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SymAgent: A Neural-Symbolic Self-Learning Agent Framework
for Complex Reasoning over Knowledge Graphs

Anonymous Author(s)∗

Abstract
Recent advancements have highlighted that Large LanguageModels
(LLMs) are prone to hallucinations when solving complex reason-
ing problems, leading to erroneous results. To tackle this issue,
researchers incorporate Knowledge Graphs (KGs) to improve the
reasoning ability of LLMs. However, existing methods face two lim-
itations: 1) they typically assume that all answers to the questions
are contained in KGs, neglecting the incompleteness issue of KGs,
and 2) they treat the KG as a static repository and overlook the
implicit logical reasoning structures inherent in KGs. In this pa-
per, we introduce SymAgent, an innovative neural-symbolic agent
framework that achieves collaborative augmentation between KGs
and LLMs. We conceptualize KGs as dynamic environments and
transform complex reasoning tasks into a multi-step interactive
process, enabling KGs to participate deeply in the reasoning pro-
cess. SymAgent consists of two modules: Agent-Planner and Agent-
Executor. The Agent-Planner leverages LLM’s inductive reasoning
capability to extract symbolic rules from KGs, guiding efficient
question decomposition. The Agent-Executor autonomously in-
vokes predefined action tools to integrate information from KGs
and external documents, addressing the issues of KG incomplete-
ness. Furthermore, we design a self-learning framework compris-
ing online exploration and offline iterative policy updating phases,
enabling the agent to automatically synthesize reasoning trajecto-
ries and improve performance. Experimental results demonstrate
that SymAgent with weak LLM backbones (i.e., 7B series) yields
better or comparable performance compared to various strong base-
lines. Further analysis reveals that our agent can identify missing
triples, facilitating automatic KG updates. The code is available at
https://anonymous.4open.science/r/SymAgent/.
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1 INTRODUCTION
Knowledge Graphs (KGs) store massive factual triples in a graph-
structured format, providing critical supportive information to vari-
ous semantic web technologies [9, 11, 37]. Recently, Large Language
Models (LLMs) have demonstrated impressive capabilities in lan-
guage understanding and information integration across diverse
domains [47]. However, they are limited by the lack of precise
knowledge and are prone to hallucinations in their responses [40].
Given that KGs encapsulate the essence of data interconnectivity,
providing explicit and explainable knowledge, integrating LLMs
and KGs has garnered significant research interest. This integration
facilitates a wide range of web-based applications, including search
engine recommendation [18, 46], fake news detection [25], and
social networks [44].

Question: Where was the person who recorded "I'm Gonna Get Drunk 
and Play Hank Williams" born?

Incomplete KG
Noisy Triples

Oneonta.

(a) Retrieval-augmented Methods

Vector-based Retrieval

Incomplete KG
Execute Error

No answer.

(b) Semantic Parsing Methods

Generated SPARQL

Symbolic 
Rules

Inductive

Action Tool set

…

getRules (sub_question)
searchWikidata (ent, rel)
extractTriples (ent, rel, doc)
searchNeighbors (ent, rel) 
            

Glen Dale.

Action

Observation

KG Environment

Evolve
Executor

Planner
(c) Our Methods (Interactive Process)

Rule1: music.featured_artist.recordings(e1, e2) 
∧ people.person.place_of_birth(e2, e3)
Rule2: music.featured_artist(e1, e2) ∧ people. 
person.place_of_birth(e2, e3) …      

Symbolic Rules

Figure 1: Comparison between SymAgent and existing meth-
ods. Armed with an action tool library, the SymAgent, con-
sisting of a planner and an executor, autonomously interacts
with the KG environment to conduct reasoning.

Existing work mainly adopts retrieval-augmented [6, 24, 26, 32]
or semantic-parsing [1, 22, 43] methods to enhance the complex rea-
soning performance of LLMs with KG data. The former approaches
rely on vector embeddings to retrieve and serialize the relevant
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subgraph as input prompt for LLMs, while the latter employs LLMs
to perform a structured search on KGs (e.g., SPARQL) to obtain
answers. Despite their success, these methods share significant limi-
tations. Firstly, they treat KGs merely as static knowledge reposito-
ries, overlooking the inherent reasoning patterns embedded in the
symbolic structure of KGs. These patterns could substantially aid
LLMs in decomposing complex problems and aligning the semantic
granularity between natural language questions and KG elements.
For instance, in Figure 1, given the questionWhere was the person
who recorded "I’m Gonna Get Drunk and Play Hank Williams" born?,
the symbolic rule 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑑_𝑎𝑟𝑡𝑖𝑠𝑡 .𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 (𝑒1, 𝑒2)∧𝑝𝑒𝑟𝑠𝑜𝑛.𝑝𝑙𝑎𝑐𝑒
_𝑜 𝑓 _𝑏𝑖𝑟𝑡ℎ(𝑒2, 𝑒3) derived from the KG serves as an abstract rep-
resentation of the question, revealing the intrinsic connection be-
tween question decomposition and KG structural patterns. In con-
trast, retrieval-based methods often suffer from superficial corre-
lations, retrieving semantically similar but irrelevant information
and even harmful disturbance, leading to degraded model perfor-
mance.Moreover, both methods typically assume that all factual
triples required for each question are entirely covered by the KG,
which is unrealistic for manually curated KGs. When KGs fail to
cover the necessary information, parser-based methods struggle to
execute SPARQL queries effectively, limiting their ability to provide
accurate answers or engage in complex reasoning tasks.

In light of these limitations, we delve into the exploration of the
effective fusion of KGs and LLMs, enabling their collective aug-
mentation in complex reasoning tasks. Fundamentally, realizing
this integration poses several significant challenges: (i) Seman-
tic Gap. Enabling the KG to participate deeply in the reasoning
process of LLM requires aligning the symbolic structure of KGs
with the neural representations of LLMs. (ii) Incompleteness of
KG. When encountering insufficient information, it is necessary
to retrieve relevant unstructured documents and identify missing
triples consistent with the KG’s semantic granularity during the
reasoning process. (iii) Learning with Limited Supervision. The
complexity of tasks and the current limitation of having only natu-
ral language input-output pairs make it difficult to unlock the full
reasoning potential of LLMs.

To address these challenges, we propose SymAgent, a novel
framework designed to autonomously and effectively integrate the
capabilities of both LLM and KG. By treating the KG as a dynamic
environment, we transform complex reasoning tasks into multi-
step interactive processes, enabling in-depth analysis and proper
decomposition of complex questions. Specifically, SymAgent com-
prises two key components: a planning module and an execution
module. The planning module leverages LLM’s inductive reasoning
to derive symbolic rules from the KG, creating high-level plans
for aligning natural language questions with the KG structure and
employing it as a navigational tool. In the execution module, we
extend the agent’s capacity by curating a multi-functional toolbox,
enabling the manipulation of both structured data and unstructured
documents. By engaging in a thought-action-observation loop, the
agent continuously reflects on the derived plan, action execution
results, and past interactions to autonomously orchestrate action
tools. This process not only allows for the collection of the neces-
sary information to answer the question but also simultaneously
identifies missing factual triples to complete the KG, addressing the
challenge of KG incompleteness. Given the lack of well-annotated

expert trajectories, we introduce a self-learning framework, which
includes online exploration and offline iterative policy updates.
Through continuous interaction with the KG environment, the
agent can self-synthesize and refine trajectory data without human
annotation, empowering performance improvement.

In summary, our main contributions are as follows:

• We propose SymAgent, a novel neural-symbolic driven
LLM-based agent framework for complex reasoning over
knowledge graphs, effectively integrating the strengths
of both LLMs and KGs. SymAgent transforms natural lan-
guage questions intomulti-step interaction processes through
the automatic invocation of pre-defined action tools, achiev-
ing mutual enhancement of KGs and LLMs.

• We develop an innovative self-learning framework involv-
ing iterative training of LLMs through interactions with
the dynamic KG environment. The proposed framework
eliminates the need for human annotation or a stronger
teacher model, enabling autonomous self-improvement.

• Experimental results on several widely used complex rea-
soning datasets demonstrate that SymAgent with weak
LLM backbones (i.e., 7B series) achieves better or compa-
rable performance compared to strong baselines. Compre-
hensive empirical analyses validate the effectiveness of
SymAgent in multiple aspects, including complex question
decomposition, missing factual triples identification, and
self-learning strategy.

2 RELATEDWORKS
Complex Reasoning over Knowledge Graph. Complex Reason-
ing over Knowledge graph aims to provide answers to multi-hop
natural language questions using knowledge graphs as their pri-
mary source of information [1, 18, 22]. Existing methods can be
broadly categorized into semantic-parsing and retrieval-augmented
methods. Semantic-parsing methods parse questions into the exe-
cutable formal language (e.g., SPARQL) and perform precise queries
on KGs to obtain answers [22, 43]. Initial works [2, 20] utilize strate-
gies of step-wise query graph generation and search for parsing.
Subsequent works [1] employ Seq2Seq models (e.g., T5 [28]) to
generate SARSQL-expressions directly, which take advantage of
the ability of pre-trained language models to enhance the semantic
parsing process. More recently, ChatKBQA [22] further fine-tunes
large language models (e.g., LLaMA [35]) to improve the accuracy of
formal language generation. Despite these advancements, semantic-
parsing methods heavily rely on the quality of generated queries,
and no answers can be obtained if the query is not executable.

Retrieval-augmented methods [15, 16, 24] retrieve the relevant
factual triples from the KG and then feed them to the LLM to help
generate the final answers. Some methods [15] develop specialized
interfaces for gathering pertinent evidence from structured data,
while others [16, 26] retrieve facts by assessing semantic similari-
ties between the question and associated facts. Meanwhile, certain
approaches [5, 23] utilize the LLM to decompose the question and
then retrieve corresponding triples for generation, enhancing the
precision of the retrieval process. Notably, ToG [33] adopts an
explore-and-exploit strategy, allowing the LLM to traverse the KG
for information gathering, achieving state-of-the-art performance.

2
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However, most of these approaches rely on capable closed-source
LLM APIs (e.g., GPT4 [27]), resulting in significant performance
degradation when using weak LLMs as backbones. Furthermore,
they all assume that KGs comprehensively contain the answers,
overlooking the issue of KG incompleteness in real-world scenarios.
Large Language Model based Agents. With the surprising long-
horizon planning and reasoning capabilities shown in LLMs [13],
researchers have explored building LLM-based agent systems [8]
to unlock the door of Artificial General Intelligence. The most rep-
resentative LLM agent, ReAct [41], proposes a prompting method
to enable LLMs to interact with external environments and receive
feedback. Subsequent works further focus on agent planning [31],
function call [30], and code generation [4], improving the ability
of LLMs on various complicated tasks. Recently, there has been
an increasing focus on endowing open-source LLMs with agent
capabilities through fine-tuning [38] on expert data distilled from
teacher models. Furthermore, recent research emphasizes the sig-
nificance of incorporating reinforcement learning techniques with
LLMs to enhance decision-making in dynamic scenarios. Notably,
studies like [7] highlight how RL frameworks can enable LLMs
to continuously adapt their strategies with meticulously designed
prompts, thus significantly improving their performance in practi-
cal applications. However, these approaches heavily rely on prompts
for customization, which makes it difficult to tailor the behavior. In
this paper, we introduce a self-learning framework, enabling weak
LLMs to improve iteratively by interacting with the environment.

3 PRELIMINARIES
3.1 Symbolic Rules
A knowledge graph is a collection of factual triples, denoted as
G = {(𝑒, 𝑟, 𝑒′) |𝑒, 𝑒′ ∈ E, 𝑟 ∈ R}, where E and R represent the sets
of entities and relations, respectively. Symbolic rules in KGs are
typically expressed as first-order logic formulae:

𝑟ℎ (𝑥,𝑦) ← 𝑟1 (𝑥, 𝑧1) ∧ 𝑟2 (𝑧1, 𝑧2) ∧ . . . ∧ 𝑟𝑛 (𝑧𝑛−1, 𝑦), (1)

where the left-hand side denotes the rule head with relation 𝑟ℎ
that can be induced by (←) the right-hand rule body, the rule
body forms a closed chain, with successive relations sharing in-
termediate variables (e.g., 𝑧𝑖 ), represented by the conjunction (∧)
of body relations. A KG can be regarded as groundings of sym-
bolic rules by substituting all variables 𝑥,𝑦, 𝑧 with specific enti-
ties. For example, given the triples (Sam, workFor, OpenAI), (Ope-
nAI locatedIn SF), and (Sam liveIn, SF), a grounding of the length-
2 symbolic rule is 𝑙𝑖𝑣𝑒𝐼𝑛(𝑆𝑎𝑚, 𝑆𝐹 ) ← 𝑤𝑜𝑟𝑘𝐹𝑜𝑟 (𝑆𝑎𝑚,𝑂𝑝𝑒𝑛𝐴𝐼 ) ∧
𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛(𝑂𝑝𝑒𝑛𝐴𝐼, 𝑆𝐹 ).

3.2 Task Formulation
In this paper, we transform the reasoning task on KG into an LLM-
based agent task, where the KG serves as an environment providing
execution feedback rather than merely acting as a knowledge base.
The reasoning process can thus be viewed as amulti-step interaction
with partial observations from the KG. This interactive process can
be formalized as a Partially Observable Markov Decision Process
(POMDP): (Q,S,A,O,T) with question space Q, state space S,
action space A, observation space O, and state transition function
T : S × A → S. Note that in our language agent scenario, Q,

A, and O are subspaces of the natural language space, and the
transition function T is determined by the environment.

Given a question 𝑞 ∈ Q and the KG G, the LLM agent generates
the action 𝑎0 ∼ 𝜋𝜃 (·|𝑞,G) ∈ A based on its policy 𝜋𝜃 . This action
leads to a state transition, and the agent receives execution feedback
as observation 𝑜0 ∈ O. The agent then continues to explore the
environment until an appropriate answer is found or another stop
condition is met. The historical trajectoryH𝑛 at step 𝑛, consisting
of a sequence of actions and observations, can be represented as:

H𝑛 = (𝑞,G, 𝑎0, 𝑜𝑜 , . . . , 𝑎𝑛−1, 𝑜𝑛−1) ∼ 𝜋𝜃 (H𝑛 |𝑞,G),

𝜋𝜃 (H𝑛 |𝑞,G) =
𝑛∏
𝑗=1

𝜋𝜃 (𝑎 𝑗 |𝑞,G, 𝑎0, 𝑜0, . . . , 𝑜 𝑗−1),
(2)

where 𝑛 is the total interaction steps. Finally, the final reward
𝑟 (𝑞,H𝑛) ∈ [0, 1] is computed, with 1 indicating a correct answer.

4 METHODOLOGY
In this section, we present the proposed SymAgent, which effec-
tively synergizes the cognitive potential inherent in knowledge
graphs (KGs) with the reasoning and information integration capa-
bilities of LLMs to autonomously tackle complex reasoning tasks
over KGs. SymAgent consists of an Agent-Planner and an Agent-
Executor. The Agent-Planner derives symbolic rules embedded
within the KG to decompose the question and orchestrate the rea-
soning steps (Section 4.1). Building upon these symbolic rules, the
Agent-Executor invokes actions to answer the question by synthe-
sizing insights derived from agent reflection and observed envi-
ronment feedback (Section 4.2). Given the lack of well-annotated
step-by-step reasoning data, we further introduce a self-learning
framework that facilitates SymAgent and the KG to augment collab-
oratively through autonomous interaction with the environment
(Section 4.3). The overall architecture of SymAgent is illustrated in
Figure 2.

4.1 Agent-Planner Module
The Agent-Planner functions as a high-level planner, leveraging
LLM’s reasoning capability to decompose questions into executable
reasoning chains. However, we observed that merely prompting
the LLM to plan the entire reasoning workflow does not yield
satisfactory performance. Current LLMs struggle to align complex
questions with the semantics and connectivity patterns of the KG,
resulting in coarse-grained reasoning chains that are ineffective for
precise information retrieval and integration.

To address this limitation, we employ the LLM to identify poten-
tial symbolic rules within the KG that could answer the question
rather than generating detailed step-by-step plans. On the one hand,
LLMs have been demonstrated to be effective inductive reasoners
but poor deductive reasoners [48]. On the other hand, symbolic
rules inherently reflect the reasoning patterns of KG, serving as
implicit information to aid in decomposing complex questions. In
this way, the Agent-Planner establishes a bridge between natural
language questions and structural information of KG, enhancing
both the accuracy and generalizability of the reasoning process.

Specifically, given a question 𝑞, we employ BM25 [29] to retrieve
a set of seed questions {𝑞𝑠𝑒𝑒𝑑𝑖 }𝑘𝑖=1 from the training set, where
each 𝑞𝑠𝑒𝑒𝑑𝑖 shares similar question structure with 𝑞, potentially

3
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Question: Where was the person who recorded "I'm Gonna
Get Drunk and Play Hank Williams" born?
Thought 1: To answer this this question, I need to know 
how similar problems have been solved in the KG and 
inductive the RELATIONAL PATTERN to break down the 
problem.
Action 1: getReasoningPath(question q)
Observation 1: Potential relational paths are: 
[music.recording.artist, people.person.place_of_birth], 
[music.featured_artist.recordings, 
location.location.people_born_here] …
Thought 2: From the reasoning paths, the most potential 
one to answer the question is [music.recording.artist, 
people.person.place_of_birth] since it directly relates to 
the birthplace of the artist who recorded the song. I will 
search the neighbors of the entity "I'm Gonna Get Drunk 
and Play Hank Williams" with the relation path.
Action 2: searchNeighbor("I'm Gonna Get Drunk and Play 
Hank Williams", music.recording.artist).
Observation 2: No entity found under this relation in KG. 
(Incomplete KG Issue)
Thought 3: Since there are no results under the relation 
‘music.recording.artist’ in the KG, I will search for the 
entity "I'm Gonna Get Drunk and Play Hank Williams" in 
Wikipedia to find out who recorded the song and where 
they were born.
Action 3: wikiSearch("I'm Gonna Get Drunk and Play Hank 
Williams", music.recording.artist)
Observation 3: Listen to I'm Gonna Get Drunk And Play 
Hank Williams - feat. Brad Paisley on Spotify. Song 
\u00b7 Hank Williams, J.R., Brad Paisley \u00b7 2012. You 
should extract relevant factual triples about \"I'm Gonna
Get Drunk and Play Hank Williams\" to answer the 
question.
……
Action n: finish(Glean Dale)

Planner 𝝅𝜽 ⋅ 𝒒, 𝒒𝒔𝒆𝒆𝒅𝒊, 𝑷𝒊 𝒊&𝟏
𝒌  

Executor 𝝅𝜽 𝒂𝒏 𝑯𝒏, 𝝉𝒏

Iterative Automatic 
Action Selection

Extract Missing Triples
extractTriples(ent, rel, 
Observation3)                                                 

Local Memory

write 
in

Auto Trigging

Outcome-based 
Reward

(d) Interactive Trajectory

Action

Observation

KG Environment

Evolve

(b) Automatic Action Tool Selection

Rule Inductive Demonstrations:
Example 1: Where was the person about whom the 
movie Imperium: Saint Peter is written killed?
Rules: r(q1) ⟵ r1(e1, e2) ∧ r2(e2, e3)
        r(q1) ⟵ r6(e1, e9) ∧ r12(e9, e11) ∧ r7(e11, e3) …
Example2: Where was the person born who stated …
Rules: r(q2) ⟵ r8(e6, e9) ∧ r7(e9, e23) …

(a) Planner: Inductive Rules
KG

Agent Planner

Potential Rules:
r(q) ⟵ r1 ∧ r2
r(q) ⟵ r6 ∧ r12 ∧ r7 
r(q) ⟵ r8 ∧	r7 …

Potential Rules:
r(q) ⟵ r1 ∧ r2
r(q) ⟵ r6 ∧ r12 ∧ r7 
r(q) ⟵ r8 ∧	r7 …

Action Tool Set

Decompose

Action

Action Tool Set

QA PAIRS Dataset:
Question 1: Where was the person 
about whom the movie Imperium: 
Saint Peter is written killed?
Answer 1: Rome.
……

KG Environment

(c) Self-learning Framework

Iterate 1 Iterate 2 Iterate 3
𝜽𝟎 𝜽𝟏 𝜽𝟐

Online 
Explore

⓵

⓶

Initial Candidate 
Trajectory Pool

⓷

⓸Outcome 
Reward

Refined Candidate 
Trajectory Pool

Merged Trajectory 
Pool

⓹ Self-
Refine

⓺
⓺ Merge

Policy Updating⓻

𝑫𝟎 #𝑫𝟎

𝑫𝟎∗

Figure 2: The overview of our proposed SymAgent. (a) the planner in SymAgent, which derives the symbolic rules from the KG
to guide the reasoning; (b) the executor in SymAgent, which conducts the automatic action invocation to obtain the answer; (c)
the self-learning framework to enhance the agent iteratively; and (d) an example of the synthesized action invoking trajectory.

requiring analogous solution strategies. For each 𝑞𝑠𝑒𝑒𝑑𝑖 , we adopt
breadth-first-search (BFS) to sample a set of closed paths 𝑃𝑖 =

{𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖𝑚 } from the query entity 𝑒𝑞 to the answer entity 𝑒𝑎
within the KGG, where 𝑝𝑖 𝑗 = 𝑟1 (𝑒𝑞, 𝑒1)∧𝑟2 (𝑒1, 𝑒2) . . .∧𝑟𝐿 (𝑒𝐿−1, 𝑒𝑎)
is a sequence of relations. These closed paths can be considered as
groundings of symbolic rules that answer the question. We then
generalize these closed paths by replacing specific entities with vari-
ables, transforming them into rule bodies shown in Equation 1. This
process constructs few-shot demonstrationsM = {(𝑞𝑠𝑒𝑒𝑑𝑖 , 𝑃𝑖 )}𝑘𝑖=1
to prompt our SymAgent to generate appropriate rule bodies for 𝑞:

𝑝 ∼ 𝜋𝜃 (·|𝜌𝑃𝑙𝑎𝑛, 𝑞,M), (3)

where 𝜌𝑃𝑙𝑎𝑛 stands for the prompt to instruct the rule bodies gen-
eration. The generated KG-aligned symbolic rules 𝑝 serve to guide
SymAgent’s global planning and prevent it from falling into blind
trial-and-error during the reasoning process.

4.2 Agent-Executor Module
Building upon the generated symbolic rules from KG G, the Agent-
Executor engages in a cyclical paradigm of observation, thought, and
action to navigate the autonomous reasoning process. In contrast to
existing methods that retrieve information from the KG, potentially
introducing large amounts of irrelevant data, the Agent-Executor
leverages expert feedback from the KG structure to dynamically
adjust the reasoning process. This approach enables KGs, which

store a wealth of informative and symbolic facts, to deeply partici-
pate in the reasoning process together with LLMs rather than being
merely treated as a static repository of information.

4.2.1 Action Space. Given that LLMs cannot directly process the
structured data in KGs, and considering the need to rely on ex-
ternal unstructured documents during the reasoning process to
address the issue of incomplete information in KGs, we define the
agent’s action space as a set of functional tools. By leveraging the
function call capabilities of LLMs, our SymAgent not only over-
comes the limitations of LLMs in handling structured data but also
provides a flexible mechanism for integrating diverse information
sources, thereby enhancing the agent’s reasoning capabilities and
adaptability. The action space consists of the following functional
tools:

• 𝑔𝑒𝑡𝑅𝑢𝑙𝑒𝑠 (𝑠𝑢𝑏_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛): receives the sub_question as in-
put and returns potential symbolic rules. As depicted in
Equation 3, this action leverages the inductive reasoning
capability of LLMs to generate KG-aligned symbolic rules
that decompose the sub_question, effectively guiding the
reasoning process.

• 𝑠𝑒𝑎𝑟𝑐ℎ𝑊 𝑖𝑘𝑖𝑑𝑎𝑡𝑎(𝑒𝑛𝑡, 𝑟𝑒𝑙): retrieves relevant documents from
Wikipedia when KG information is insufficient. This action
bridges structured KG data with unstructured text, enhanc-
ing reasoning with incomplete information.
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• 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑇𝑟𝑖𝑝𝑙𝑒𝑠 (𝑒𝑛𝑡, 𝑟𝑒𝑙, 𝑑𝑜𝑐): extracts triples related to the
current query’s entity and relation from retrieved docu-
ments. Notably, this action is not explicitly invoked by the
agent but automatically triggered after 𝑠𝑒𝑎𝑟𝑐ℎ𝑊 𝑖𝑘𝑖𝑑𝑎𝑡𝑎 is
called. The extracted triples are aligned with the KG’s se-
mantic granularity and can be integrated into the KG, facil-
itating its expansion.

• 𝑠𝑒𝑎𝑟𝑐ℎ𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑒𝑛𝑡, 𝑟𝑒𝑙): is a graph exploration function.
It returns neighbors of a particular entity under a given
relation in the KG, enabling efficient traversal and discovery
of related entities.

• 𝑓 𝑖𝑛𝑖𝑠ℎ(𝑒1, 𝑒2, . . . , 𝑒𝑛) returns a list of answer entities, indi-
cating that the final answers have been obtained and the
reasoning process has concluded.

4.2.2 Interactive Process. Treating the KG as the environment and
the results of action executions as observations, the entire reasoning
process becomes a sequence of agent action calls and corresponding
observations. We adopt a react-style approach [41], which gener-
ates a chain-of-thought rationale before taking actions, reflecting
on the current state of the environment. Formally, we extend the
Equation 2, and the interaction trajectory at step 𝑛 can be further
represented as:

H𝑛 = (𝑞,G, 𝑝, 𝜏0, 𝑎0, 𝑜0, . . . , 𝜏𝑛−1, 𝑎𝑛−1, 𝑜𝑛−1), (4)

where 𝜏 is the internal thought of the agent by reflecting on the
historical trajectory, 𝑎 is an action selected from the tool set defined
above, and 𝑜 is the observation determined by executing an action.
Based on this historical trajectory, the process for generating the
subsequent thought 𝜏𝑛 and action 𝑎𝑛 can be formulated as:

𝜋𝜃 (𝜏𝑛 |H𝑛) =
|𝜏𝑛 |∏
𝑖=1

𝜋𝜃 (𝜏𝑖𝑛 |H𝑛, 𝜏
<𝑖
𝑛 ),

𝜋𝜃 (𝑎𝑛 |H𝑛, 𝜏𝑛) =
|𝑎𝑛 |∏
𝑗=1

𝜋𝜃 (𝑎
𝑗
𝑛 |H𝑛, 𝜏𝑛, 𝑎

< 𝑗
𝑛 ),

(5)

where 𝜏𝑖𝑛 and |𝜏𝑛 | represent the 𝑖-th token and the total length of
𝜏𝑛 , 𝑎

𝑗
𝑛 and |𝑎𝑛 | represent the 𝑗-th token and the total length of 𝑎𝑛 .

The agent loop continues until either the 𝑓 𝑖𝑛𝑖𝑠ℎ() action is invoked
or it reaches the predefined maximum iterative steps.

4.3 Self-learning
Given that the initial dataset comprises only question-answer pairs
without well-annotated step-by-step interaction data, we propose
a self-learning framework. Rather than distilling reasoning chains
from more capable models (e.g., GPT-4 [27]), our approach enables
weak policy LLM 𝜋𝜃 to interact with the environment adequately,
thereby improving through self-training. The self-learning pro-
cess consists of two primary phases: online exploration and offline
iterative policy updating.

4.3.1 Online Exploration. In this phase, the base agent 𝜋𝜃0 interacts
with the environment autonomously through a thought-action-
observation loop according to Section 4.2.2, synthesizing a set of
initial trajectoriesU0 = {𝜇1, 𝜇2, . . . , 𝜇𝑁 }. For each trajectory 𝜇𝑖 , we
employ an outcome-based reward mechanism, defining the reward

as the final answer’s recall value:

𝑟 (𝜇𝑖 ) = Recall(𝐴𝜇𝑖 , 𝐴𝑔𝑡 ) =
|𝐴𝜇𝑖 ∩𝐴𝑔𝑡 |
|𝐴𝑔𝑡 |

, (6)

where 𝐴𝜇𝑖 is the set of answer entities extracted from the final
action of trajectory 𝜇𝑖 , and 𝐴𝑔𝑡 is the set of ground truth answer
entities. This process yields a collection of self-explored trajectories
D0 = {(𝜇𝑖 , 𝑟 (𝜇𝑖 ))}𝑁𝑖=1.

To address the potential errors in agent action invocation (e.g.,
incorrect tool invocation formats) that may impair exploration
effectiveness, we leverage the LLM’s self-reflection capability to
refine the trajectories. Using D0 as reference, the policy LLM
𝜋𝜃0 regenerate new refined trajectories, formulated as {𝜇𝑖 }𝑁𝑖=1 ∼
𝜋𝜃0 (·|𝜇𝑖 , 𝑟 (𝜇𝑖 )). After applying the same reward mechanism, we
can get a refined trajectory collection D̂0 = {(𝜇𝑖 , 𝑟 (𝜇𝑖 ))}𝑁𝑖=1.

After self-exploration and self-reflection, we obtain two trajec-
tory collections of equal size:D0 and D̂0. To enhance the quality of
candidate trajectories, we employ a heuristic method to merge these
two collections, resulting in an optimized trajectory set. Following
the principle of final answer consistency, we obtain the merged
trajectory collection D∗0 = {(𝜇∗

𝑖
, 𝑟 (𝜇∗

𝑖
))}𝑁

𝑖=1:

D∗0 (𝑖) =


(𝜇𝑖 , 𝑟 (𝜇𝑖 )), if 𝑟 (𝜇𝑖 ) > 𝑟 (𝜇𝑖 ),
(𝜇𝑖 , 𝑟 (𝜇𝑖 )), if 𝑟 (𝜇𝑖 ) < 𝑟 (𝜇𝑖 ),
(𝑡, 𝑟 (𝑡)), if 𝑟 (𝜇𝑖 ) = 𝑟 (𝜇𝑖 ) > 0,
filtered, if 𝑟 (𝜇𝑖 ) = 𝑟 (𝜇𝑖 ) = 0.

(7)

In this equation, 𝑡 = argmin𝑠∈{𝜇𝑖 ,𝜇𝑖 } |𝑠 | denotes that we select the
trajectory with the shorter length when the rewards are equal and
non-zero.

4.3.2 Offline Iterative Policy Updating. Given the merged trajecto-
ries D∗0 , an intuitive way to improve the performance of the agent
is fine-tuning with these trajectories. Under an auto-regressive
manner, the loss of the agent model can be formulated as:

L𝑆𝐹𝑇 = − E𝜇∼D∗ [𝜋𝜃 (𝜇 |𝑞)],

𝜋𝜃 (𝜇 |𝑞) = −
|X |∑︁
𝑗=1
(1(𝑥 𝑗 ∈ A) × log𝜋𝜃 (𝑥 𝑗 |𝑞, 𝑥< 𝑗 )),

(8)

where 1(𝑥 𝑗 ∈ A) is the indicator function about whether 𝑥 𝑗 is a
token belonging to thoughts or actions generated by the agent.

After updating the policy model parameters , we employ an
iterative optimization approach to continuously improve the per-
formance of agent. The updated model undergoes repeated cycles of
self-exploration, self-reflection, and trajectory merging on the ini-
tial dataset, generating new trajectory data for further fine-tuning.
This iterative process continues until the improvement in perfor-
mance on the validation set becomes negligible, at which point we
terminate the iteration.

5 EXPERIMENTS
In this section, we evaluate SymAgent on widely used datasets. We
conduct extensive experiments to show the effectiveness of our
method by answering the following research questions:

• RQ1: How does SymAgent perform compared to state-of-
the-art (SOTA) baselines across various complex reasoning
datasets?
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Table 1: Results (%) of SymAgent. The best results are marked in bold, and the second-best results are marked with underline.
u denotes the prompt-based, whilev denotes the fine-tuned methods. ∗ denotes the unseen dataset (i.e., zero-shot setting).

Backbone Method WebQSP CWQ MetaQA-3hop∗

Hits@1 Accuracy F1 Hits@1 Accuracy F1 Hits@1 Accuracy F1

GPT-4 u CoT [36] 56.68 46.97 39.98 41.46 37.05 35.74 43.50 26.48 22.86
u w.t. Retrieval 53.03 43.57 38.95 38.92 36.23 33.77 32.00 11.29 12.61

LLaMA2-7B

u CoT [36] 38.87 29.95 25.02 13.29 12.02 11.45 2.00 0.81 0.85
u RaAct [41] 30.36 19.86 18.91 12.66 11.12 10.57 15.00 5.98 6.65
u ToG [33] 29.15 20.51 19.39 15.19 13.96 13.24 14.00 4.75 5.13
v RoG [24] 47.77 30.07 31.39 27.53 25.28 24.68 21.00 8.73 8.27

v SymAgent (Ours) 55.47 39.73 41.27 35.13 30.45 31.15 37.00 15.47 16.87

Mistral-7B

u CoT [36] 34.82 26.96 23.41 26.90 24.20 22.81 9.00 2.07 2.63
u RaAct [41] 29.55 20.61 20.34 19.94 16.82 15.88 16.00 8.42 7.65
u ToG [33] 31.98 21.69 22.11 20.57 18.19 16.65 16.50 8.29 7.77
v RoG [24] 50.61 32.91 34.22 28.16 25.92 25.31 29.50 12.13 12.92

v SymAgent (Ours) 61.94 45.02 47.08 37.66 33.51 34.05 38.50 14.82 16.12

Qwen2-7B

u CoT [36] 27.13 20.19 19.15 29.11 24.90 24.68 6.50 2.78 3.41
u ReAct [41] 40.49 29.10 28.90 25.32 22.36 22.12 20.50 7.98 7.72
u ToG [33] 54.25 38.16 39.28 30.70 27.09 26.76 26.50 10.09 9.73
v RoG [24] 51.82 34.12 35.44 29.11 26.87 26.26 25.00 11.86 11.92

v SymAgent (Ours) 78.54 57.48 57.05 58.86 50.19 48.30 57.00 24.68 25.76

• RQ2:What is the contribution of each key module in our
SymAgent framework to the overall performance?

• RQ3: How effective is the proposed self-learning frame-
work compared to distillation from teacher models?
• RQ4: To what extent can SymAgent enhance KGs by iden-

tifying missing triples and facilitating automatic KG com-
pletion?

5.1 Experimental Setup
5.1.1 Datasets. We adopt three popular knowledge graph ques-
tion answer datasets: WebQuestionSP (WebQSP) [42], Complext
WebQuestions (CWQ) [34], and MetaQA-3hop [10] for evaluation.
WebQSP and CWQ datasets are constructed from commonsense
KG Freebase [3], which contain up to 4-hop questions. MetaQA-
3hop is based on a domain-specific movie KG, and we specifically
select this dataset to evaluate the zero-shot reasoning performance
of our model in a specific domain scenario. This means we only
train on CWQ and WebQSP and then perform in-context reasoning
on MetaQA-3hop to assess the model’s generalization capabilities
to unseen relation types. To further simulate incomplete KGs, we
adopt a breadth-first search method to extract paths from the ques-
tion entity to the answer entity and then randomly remove some
triples. In this scenario, semantic parsing methods fail to obtain
the correct answers due to unexecutable formal expressions. The
detailed construction process can refer to Appendix A.1. To bet-
ter evaluate model performance on complex reasoning tasks, we
sample a subset from the test sets that specifically require multi-
hop reasoning to solve the questions. The statistics of the resulting
datasets are presented in Table 2.

Dataset Train Valid Test Max Hop |G|
WebQSP 2,826 120 247 2 8,309,195
CWQ 1,635 120 316 4 8,309,195

MetaQA-3hop - - 200 3 133,582
Table 2: Statistics of the datasets. |G| denotes the number of
triples in the background KG for each dataset.

5.1.2 Baselines. We evaluate the performance of SymAgent with
three different LLM backbones: (i) Mistral-7B [14] (Mistral-7B-
Instruct-v0.2 version), (ii) LLaMA2-7B [35] (Meta-LLaMA-2-7B-
Chat version), and (iii) Qwen2-7B [39] (Qwen2-7B-Instruct ver-
sion). Our method is compared against two prompt-based baselines:
CoT [36] and ReAct [41]. Additionally, we include two strong base-
lines, ToG [33] and RoG [24]. ToG employs an explore-and-exploit
strategy, while RoG adopts a retrieval-augmented approach, effec-
tively coupling KG and LLM to achieve state-of-the-art performance.
Notably, we have not included semantic parsing methods in our
comparisons. This is because, in the incomplete KG scenario, the
formal expressions generated by these methods are often unex-
ecutable, rendering them ineffective for this task. To provide a
comprehensive evaluation, we also incorporate comparisons with
GPT-4 (gpt-4-32K-0613) using document retrieval augmentation. All
prompt-based baselines are tested under one-shot settings, while
the fine-tuning-based baselines are trained using LoRA [12]. For
detailed prompts used in our experiments, please refer to Appen-
dix A.3. Following the previous setting, we adopt Accuracy, Hits@1,
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and F1 scores as metrics. The implementation detail can refer to
Appendix A.2.

5.2 Performance Comparison with SOTA (RQ1)
The experimental performance of our SymAgent compared to SOTA
methods is presented in Table 1. The overall results demonstrate
that SymAgent consistently achieves superior performance across
all datasets, validating the effectiveness of our approach.

First, SymAgent demonstrates consistent improvement across
all LLM backbones compared to both prompt-based and fine-tuned
methods, which underscores SymAgent’s adaptability and robust-
ness. In particular, SymAgent, with Qwen2-7B backbone, achieves
the best performance, outperforming GPT-4 across all three datasets
with average improvements of 37.19% in Hits@1, 16.87% in Accu-
racy, and 30.17% in F1 score. The superior performance can be
attributed to the better function-calling capabilities of Qwen2 com-
pared to the other two backbones, which often encounter action tool
calling errors (e.g., extra arguments). This demonstrates that our
method can effectively leverage the strengths of more advanced
LLM, enhancing the overall performance in complex reasoning
tasks.

Moreover, GPT-4 performance between CoT and retrieval aug-
mented reveals that direct document retrieval for complex questions
can harm performance, especially in domain-specific tasks. For in-
stance, in MetaQA-3hop, the F1 score degrades by 10.25 (from 22.86
to 12.61) when using retrieval augmentation. The potential reason
is that shallow vector retrieval introduces semantically similar but
irrelevant noisy information [45]. A similar trend is observed with
weaker LLMs. Interestingly, when the base model has adequate
instruction-following capabilities (e.g., Qwen2-7B), ToG outper-
forms the fine-tuned RoG. The potential reason is that the explore-
and-exploit strategy can leverage the LLM’s inherent knowledge to
address the incompleteness issue of KG, whereas RoG relies heav-
ily on path retrieval and struggles in such a scenario. In contrast,
our SymAgent can fully utilize the advantages of both KG and
LLM, effectively decomposing problems and achieving excellent
performance.

Finally, by comparing the performance of SymAgent across dif-
ferent datasets, we observe that SymAgent shows a larger improve-
ment ratio on the more challenging CWQ dataset, demonstrating
its capability to handle complex reasoning problems. Furthermore,
from the results onMetaQA-3hop, we can observe that LLMs lacking
domain knowledge perform worse, while our SymAgent can sig-
nificantly enhance the backbone’s capabilities. This improvement
is particularly notable in the zero-shot setting, where SymAgent
achieves a remarkable 6× increase in F1 score compared to the base
LLM, highlighting its ability to generalize and reason effectively
in unseen scenarios. In the following ablation and further analysis
experiments, unless otherwise specified, we adopt Qwen2-7B as
the backbone of SymAgent due to its superior performance.

5.3 Ablation Study (RQ2)
In this section, we conduct a series of ablation experiments to ana-
lyze the contribution of each component in SymAgent. To validate
the planner module (PM), executor module (EM), and self-learning
framework (SL), we systematically remove these components to

PM EM SL WebQSP CWQ

Hits@1 F1 Hits@1 F1

Variants " - - 50.61 34.22 29.43 26.34
- " - 55.06 40.58 33.54 28.95
" " - 64.37 47.48 37.66 32.65
- " " 56.68 41.73 38.92 32.63

SymAgent " " " 78.54 57.05 58.86 48.30

Table 3: Ablation study for the SymAgent with Qwen2-7B.

create variants for comparison. Ablation results in Table 3 reveal
that all components are essential because their absence has a detri-
mental effect on performance. Specifically, we argue that deriving
symbolic rules from the KG is vital, which can be demonstrated
by comparing the experimental results between SymAgent and
EM + SL, as well as PM + EM and EM-only. Similarly, by com-
paring PM-only and PM+EM, we can find that arming the model
with action tools to access unstructured documents and structured
KGs achieves notable improvement. Moreover, by comparing the
results between EM-only and EM+SL, we can find self-learning
makes minor improvements, the potential low quality of the self-
synthesized trajectories without a planner module. Overall, these
findings demonstrate the effectiveness of our modular approach,
with each component contributing uniquely to SymAgent in han-
dling complex reasoning tasks.

5.4 Analysis on Self-learning Framework (RQ3)
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Figure 3: The impact of the iteration numbers in the self-
learning phase on model performance.

The Number of Iterations. Figure 3 presents a comparative analy-
sis of the effects of the number of iterations during the self-learning
phase. In the initial stages of iterative training, we observe a rapid
improvement in model performance, validating the effectiveness of
our self-refine and heuristic merge methods in acquiring substan-
tial trajectory data. This iterative approach enables the model to
thoroughly explore the environment, thereby enhancing its perfor-
mance. Consistent with previous work [17], these findings corrob-
orate the efficacy of iterative training under rejection sampling in
bolstering the model’s comprehension of the training data. How-
ever, as the number of iterations increases, we notice fluctuations
in model performance. This phenomenon can be attributed to our
use of outcome-based rewards. In practice, the model may produce
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correct final results despite errors in intermediate steps. Contin-
ued iteration with these trajectories can lead to the model fitting
these spurious correlations. This observation highlights the need
for more nuanced evaluation metrics and reward mechanisms in
future iterations of the self-learning framework.
Roles of Self-refinement & Heuristic Merging. To further explore
the roles of self-refinement and heuristic merging within our self-
learning framework, we designed two variant training recipes: 1)
−𝑠𝑒𝑙 𝑓 -𝑟𝑒 𝑓 𝑖𝑛𝑒 , which solely employs rejection sampling for trajec-
tory data acquisition, and 2) −𝑚𝑒𝑟𝑔𝑒 , which directly utilizes refined
trajectories as the training set without merging. The experimental
results, as presented in Table 4, demonstrate that the removal of ei-
ther component adversely affects the model’s performance. The full
self-learning model consistently outperforms its variants across all
metrics on both WebQSP and CWQ datasets. On WebQSP, remov-
ing self-refinement decreases Hits@1 by 2.43 percentage points,
while removing merging leads to a 1.62 percentage point drop.
Similar trends are observed for Accuracy and F1 scores, as well
as on the CWQ dataset. These findings highlight the synergistic
effect of self-refinement and heuristic merging in our framework.
Self-refinement likely increases trajectory quantity, while merging
further enhances quality.

WebQSP CWQ

Hits@1 Accuracy F1 Hits@1 Accuracy F1

Self Learning 78.54 57.48 57.05 58.86 50.19 48.30
−𝑠𝑒𝑙 𝑓 -𝑟𝑒 𝑓 𝑖𝑛𝑒 76.11↓2.43 56.22↓1.26 56.50↓0.55 56.33↓2.53 48.75↓1.44 46.08↓2.22
−𝑚𝑒𝑟𝑔𝑒 76.92↓1.62 55.7↓1.78 55.62↓1.43 57.28↓1.58 48.83↓1.36 46.04↓2.26

Distilling 77.32↓1.22 55.17↓2.31 56.78↓0.27 54.43↓4.43 46.18↓4.01 42.98↓5.32

Table 4: The impact of different training recipes on model
performance. And the comparison between distilling from
the teacher model and the self-learning framework.

Distilled Trajectories v.s. Self-synthesized Trajectories.Weadopt
a conventional data synthesis approach to generate trajectory data
from a capable teacher model (GPT-4) and use these data to fine-
tune our model. The experimental results are presented in the 4-𝑡ℎ
row of Table 4. We observe that while the distilling approach shows
competitive performance, it consistently underperforms our self-
learning framework across all datasets. The performance gap is
more pronounced on the CWQ dataset, with decreases of 4.43, 4.01,
and 5.32 percentage points in Hits@1, Accuracy, and F1 scores,
respectively. This is because responses from a similar model are
easier-to-fit than those from a more capable model, resulting in
reduced memorization [17]. Considering the extremely high costs
and cumbersome prompt optimizations, this training approach is
far from sustainable compared to a self-learning framework.

5.5 Quality of Extracted Triples & Error Type
Analysis (RQ4)

Quality of Extracted Triples.Armed with a comprehensive action
tool set, our SymAgent addresses KG incompleteness by leverag-
ing both structured and unstructured data. The WikiSearch action
triggers an extract action to identify missing triples from retrieved
texts, effectively aligning and enriching the KG with external in-
formation. To validate this approach, we augment the KG with

Hits@1 ACC F1
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Figure 4: Performance of RoG on KG augmented with triples
extracted by our model.

SymAgent-identified triples and test a retrieval-augmented genera-
tion model RoG on this enhanced KG. As shown in Figure 4, the
results demonstrated a significant improvement in the performance
of RoG, providing empirical evidence that the quality of triples
identified by our method is sufficient for integration into existing
KGs. This finding not only validates our approach but also suggests
a potential synergistic enhancement between LLM and KG through
our SymAgent.
Error Analysis. To gain deeper insights into our model’s perfor-
mance, we conducted an error analysis by categorizing the failure
cases into four types: 1) Invalid Action (IA), where the model in-
vokes an action not defined in the action tool set, 2) Error in Argu-
ments (EA), where insufficient or excessive arguments are provided,
3) Exceeding Maximum Steps (EMS), where the reasoning steps
exceed the predefined maximum number of steps, and 4) Reason-
ing Error (RE), where the final answer is incorrect despite valid
actions and steps. Table 5 presents the distribution of these error
types across WebQSP, CWQ, and MetaQA-3hop datasets. WebQSP
errors are predominantly RE (94.34%), while CWQ and MetaQA-
3hop show more diverse distributions with significant EMS errors,
indicating potential areas for targeted improvements in the future.

Dataset IA EA EMS RE

WebQSP 3.77 0.0 1.89 94.34
CWQ 2.31 10.00 23.08 64.61

MetaQA-3hop 3.49 12.79 39.53 44.19
Table 5: Proportions (%) of different error types.

6 CONCLUSION
In this paper, we introduce SymAgent, an automatic agent frame-
work that synergizes LLM with structured knowledge to conduct
complex reasoning over KG. Our method involves utilizing sym-
bolic rules in KG to guide question decomposition, automatically
invoking action tools to address the incompleteness issue of KG,
and employing a self-learning framework for trajectory synthe-
sis and continuous improvement. This multifaceted approach not
only enhances the planning abilities of the agent but also proves
effective in complex reasoning scenarios. Extensive experiments
demonstrate the superiority of SymAgent, showcasing the potential
to foster mutual enhancement between KG and LLM.
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A APPENDIX
A.1 Construction Process of Dataset
In Algorithm 1, we demonstrate the detailed process of obtaining
potential triples of a question and construct corresponding datasets.
We employ BFS to get the reasoning path in KG and drop triples
randomly to mimic the incomplete scenario.

Hyperparameters Value

Training

lora_r 32
lora_alpha 32

lora_dropout 0.05
lora_target_modules {q, k, v, o, down, up, gate}_proj
per_device_batch_size 2

gradient_accumulation_steps 2
warmup_ratio 0.05

self-learning iterations 2

Inference

temperature 0.1
top_p 0.9
top_k 600

max_new_tokens 512
max_infer_step 10

Table 6: Detail hyperparameters used in our method.

Prompt Template of Our SymAgent

You are a knowledge graph (KG) question-answering agent that interacts
with a KG storing factual knowledge. When a user asks a question, solve it
using interleaving Thought, Action, and Observation steps. Follow this
strict format: "Thought: your thoughts.\nAction: your next action."
Available actions:
1. getReasoningPath(entity, relation): Retrieve relational reasoning paths
to answer the question. Use this first as a high-level planning step.
2. searchNeighbor(entity, relation): Search the neighbors of the entity
with the specified relation in the KG.
3. wikiSearch(entity, relation): Search Wikipedia for the entity with
respect to the relation if the KG returns no relevant results. Extract
relevant triples (entity, relation, entity) from the Wikipedia page.
4. finish(entity1, entity2, ..., entityN): Conclude the conversation with
the final answer(s).

Steps to follow:
Start with getReasoningPath to obtain potential relational reasoning paths.
Follow the most plausible path step-by-step using searchNeighbor for each
relation in the path (e.g., for path r1 -> r2, first use searchNeighbor(e1,
r1), then use searchNeighbor(e2, r2)).
If searchNeighbor returns no valid information, use wikiSearch and extract
relevant triples.
Continue following the relational reasoning path until enough information
is gathered to answer the question.
Use finish to provide the final answer(s).
Use the following response format:
Thought: <your thoughts>
Action: <your next action>
Here are some examples:
{examples}
(END OF EXAMPLES)

Figure 5: Prompt template of our SymAgent.

Prompt Template of Action Extract

Here is the document about the entity {ent}: 
{document}. You should extract relevant factual 
triples about {ent} under the relation {rel}, 
which are beneficial to answer the question 
{question}. You should only output the triples in 
the form of [[entity, relation, object], ...]

Figure 6: The extraction prompt for extraction action.

Case Study
Question: who did viggo mortensen play in lord of the rings?
Thought 1: To answer this question, I need to know the surrounding 
relational patterns of the entity Viggo Mortensen.
Action 1: getReasoningPath(Viggo Mortensen, played in).
Observation 1: Surrounding relational reasoning paths are: 
[fictional_universe.work_of_fiction.part_of_these_fictional_universes, 
fictional_universe.fictional_character.appears_in_these_fictional_univers
es], [film.film.starring, film.performance.character], 
[media_common.adapted_work.adaptations, book.book.characters], 
[film.film_series.films_in_series, book.book.characters], 
[media_common.adaptation.adapted_from, 
book.book_character.appears_in_book], [film.performance.actor, 
film.performance.character], [film.actor.film, 
film.performance.character], [people.person.gender, 
fictional_universe.fictional_character.gender], [film.performance.film, 
film.performance.character], [music.featured_artist.recordings, 
book.book_character.appears_in_book], [film.film.story_by, 
fictional_universe.fictional_character.character_created_by], 
[film.actor.film, film.film_character.portrayed_in_films]. There are 
multiple paths, maybe you should select one most potential path.
Thought 2: From the reasoning paths, the most potential one to answer the 
question is [film.film.starring, film.performance.character] since it 
relates to the actor playing a character in which he starred in. I will 
search the neighbors of the entity Viggo Mortensen with the relation path.
Action 2: searchNeighbor(Viggo Mortensen, film.film.starring).
Observation 2: No entity found under this relation in the knowlege graph. 
You can keep searching on graph or go to invoke wikiSearch to retrieve 
relevant documents. You can also just answer if you think you can based 
on the information available and your knowledge.
Thought 3: Since there are no results under the relation 
'film.film.starring' in the knowledge graph, I will search for the entity 
Viggo Mortensen in Wikipedia to find out the role he played in the Lord 
of the Rings series.
Action 3: wikiSearch(Viggo Mortensen, film.film.starring).
Observation 3: By searching, Viggo Mortensen's relevant documents are 
Known for ; The Lord of the Rings: The Return of the King. 9.0. Aragorn ; 
Captain Fantastic. 7.8. Ben ; The Lord of the Rings: The Two Towers. 8.8. 
Aragorn. He went on to play supporting roles in several notable films 
during the 1990s, including The Indian Runner (1991), Carlito's Way 
(1993), Crimson Tide (1995),.. You should extract relevant factual 
triples about Viggo Mortensen to answer the question.
Thought 4: Based on the information from Wikipedia, I can get relevant 
information in the triples of (Viggo Mortensen, film.film.starring, The 
Lord of the Rings: The Return of the King), (Viggo Mortensen, 
film.film.starring, The Lord of the Rings: The Two Towers), and (Viggo 
Mortensen, film.film.starring, Captain Fantastic). According to the 
collected information, the next step is to get the role he played in the 
Lord of the Rings series according to the reasoning path 
film.performance.character to get the role.
Action 4: searchNeighbor(The Lord of the Rings: The Return of the King, 
film.performance.character).
Observation 4: Aragorn.
Thought 5: According to the reasoning path, I have found the character 
Viggo Mortensen played in the Lord of the Rings series. I can conclude 
the conversation.
Action 5: finish(Aragorn).

Figure 7: A representative trajectory of SymAgent during
complex reasoning.
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Algorithm 1 The detailed process of dataset construction.
Require: Question 𝑞, Question entity 𝑞_𝑒𝑛𝑡 , Answer entity list

𝑎_𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 , Knowledge Graph G
Ensure: Final graph G′
1: Initialize 𝐿 ← [], G′ ← G;
2: for each 𝑎_𝑒𝑛𝑡 in 𝑎_𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 do
3: 𝑝𝑎𝑡ℎ ← 𝐵𝐹𝑆_𝑓 𝑖𝑛𝑑_𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ(G, 𝑞_𝑒𝑛𝑡, 𝑎_𝑒𝑛𝑡);
4: 𝐿.𝑒𝑥𝑡𝑒𝑛𝑑 (𝑝𝑎𝑡ℎ);
5: end for
6: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑡𝑟𝑖𝑝𝑙𝑒𝑠 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑙𝑒𝑐𝑡 (𝐿);
7: for each 𝑡 in 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑡𝑟𝑖𝑝𝑙𝑒𝑠 do
8: G′ .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑡);
9: end for
10: return G′;

A.2 Implementation Details
We fine-tune the proposed approach with LoRA. The initial learn-
ing rate is 2𝑒 − 5, and the sequence is 4096 for all the backbone
models. The training epoch is 3, and the batch size is 4. We adopt
the AdamW optimizer [21] with a cosine learning scheduler. During
the inference, we adopt vLLM [19] to accelerate the reasoning pro-
cess. All the training and inference experiments are conducted on 2
NVIDIA A800 80G GPUs within 3 hours. Detailed hyperparameters
used in our experiments are displayed in Table 6.

A.3 Prompt for Baselines
In this section, we demonstrate the prompt template and special
cases that the SymAgent encounters during its operation. The

A.4 Case Study
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