
while WF uses the most. The average token count for SR and UD is only slightly lower than that of
WF, as they are more concise for small code changes, when a large portion needs modification, they
must include both versions, making them less efficient than using WF instead.

Recent research has pointed out correlations and scaling laws between model input and output length,
as well as performance OpenAI (2024); Snell et al. (2024). Our results align with these findings. As
the length increases, performance improves consistently across LC, SR, and WF. UD performs poorly
in both token usage and performance, likely because it contains redundant information, such as both
line numbers and content for the modified sections, where only one would suffice. This redundancy
reduces the format’s efficiency compared to the other three formats.

C DETAILS REGARDING THE COLLECTION PROCESS OF APEVAL

We inform the annotators about the function’s entry point and its purpose, and allow them to send
instructions to the AI programming assistant at appropriate moments. We then use screen recording
tools to capture the annotators’ process of wrtining this function. Afterward, we manually analyze the
recordings to construct our benchmark. The historical information, current code, and user instructions
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are all provided by annotators based on the specified function functionality, to cover various code
editing scenarios.

During the process of creating the benchmark, in order to better evaluate the model’s ability to utilize
historical edits and integrate this information with user instructions, we collected samples for the (H,
C) and (H, C, U) types that required the use of relevant historical information to accurately infer user
intent. If a sample contained only a single type of information (such as only C or only U), it might be
impossible to provide an adequate answer due to a lack of sufficient information.

In our benchmark collection process, we initially annotated one programming process for each
task. For some tasks, the annotators consulted the programming assistant; for others, they did not.
Similarly, some tasks involved complex editing histories, while others did not. Upon reviewing
the data, we found that for certain tasks, it was nearly impossible to collect realistic programming
processes containing specific types of information. For example, Some tasks are straightforward and
can be completed with just a few lines of code. Programmers who have undergone basic training
can write these solutions quickly without needing to consult an assistant or repeatedly revise their
code. Conversely, some tasks may involve calling specific libraries or algorithms that most annotators
are unfamiliar with, leading them to rely on the programming assistant. It would be unrealistic and
counterproductive to instruct annotators to ”always consult the AI” or ”edit your code repeatedly,” as
this would deviate from real-world scenarios and undermine our intention to use human-annotated
data. Considering these reasons, we did not collect programming traces for the entire test set. While
we still hope that the number of samples of four different combinations is at least balanced. At this
stage, the number of samples for combinations involving all four data types was relatively similar.
So we asked annotators to label additional programming process traces for combinations with fewer
samples and collected the corresponding traces. Meanwhile, for combinations with slightly more
samples, we discarded some of their traces. Through this process, we established our final benchmark.
Simplified examples of the annotated data is illustrated in Figure 13.

Example 2

# Current
def has_close_elements(n, t):

for i in range(len(n - 1)):

for j in range(i + 1, len(n)):

if n[i] - n[j] < t or n[j] - n[i] < t:

# History 1
def incr_list(l: list):

return [x++ for x in l]

# Current
def incr_list(l: list):

Example 1

Figure 13: Simplified examples of APEval, which covering various code editing scenarios that require
integrating multiple types of information to infer user intent. The left example checks if any two
numbers in a list are closer than a given threshold. The current logic is flawed and should verify if the
absolute difference between two values is less than t. The model must detect this issue, fix the error,
and generate the remaining code. The right example shows a programmer replacing incorrect code
with a corrected version. Without historical edits, the model cannot infer the function’s intent. Thus,
it must use edit history to make accurate code edits.

D ADDITIONAL DETAILS ABOUT PROGRAMMING-INSTRUCT

In our code editing records, we place no limits on the granularity or number of edits. Changes between
two code versions may involve anything from a single character to multiple extensive modifications.
However, data collected from various sources may be compressed, resulting in incomplete records.
This compression can lead to a higher proportion of large-scale edits, particularly in Git Commit data.
To address this issue, we propose a decomposition strategy: when there are multiple changes between
versions, we break them down into single-step modifications, with the steps ordered randomly. For Git
Commit data, we apply this decomposition strategy with a 90% probability, while for AIprogrammer
and Online Submit data, we apply it with a 50% probability.

We randomly select a time point from the records to represent C. In practice, we prefer the model to
provide assistance at earlier stages. Thus, we implement a simple rule where the random selection
follows an exponential distribution, with the probability of selecting each time point decreasing by
10% with each subsequent step. This biases the model toward choosing earlier time points.
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In addition to generating H and U, as discussed in Section 4.2, we also simulate the programmer’s
specification of the target area and model interactions in a chat-style format. The target modification
area is created using a random algorithm, as described in Appendix E, while the chat-style interaction
is generated using LLMs which is similar to the generation of instructions. Prompts used for it are
provided in Appendix L.

E TARGET AREA REPRESENTATION
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Figure 14: With
and without the
use of location
information on
APEval.

To modify code, programmers often specify the parts requiring changes, typically
in one of two ways: either by clicking with the cursor to indicate a general
area or by selecting a specific text range with defined start and end points. We
model both cases using special tokens: “<|target|>” for cursor positions, and
“<|target start|>” and “<|target end|>” to mark the selected region’s boundaries.
While collecting training data, we determine modification locations based on the
code differences before and after changes. In real-world applications, the decision
to provide explicit locations—and their granularity—varies among programmers.
To account for this variability, we introduce randomized choices for determining
the form and location, integrating this approach into the Programming-Instruct
pipeline.

We evaluate CursorCore-DS-1.3B on APEval both with and without location in-
formation to assess its impact on performance. The results in Figure 14 show that
including location information has minimal effect, likely because most APEval
examples are relatively short, enabling LLMs to easily infer modification loca-
tions, much like humans do without a cursor. Previous works, such as those on
automated program repair Zhang et al. (2024a), have emphasized the importance
of identifying the modification location. We believe this emphasis stems from
traditional code completion and insertion paradigms, as well as the natural align-
ment of specifying modification points with human thought processes. However,
with the advancement of LLMs, the benefit of providing location information
diminishes when generating code at the function or file level. This may need
further exploration in longer contexts, such as repository-level editing tasks.

F DISCUSSION ABOUT THOUGHT PROCESS
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Figure 15: Performance of mod-
els using thought process or not
on APEval.

Incorporating reasoning processes in prompts has been shown to
improve model performance, as demonstrated in various works
like CoT Wei et al. (2022) and ReACT Yao et al. (2023). Some
studies have even integrated these processes into the training phase
to further enhance effectiveness Zelikman et al. (2022). In this
work, we also explore a self-taught approach, where we prompt
LLMs to reverse-generate the reasoning process from outputs and
incorporate them into the model’s output during training. Our
model and data setup follow the same configuration as described
in Appendix B to enable quick experiments. The evaluation results
are shown in Figure 15.

After incorporating reasoning into training, the model shows slight
performance improvements, but the output length increases sig-
nificantly. The tokens used for reasoning often exceed those in
the modified code. Since many programming-assist applications
require real-time responses, longer reasoning times may be im-
practical, so we do not integrate this process into CursorCore. We
believe that the decision to use reasoning processes should be
based on a combination of factors, such as performance, latency,
model size, and specific application requirements.
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G CONVERSATION RETRIEVAL FOR ASSISTANT-CONVERSATION
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Figure 16: Performance of mod-
els using different sliding win-
dow sizes on APEval.

Not all code editing records are necessary for inferring user in-
tent and predicting output. Some past modifications, such as
simple typos corrected shortly after, offer little value to future
predictions, and thus can be safely removed. Additionally, if a
programmer continuously interacts with the model without delet-
ing these records, the editing history will accumulate and grow
until it exceeds the model’s maximum context length. This could
negatively affect performance and speed.

To address this, it is essential to compress the editing history or
retrieve only the relevant portions. Similar to how many conver-
sation retrieval techniques, such as memory modules Packer et al.
(2023), prompt compression Jiang et al. (2023) and query rewrit-
ing Ye et al. (2023), are used to manage dialogues for chatbots,
these methods can be adapted for handling code editing records.
In this work, we explore a basic approach, sliding window, to in-
vestigate possible solutions. When the number of historical editing
records surpasses a predefined threshold, the model automatically
discards the oldest entries.

We evaluate this method on APEval, as shown in Figure 16. The impact of setting a sliding window of
a certain size on the results is minimal, indicating that compressing the historical records effectively
balances performance and efficiency.

H EVALUATION RESULTS OF OTHER BENCHMARKS

We also evaluate CursorCore on other well-known benchmarks. We use HumanEval+ and MBPP+ Liu
et al. (2023) to evaluate Python program synthesis, CanItEdit Cassano et al. (2023b) for instructional
code editing, and the Python subset of HumanEvalFix from OctoPack Muennighoff et al. (2024) for
automated program repair. All benchmarks are based on their latest versions, and HumanEvalFix uses
the test-based repair version as described in the original paper. To generate results, we consistently
use vLLM Kwon et al. (2023) due to its versatility and support for customized conversation formats.
Evaluations are conducted within each benchmark’s execution environment.

Unlike previous LLMs, CursorCore supports multiple input formats, and different formats may
produce different results. To comprehensively showcase this, we categorize input formats based on
specific assisted programming scenarios into three cases:

• Chat: Similar to the chat format of ChatGPT Ouyang et al. (2022), we wrap the query before
passing it to the model, which returns a response in a chat style. The final result is obtained
after post-processing.

• Inline: Similar to Copilot Inline Chat Github-Copilot (2022) and Cursor Command K Cursor-
AI (2023) scenarios, corresponding to the combination of C and U in Assistant-Conversation.
Compared to the Chat mode, it is more tightly integrated with the IDE and returns less
additional content.

• Tab: Similar to the use case of Copilot++ Cursor-AI (2023), it is the most automated of all
scenarios. We provide only the C to the model. For instructional code editing and automated
code repair, no explicit instructions are passed.

Evaluation results are shown in Table 5. Our model outperforms the corresponding instruction-tuned
and base models across several benchmarks. However, the performance of the 6B+ model, when
compared to its corresponding models, is not as strong as that of the 1B+ model. Notably, with the
recent release of Qwen2.5-Coder-7B at the start of our experiments, we outperform it on only one
benchmark, while other models achieve better performance across more benchmarks. We attribute it
to the quantity of high-quality data: larger models require more high-quality data for training. While
the current dataset is sufficient to train a highly effective 1B+ model, additional data is needed to
train a more competitive 6B+ model.
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Table 5: Evaluation results on EvalPlus, CanItEdit and OctoPack.

Model EvalPlus CanItEdit OctoPack
HE (+) MBPP (+) Desc. Lazy HE Fix

DS-Coder-6.7B-Base 47.6 (39.6) 70.2 (56.6) 34.3 27.6 23.8
DS-Coder-6.7B-Inst 74.4 (71.3) 75.1 (66.1) 41.9 31.4 42.1

CursorCore-DS-6.7B (Chat) 78.0 (73.2) 74.1 (63.8) 45.7 31.4 43.3
CursorCore-DS-6.7B (Inline) 73.8 (67.1) 71.2 (59.8) 38.1 32.4 32.3
CursorCore-DS-6.7B (Tab) 72.0 (65.9) 74.3 (63.0) 6.7 6.7 25.6

Yi-Coder-9B 55.5 (47.0) 69.6 (56.9) 47.6 34.3 32.3
Yi-Coder-9B-Chat 83.5 (76.8) 84.4 (71.4) 58.1 45.7 54.3

CursorCore-Yi-9B (Chat) 84.1 (79.3) 84.4 (73.5) 56.2 41.0 56.1
CursorCore-Yi-9B (Inline) 79.9 (72.0) 83.6 (69.6) 48.6 35.2 33.5
CursorCore-Yi-9B (Tab) 79.3 (71.3) 83.9 (72.5) 10.5 10.5 25.6

Qwen2.5-Coder-7B 61.6 (53.0) 76.7 (63.0) 49.5 40.0 17.1
Qwen2.5-Coder-7B-Inst 87.2 (83.5) 83.5 (71.7) 53.3 44.8 54.3

CursorCore-QW2.5-7B (Chat) 80.5 (75.6) 77.0 (64.3) 51.4 44.8 50.6
CursorCore-QW2.5-7B (Inline) 79.9 (73.2) 77.0 (64.0) 57.1 39.0 41.5
CursorCore-QW2.5-7B (Tab) 79.9 (74.4) 75.1 (64.3) 5.7 5.7 27.4

DS-Coder-1.3B-Base 34.8 (26.8) 55.6 (46.9) 13.3 8.6 1.2
DS-Coder-1.3B-Inst 65.2 (59.8) 61.6 (52.6) 26.7 17.1 29.3

CursorCore-DS-1.3B (Chat) 68.9 (63.4) 61.9 (49.7) 21.9 14.3 30.4
CursorCore-DS-1.3B (Inline) 57.9 (53.7) 60.1 (51.1) 25.7 17.1 17.1
CursorCore-DS-1.3B (Tab) 63.4 (57.3) 65.6 (54.8) 2.9 2.9 8.5

Yi-Coder-1.5B 40.6 (34.8) 59.0 (50.0) 21.0 12.4 3.7
Yi-Coder-1.5B-Chat 67.7 (64.0) 66.9 (56.6) 21.0 23.8 37.2

CursorCore-Yi-1.5B (Chat) 68.9 (65.2) 65.6 (54.8) 27.6 24.8 38.4
CursorCore-Yi-1.5B (Inline) 60.4 (54.3) 65.6 (55.0) 28.6 24.8 22.6
CursorCore-Yi-1.5B (Tab) 67.1 (59.1) 66.1 (56.6) 4.8 4.8 20.1

Qwen2.5-Coder-1.5B 43.9 (36.6) 69.3 (58.5) 31.4 22.9 4.9
Qwen2.5-Coder-1.5B-Inst 70.7 (66.5) 69.3 (59.4) 28.6 21.0 32.9

CursorCore-QW2.5-1.5B (Chat) 71.3 (65.9) 69.3 (58.5) 31.4 22.9 36.6
CursorCore-QW2.5-1.5B (Inline) 66.5 (60.4) 68.5 (58.2) 23.8 20.0 36.6
CursorCore-QW2.5-1.5B (Tab) 64.0 (58.5) 67.2 (56.6) 1.0 1.0 13.4

We analyze the evaluation results of various input types defined in real-world assisted programming
scenarios. The results of the Chat and Inline modes are comparable, with Chat mode showing a
slight advantage. We attribute this to the flexibility of the Chat format, which allows the model to
output its thought process and thus enhances output accuracy. The Tab mode shows comparable
results on EvalPlus but underperforms on HumanEvalFix and struggles with CanItEdit, likely due to
variations in the informational content of task instructions. For program synthesis based on docstrings,
instructions like “complete this function” provide minimal additional context. In contrast, program
repair tasks provide crucial information by indicating the presence of errors. When only code is
available, the model must first determine correctness independently. Instructional code editing tasks
clearly state objectives, such as implementing a new feature, requiring the model to fully understand
the given information, as accurate predictions based solely on code are nearly impossible.

I ADDITIONAL EVALUATION RESULTS ON APEVAL

We also report the evaluation results of various versions of other well-known models on APEval, as
shown in Table 6.
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Table 6: Additional evaluation results of LLMs on APEval.

Model C H, C C, U H, C, U Total
StarCoder2-3B 19.5 (19.5) 19.5 (17.1) 22.0 (19.5) 22.0 (17.1) 20.7 (18.3)
StarCoder2-7B 7.3 (7.3) 14.6 (12.2) 19.5 (14.6) 22.0 (17.1) 15.9 (12.8)

StarCoder2-15B 26.8 (24.4) 24.4 (22.0) 43.9 (36.6) 29.3 (24.4) 31.1 (26.8)
DS-Coder-V2-16B-Base 24.4 (24.4) 22.0 (19.5) 31.7 (26.8) 22.0 (17.1) 25.0 (22.0)
DS-Coder-V2-16B-Inst 43.9 (41.5) 41.5 (31.7) 68.3 (63.4) 36.6 (31.7) 47.6 (42.1)

Gemma-2-27B 36.6 (36.6) 24.4 (22.0) 56.1 (46.3) 26.8 (24.4) 36.0 (32.3)
Gemma-2-27B-It 63.4 (56.1) 48.8 (41.5) 68.3 (63.4) 41.5 (39.0) 55.5 (50.0)
Llama-3.1-70B 24.4 (24.4) 24.4 (22.0) 46.3 (39.0) 29.3 (24.4) 31.1 (27.4)

Llama-3.1-70B-Inst 61.0 (56.1) 46.3 (46.3) 65.9 (58.5) 56.1 (51.2) 57.3 (53.0)

<|im_start|>system

You are a helpful programming assistant.<|im_end|>

<|im_start|>history

```python
frequency[c] = frequency[c] + 1
```<|im_end|>

<|im_start|>history

```python
def function(s):

for c in s:
frequency[c] = frequency[c] + 1

```<|im_end|>

<|im_start|>history

```python
def function(s):

for c in s:
frequency[c] += 1

```<|im_end|>

<|im_start|>current

```python
def function(s):
```<|im_end|>

<|im_start|>user

```python

Implement it concisely.

```<|im_end|>

<|im_start|>assistant

<|next_start|>```python
def function(s):

frequency = {c: s.count(c) for c in set(s)}
return frequency

```<|next_end|><|im_end|>

Integrated Development 

Environment (IDE)

Chat Template

H2

H1

H3

C

U

A

Figure 17: Example of chat template and its corresponding demonstration in the IDE scenario.

J CHAT TEMPLATE

Our model’s chat template OpenAI (2023) is adapted from the ChatML template, where each message
in the conversation is restricted to one of the following roles: system, history, current, user, or assistant.
The assistant’s output includes both code modifications and chat interaction with the user. To indicate
code changes, we use two special tokens “<|next start|>” and “<|next end|>” to wrap the code
modification parts. This approach models Assistant-Conversation effectively and is compatible with
standard ChatML templates and chatbot applications. Figure 17 illustrates an example of our chat
template, while Figure 18 presents examples of the chat template when using the LC and SR modes
described in Appendix B.
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Chat Template (SR)

<|im_start|>system

You are a helpful programming assistant.<|im_end|>

<|im_start|>history

0,3

```python
frequency[c] = frequency[c] + 1
```<|im_end|>

<|im_start|>history

2,3

```python
frequency[c] = frequency[c] + 1

```<|im_end|>

<|im_start|>history

1,1

```python
for c in s:
frequency[c] += 1

```<|im_end|>

<|im_start|>current

```python
1 def function(s):
```<|im_end|>

<|im_start|>user

```python

Implement it concisely.

```<|im_end|>

<|im_start|>assistant

<|next_start|>1,1

```python
frequency = {c: s.count(c) for c in set(s)}
return frequency

```<|next_end|>

We uses a dict comprehension to count the 

occurrences. It is more concise and readable 

compared to before.<|im_end|>

<|im_start|>system

You are a helpful programming assistant.<|im_end|>

<|im_start|>history

```python
frequency[c] = frequency[c] + 1
<|search_and_replace|>
def function(s):

for c in s:
frequency[c] = frequency[c] + 1

```<|im_end|>

<|im_start|>history

```python
frequency[c] = frequency[c] + 1

<|search_and_replace|>
frequency[c] += 1

```<|im_end|>

<|im_start|>history

```python
def function(s):

for c in s:
frequency[c] += 1

<|search_and_replace|>
def function(s):
```<|im_end|>

<|im_start|>current

```python
def function(s):
```<|im_end|>

<|im_start|>user

```python

Implement it concisely.

```<|im_end|>

<|im_start|>assistant

<|next_start|>```python
def function(s):
<|search_and_replace|>
def function(s):

frequency = {c: s.count(c) for c in set(s)}
return frequency

```<|next_end|>

We uses a dict comprehension to count the 

occurrences. It is more concise and readable 

compared to before.<|im_end|>

Chat Template (LC) 

Figure 18: Example of chat templates in LC and SR modes.

K PROMPTS FOR EVALUATION

We report the prompts used to evaluate base LLMs on APEval in Table 13, while the prompts used
for evaluating instruct LLMs are presented in Table 14.

L PROMPTS FOR DATA COLLECTION

We design specific system prompts and few-shot examples to collect high-quality training data, as we
find that many examples are very difficult to complete with current LLMs, and only a few of them
can be successfully completed using rough prompts. For AIprogrammer, we utilize LLMs to simulate
programmers at three different skill levels, with each level using a distinct set of prompts as shown in
Tables 7 to 9. Additionally, prompts used for evaluating whether the outputs align with user intent,
generating user instructions, and facilitating chat interactions between models and users are outlined
in Tables 10 to 12. Partial few-shot examples are shown in Figures 19 to 24.
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M LIMITATIONS AND FUTURE WORK

Repo-level development assistance In this work, we focus on supporting the development of
single files or function-level code. However, real-world development operates at the repository
level, involving multiple files and greater interaction with IDEs. Previous research has made notable
advances in repository-level tasks such as code completion Zhang et al. (2023), issue fixing Jimenez
et al. (2024), and documentation generation Luo et al. (2024a). Repository-level code assistance
deals with larger datasets, and achieving optimal performance and speed will require more effort. We
leave the exploration of multi-file repository-level programming assistance and leveraging additional
IDE interactions for future work.

More scenarios and criteria for evaluation We have only tested our models’ code assistance
capabilities on Python-specific benchmarks. While multi-language program synthesis benchmarks
like Multipl-E Cassano et al. (2023a) can evaluate coding abilities across languages, dedicated
benchmarks are still needed to assess programming assistance for each language. Additionally, our
benchmark is relatively small and based on an extension of HumanEval, making it insufficient to
cover all development scenarios. Beyond using the classic Pass@k metric to evaluate accuracy, other
criteria should also be considered, such as evaluating the model’s efficiency, security, and redundancy
Huang et al. (2024); Pearce et al. (2021); Li et al. (2024).

Preference-based optimization Methods like PPO Schulman et al. (2017) and DPO Rafailov
et al. (2023), which optimize models based on human preferences, have been widely used in LLMs.
In programming assistance, programmers can provide feedback on predicted outputs for identical
or similar coding processes, further optimizing the model Shinn et al. (2023). To enable this, a
significant amount of feedback data from programmers using AI-assisted tools should be collected or
synthesized.

Enhance performance with API calls We aim to integrate function calls Patil et al. (2023) into
the model to further enhance its capabilities. One potential application is incorporating function
calls into the thinking process, such as retrieving information or executing partial code for feedback.
Although our final models excludes this thinking step due to performance and speed considerations,
we are exploring hybrid approaches to introduce this process while maintaining speed and combine
it with other strategies for searching how to edit. Another application is leveraging function calls
in output, where calling a Python script for tasks like variable replacement might be more efficient
than manually generating code blocks or search-and-replace strategies. For repository-level changes,
using terminal commands or IDE APIs could sometimes be a more convenient solution.

Expand to other applications Our framework is designed for programming assistance applications,
but the alignment approach can also be applied to other types of AI assistants. For example, in
designing an art assistant, it should be able to predict the next drawing step based on the artist’s
previous drawing patterns, the current state of the canvas, and the artist’s instructions. Extending this
approach to design assistants for other applications is an interesting research direction.
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Table 7: Prompt designed to leverage LLMs for simulating the behavior of a novice programmer.

Please play the role of a novice programmer. You are required to write a piece of code.
Simulate the real process of repeatedly adding, deleting, and modifying the code. Please return
the code block after each step of editing. While writing the code, make some mistakes, such
as incorrect logic or syntax errors, etc.

Table 8: Prompt designed to leverage LLMs for simulating the behavior of an ordinary programmer.

Please act as an ordinary programmer. Now, you need to write a piece of code. Please simulate
the process of repeatedly adding, deleting, and modifying the code during the actual coding
process. Please return the code block after each editing step. Try to simulate the coding
process of an ordinary programmer as much as possible.

Table 9: Prompt designed to leverage LLMs for simulating the behavior of an expert programmer.

Please play the role of an expert programmer. You are now required to write a piece of code.
Please simulate the process of repeatedly adding, deleting, and modifying code during the real
coding process. Please return the code block after each step of editing. During the coding
process, you should be as professional as possible.

Table 10: Prompt designed to generate user instructions.

You are a programming assistant. The following content includes information related to your
programming assistance, which may contain the record of the programming process, the
current code, the git commit after all changes, relevant details about the problem, and your
predicted modifications. Please generate an instruction for you to make the corresponding
modifications, ensuring it resembles instructions typically given by a human programmer.
The instruction may be detailed or concise and may or may not specify the location of the
modification. Return the generated instruction in the following format:
‘‘‘
**instruction:**
{instruction}
‘‘‘

Table 11: Prompt designed to generate chat-style interactions between models and users.

You are a programming assistant. The following content includes information related to your
programming assistance, which may contain the record of the programming process, the
current code, the user instruction, and your predicted modifications. Please provide the chat
conversation for making the prediction. This may include analyzing the past programming
process, speculating on the user’s intent, and explaining the planning and ideas for modifying
the code. Return your chat conversation in the following format:
‘‘‘
**chat:**
{chat}
‘‘‘
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Table 12: Prompt designed to evaluate whether the outputs align with user intent.

You are tasked with assisting a programmer by maintaining a record of the programming
process, including potential future changes. Your role is to discern which changes the pro-
grammer desires you to propose proactively. These should align with their actual intentions
and be helpful. To determine which changes align with a programmer’s intentions, consider
the following principles:

1. **Understand the Context**: Assess the overall goal of the programming project. Ensure
that any proposed change aligns with the project’s objectives and the programmer’s current
focus.

2. **Maintain Clear Communication**: Before proposing changes, ensure that your sug-
gestions are clear and concise. This helps the programmer quickly understand the potential
impact of each change.

3. **Prioritize Stability**: Avoid proposing changes that could introduce instability or
significant complexity unless there is a clear benefit. Stability is often more valued than
optimization in the early stages of development.

4. **Respect the Programmer’s Preferences**: Pay attention to the programmer’s coding style
and preferences. Propose changes that enhance their style rather than contradict it.

5. **Incremental Improvements**: Suggest changes that offer incremental improvements
rather than drastic overhauls, unless specifically requested. This approach is less disruptive
and easier for the programmer to integrate.

6. **Consider Long-Term Maintenance**: Propose changes that improve code maintainability
and readability. This includes refactoring for clarity, reducing redundancy, and enhancing
documentation.

7. **Balance Proactivity and Reactivity**: Be proactive in suggesting improvements that
are likely to be universally beneficial (e.g., bug fixes, performance enhancements). However,
be reactive, not proactive, in areas where the programmer’s specific intentions are unclear or
where personal preference plays a significant role.

For each potential change, return ‘True‘ if suggesting this change would be beneficial to the
programmer, return ‘False‘ if the change does not align with the programmer’s intentions or if
they do not want you to predict this change. Give your decision after analyzing each change.
Provide your response in the following format:

‘‘‘
**Analysis of change 1:**

Your analysis here.

**Decision:** ‘True‘ or ‘False‘

**Analysis of change 2:**

Your analysis here.

**Decision:** ‘True‘ or ‘False‘

...
‘‘‘
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Table 13: Prompt used to evaluate base LLMs.

Read the following messages during programming and return the modified code in this format:

<|next start|>{modified code}<|next end|>

<|messages start|>Programming process 1:
‘‘‘python
a = 1
b = 2
c = a + b
‘‘‘

Current code:
‘‘‘python
i = 1
b = 2
c = a + b
‘‘‘

User instruction:
Please change variable names.<|messages end|>

<|next start|>‘‘‘python
i = 1
j = 2
k = i + j
‘‘‘<|next end|>

Read the following messages during programming and return the modified code in this format:

<|next start|>{modified code}<|next end|>

<|messages start|>Programming process 1:
{Programming process 1}

...

Programming process n:
{Programming process n}

Current code:
{Current code}

User instruction:
{User instruction}<|messages end|>
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Table 14: Prompt used to evaluate instruct LLMs.

user
Read the following messages during programming and return the modified code in this format:

<|next start|>{modified code}<|next end|>

Programming process 1:
‘‘‘python
a = 1
b = 2
c = a + b
‘‘‘

Current code:
‘‘‘python
i = 1
b = 2
c = a + b
‘‘‘

User instruction:
Please change variable names.

assistant
<|next start|>‘‘‘python
i = 1
j = 2
k = i + j
‘‘‘<|next end|>

user
Read the following messages during programming and return the modified code in this format:

<|next start|>{modified code}<|next end|>

Programming process 1:
{Programming process 1}

...

Programming process n:
{Programming process n}

Current code:
{Current code}

User instruction:
{User instruction}

assistant

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

user:
**The final code:**

```
def if_continuous_modify(code1, code2, code3):

"""
Check if code3 is a continuous modification of 

code1 and code2.

Args:
code1 (str): The first code string.
code2 (str): The second code string.
code3 (str): The third code string.

Returns:
bool: True if code3 is a continuous 

modification of code1 and code2, False otherwise.
"""
# Calculate the Levenshtein distance between 

code1 and code2
dist1 = Levenshtein.distance(code1, code2)
# Calculate the Levenshtein distance between 

code2 and code3
dist2 = Levenshtein.distance(code2, code3)
# Calculate the Levenshtein distance between 

code1 and code3
dist3 = Levenshtein.distance(code1, code3)

# Check if code3 is a continuous modification of 
code1 and code2

if dist3 == dist1 + dist2:
return True

else:
return False

```

assistant:
Alright, let's simulate the development process of this code, 

including typical errors and revisions. I'll start from the initial 

attempt and evolve the code step by step to reach the final version 

you provided.

### Step 1: Initial Attempt

The initial attempt might be a rough structure without importing 

necessary libraries and possible syntax errors.

```python
def is_continuous_modify(code1, code2, code3):

"""
Checks if code3 is a continuation of 

modifications from code1 through code2
"""
dist1 = levenstein.distance(code1, code2)
dist2 = levenstein.distance(code2, code3)
dist3 = levenstein.distance(code1, code3)

if dist3 == dist1 + dist2
return true

else:
return False

```

**Issues:** 

- Misspelling of the function name (`Levenshtein` as 

`levenstein`).

- Syntax error with missing colon at the end of the `if` statement.

- Incorrect capitalization of `true`.

### Step 2: Syntax Corrections

Addressing the syntax errors and some spelling issues.

```python
def is_continuous_modify(code1, code2, code3):

"""
Checks if code3 is a continuation of 

modifications from code1 through code2
"""
dist1 = Levenshtein.distance(code1, code2)
dist2 = Levenshtein.distance(code2, code3)
dist3 = Levenshtein.distance(code1, code3)

if dist3 == dist1 + dist2:
return True

else:
return False

```

**Issues:** 

- The `Levenshtein` library is not imported.

### Step 3: Importing the Necessary Library

Adding the import statement for the Levenshtein library.

```python
import Levenshtein

def is_continuous_modify(code1, code2, code3):
"""
Checks if code3 is a continuation of 

modifications from code1 through code2
"""
dist1 = Levenshtein.distance(code1, code2)
dist2 = Levenshtein.distance(code2, code3)
dist3 = Levenshtein.distance(code1, code3)

if dist3 == dist1 + dist2:
return True

else:
return False

```

**Issues:** 

- Could improve naming and documentation clarity.

### Step 4: Renaming Function and Improving Documentation

Final adjustments include renaming the function and enhancing the 

docstring for better clarity.

```python
import Levenshtein

def if_continuous_modify(code1, code2, code3):
"""
Check if code3 is a continuous modification of 

code1 and code2.

Args:
code1 (str): The first code string.
code2 (str): The second code string.
code3 (str): The third code string.

Returns:
bool: True if code3 is a continuous 

modification of code1 and code2, False otherwise.
"""
dist1 = Levenshtein.distance(code1, code2)
dist2 = Levenshtein.distance(code2, code3)
dist3 = Levenshtein.distance(code1, code3)

if dist3 == dist1 + dist2:
return True

else:
return False

```

This demonstrates a typical progression in coding, from an initial 

rough draft with errors, through corrections and improvements, to a 

final, refined code block.

Figure 19: Few-shot prompts designed to leverage LLMs for simulating the behavior of a novice
programmer.
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user:
**The final code:**

```
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids, unsqueeze_dim=1):

cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)

b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed

```

assistant:
Let's simulate the coding process to reach the final version of 

the `apply_rotary_pos_emb` function.

### Step 1: Initial Function Setup

Initially, the programmer might start by defining the function 

and setting up the parameters they know they need to work 

with.

```python
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids):

# Initial setup
pass

```

### Step 2: Add Basic Operations

Next, they'll add the basic operations that are essential for the 

function, such as selecting the cosine and sine values based on 

position IDs.

```python
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids):

cos = cos[position_ids]
sin = sin[position_ids]

```

### Step 3: Introduce Unsqueeze Operation

Then, realizing they need to match the dimensions, they add 

the `unsqueeze` operation.

```python
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids):

cos = cos[position_ids].unsqueeze(1)
sin = sin[position_ids].unsqueeze(1)

```

### Step 4: Reshape and Process q and k

After ensuring the dimensions of `cos` and `sin`, the 

programmer starts processing `q` and `k`. They need to 

reshape these tensors to work with the embeddings correctly.

```python
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids):

cos = cos[position_ids].unsqueeze(1)
sin = sin[position_ids].unsqueeze(1)

b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)
```

### Step 5: Define `rotate_half` and Compute Embeddings

Next, they realize they need a helper function `rotate_half` 

and compute the final embeddings for `q` and `k`.

```python
def rotate_half(x):

return torch.cat([-x[..., 1::2], x[..., ::2]], 
dim=-1)

def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids):

cos = cos[position_ids].unsqueeze(1)
sin = sin[position_ids].unsqueeze(1)

b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed

```

### Step 6: Final Adjustments for Flexibility

Lastly, realizing the need for more flexibility, they introduce 

the `unsqueeze_dim` parameter.

```python
def apply_rotary_pos_emb(q, k, cos, sin, 
position_ids, unsqueeze_dim=1):

cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)

b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 

3).reshape(b, h, s, d)

q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed

```

This completes the journey to the final version of the 

`apply_rotary_pos_emb` function.

Figure 20: Few-shot prompts designed to leverage LLMs for simulating the behavior of an ordinary
programmer.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

user:
**The final code:**

```
static void replace_all(std::string & s, const
std::string & search, const std::string & replace) {

std::string result;
for (size_t pos = 0; ; pos += search.length()) {

auto new_pos = s.find(search, pos);
if (new_pos == std::string::npos) {

result += s.substr(pos, s.size() - pos);
break;

}
result += s.substr(pos, new_pos - pos) + 

replace;
pos = new_pos;

}
s = std::move(result);

}
```

assistant:
Let's simulate the development process of the `replace_all` 

function in C++ step by step, showing how a programmer might 

iteratively refine and improve the code.

### Step 1: Basic Function Structure

Initially, I might start with the simplest possible structure to 

replace occurrences of a substring with another substring in a 

given string.

```cpp
void replace_all(std::string & s, const std::string 
& search, const std::string & replace) {

// Initial approach to find and replace
size_t pos = s.find(search);
while (pos != std::string::npos) {

s.replace(pos, search.length(), replace);
pos = s.find(search, pos + replace.length());

}
}
```

### Step 2: Consider Performance and Correctness

I realize the initial approach can be inefficient due to modifying 

the string in place. Also, it doesn't handle overlapping substrings 

well. Let's use a buffer to build the result.

```cpp
void replace_all(std::string & s, const std::string 
& search, const std::string & replace) {

std::string result;
size_t pos = 0;
size_t new_pos;
while ((new_pos = s.find(search, pos)) != 

std::string::npos) {
result += s.substr(pos, new_pos - pos);
result += replace;
pos = new_pos + search.length();

}
result += s.substr(pos);
s = result;

}
```

### Step 3: Optimize with `std::move`

I notice that the final assignment to `s` can benefit from 

`std::move` to avoid unnecessary copying.

```cpp
void replace_all(std::string & s, const std::string 
& search, const std::string & replace) {

std::string result;
size_t pos = 0;
size_t new_pos;
while ((new_pos = s.find(search, pos)) != 

std::string::npos) {
result += s.substr(pos, new_pos - pos);
result += replace;
pos = new_pos + search.length();

}
result += s.substr(pos);
s = std::move(result);

}
```

### Step 4: Refine and Transition to Static Function

To ensure encapsulation and promote reusability, I decide to make 

the function `static`.

```cpp
static void replace_all(std::string & s, const
std::string & search, const std::string & replace) {

std::string result;
size_t pos = 0;
size_t new_pos;
while ((new_pos = s.find(search, pos)) != 

std::string::npos) {
result += s.substr(pos, new_pos - pos);
result += replace;
pos = new_pos + search.length();

}
result += s.substr(pos);
s = std::move(result);

}
```

### Step 5: Final Refinements

Finally, I realize the for loop structure can be more concise and 

less error-prone, integrating the position updates right into the 

loop structure.

```cpp
static void replace_all(std::string & s, const
std::string & search, const std::string & replace) {

std::string result;
for (size_t pos = 0; ; pos += search.length()) {

auto new_pos = s.find(search, pos);
if (new_pos == std::string::npos) {

result += s.substr(pos, s.size() - pos);
break;

}
result += s.substr(pos, new_pos - pos) + 

replace;
pos = new_pos;

}
s = std::move(result);

}
```

This final version improves readability and maintains the 

optimized performance by constructing the result string in a single 

pass.

Figure 21: Few-shot prompts designed to leverage LLMs for simulating the behavior of an expert
programmer.
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user:
**record:**

Revised code changes:

```diff

@@ -1 +1,5 @@
+/**
+ * magical invsqrt function from Quake III code
+ * see: http://www.codemaestro.com/reviews/9
+ */

```

Current code:

```c
1 /**
2  * magical invsqrt function from Quake III code
3  * see: http://www.codemaestro.com/reviews/9
4  */
5 
```

**change 1:**

```diff
@@ -3,3 +3,19 @@
* see: http://www.codemaestro.com/reviews/9
*/

+float InvSqrt(float x)
+{
+       float xhalf = 0.5f*x;
+       int i = *(int*)&x;
+       i = 0x5f3759df - (i>>1);
+       x = *(float*)&i;
+       x = x*(1.5f-xhalf*x*x);
+       return x;
+}
+
+int main(void) {
+       int result = InvSqrt(0.00056);
+       printf("Result: %d (should be 42)", result);
+       return result != 42;
+}
+
```

assistant:
**Analysis of change 1:**

The change introduces the `InvSqrt` function implementation and a 

basic test case within the `main` function. This change is appropriate and 

beneficial. The primary goal is to implement and test the `InvSqrt` 

function, a well-known algorithm from the Quake III code. Adding the 

function and a basic test case aligns directly with this goal. The 

implementation is clear and concise, following common C coding 

practices. The function's logic is straightforward and well-documented, 

making it easy to understand. Overall, the proposed change is a logical 

next step in developing the `InvSqrt` function and ensuring it works 

correctly.

**Decision:** `True`

user:
**record:**
Revised code changes:
```diff
@@ -1 +1,21 @@

+package com.google.gwtjsonrpc.client;
+
+public class VoidResult_JsonSerializer extends
JsonSerializer<VoidResult> {
+  public static final VoidResult_JsonSerializer
INSTANCE =
+      new VoidResult_JsonSerializer();
+
+  private VoidResult_JsonSerializer() {
+  }

+
+  @Override
+  public void printJson(final StringBuffer sb, final
VoidResult o) {
+    sb.append("{}");
+  }
+
+  @Override
+  public VoidResult fromJson(final Object o) {
+    return VoidResult.INSTANCE;
+  }
+}
+
```

Current code:

```java
1 
2 
3 package com.google.gwtjsonrpc.client;
4 
5 public class VoidResult_JsonSerializer extends
JsonSerializer<VoidResult> {
6   public static final VoidResult_JsonSerializer
INSTANCE =
7       new VoidResult_JsonSerializer();
8 
9   private VoidResult_JsonSerializer() {
10   }
11 
12   @Override
13   public void printJson(final StringBuffer sb, final
VoidResult o) {
14     sb.append("{}");
15   }
16 
17   @Override
18   public VoidResult fromJson(final Object o) {
19     return VoidResult.INSTANCE;
20   }
21 }
22 
```

**change 1:**

```diff@@ -1,3 +1,16 @@
+// Copyright 2008 Google Inc.
+//
+// Licensed under the Apache License, Version 2.0 (the 
"License");
+// you may not use this file except in compliance with 
the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in 
writing, software
+// distributed under the License is distributed on an 
"AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, 
either express or implied.
+// See the License for the specific language governing 
permissions and
+// limitations under the License.

package com.google.gwtjsonrpc.client;

```

assistant:
**Analysis of change 1:**

Without enough information to confirm the use of the Apache License, 

predicting this change may not align with the programmer's intentions or 

the project's actual licensing requirements.

**Decision:** `False`

Figure 22: Few-shot prompts designed to evaluate whether the outputs align with user intent.
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user:
Revised code changes:

```diff
@@ -3,6 +3,10 @@
def create_cnn_model(in_channels, config):

layers = []
conv2d = nn.Conv2d(in_channels, config, 

kernel_size=3, padding=1)
- layers += [conv2d, nn.ReLU(inplace=True)]
+    if batch_norm:
+        layers += [conv2d, nn.BatchNorm2d(config)]
+    else:
+        layers += [conv2d]
+    layers += [nn.ReLU(inplace=True)]

model = nn.Sequential(*layers)
return model

```

Revised code changes:

```diff
@@ -1,6 +1,6 @@
import torch.nn as nn

-def create_cnn_model(in_channels, config):
+def create_cnn_model(in_channels, config, 
batch_norm=False):

layers = []
conv2d = nn.Conv2d(in_channels, config, 

kernel_size=3, padding=1)
if batch_norm:

```

Current code:

```
1 import torch.nn as nn
2 
3 def create_cnn_model(in_channels, config, 
batch_norm=False):
4     layers = []
5     conv2d = nn.Conv2d(in_channels, config, 
kernel_size=3, padding=1)
6     if batch_norm:
7         layers += [conv2d, nn.BatchNorm2d(config)]
8     else:
9         layers += [conv2d]
10     layers += [nn.ReLU(inplace=True)]
11     model = nn.Sequential(*layers)
12     return model
```

Changes in predictions:

```diff
@@ -1,12 +1,11 @@
import torch.nn as nn

-def create_cnn_model(in_channels, config, 
batch_norm=False):
+def create_cnn_model(in_channels, config, 
batch_norm):

layers = []
conv2d = nn.Conv2d(in_channels, config, 

kernel_size=3, padding=1)
if batch_norm:

- layers += [conv2d, nn.BatchNorm2d(config)]
+        layers += [conv2d, nn.BatchNorm2d(config), 
nn.ReLU(inplace=True)]

else:
- layers += [conv2d]
- layers += [nn.ReLU(inplace=True)]
+        layers += [conv2d, nn.ReLU(inplace=True)]

model = nn.Sequential(*layers)
return model

```

assistant:

**instruction:**

Update the `create_cnn_model` function to ensure that the `ReLU` 

activation function is added immediately after the `BatchNorm` layer 

if `batch_norm` is enabled. Adjust the function signature to remove 

the default value for the `batch_norm` parameter. The updated code 

should handle the addition of the `ReLU` layer conditionally based on 

the `batch_norm` parameter.

user:
Current code:

```ruby
1 # frozen_string_literal: true
2 module
Extensions::DeferredWorkflowStatePersistence::Workflo
w; end
3 module
Extensions::DeferredWorkflowStatePersistence::Workflo
w::Adapter; end
4 module
Extensions::DeferredWorkflowStatePersistence::Workflo
w::Adapter::DeferredActiveRecord
5   extend ActiveSupport::Concern
6   included do
7     include Workflow::Adapter::ActiveRecord
8     include InstanceMethods
9   end
10 
11   module InstanceMethods
12     def persist_workflow_state(new_value)
13       write_attribute(self.class.workflow_column, 
new_value)
14       true
15     end
16   end
17 end
18 
```

Git commit message after all changes:

Include WorkflowActiverecord in the state persistence extension.

Changes in predictions:

```diff
@@ -1,10 +1,12 @@
# frozen_string_literal: true

+require 'workflow_activerecord'
+
module

Extensions::DeferredWorkflowStatePersistence::Workflo
w; end
module

Extensions::DeferredWorkflowStatePersistence::Workflo
w::Adapter; end
module

Extensions::DeferredWorkflowStatePersistence::Workflo
w::Adapter::DeferredActiveRecord

extend ActiveSupport::Concern
included do

- include Workflow::Adapter::ActiveRecord
+    include
WorkflowActiverecord::Adapter::ActiveRecord

include InstanceMethods
end

```

assistant:
**instruction:**

At the beginning of the file, add the statement `require 
'workflow_activerecord'`; On line 7, change `include 
Workflow::Adapter::ActiveRecord` to `include 
WorkflowActiverecord::Adapter::ActiveRecord`; Ensure the 

final code reflects the necessary changes for including 

`WorkflowActiverecord` in the state persistence extension.

Figure 23: Few-shot prompts designed to generate user instructions
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user:
Revised code changes:

```diff
@@ -14,3 +14,30 @@

if (row == n) {
vector<string> board = generateBoard(queens, n);
solutions.push_back(board);

+        } else {
+            for (int i = 0; i < n; i++) {
+                if (columns.find(i) != columns.end()) {
+                    continue;
+                }
+                int diagonal1 = row - i;
+                if (diagonals1.find(diagonal1) != 
diagonals1.end()) {
+                    continue;
+                }
+                int diagonal2 = row + i;
+                if (diagonals2.find(diagonal2) != 
diagonals2.end()) {
+                    continue;
+                }
+                queens[row] = i;
+                columns.insert(i);
+                diagonals1.insert(diagonal1);
+                diagonals2.insert(diagonal2);
+                backtrack(solutions, queens, n, row + 1, 
columns, diagonals1, diagonals2);
+                queens[row] = -1;
+                columns.erase(i);
+                diagonals1.erase(diagonal1);
+                diagonals2.erase(diagonal2);
+            }
+        }
+    }
+
+    vector<string> generateBoard(vector<int> &queens, int n)
```

Revised code changes:

```diff
@@ -3,41 +3,3 @@

vector<vector<string>> solveNQueens(int n) {
auto solutions = vector<vector<string>>();
auto queens = vector<int>(n, -1);

- auto columns = unordered_set<int>();
- auto diagonals1 = unordered_set<int>();
- auto diagonals2 = unordered_set<int>();
- backtrack(solutions, queens, n, 0, columns, 
diagonals1, diagonals2);
- return solutions;
- }
-
- void backtrack(vector<vector<string>> &solutions, 
vector<int> &queens, int n, int row, unordered_set<int> 
&columns, unordered_set<int> &diagonals1, unordered_set<int> 
&diagonals2) {
- if (row == n) {
- vector<string> board = generateBoard(queens, n);
- solutions.push_back(board);
- } else {
- for (int i = 0; i < n; i++) {
- if (columns.find(i) != columns.end()) {
- continue;
- }
- int diagonal1 = row - i;
- if (diagonals1.find(diagonal1) != 
diagonals1.end()) {
- continue;
- }
- int diagonal2 = row + i;
- if (diagonals2.find(diagonal2) != 
diagonals2.end()) {
- continue;
- }
- queens[row] = i;
- columns.insert(i);
- diagonals1.insert(diagonal1);
- diagonals2.insert(diagonal2);
- backtrack(solutions, queens, n, row + 1, 
columns, diagonals1, diagonals2);
- queens[row] = -1;
- columns.erase(i);
- diagonals1.erase(diagonal1);
- diagonals2.erase(diagonal2);
- }
- }
- }
-
- vector<string> generateBoard(vector<int> &queens, int n)
```

Revised code changes:

```diff
@@ -3,3 +3,17 @@

vector<vector<string>> solveNQueens(int n) {
auto solutions = vector<vector<string>>();
auto queens = vector<int>(n, -1);

+        solve(solutions, queens, n, 0, 0, 0, 0);

+        return solutions;
+    }
+
+    vector<string> generateBoard(vector<int> &queens, int n) 
{
+        auto board = vector<string>();
+        for (int i = 0; i < n; i++) {
+            string row = string(n, '.');
+            row[queens[i]] = 'Q';
+            board.push_back(row);
+        }
+        return board;
+    }
+};
```

Current code:

```cpp
1 class Solution {
2 public:
3     vector<vector<string>> solveNQueens(int n) {
4         auto solutions = vector<vector<string>>();
5         auto queens = vector<int>(n, -1);
6         solve(solutions, queens, n, 0, 0, 0, 0);
7         return solutions;
8     }
9 
10     vector<string> generateBoard(vector<int> &queens, int
n) {
11         auto board = vector<string>();
12         for (int i = 0; i < n; i++) {
13             string row = string(n, '.');
14             row[queens[i]] = 'Q';
15             board.push_back(row);
16         }
17         return board;
18     }
19 };
```

Predicted modifications:

```diff
@@ -5,6 +5,23 @@

auto queens = vector<int>(n, -1);
solve(solutions, queens, n, 0, 0, 0, 0);
return solutions;

+    }
+
+    void solve(vector<vector<string>> &solutions, 
vector<int> &queens, int n, int row, int columns, int
diagonals1, int diagonals2) {
+        if (row == n) {
+            auto board = generateBoard(queens, n);
+            solutions.push_back(board);
+        } else {
+            int availablePositions = ((1 << n) - 1) & 
(~(columns | diagonals1 | diagonals2));
+            while (availablePositions != 0) {
+                int position = availablePositions & (-
availablePositions);
+                availablePositions = availablePositions & 
(availablePositions - 1);
+                int column = __builtin_ctz(position);
+                queens[row] = column;
+                solve(solutions, queens, n, row + 1, columns 
| position, (diagonals1 | position) >> 1, (diagonals2 | 
position) << 1);
+                queens[row] = -1;
+            }
+        }

}

vector<string> generateBoard(vector<int> &queens, int n) 
{
```

assistant:
**chat:**

The revised code transitions from using sets to bitwise operations for solving the 

N-Queens problem, aiming to optimize the algorithm by reducing dynamic 

memory allocations and improving speed. Initially, the original code utilized sets 

(`unordered_set<int>`) to track columns and diagonals. The user likely seeks 

to enhance efficiency, prompting the replacement of these sets with integer bit 

masks. To achieve this, the `solve` function is adjusted to use bitwise 

operations for conflict checks, calculating `availablePositions` using 

bitwise AND and NOT operations to identify valid queen placements. The 

`__builtin_ctz` function finds the least significant bit set to 1, corresponding 

to a valid column, and the recursive `solve` call updates bit masks for columns 

and diagonals after placing a queen. This maintains the backtracking logic while 

leveraging bitwise operations for performance. The `generateBoard` function 

remains unchanged, as it simply formats the result. This approach ensures 

efficient, streamlined code for the N-Queens problem.

Figure 24: Few-shot prompts designed to generate chat-style interactions between models and users.
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