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Abstract
Traditional federated learning mainly focuses on parallel settings
(PFL), which can suffer significant communication and computation
costs. In contrast, one-shot and sequential federated learning (SFL)
have emerged as innovative paradigms to alleviate these costs. How-
ever, the issue of non-IID (Independent and Identically Distributed)
data persists as a significant challenge in one-shot and SFL settings,
exacerbated by the restricted communication between clients. In
this paper, we improve the one-shot sequential federated learning
for non-IID data by proposing a local model diversity-enhancing
strategy. Specifically, to leverage the potential of local model diver-
sity for improving model performance, we introduce a local model
pool for each client that comprises diverse models generated during
local training, and propose two distance measurements to further
enhance the model diversity and mitigate the effect of non-IID data.
Consequently, our proposed framework can improve the global
model performance while maintaining low communication costs.
Extensive experiments demonstrate that our method exhibits supe-
rior performance to existing one-shot PFL methods and achieves
better accuracy compared with state-of-the-art one-shot SFL meth-
ods on both label-skew and domain-shift tasks (e.g., 6%+ accuracy
improvement on the CIFAR-10 dataset). Our code and supplemen-
tary are available online: https://github.com/NaiboWang/FedELMY.
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1 Introduction
Federated learning (FL) [40] is a promising paradigm which enables
collaborative machine learning [2, 50] amongst multiple clients to
build a consensus global model without the need to access others’
datasets. This paradigm offers salient benefits such as preservation
of privacy [17], security of data [39], and the facility for different
clients to derive a model exhibiting a higher degree of inference
capability compared to individual client-based training [55].

As shown in Fig. 1, two federated learning paradigms are paral-
lel FL (PFL) [5, 41] and sequential FL (SFL) [38]. PFL synchronizes
model training across clients in parallel, such as FedAvg [40], while
SFL adopts a client-by-client training sequence that is widely ap-
plied in many scenarios such as healthcare [8, 9]. Compared with
PFL, SFL exhibits significant advantages in training efficiency, as
evidenced by a reduction in training rounds [57]. SFL also shows
robust performance with limited datasets [28] and offers enhanced
data privacy protection due to its decentralized architecture [21].

One main concern of SFL is communication costs. To mitigate
communication costs, one-shot federated learning [19] has been
proposed where only one communication round is needed for the
clients to interact with the server or other clients. However, current
one-shot FL works [22, 58] mainly focus on PFL (Fig. 1 (a)) which
typically requires a central server to facilitate model training. This
can lead to numerous limitations including risk of privacy leak-
age [27] and server node bottlenecks [20]. To address these issues,
the decentralized structure [47] has been incorporated into one-shot
PFL which typically utilizes a mesh-topology network for clients
to disseminate their models to others. Nonetheless, this setting still
leads to significant communication overhead than SFL. In contrast,
one-shot SFL, wherein each client only needs to communicate with
its adjacent client once, can greatly reduce communication costs.
However, existing studies on one-shot SFL [8, 44] struggle with
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(a) Parallel FL framework (b) Sequential FL framework

Figure 1: Two federated learning settings.

handling the non-IID data, a common challenge in FL that signifi-
cantly impairs the performance of federated models [46]. How to
tackle the non-IID data in one-shot SFL is still an open problem.

The key question in one-shot SFL is how to effectively transfer
knowledge given the limited communication, especially with the
non-IID data. Our insight is to utilize the diversity of models. Exist-
ing studies have shown that combining multiple neural networks
can notably enhance the model’s performance due to the inher-
ent diversity amongst model weights [7, 25, 52]. This observation
has also been solidly backed by theoretical support from Rame et
al. [42]. However, directly applying such a diversity strategy in
SFL is not feasible, since SFL restricts each client to receive only
one model from its adjacent client . This limitation could lead to
insufficient diversity during model training, which can potentially
undermine the performance of the final trained model. To overcome
this challenge within the one-shot SFL framework, we propose a
diversity-enhanced mechanism for model training. This mechanism
is designed to augment the diversity of locally trained models. By
generating a broader spectrum of models, we facilitate enriched
knowledge transfer between adjacent clients, which also serves to
mitigate the impact of data distribution disparities across clients.

In this paper, we present a novel one-shot sequential Federated
learning framework by Enhancing LocalModel diversitY (FedELMY).
Specifically, we improve the local model training diversity by con-
structing a model pool consisting of various models for each client.
We introduce two distance regularization terms during the local
training process to enhance model training diversity while mitigat-
ing the impact of non-IID data. Fig. 2 presents a case study illustrat-
ing our core concept. Compared with conventional federated learn-
ing methods, our approach effectively minimizes communication
costs, safeguards data privacy, and mitigates the detrimental effects
of non-IID data, thereby enhancing overall model performance. Ex-
periments show that our method can outperform existing one-shot
SFL methods on both label-skew and domain-shift datasets.

The main contributions of this paper are as follows:

• We tackle the novel and practical problem of one-shot se-
quential federated learning. To the best of our knowledge,
this is the first work to systematically investigate the one-
shot communication setting in sequential federated learning.
• We introduce a novel framework FedELMY to reduce the
communication cost and improve the global model perfor-
mance by enhancing model diversity during local training.
• We conduct extensive experiments on four datasets, consid-
ering both feature and label distribution shifts. Our method

achieves superior performance compared with existing one-
shot PFL and SFL methods.

2 Related Work
2.1 Parallel Federated Learning
One well-known PFL method is FedAvg [40], whose performance is
hindered due to the dispersed nature of the data (non-IID). Methods
such as FedProx [36], FedDyn [1], Astraea [13], pFedMe [49], and
FedCurv [46] use a measure of global parameter stiffness to tackle
data heterogeneity in federated learning. Additionally, approaches
like FedDC [16] and SCAFFOLD [29] use a global gradient adjust-
ment mechanism tomanage local variations of the data. Other meth-
ods like FedGMM [53], FCCL [23], FedBN [37] and ADCOL [34]
utilize the personalized model instead of a shared global model to
improve the performance of federated learning. These methods all
necessitate a central server for model training.

Another PFL scenario is the decentralized federated learning [3,
43, 56] when edge devices conduct training without a central server.
Sun et al. [48] proposed the decentralized FedAvg with momentum
(DFedAvgM) algorithm to improve the performance of trained mod-
els in the decentralized federated learning setting. Shi et al. [45]
applied the SAM [15] optimizer to improve the model consistency
of decentralized federated learning. This setting can better protect
privacy than centralized PFL but incurs more communication costs.

2.2 Sequential Federated Learning
Recently, Sequential Federated Learning (SFL) started to gain atten-
tion in the FL community. Micah J et al. [44] proposed a basic SFL
framework to facilitate multi-institutional collaborations without
sharing patient data; Li et al. [38] proved that the convergence
guarantees of SFL on heterogeneous data are better than PFL for
both full and partial client participation, and validated that SFL
outperforms PFL on extremely heterogeneous data in cross-device
settings; Chen et al. [9] proposed MetaFed, an SFL scheme with
cyclic knowledge distillation for personalized healthcare; Cho et
al. [10] also provided convergence analysis of sequential federated
averaging and proves that it can achieve a faster asymptotic conver-
gence rate than vanilla FedAvg with uniform client participation
under suitable conditions. However, existing works still lack the
ability to deal with non-IID data and exhibit poor performance in
real-world applications.

2.3 One-shot Federated Learning
One-shot federated learning [12, 14, 19, 47], which aims to train a
global model with only one round of communication between the
clients and the server, has been proposed to reduce the communi-
cation cost and simultaneously enhance data privacy protection
in federated learning. FedDISC [54] made progress in one-shot
semi-supervised federated learning, employing a pre-trained diffu-
sion model. Investigations by Diao et al. [11] and Joshi et al. [26]
have independently explored one-shot federated learning, viewing
the problem through the respective perspectives of the open-set
problem and Fisher information. Moreover, the proliferation of
pre-trained models has sparked interest in collaborative, model-
centric machine learning [4, 51]. Instances such as FedKT [33]
and DENSE [58] are two one-shot federated learning schemes that
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(a) Training loss surface on local dataset 𝐷𝑖 . (b) Test error surface on the whole test set.

Figure 2: An illustration of our training solution on client 𝑖. Based on previously trained models in the model pool, every
new model 𝑚𝑘 starts training from 𝜃𝑠

𝑘
= 𝑓 ({𝜃𝑖 }𝑘−1𝑖=0 ) to improve training diversity (𝑓 is the average function in our paper).

During training, optimization of 𝜃𝑘 is constrained within a specific region (the non-shadow areas). 𝜃𝑘 is required to maintain a
certain distance (𝑑1) from existing models {𝜃𝑖 }𝑘−1𝑖=0 to enhance model diversity, and should not diverge significantly (𝑑2) from
the initial model 𝜃0 to prevent deviation from the globally optimal solution caused by non-IID data. After training, all trained
models {𝜃𝑖 }𝑘𝑖=1 display similar training losses on the local dataset 𝐷𝑖 (a) but have different test errors on the whole test set (b).
Meanwhile, the averaged model 𝜃𝑎𝑣𝑔 of all models in the model pool achieves a lower test error than any single model (b).

choose to send models instead of gradients to the central server and
generate a final global model through knowledge distillation. De-
spite their advancements, these one-shot methods are not designed
for sequential federated learning, which still results in a higher risk
of privacy leakage. Thus, devising a one-shot sequential federated
learning framework is still under-explored.

3 Method
In this section, we introduce our problem setting and present our
proposed algorithm FedELMY. The overview of our method is
demonstrated in Fig. 3.

3.1 Problem Formulation
Assume there are 𝑁 different clients (parties), each client has its
own private dataset 𝐷𝑖 = {(𝑥𝑘 , 𝑦𝑘 )}𝑛𝑖𝑘=1 with size 𝑛𝑖 . The principal
goal of sequential federated learning is to develop a global model
𝑚 across the dataset D = {𝐷𝑖 }𝑁𝑖=1, by minimizing the error on
training data. The optimization objective is formulated as:

min
𝑚

∑︁𝑁

𝑖=1
E(𝑥,𝑦)∼𝐷𝑖

[𝐿(𝑚;𝑥,𝑦)], (1)

where 𝐿(𝑚;𝑥,𝑦) is the loss function evaluated on the private dataset
𝐷𝑖 from client 𝑖 (𝑐𝑖 ) with model𝑚. The training procedure of se-
quential federated learning is described as follows:

1. At the start of each training round 𝑟 , the client’s training se-
quence {𝑐𝜋1 , 𝑐𝜋2 , · · · , 𝑐𝜋𝑁

} is determined by randomly selecting in-
dices {𝜋1, 𝜋2, · · · , 𝜋𝑁 } without replacement from set {1, 2, · · · , 𝑁 }.

2. At the very beginning of training when round 𝑟 = 1, randomly
initialize global model𝑚 (0) .

3. For the 𝑖-th client (𝑐𝜋𝑖 ) in round 𝑟 , initialize its model𝑚 (𝑟 )
𝜋𝑖 ,0

with the latest model:

𝑚
(𝑟 )
𝜋𝑖 ,0 =

{
𝑚 (𝑟−1) , if 𝑖 = 1
𝑚
(𝑟 )
𝜋𝑖−1,𝐸𝑙𝑜𝑐𝑎𝑙

, if 𝑖 > 1
(2)

where𝑚 (𝑟−1) is the global model received from round 𝑟 − 1, and
𝑚
(𝑟 )
𝜋𝑖−1,𝐸𝑙𝑜𝑐𝑎𝑙

is the model received from the (𝑖 − 1)-th client (𝑐𝜋𝑖−1 )
in round 𝑟 after it trained its model for 𝐸𝑙𝑜𝑐𝑎𝑙 epochs.

4. Update model𝑚 (𝑟 )
𝜋𝑖 ,0 for 𝐸𝑙𝑜𝑐𝑎𝑙 epochs based on 𝐷𝜋𝑖 and send

𝑚
(𝑟 )
𝜋𝑖 ,𝐸𝑙𝑜𝑐𝑎𝑙

to the (𝑖 + 1)-th client (𝑐𝜋𝑖+1 ), if SGD [6] is chosen as the
optimizer, then the update can be described by:

𝑚
(𝑟 )
𝜋𝑖 ,𝑘+1 =𝑚

(𝑟 )
𝜋𝑖 ,𝑘
− 𝜂 · 𝑔 (𝑟 )

𝜋𝑖 ,𝑘
(3)

where 𝑚 (𝑟 )
𝜋𝑖 ,𝑘+1 denotes the local model of client 𝜋𝑖 after 𝑘 local

training steps in round 𝑟 , 𝜂 is the learning rate, and 𝑔 (𝑟 )
𝜋𝑖 ,𝑘

represents
the gradient of the loss function based on 𝐷𝜋𝑖 at step 𝑘 .

5. At the end of round 𝑟 , i.e., after all clients finished their training,
we can get the global model𝑚 (𝑟 ) of round 𝑟 as:

𝑚 (𝑟 ) =𝑚
(𝑟 )
𝜋𝑁 ,𝐸𝑙𝑜𝑐𝑎𝑙

(4)

For one-shot sequential federated learning, only 1 training round
is required, i.e., 𝑟 ≡ 1, thus𝑚 (1) will be the final global model.

Analysis. Although the communication cost is low, the infor-
mation exchanged in SFL is limited, especially under the one-shot
setting. Therefore, it is a big challenge to aggregate diverse and
useful information to get a better global model. In other words, the
diversity of distributed data under the one-shot SFL paradigm has
not been well utilized. Meanwhile, the non-IID data in SFL increases
the risk of models getting stuck in a local minimum, which further
limits the enhancement of the generalization ability of the global
model [36]. Hence, it is essential to explore methods to increase the
diversity during model training and mitigate the impact of non-IID
data to enhance the model’s performance in one-shot SFL.

3.2 Local Model Diversity Enhancement
The authors of SWAD [7] demonstrate that solely minimizing em-
pirical loss in a single model is typically insufficient for achieving
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Figure 3: Overview of our method. Every client 𝑖 receives a model𝑚𝑖−1
𝑎𝑣𝑔 from its previous client 𝑖 − 1 and sends model𝑚𝑖

𝑎𝑣𝑔 to its
next client 𝑖 + 1 after training (I). For each client 𝑖, we train 𝑆 models and put them into its model poolM𝑖 (II). Every new model
𝑚𝑖

𝑗
is initialized to the average of the existing models inM𝑖 and trained under the control of 𝑑1 and 𝑑2 (III).

good generalization. Furthermore, they argue that the performance
markedly improves through averaging diverse models trained by
various hyperparameters, even when the training losses of these
models are similar. Therefore, we propose to enhance diversity by a
Model Pool, which is essentially a collection of models maintained
by a client during its local training. Here, every client 𝑖 possesses
a model poolM𝑖 initially consisting of a solitary model, denoted
as𝑚𝑖

0. For the first client when 𝑖 = 1, the model𝑚1
0 undergoes the

process of random initialization, followed by a warm-up process
over 𝐸w epochs on its local dataset𝐷1. As for the subsequent clients
indexed from 𝑖 = 2 : 𝑁 , each model,𝑚𝑖

0, is assigned to be the aver-
age model𝑚𝑖−1

𝑎𝑣𝑔 which is efficiently derived from the model pool
M𝑖−1 of the previous client 𝑖 − 1:

𝑚𝑖−1
𝑎𝑣𝑔 ←

1
|M𝑖−1 |

|M𝑖−1 |−1∑︁
𝑡=0

𝑚𝑖−1
𝑡 , (5)

The parameters to be sent to the next client have been improved
to an average of a local diverse model pool instead of a single model.

Then, for each individual client 𝑖 , we train an additional series
of 𝑆 models, denoted as {𝑚𝑖

𝑗
}𝑆
𝑗=1, on the local dataset 𝐷𝑖 to probe

a broader range of diverse models. Each new model, 𝑚𝑖
𝑗
, stems

from the existing models in the established model pool,M𝑖 . More
specifically, initialization of every new model 𝑚𝑖

𝑗
is achieved by

averaging all the models currently in circulation within the model
poolM𝑖 , with the first model𝑚𝑖

0 included; that is,

𝑚𝑖
𝑗 ←

1
|M𝑖 |

∑︁ |M𝑖 |−1
𝑡=0

𝑚𝑖
𝑡 , (6)

In this way, we craft a unique launching point for the training
of each new model, ensuring a departure from all earlier models
within our poolM𝑖 . Consequently, a diverse array of starting points
is harnessed, granting us access to a more comprehensive set of
potential solutions that evade the restrictions of a singular training
trajectory and its attendant limitations.

After initialization, themodel𝑚𝑖
𝑗
is then trained for𝐸𝑙𝑜𝑐𝑎𝑙 epochs,

employing the same hyperparameters as with preceding models.
Upon finishing training,𝑚𝑖

𝑗
will be added to the model poolM𝑖 .

After training all 𝑆 models for client 𝑖 , the client will calculate the
final averaged model𝑚𝑖

𝑎𝑣𝑔 , which is the average of all models in
M𝑖 , and send 𝑚𝑖

𝑎𝑣𝑔 to the subsequent client, 𝑖 + 1. This process
will be repeated until client 𝑖 = 𝑁 concludes its local training.
Upon completion, the final client 𝑖 = 𝑁 will output the final model
𝑚𝑓 𝑖𝑛𝑎𝑙 , which is the average of all models in its model poolM𝑁 ,

i.e.,𝑚𝑓 𝑖𝑛𝑎𝑙 ← 1
|M𝑁 |

∑ |M𝑁 |−1
𝑡=0 𝑚𝑁

𝑡 .
To further enhance training diversity and prevent the conver-

gence of the newly generated model𝑚𝑖
𝑗
towards the states of ex-

isting models inM𝑖—thereby diminishing diversity—we aim to
maintain the current exploration direction of the model as distinct
as possible from those of existing models, throughout the training
process. Consequently, we introduce a new distance control term,
𝑑1, in the training process, which is defined as:

𝑑1 =
1
|M𝑖 |

∑︁ |M𝑖 |−1
𝑡=0

𝑑𝑖𝑠𝑡 (𝑚𝑖
𝑗 ,𝑚

𝑖
𝑡 ) (7)

where 𝑚𝑖
𝑗
represents the current model being trained for client

𝑖 , and 𝑚𝑖
𝑡 signifies a model in the model pool M𝑖 . We use the

ℓ2 norm for 𝑑𝑖𝑠𝑡 , that is, calculating the averaging the 𝐿2 − 𝑛𝑜𝑟𝑚
between the currentmodel and all existingmodels in themodel pool.
The loss function incorporates and deducts this distance during
training, allowing the model to maximize its distance from the
existing models, therefore promoting training diversity.

3.3 Mitigation of Non-IID Data Impact
In non-IID scenarios, variations in local objectives may risk de-
viating from the globally optimal solution across multiple local
iterations, thereby impeding convergence [36]. To prevent signif-
icant deviation of the model from the global solution, we further
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Algorithm 1: Our proposed FedELMY

Input: Local datasets D = {𝐷𝑖 }𝑁𝑖=1, warm-up epoch 𝐸w,
learning rate 𝜂, number of local iterations 𝐸𝑙𝑜𝑐𝑎𝑙 ,
model number to be trained per client 𝑆 , scale
hyperparameters 𝛼 , 𝛽

Output: The final model𝑚𝑓 𝑖𝑛𝑎𝑙

1 Initialization: For client 1, warm up a randomly initialized
model𝑚0

𝑎𝑣𝑔 for 𝐸w epochs
2 for client 𝑖 = 1 : 𝑁 do
3 Only for client 𝑖 = 2 : 𝑁 , receive𝑚𝑖−1

𝑎𝑣𝑔 from client 𝑖 − 1
4 // Initialize model poolM𝑖 for client 𝑖
5 M𝑖 = {𝑚𝑖

0} with𝑚
𝑖
0 ←𝑚𝑖−1

𝑎𝑣𝑔

6 for 𝑗 = 1 : 𝑆 do
7 // Initialize𝑚𝑖

𝑗

8 𝑚𝑖
𝑗
← 1
|M𝑖 |

∑ |M𝑖 |−1
𝑡=0 𝑚𝑖

𝑡

9 // Local training for𝑚𝑖
𝑗

10 for 𝑘 = 1 : 𝐸𝑙𝑜𝑐𝑎𝑙 do
11 L(𝑚𝑖

𝑗
) = ℓ (𝑚𝑖

𝑗
;𝐷𝑖 ) − 𝛼 · 𝑑1 + 𝛽 · 𝑑2

12 𝑚𝑖
𝑗
←𝑚𝑖

𝑗
− 𝜂∇𝑚L(𝑚𝑖

𝑗
)

13 end
14 M𝑖 ←M𝑖 ∪ {𝑚𝑖

𝑗
}

15 end

16 𝑚𝑖
𝑎𝑣𝑔 ← 1

|M𝑖 |
∑ |M𝑖 |−1
𝑡=0 𝑚𝑖

𝑡

17 Only for client 𝑖 = 1 : 𝑁 − 1, send𝑚𝑖
𝑎𝑣𝑔 to client 𝑖 + 1

18 end
19 // For the final client 𝑖 = 𝑁 , output model𝑚𝑓 𝑖𝑛𝑎𝑙

20 𝑚𝑓 𝑖𝑛𝑎𝑙 ←𝑚𝑁
𝑎𝑣𝑔

refine the model training process by introducing an additional reg-
ularization term 𝑑2, defined as follows:

𝑑2 = 𝑑𝑖𝑠𝑡 (𝑚𝑖
𝑗 ,𝑚

𝑖
0) = | |𝑚

𝑖
𝑗 −𝑚

𝑖
0 | |2, (8)

where 𝑚𝑖
0 represents the first model in the model pool M𝑖 for

client 𝑖 . The loss function also incorporates this term to ensure
that the model maintains reasonable proximity to the initial model
𝑚𝑖

0 (global solution of previous clients) in the pool during local
updates. It helps mitigate the effect of non-IID data distribution
while accommodating system heterogeneity.

The total loss function L for model𝑚𝑖
𝑗
is formed as follows:

L(𝑚𝑖
𝑗 ) = ℓ (𝑚𝑖

𝑗 ;𝐷𝑖 ) − 𝛼 · 𝑑1 + 𝛽 · 𝑑2, (9)

where ℓ denotes the original loss function, 𝐷𝑖 is the local dataset
for client 𝑖 , and 𝛼 and 𝛽 are two hyper-parameters that govern the
effect of both distances on model training. Our aim is to achieve
a balance that enhances model training diversity while mitigating
the impact of non-IID data.

3.4 Implementation Details
The details of our method are depicted in Algorithm 1. The training
procedure begins at client 1, which acts as the starting point for
training with a warm-up phase (line 1). Then, each client 𝑖 will

(a) Label-skew distribution.

Client 1

Domain 1

Client K

Domain K

(b) Domain-shift distribution.

Figure 4: Two data distributions across clients. For the label-
skew distribution, the color depth of every square represents
the number of samples of the corresponding class on that
client; for the domain-shift (feature-skew) distribution, every
client possesses a specific domain with all classes.

create and initialize a model poolM𝑖 (lines 3-5). The process of
involving a new model𝑚𝑖

𝑗
inM𝑖 is presented in line 8. Lines 10-13

elaborate on the local training process per model based on our
customized loss function L, as delineated in Sec. 3.3. Once all mod-
els for client 𝑖 have completed training, the average model𝑚𝑖

𝑎𝑣𝑔

derived fromM𝑖 is sent to the next client 𝑖 + 1 (lines 16-17). The
final global model𝑚𝑓 𝑖𝑛𝑎𝑙 is obtained as the average of the models
in model poolM𝑁 of the final client 𝑁 (line 20).
Communication cost. In ourmethod, each client will send amodel
to its adjacent client only once, thus only 𝑁 − 1 model exchanges
are required. Therefore, the overall communication cost for all 𝑁
parties is 𝑂 (𝑁𝑀), where𝑀 represents the size of the model.
Computation cost. In our approach, every client will train 𝑆 mod-
els, thus the overall computation cost for all𝑁 parties is𝑂 (𝑁𝑆𝐸𝑙𝑜𝑐𝑎𝑙 ).

4 Experiments
4.1 Experimental Setup
Datasets and Data Partition. As shown in Fig. 4, in federated
learning applications, non-IID data distribution is a common sce-
nario, often arising in two forms: label-skew [11] and feature-skew
(also known as domain-shift) [24]. We seek to corroborate the ef-
fectiveness of our method under these two distinctive non-IID
conditions. We select two datasets associated with label-skew set-
ting, namely CIFAR-10 [30] and Tiny-ImageNet [31], along with
two datasets linked to domain-shift setting, specifically PACS [32]
and Office-Caltech-10 [18].

The training datasets for CIFAR-10 and Tiny-ImageNet are par-
titioned into 𝑁 = 10 clients with Dirichlet distribution 𝐷𝑖𝑟 (0.5).
Meanwhile, with respect to the PACS andOffice-Caltech-10 datasets,
they intrinsically contain four distinct domain samples, each allo-
cated to a single client, yielding 𝑁 = 4 clients in total. Each client is
provided with a randomly selected 90% of the local training dataset
for training purposes, with the remaining serving as the validation
set. We test the final model𝑚𝑓 𝑖𝑛𝑎𝑙 on all test data from all clients,
providing a global test performance measurement.
Baselines. We compare our method with baselines under various
federated learning settings: DFedAvgM [48], a decentralized adap-
tation of the extensively studied FedAvg [40] method in federated
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Table 1: Test accuracy (%,mean±std) comparison of our FedELMYmethod to other baselines on both label-skew and domain-shift
(feature-skew) tasks. MetaFed, FedSeq and our FedELMY are SFL methods, while other baselines are all PFL methods.

Distribution Label-Skew Domain-Shift
Dataset CIFAR-10 Tiny-Imagenet PACS Office-Caltech-10
𝐸𝑙𝑜𝑐𝑎𝑙 100 200 100 200 100 200 100 200

DFedAvgM 19.32±2.13 18.59±1.65 2.72±0.52 2.02±0.20 20.49±1.07 21.58±2.28 10.18±1.56 10.01±0.70
DFedSAM 17.12±0.44 18.51±1.28 2.58±0.29 3.15±0.29 19.01±1.09 20.79±1.36 14.74±1.63 15.09±1.04
FedOV 36.32±7.56 38.06±7.40 1.18±0.10 1.29±0.30 12.09±4.00 22.15±1.40 9.67±4.09 10.01±3.72
DENSE 61.76±0.43 64.59±1.04 1.27±0.45 1.49±0.05 17.34±2.14 15.60±5.40 33.12±5.16 36.68±4.87
MetaFed 71.46±0.95 71.31±0.73 23.52±0.29 24.76±0.24 35.67±0.27 38.73±2.61 41.78±3.24 42.26±3.77
FedSeq 72.92±0.62 73.59±0.95 25.50±0.34 25.08±0.89 43.68±1.29 46.53±0.75 32.78±3.99 37.07±5.78

FedELMY 79.03±0.74 80.28±1.18 32.84±0.22 30.42±0.10 46.08±1.82 47.74±1.68 44.64±1.98 45.26±3.93

learning; DFedSAM [45], an application of the SAM [15] optimizer
in decentralized PFL; FedOV [35], a centralized one-shot feder-
ated learning method employing the open-set to bolster the final
model; DENSE [58], a one-shot federated learning framework also
reliant on a central server to deliver a global model via knowledge
distillation. Lastly, we compare our method to two sequential fed-
erated learning methods:MetaFed [9], a personalized sequential
federated learning approach used for healthcare, which requires
at least two rounds of communication; FedSeq [38], which is the
state-of-the-art sequential federated learning algorithm.

In an effort to ensure a fair comparison, we adapted the decen-
tralized PFL methods DFedAvgM and DFedSAM to the one-shot
setting, and adjusted these methods to select all clients for training
and communication to fit the setting. In the remaining parts, unless
otherwise specified, we set the local training epoch 𝐸𝑙𝑜𝑐𝑎𝑙 to 200.
For more implementation details about our method and all baseline
methods, such as the optimizer, learning rate and batch size we
employed, please refer to Sec. 1 of the supplementary material.

4.2 Effectiveness
4.2.1 One-shot Setting. Table 1 presents the test accuracy of differ-
ent methods in two training settings (𝐸𝑙𝑜𝑐𝑎𝑙 = 100 and 200) to ver-
ify the robustness of our method. Results show that our FedELMY
method outperforms all other methods across all datasets includ-
ing both label-skew and domain-shift tasks. Specifically, FedELMY
surpasses existing SFL methods by over 6% in accuracy, and out-
performs current PFL methods by more than 15% on the CIFAR-10
(label-skew) dataset. Additionally, FedELMY achieves a 25% higher
accuracy over PFL methods and at least an 1.5% improvement over
SFL methods on the PACS (domain-shift) dataset. These results
consistently demonstrate the effectiveness of our method.

It is noteworthy that for the Tiny-ImageNet dataset, due to its
large number of classes (200), most PFL baselines fail to deliver
effective performance such as DENSE (close to random guesses),
suggesting that they cannot effectively handle datasets with too
many classes. However, our method works well and also achieves
improvement compared to other SFL methods. Such improvements
are attributed to the diverse local training so that our method can
learn better feature representations.

In addition, it is not always the case that the test accuracy of
𝐸𝑙𝑜𝑐𝑎𝑙 = 200 is better than 100, indicating that simply increasing

Table 2: Few-Shot performance comparison for PACS dataset.

Shot 1 3 5 7
MetaFed 41.62% 44.75% 46.11% 46.64%
FedSeq 47.31% 49.30% 50.96% 50.97%

FedELMY 49.14% 56.35% 57.05% 57.13%

Figure 5: Communication cost comparison of different al-
gorithms for CIFAR-10 dataset when the number of clients
𝑁 = 10 with model ResNet-18.

the number of training rounds does not always improve model
performance – enhancing diversity is an essential factor.

4.2.2 Few-Shot Setting. Although FedELMY is designed for the
one-shot setting, here we explore the performance of FedELMY
in few-shot scenarios to validate the scalability of our framework,
i.e., when the final client 𝑁 sends model 𝑚𝑁

𝑎𝑣𝑔 to the first client
1, thereby starting a new cycle of model training. As we can see
from Table 2, even under few-shot settings, FedELMY consistently
outperforms the SFL baselines. Such observations underscore the
effectiveness and scalability of FedELMY. Meanwhile, we observe
that as the number of training rounds increases to a certain extent,
the overall performance does not significantly improve, indicating
that the model has reached a state of convergence. This concludes
that blindly increasing the number of training rounds will not
significantly enhance the model performance.

4.3 Efficiency
In this section, we will evaluate our method’s efficiency by compar-
ing its communication cost and model performance under different
computation costs with other baselines.
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Figure 6: Test accuracy comparison with different compu-
tation costs on CIFAR-10 dataset, where FedELMY (𝑆 =

5, 𝐸𝑙𝑜𝑐𝑎𝑙 = 40) means we will train 5 models on every client,
wherein each model undergoes 40 training epochs in our
framework; FedSeq (𝐸𝑙𝑜𝑐𝑎𝑙 = 1000) denotes that we will train
only 1 model for 1000 epochs for every client in FedSeq.

4.3.1 Communication cost. Fig. 5 shows the communication ex-
penses of different methods with 𝑁 = 10 clients on the CIFAR-10
dataset with the Resnet-18 model, whose size is𝑀 = 46.2 MB. The
communication cost of FedELMY is restricted to (𝑁 − 1) × 𝑀 =

415.8 MB, with only the FedSeq method displaying the same cost
as ours; however, it notably underperforms in performance (Table.
1). MetaFed requires (2𝑁 − 1) × 𝑀 = 877.8 MB of communica-
tion cost since it requires at least two rounds of communication
(common knowledge accumulation and personalization). Central
server-dependent methods, such as DENSE and FedOV, require an
expenditure of 𝑁 ×𝑀 = 462 MB to transfer models to the server.
Other methods mandating communication with their neighbors
like DFedAvgM and DFedSAM, will require even higher commu-
nication costs. Accordingly, our method effectively diminishes the
communication burden of FL and thus strengthens data privacy.

4.3.2 Computation cost. Given that FedELMY requires training 𝑆
models at each client, it involves 𝑆 × 𝐸𝑙𝑜𝑐𝑎𝑙 epochs of training per
client. Compared to FedSeq, in which each client trains a single
model for 𝐸𝑙𝑜𝑐𝑎𝑙 epochs, and MetaFed, which necessitates 2×𝐸𝑙𝑜𝑐𝑎𝑙
epochs of training per client, our method appears to demand a
higher computational expense. However, FedELMY significantly
enhances the model performance without increasing the communi-
cation cost (Table. 1). Thus, our method strikes a balance (trade-off)
between computational cost (training time) and performance gains.

Meanwhile, we conducted experiments to align the computa-
tional costs of different methods for a fair comparison (Fig. 6). First,
we align the computation cost of our method to the baselines. By
setting {𝑆 = 5, 𝐸𝑙𝑜𝑐𝑎𝑙 = 40}, FedELMY maintains the same computa-
tional cost as baselines. As we can see, even under this setting, our
method still outperforms the baselines; then, we align the computa-
tion cost of the baselines to FedELMY by increasing 𝐸𝑙𝑜𝑐𝑎𝑙 to 1000,
Fig. 6 shows that FedSeq displays worse performance and MetaFed
shows negligible variation in its performance. This can be attributed
to the phenomenon of overfitting due to excessive local training,
which increases the model’s generalization error and hence, com-
promises their performance. Contrastingly, our approach, which

Table 3: Ablation studies on different regularization terms.

Method M 𝑑1 𝑑2 CIFAR10 PACS
MetaFed 71.29% 41.62%
FedSeq 73.54% 47.31%

FedELMY ✓ 78.92% 48.11%
FedELMY ✓ ✓ 79.62% 49.04%
FedELMY ✓ ✓ 79.77% 48.94%
FedELMY ✓ ✓ ✓ 80.08% 49.14%

(a) Effect of warm-up epoch 𝐸w. (b) Effect of model quantity 𝑆 .

(c) Effect of scale parameter 𝛼 . (d) Effect of scale parameter 𝛽 .

Figure 7: Grid search results for CIFAR-10 dataset to investi-
gate the sensitivity of FedELMY to various hyperparameters.

equally included 𝑆 × 𝐸𝑙𝑜𝑐𝑎𝑙 training rounds, exhibited superior per-
formance. These experiments all validate the efficacy of our model
training procedures by the diversity-enhanced mechanism.

4.4 Ablation study
In this section, we examine the impact of distance metrics, hy-
perparameters, and diversity control measures on our method’s
performance, as well as the influence of client orders.

4.4.1 Effects of distance terms. We conducted ablation experiments
to verify the effectiveness of the components in our method. Since
the model poolM is indispensable, we examined the impact of
the two distance regularization terms, 𝑑1 and 𝑑2, referenced in
Eq. (7) and Eq. (8) respectively. Table 3 illustrates the outcomes of
respective schemes. As we can see, the introduction of either 𝑑1 or
𝑑2 independently improves our method’s performance compared
to solely using the model pool M, and further enhancement is
achieved when both distance terms are incorporated. This confirms
that integrating both distance terms will strengthen the model’s
performance. It is worth emphasizing that even in the absence of
𝑑1 and 𝑑2, relying solely on the model poolM for training, our
approach still outperforms the baselines. This reaffirms the essential
paradigm for fostering diversity within the system.

4.4.2 Hyperparameter sensitivity. We further investigate the sen-
sitivity of our method to different choices of hyperparameters, as
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Table 4: Performance comparison of PACS dataset for differ-
ent domain training orders, where the order “PACS” means
we train models by domain order “Photo (client 1) → Art-
Painting (client 2)→ Cartoon (client 3)→ Sketch (client 4)”.

Order PACS ACPS SCPA CSPA Average
MetaFed 41.62% 42.75% 31.65% 40.64% 39.17%
FedSeq 47.31% 45.21% 40.96% 33.71% 41.80%

FedELMY 49.14% 46.74% 43.65% 41.46% 45.25%

Figure 8: Test accuracy comparison with different diversity
control measures, where FedELMY (L2-Norm) means we will
use the L2-norm (Euclidean) distance as our diversity control
measure to train the models.

shown in Fig. 7. The optimal combination of these parameters was
then employed in subsequent training. It is evident from the figure
that regardless of the adopted search strategies, the performance
robustness of our method remains relatively undisturbed across all
four examined parameters. This evidence suggests that the perfor-
mance of our method is robust to the change of hyperparameters.

4.4.3 Client order. To explore the influence of the order in which
domains are trained in domain-shift tasks, we applied our method to
the PACS dataset with various domain training orders, as depicted
in Table 4. Aswe can see, irrespective of the order chosen for domain
training, our method consistently surpasses the performance of
the baseline methods. This signifies our method’s robustness in
handling diverse domain order training.

4.4.4 Diversity control measures. Fig. 8 presents the impact of var-
ious diversity control measures applied with different distances.
Notably, the L2-norm emerges as the best measure, yet, the remain-
ing measures also exceed the performance of baseline methods
in most cases. This superiority of the L2-norm is attributed to its
ability to measure the true distance between points directly and
precisely, offering a more sensitive and effective constraint on point
dispersion in the space, thereby yielding superior results.

4.5 Case study
In this section, we visualize the pair-wise distances of the models
in the model pool to validate the effectiveness and authenticity
of our method. For more case studies, such as the visualization of
the classification results of different methods, please refer to our
supplementary materials.

(a) CIFAR-10 (𝑆 = 5) (b) PACS (𝑆 = 10)

Figure 9: Heatmap of pairwise L2-norm (Euclidean) distances
of all trainedmodels within the final client’s model poolM𝑁

with size 𝑆 + 1.

Fig. 9 illustrates the L2-norm distance matrix for each pair of
models within the final client’s model poolM𝑁 , after the comple-
tion of training. It is evident that the pairwise distances among all
trained models in the model pool display a remarkable variation,
without an apparent correlation or trend, such as monotonically in-
creasing/decreasing. This confirms the significant diversity among
themodels within the pool, attesting to the efficacy of our method in
fostering model diversity. By strategically enhancing the disparities
between models, we can substantively improve the performance of
our approach.

For more experimental results, such as the performance of our
method on more clients (up to 100 clients), and different data distri-
bution (like Dir(0.1)), more grid search results for the PACS dataset,
the impact of different model structures, and PFL adaptation, please
refer to our supplementary materials.

5 Conclusion
In this paper, we highlight the significance of one-shot sequen-
tial federated learning for alleviating the communication burdens
of current collaborative machine learning paradigms and address
the challenge posed by non-IID data. We present a novel one-shot
SFL framework with the local model diversity enhancement strat-
egy to reduce communication costs and effectively improve the
global model. In particular, we design the local model pool with
two regularization terms as a diversity-enhanced mechanism to
improve model performance and mitigate the effect of non-IID data.
The effectiveness of our method was demonstrated with superior
performance on extensive experiments across several datasets in-
cluding both label-skew and domain-shift tasks. In the future, we
will consider integrating more advanced privacy protection mea-
sures, adapting to more federated learning settings, and dealing
with real-time data under online learning environments to further
enhance the feasibility and scalability of the proposed framework.
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