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ABSTRACT

Optimizing reasoning and action planning with LLMs under limited computa-
tional budgets is a fundamental problem in solving complex tasks that require
multi-step decomposition. Existing approaches, including greedy step-by-step
reasoning and tree-based search, remain largely budget-blind. For these methods,
budget is enforced by ad-hoc stopping rules rather than treated as explicit opti-
mization objectives, which prevents them from adapting the depth and breadth of
reasoning to different levels of budget. To address this, we introduce Optimizable
LLM Planning (OLP), a branch-and-bound framework that formulates planning
as a budgeted optimization problem for task success. At each step, each candidate
plan is expanded by decomposing the task into an immediately solvable subtask
and a residual subtask. For the residual, the planner estimates lower and upper
bounds on utility calibrated from reward and cost signals, where the reward model
is adaptable to different execution operators (e.g., retrieval, LLM reasoning). This
calibration enforces budget feasibility and supports principled ranking of candi-
date plans. The bound-guided search avoids unrolling entire trajectories, focuses
exploration on candidates whose upper bounds dominate, and prunes branches
whose upper bounds fall below competing lower bounds, enabling effective ex-
ploration of both depth and breadth under budget constraints. We instantiate this
general framework for retrieval-augmented generation (RAG) problems that re-
quire reasoning. Across multiple benchmarks, our framework achieves higher
accuracy than strong agentic baselines using different search algorithms while
substantially reducing computation, demonstrating the effectiveness of making
planning explicitly optimizable under budget constraints.

1 INTRODUCTION

ReAct-style planning (Yao et al., 2023b), which alternates between reasoning and action steps, has
become widely adopted in LLM-powered systems for solving complex tasks. However, at each
step, ReAct planning makes a greedy decision about the next action, making it inherently non-
optimizable under varying constraints such as computational budgets. While budget information
could in principle be provided to the planner, mere awareness of the budget does not enable ReAct
to optimize its plan based on the budget constraints. Once an action is chosen, the trajectory becomes
fixed, and the system cannot globally adjust its reasoning path in response to the remaining budget.
Tree-based search algorithms (Yao et al., 2023a; Hao et al., 2023), such as Monte Carlo Tree Search
(MCTS) (Świechowski et al., 2023), broaden the search space by introducing exploration through
selection, expansion, simulation, and backpropagation. Although MCTS allows a fixed simulation
budget (e.g., number of rollouts or time), this budget is used only as an external cap on the number
of simulations. The exploration process remains heuristic-driven and does not provide a formulation
that allows steps along the trajectories to be explicitly optimized with respect to budget. In practice,
search is still governed by ad-hoc limits, such as maximum steps or rollouts (Muennighoff et al.,
2025), rather than dynamically scaling with available resources.

This limitation becomes clear in realistic tasks. Consider the question “(In 2023) How has Apple’s
net sales in Greater China changed over time relative to total net sales?” with EDGAR1 as the

1EDGAR is a financial database provided by the US SEC.
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RAG
tasks

Task: (In 2023) How has Apple’s net sales in Greater 
China changed over time relative to total net sales?

What does Apple report 
about Greater China 

sales trends in its 2023 
10-K?

How does this narrative 
compare to the overall 

sales trend?

What are Apple’s 
quarterly net sales in 
Greater China during 

2023? 

How do they compare 
to Apple’s total 

quarterly net sales 
during 2023?

Plan 1

Plan 2

… …

Math
tasks

Task: The first 40 odd counting numbers are written. 
How many times does ‘3’ appear as a digit?

What are the first 40 
odd counting numbers 

(identify the exact set or 
its range)?

Within that set, how 
many times does the 

digit '3' appear across 
all numbers?

Solvable subtasks

Which of the first 40 
odd counting numbers 

contain the digit '3'?

For each of those 
numbers, how many 

times does '3' occur in 
it, and what is the 

total across the set?

Residual subtasks

Plan 1

Plan 2

… …

Branching

Solvable subtasks Residual subtasks

Utility estimation Bounding

Utility lower bound of a plan Utility upper bound of a plan

Plan ranking
based on utility bounds

Plan 1

Plan 2

Utility lower bound
Utility upper bound

Utility lower bound
Utility upper bound

…

Plan Pruning
1.  Prune plans whose upper bound 
is dominated by k-th largest lower 

bound of all plans

2. Check if there exists k plans whose 
lower bounds greater than upper 

bounds of all other plans

Termination
Return the top 
ranked k plans

Bound refinement
Remove dependencies of residual 

subtasks based on solution of 
solvable subtasks, then continue 

branching on decontextualized 
residual subtasks

Estimated utility of 
residual subtasks

Estimated utility of 
solvable subtasks

Maximum 
achievable utility of 
residual subtasks

Solvable subtasks Residual subtasks

Artifacts
(e.g., retrieved documents)

Yes

No

Utility model:
Reward model (e.g., reranker)

Cost model (e.g., #LLM tokens)

Execution operator
(e.g., dense retriever)

Artifacts
(e.g., retrieved documents)

Utility model:
Reward model (e.g., reranker)

Cost model (e.g., #LLM tokens)

Execution operator
(e.g., dense retriever) Maximum 

achievable 
reward 

assigned 
by Reward 

model

Minimum 
required 

cost 
assigned 
by Cost 
model

Utility lower bound of a plan Utility upper bound of a plan

Estimated utility of 
residual subtasks

Estimated utility of 
solvable subtasks

Maximum 
achievable utility of 
residual subtasks

Solvable subtasks Residual subtasks

Artifacts
(e.g., LLM reasoning)

Utility model:
Reward model (e.g., LLM judge)
Cost model (e.g., #LLM FLOPs)

Execution operator
(e.g., LLM)

Artifacts
(e.g., LLM reasoning)

Utility model:
Reward model (e.g., LLM judge)
Cost model (e.g., #LLM FLOPs)

Execution operator
(e.g., LLM) Maximum 

achievable 
reward 

assigned 
by Reward 

model

Minimum 
required 

cost 
assigned 
by Cost 
model

Plan enumeration via divide-and-conquer

Figure 1: An overview of our branch-and-bound LLM planning framework, OLP, instantiated on
complex tasks such as RAG and Math, each with suitable execution operators, reward models, and
cost models (underlined). The framework generates alternative task decompositions, ranks them by
estimated utility, and recursively refines these estimates to determine the best plans.

available database. This could be answered in several ways, each with different cost-accuracy trade-
offs. For example, a single text snippet from Apple’s 2023 annual 10-K forms provides a low-
cost but highly summarized answer. Combining a snippet with a financial table yields more detail
but requires additional table reasoning, increasing generation cost. Using multiple snippets from
quarterly 10-Q filings offers a more comprehensive, fine-grained view, but incurs higher retrieval
and generation costs. Finally, aggregating multiple tables across filings produces the most detailed
analysis, yet requires both substantial retrieval and costly multi-table reasoning. These alternatives
illustrate that solving the same task admits plans of varying granularity and expense, which in turn
highlights the need for a planner that can dynamically adjust its reasoning path based on the available
budget.

We refer to this capability as optimizable planning, the ability to systematically explore candidate
plans and select the one that maximizes utility subject to a computational budget. Here, utility
denotes the overall goodness of a plan under a given budget. In this view, planning is not only about
producing a feasible reasoning trajectory but also about comparing alternatives under varying budget
conditions.

We propose Optimizable LLM Planning, a branch-and-bound style framework for complex reason-
ing tasks. While branch-and-bound is a classic paradigm in optimization (Nelder et al., 1960), our
work is the first to adapt it to planning with LLMs. In our setting, branching corresponds to enu-
merating multiple candidate plans by generating alternative decompositions of the task at each step.
Each decomposition produces a distinct branch consisting of (i) an immediately solvable subtask
that can be executed directly (e.g., a single retrieve-then-generate step in RAG), and (ii) a residual
subtask that may require further reasoning and may depend on the result of the first. The bound-
ing step is realized through utility calibration, which makes the abstract notion of plan “goodness”
concrete by integrating both reward and cost into a measurable utility. The reward from the solvable
subtask can be assessed directly through a task execution operator (e.g., retrieval, LLM reasoning, or
agentic workflows) together with a reward model, while the residual subtask is evaluated indirectly
by assigning lower and upper bounds on its utility. The lower bound is estimated by treating the
residual in its current contextualized form as a task query, which typically yields a weaker (low-
reward) signal since it has not yet been decontextualized. The upper bound reflects the best outcome
the residual could achieve once fully specified. These bounds define an interval for the plan’s utility,
enabling principled ranking, early pruning of non-promising candidates, and efficient exploration
without unrolling full trajectories. The process is applied recursively, where after solving the imme-
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diate subtask, the residual is decontextualized based on its answer, tightening its utility bounds and
updating the plan ranking. This refinement continues until the budget is exhausted or the top-ranked
plan is found. The above process is illustrated in Figure 1.

Unlike greedy methods that commit to a single trajectory or heuristic tree search that explores
broadly without budget awareness, OLP maintains a utility-driven branch-and-bound search that
adapts continuously and efficiently as reasoning unfolds. While our framework still relies on heuris-
tic models to calibrate reward and cost, the bounding mechanism ensures that these heuristics are
used in a principled way: they approximate branch-and-bound by providing lower and upper utility
estimates, which guide pruning and prioritization. Thus, although OLP does not guarantee global
optimality, it systematically searches for the best plan among enumerated alternatives under the
given budget.

We instantiated OLP on RAG tasks and evaluated it on both traditional multi-hop QA datasets as
well as more recent complex agentic browsing datasets. OLP outperforms existing greedy search,
beam search, and MCTS techniques, achieving superior accuracy with lower cost. Relative to simple
strategies like greedy search, which prioritize efficiency over accuracy, OLP achieves a similar cost
while improving accuracy by 2.04×. Compared to more advanced strategies such as beam search
and MCTS, which favor accuracy over efficiency, OLP improves accuracy by 1.74× while reducing
cost by 2.58×.

2 METHODOLOGY

Our framework addresses planning subject to a computational budget for complex tasks that require
multi-step reasoning and interaction with external information sources. We formulate such tasks as
a search problem over candidate plans, where each plan is a sequence of subtasks solved through
actions (e.g., retrieve–then–generate) that collectively yield an answer while incurring computa-
tional cost. The objective is to identify the best plans that can be executed within the given budget.
Achieving this requires exploring alternative plans rather than committing to a single one. However,
exhaustively enumerating all execution plans is infeasible, and heuristic search methods offer no
principled way to optimize planning under budget constraints.

To address this challenge, we formulate planning as a plan ranking problem, where candidate plans
are ordered by their estimated utility. A plan’s utility captures its likelihood of being the optimal
choice within the given budget, allowing the planner to adapt its decisions as budget constraints
change. Since computing the complete utility of each plan is impractical, OLP estimates it in a
divide-and-conquer manner: each plan is decomposed into a simple subtask that can be solved di-
rectly and a residual subtask that requires further reasoning. The simple subtask provides immediate
evidence of utility, while the utility of solving the residual subtask is approximated through bound
estimation. The planner iteratively compares these utility estimates, refining them as more context
becomes available, until it identifies a plan whose lower bound dominates all other upper bounds.
This approach allows OLP to efficiently identify the best plan without fully executing every candi-
date, ensuring that planning remains optimizable under budget constraints.

The remainder of this section details the process of OLP: (1) divide-and-conquer plan enumera-
tion describes branching of our framework, i.e., how the planner iteratively decomposes a task in a
divide-and-conquer fashion, producing candidate plans; (2) utility modeling defines how plan util-
ity is measured under a computational budget; (3) utility estimation and refinement, the bounding
part of our framework, explains how utilities are approximated and iteratively tightened through
decontextualization as planning progresses; and (4) plan pruning formalizes how candidate plans
are compared and discarded based on their utilities under budget constraints. The full algorithm is
described in Algorithm 1. In this section, we denote a set of possible plans as T , where each plan
τ ∈ T is a sequence of subtasks: τ = [s1, s2, . . . , sn].

Plan Enumeration via Divide-and-Conquer. Our planning framework starts with generating
multiple candidate decompositions of the input task, each of which represents an alternative plan
for solving it. As shown in line 5 of Algorithm 1, the planning model produces several decomposi-
tions, where each plan consists of (i) an immediately solvable subtask and (ii) a residual subtask that
may depend on the solution of the first. The immediately solvable subtask can be addressed directly
(e.g., through a single generation or retrieve–then–generate step), while the residual subtask cap-
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Algorithm 1 Overview of our branch-and-bound framework that estimates the lower and upper
bound utility of different candidate plans for efficient exploration.
Require: Task decomposer DC, Task decontextualizer DT , execution operator O, utility model U
1: Input: input task t, budget B, Output: top-k plans with the highest utility
2: Initialize: the set of plans T ← {[t]}, the total cost c← 0
3: while c < B do
4: for plan τi = [s1, . . . , sn−1, sn] in T do
5: Decompose the residual subtask sn into directly solvable subtask s1n and residual subtask s2n using
DC; Update c with cost of decomposition

6: Add plan [s1, . . . , sn−1, s
1
n, s

2
n] to T

7: Compute the exact utility of s1n, and estimate the lower and upper bounds of the utility of s2n using
U

8: Prune plans with utility upper bound < k-th largest utility lower bound of all plans or with cost lower
bound exceeding the budget

9: if there exists k plans with utility lower bound ≥ utility upper bound of all other plans then
10: Return these k plans
11: for plan τi in T do
12: Apply the execution operator O to s1n to obtain artifact O(s1n); Update c with cost of executing O
13: Decontextualize s2n based on s1n and O(s1n) using DT ; Update c with cost of decontextualization
14: Compute the exact utility of s2n using U
15: Return top plans

tures the remaining reasoning needed to complete the task. In this way, our framework enumerates
a frontier of candidate plans by recursively decomposing the task in a divide-and-conquer fashion.
Examples of decompositions that include solvable and residual subtasks are illustrated in Figure 1.
Details of the prompts used by the planning model for this process are provided in Appendix A.

Calibration of Utility. In OLP, the utility of a plan τ is not directly observable and must instead
be calibrated through measurable signals that approximate its quality under a computational budget.
For each subtask s ∈ τ , calibration proceeds in two stages. An execution operator O is first applied
to s under the current budget to produce an intermediate artifact O(s). This artifact is then evaluated
by a reward model R, which estimates how likely the subtask can be successfully solved given O(s),
and a cost model C, which estimates the resources consumed and thus the chance of exceeding the
total budget B in the future.

A key design is to aggregate reward and cost in a manner that reflects the compounding nature
of multi-step plans. Because the failure or budget overconsumption of any individual subtask can
compromise the entire plan, utility must penalize weak subtasks rather than allowing them to be
masked by stronger ones. To this end, we define plan utility as a multiplicative combination of
reward and cost terms across subtasks. This formulation jointly captures progress toward solving
the task and adherence to budget constraints, while naturally enforcing that a plan’s utility decreases
if any subtask is either low-reward or highly costly.

Formally, the calibrated utility of a plan τ under budget B is

uτ = U(τ,B) =
∏
s∈τ

us =
∏
s∈τ

R
(
s,O(s)

)w · C
(
O(s), B

)1−w
(1)

where us is the utility of subtask s and w ∈ [0, 1] balances the contributions of reward and cost.

In practice, we compute utility in log-space:

log uτ =
∑
s∈τ

[
w logR

(
s,O(s)

)
+ (1− w) log C

(
O(s), B

)]
(2)

This representation yields a convex combination of logR and log C, making the role of w in me-
diating the trade-off explicit and mitigating numerical underflow. Through this calibration, utility
provides a principled measure of how likely a plan is to achieve task success while remaining feasi-
ble under the computational budget.

This calibration process is generalizable to different settings. In the RAG setting, the operator O can
be a search module that retrieves passages, the reward model R can be a reranker that scores their
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relevance to the query, and the cost model C can be based on the number of retrieval and generation
tokens, where using more tokens leads to a lower score. This choice provides a lightweight proxy
for task progress without requiring OLP to generate a full answer at this stage.

More generally, for reasoning tasks beyond RAG, O could be a solver such as an LLM or an agentic
workflow that produces a candidate derivation or answer. R can then score this output via LLM-
as-a-judge or consistency checks, while C can evaluate cost based on FLOPs, latency, or energy
predictors. By framing utility itself as a calibrated combination of reward and cost, OLP provides a
unified and extensible mechanism for ranking and pruning candidate plans under budget constraints.

Utility Estimation and Refinement. As discussed above, computing the full utility of a plan τ is
generally infeasible. Instead, OLP estimates utilities by assigning exact values to directly solvable
subtasks and bounded estimates to residual subtasks. These bounds (ulb for lower bound and uub for
upper bound), capture the range of possible utility until additional information becomes available.

For a directly solvable subtask s (line 7 in Algorithm 1), exact utility means lower and upper bounds
are equal (i.e., us = ulb

s = uub
s ). This is estimated by combining the subtask reward with the cost of

the LLM call that instantiates the subtask, either during plan enumeration or decontextualization.

For residual subtasks prior to decontextualization (line 7 in Algorithm 1), utility can only be ap-
proximated since they depend on upstream solvable subtasks. We therefore treat them as not self-
contained: the reward estimated from the current contextualized form provides a conservative lower
bound, while the upper bound is set to the maximum achievable reward. As an illustration, con-
sider the RAG setting with the residual subtask “How do they compare to Apple’s total quarterly net
sales during 2023?” in Figure 1. Here, the reference they links back to upstream solvable subtasks,
making the residual not self-contained. When we compute its utility with a reranker applied to doc-
uments retrieved by the search module, the reranker’s score is taken as the lower bound. The upper
bound is fixed to the maximum score the reranker can output (equal to 1).

As for cost, lower and upper bounds are estimated using the token budget of the forthcoming decon-
textualization call together with the minimum and maximum possible output tokens. These reward
and cost estimates are then combined to produce utility bounds, which are progressively refined as
planning unfolds.

Formally, the lower and upper bounds of a plan τ are computed as follows:

log ulb
τ =

( ∑
s1,...,sn−1

log usi

)
+ log usn ; log uub

τ =
( ∑
s1,...,sn−1

log usi

)
+ log umax

sn (3)

where τ = [s1, . . . , sn−1, sn], with each of the first n−1 subtasks directly solvable and the last sub-
task sn being residual, umax

sn denotes its maximum achievable utility, while each log usi is computed
using Equation (2).

To refine these utility estimates, the planner performs decontextualization. As shown in line 13 of
Algorithm 1, given a solvable subtask s1i and its dependent residual subtask s2i , the decontextualizer
obtains the solution to s1i and rewrites s2i so that it no longer depends on s1i (prompt details in
Appendix B). In line 14, the utility of the decontextualized residual is then recomputed with tighter
bounds, reflecting the reduced uncertainty.

Because a decontextualized residual can itself be decomposed further, the planner recursively ap-
plies this decomposition–decontextualization cycle. In doing so, the utility bounds are progressively
tightened and plan estimates become more accurate, enabling increasingly reliable ranking and prun-
ing of candidate plans as the search proceeds.

Pruning Plans. Once utilities for the subtasks are estimated, the lower and upper bounds (denoted
as ulb

τ and uub
τ ) of an entire plan’s utility can be computed via Equation (3). These bounds allow the

planner to eliminate unpromising candidates without fully unrolling every plan. In particular, we
check whether there exist k plans such that

min
τi∈{τ1,...,τk}

ulb
τi ≥ max

τj /∈{τ1,...,τk}
uub
τj (4)

If this condition holds, we can safely conclude that the current top-k plans (ranked by utility) have
already been identified (lines 9 and 10 of Algorithm 1). Further unrolling of the remaining candi-
dates cannot change the outcome, since their future utilities are bounded above by their current uub
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values, while the selected plans already have ulb values that dominate these bounds (Fagin et al.,
2001; Zhang et al., 2024).

Similarly, as described in line 8 of Algorithm 1, any plan τi can be pruned if

uub
τi < min

τj∈{τ1,...,τk}
ulb
τj (5)

where τ1, . . . , τk are the k plans with the highest current ulb. Such a plan is already dominated and
cannot enter the top-k set in the future. Pruning these dominated candidates improves efficiency by
focusing exploration on plans whose bounds still leave room for optimality.

Finally, we also track the cost of producing the plan and its execution cost. If the cumulative cost of
a plan τ exceeds the budget B, the plan is immediately discarded.

3 EXPERIMENTAL EVALUATION

A defining feature of OLP is its ability to optimize the likelihood of task success under varying
budget constraints. Unlike existing search algorithms, it avoids explicit trajectory rollouts and prunes
dominated plans, enabling more effective exploration. To evaluate these advantages, we study both
accuracy and cost, asking two key questions:

• No budget imposed: How does OLP compare to existing methods when computation is
unconstrained? This setting applies to domains (e.g., finance, medicine) where exhaustive
reasoning is preferred and higher costs are acceptable in exchange for maximum result
quality.

• Budget-constrained: How does OLP compare to existing methods across different budget
levels? This setting reflects cost-sensitive domains (e.g., online services) where answers
must remain accurate but reasoning must be adapted in granularity and efficiency to fit
within the available budget.

We instantiate these evaluations on complex RAG tasks, which provide a representative proxy for
real-world applications. Such tasks usually demand multi-step reasoning and careful decomposition,
which makes them naturally amenable to being solved through alternative plans. In addition, RAG
tasks involve interactions with external tools (e.g., retrievers, document corpora), a characteristic
that closely mirrors real-world applications.

As outlined in Section 2, instantiating OLP requires specifying an execution operator O, a re-
ward model R, and a cost model C. For RAG tasks, we employ the dense retriever Snowflake-
arctic-embed-m-v2.0 (Yu et al., 2024) as the operator, the reranker BGE-reranker-v2-minicpm-
layerwise (Li et al., 2023; Chen et al., 2024) as the reward model, and a token-based pricing model
as the cost model. The details of our experimental setup are provided in Section 3.1, and the corre-
sponding results are reported in Section 3.2.

3.1 EXPERIMENTAL SETUP

Datasets and metrics. We evaluated our framework on two representative RAG datasets that re-
quire addressing complex user queries with document-based evidence: Musique (Trivedi et al.,
2022), a multi-hop QA benchmark, and BrowseComp-Plus (Chen et al., 2025), a challenging dataset
for deep research tasks. For accuracy, we reported exact match (EM) and F1 scores by comparing
predicted answers against the gold references, as both datasets contain short-text answers. For cost,
we adopted a token-based pricing model that accounts for all LLM calls during task execution,
following OpenAI’s pricing scheme.2 To improve readability, we scale the cost by a factor of 103.

Baselines. We evaluated our approach against several search algorithms built on the ReAct
problem-solving framework, each representing a different accuracy–cost tradeoff. Broadly, we com-
pare two types: methods that explore only a few trajectories, emphasizing cost reduction over accu-
racy, and methods that explore multiple trajectories, emphasizing accuracy at a higher cost.

2https://openai.com/api/pricing/
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For the cost-focused case, we consider greedy search, which follows a single trajectory. Since ReAct
by default uses chain-of-thought (CoT) reasoning at each step, we further include a baseline variant
that removes CoT entirely, pushing cost minimization to the extreme.

For the accuracy-focused case, we consider beam search and Monte Carlo Tree Search (MCTS),
both of which explore multiple actions per step to form multiple trajectories. Beam search retains
the top-scoring partial plans at each step, while MCTS simulates rollouts to estimate rewards: an
approach that is more computationally expensive but can achieve higher accuracy.

The details of these search algorithm implementations are provided below:

• Greedy: the default implementation of ReAct that operates iteratively, deciding at each
step a single action (provide an answer or initiate a new reasoning step) through chain-of-
thought, which may include interactions with external tools.

• Greedy without CoT: a greedy variant where the model outputs the action directly without
chain-of-thought.

• Beam Search: Rather than pursuing a single action at each step, beam search maintains
up to k beams with the highest scores, thereby considering up to k2 actions per step. The
scores are computed using a reward model R.

• MCTS: MCTS explores k actions, retaining the best one at each step. It uses UCT to run
multiple simulations, where actions are selected and rolled out to completion, producing
scores (via a reward model R) that inform subsequent UCT decisions. The action chosen
most frequently is then selected.

To ensure fairness, all baseline methods employ the same BGE-reranker as our framework, using it
either as the reward model or directly in the retrieval stage.

Implementation details. We adopted an open, off-the-shelf LLM, Qwen2.5-7B-Instruct, as the
backbone for executing all methods. As noted earlier, we evaluate all methods under two execution
settings: with and without a cost budget. When a budget is given, execution stops once the budget is
consumed. Without a budget, since the methods run iteratively until producing an answer and may
not converge, we cap the execution at 10 iterations to prevent indefinite runs, a limit chosen to be
sufficiently large. In either setting, if the budget is consumed or the iteration cap is reached without
an answer, the model is given a final opportunity to generate an answer to ensure task completion.

3.2 RESULTS

Table 1: Performance of all methods without a budget. Bolded and underlined numbers represent
the performance of our method when it ranks as the best and second best, respectively.

Musique BrowseComp-Plus

EM F1 Cost ↓ EM F1 Cost

Greedy w/o CoT 12.0 18.6 1.12 11.0 13.8 6.47
Greedy 10.0 17.7 1.66 7.90 9.60 8.29
Beam search 13.3 22.7 4.38 11.4 14.3 29.85
MCTS 9.10 14.9 29.3 11.4 15.1 132.90
OLP (ours) 22.8 36.8 1.05 24.2 30.3 5.91

Table 1 and Table 2 report the performance of all methods without a budget and under varying budget
levels, respectively. Across both settings, our method consistently outperforms the greedy baseline,
whether or not chain-of-thought is used, while incurring comparable cost. This demonstrates that,
given the same budget, OLP can explore multiple plans effectively and produce better answers.

When compared to more advanced search strategies (beam search and MCTS), we observe that
although they generally improve over greedy, OLP still achieves higher accuracy at substantially
lower cost. This advantage arises because our framework (1) avoids costly explicit rollouts by using
efficient reward model estimates, and (2) prunes plans whose upper bounds are dominated by the
lower bounds of others, thereby focusing exploration on the most promising candidates.
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Table 2: Performance of all methods under different levels of budget.
Low budget Mid budget High budget

EM F1 Relative cost ↓ EM F1 Relative cost EM F1 Relative cost

Musique: low budget = 0.5, mid budget = 1, high budget = 1.5

Greedy w/o CoT 9.1 16.2 1.00x 8.1 14.4 1.00x 12 17.5 1.00x
Greedy 11.0 15.7 1.13x 14.4 19.7 1.30x 11.1 15.8 1.36x
Beam search 12.0 18.3 1.23x 18.0 24.3 1.54x 13.0 21.3 1.81x
MCTS 10.0 18.6 1.28x 14.3 23.9 1.68x 11.2 20.4 2.02x
OLP (ours) 13.4 24.8 0.75x 20.4 33.0 1.06x 18.7 31.2 1.09x

BrowseComp-Plus: low budget = 2.5, mid budget = 5, high budget = 7.5

Greedy w/o CoT 8.7 10.3 1.00x 11.1 12.9 1.00x 10 11.7 1.00x
Greedy 6.4 10.6 1.15x 6.5 8.6 1.23x 5.5 9.0 1.32x
Beam search 9.8 12.9 1.26x 11.8 14.0 1.46x 6.7 11.4 1.75x
MCTS 10.8 13.9 1.28x 7.7 10.7 1.64x 10.6 12.0 2.07x
OLP (ours) 18.1 22.8 0.78x 22.8 28.9 1.06x 27.0 31.1 1.14x

Furthermore, as shown in Table 2, the performance of OLP generally improves as the budget in-
creases, highlighting its ability to leverage additional budget to yield more accurate answers.

4 ANALYSIS

Section 3 demonstrates the overall effectiveness of our approach compared to existing search al-
gorithms. In this section, we present a deeper analysis to better understand the sources of this
improvement (Section 4.1). We also evaluate how the performance of our framework varies with
different reward models (Section 4.2).

4.1 UNDERSTANDING THE GAINS OF OUR FRAMEWORK

Section 3 demonstrates that OLP achieves higher result quality than existing search algorithms while
maintaining cost comparable to simple greedy search, and substantially lower than more complex
approaches such as beam search and MCTS. In this section, we provide a deeper analysis to under-
stand why our framework delivers both quality and efficiency gains.

For quality, we measure whether OLP can explore more plans. As highlighted in Section 1, the
key features of our framework are avoiding explicit rollouts of all candidate plans and pruning
unpromising ones, which enable more effective budget allocation toward higher-quality plans. As a
result, under the same budget or iteration limit, OLP can often explore more plans, leading to higher
quality. The number of trajectories/ plans explored by each method is reported in Table 3.

For efficiency, we evaluate how many iterations each method requires to finish execution. Fewer
iterations imply lower cost. We also measure the proportion of tasks that successfully produce an
answer within the budget or iteration cap. As noted in Section 3.1, existing search algorithms lack
convergence guarantees, so they may exhaust resources without yielding an answer, requiring extra
computation to force a final output. Thus, we allow models to have a final opportunity to generate
an answer, though it incurs additional cost. Results for these metrics are reported in Table 4.

From Table 3, we observe that OLP generally explores the most plans among all methods, naturally
yielding higher quality. It also generally prunes 20–30% of dominated plans, demonstrating effective
budget allocation toward higher-quality plans, which further boosts quality and efficiency.

As shown in Table 4, OLP also requires the fewest iterations to complete, resulting in greater effi-
ciency and lower cost. In addition, it achieves the highest task completion rate, providing stronger
empirical convergence guarantees while incurring minimal extra cost for generating answers.

4.2 IMPACT OF DIFFERENT REWARD MODELS ON PERFORMANCE

As outlined in Section 2, our framework leverages a reward model to estimate the rewards of sub-
tasks, thereby signaling the likelihood of a plan’s success. Consequently, the quality of these re-
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Table 3: Total number of trajectories/plans explored by all methods, along with the proportion of
plans pruned by our method, under both budgeted and non-budgeted settings.

Musique BrowseComp-Plus

None Low Mid High None Low Mid High

Greedy w/o CoT 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Greedy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Beam search 5.64 1.92 2.59 3.20 6.18 3.07 3.37 4.10
MCTS 4.32 2.00 2.00 2.38 4.11 2.00 2.50 2.78
OLP (ours) 5.35 2.22 4.38 5.10 7.03 2.80 5.24 6.44
% plans pruned in OLP 28.6 4.50 21.7 27.1 33.1 9.6 30.2 30.9

Table 4: Number of execution iterations to complete and percentage of tasks with answer generated
within the maximum allowed execution iterations.

Musique BrowseComp-Plus

#Iteration ↓ %Task with answers #Iteration %Task with answers

Greedy w/o CoT 4.08 85.0 4.08 84.6
Greedy 5.39 71.0 5.45 71.9
Beam search 3.85 85.7 4.74 76.1
MCTS 5.52 67.0 5.61 63.6
OLP (ours) 2.74 96.7 2.64 100.0

ward estimates is crucial. To assess this, we examine the performance of our method under reward
models of varying strengths. In Section 3, we employed a 2.7B-parameter reranker (BGE-reranker-
v2-minicpm-layerwise) as the reward model. For comparison, we also evaluate a smaller reranker,
BGE-reranker-v2-m3, with 0.6B parameters.

Table 5 presents the results across different reward model sizes. Across both datasets, we find that
smaller reward models, while somewhat less accurate, still maintain reasonable performance with
costs remaining stable. Notably, even with the smaller reranker, our framework still surpasses the
best search baseline that uses the 2.7B reranker, underscoring the effectiveness of our approach.

Table 5: Performance of our method under reward models of different sizes (and thus strength).
Musique BrowseComp-Plus

EM F1 Cost ↓ EM F1 Cost

Best baseline + 2.7B reranker 13.3 22.7 4.38 11.4 15.1 132.90
OLP + 0.6B reranker 20.4 29.5 0.92 15.6 20.5 5.70
OLP + 2.7B reranker 22.8 36.8 1.05 24.2 30.3 5.91

5 CONCLUSION

We introduce Optimizable LLM Planning (OLP), a branch-and-bound framework that formulates
planning with LLMs as a budget-constrained optimization problem. Unlike greedy or heuristic
search methods, OLP systematically enumerates and evaluates candidate plans through recursive
decomposition, and calibrates their utility by integrating reward and cost. Bounding via utility inter-
vals enables principled ranking, early pruning of dominated plans, and efficient exploration without
unrolling entire trajectories. We instantiated OLP on retrieval-augmented generation (RAG) tasks
across multi-hop QA and agentic browsing benchmarks. OLP consistently outperforms existing
search strategies, matching greedy search in cost while improving accuracy by 2.04×, and surpass-
ing beam search and MCTS with 1.74× higher accuracy at 2.58× lower cost.
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A DECOMPOSITION PROMPT
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Table 6: Prompts for decomposition.

Decomposition prompt

You are an expert at question decomposition. Your task is to analyze and transform complex
questions into simpler, more focused components.
Given a question, decompose it into two sub-questions by:

• Breaking down the complex question into two logical components
• The decomposition must be complete: combining the answers of sub-questions

must be enough to solve the given question
• It is ok to have dependencies between the two sub-questions
• Providing multiple decomposition approaches when possible
• Do not attempt to solve the sub-questions

The output should be a JSON-formatted list where each element represents one decomposi-
tion approach:
[

{
"question 1": "First sub-question",
"question 2": "Second sub-question"

},
{

"question 1": "First sub-question",
"question 2": "Second sub-question"

}
]

Here is an example.
Question: How many academic staff are at the university in Budapest that has the official
abbreviation BME ?
Output:
[
{

"question 1": "How many academic staff are at each
university in Budapest?",

"question 2": "Which university from these universities
has the official abbreviation BME?"

},
{

"question 1": "Which university in Budapest has the
official abbreviation BME?",

"question 2": "How many academic staff are there at this
university?"

},
{

"question 1": "What universities are in Budapest?",
"question 2": "How many academic staff are there at the

university that has the official
abbreviation BME from these universities?"

}
]

Your response must follow the output format without generating anything else.
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B DECONTEXTUALIZATION PROMPT

Table 7: Prompts for decontextualization.

Decontextualization prompt

You are an expert at question rewriting. Your task is to analyze and transform complex
questions into simpler, more focused components.
Given question 1, question 2, and a document that can potentially be used to answer question
1, rewrite question 2 so that it is context-independent:

• Remove any dependencies from question 1
• Incorporate only the answer to question 1 based on the given document
• Make question 2 self-contained and clear

Here is an example.
Question 1: What universities are in Budapest?
Question 2: How many academic staff are there at the university that has the official
abbreviation BME from these universities?

Document:
Document title: Budapest
Document content: Budapest is home to several prestigious universities including the Uni-
versity of Veterinary Medicine, Corvinus University, Budapest University of Technology
and Economics (BME), and Budapest University of Economics and Business.

Output:
Answer: University of Veterinary Medicine, Corvinus University,
Budapest University of Technology and Economics (BME),
and Budapest University of Economics and Business

Question: How many academic staff are there at the university
that has the official abbreviation BME among the University of
Veterinary Medicine, Corvinus University, Budapest University
of Technology and Economics (BME), and Budapest University
of Economics and Business?

Your response must follow the output format without generating anything else.
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C THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLM was used only to aid writing quality (proofreading and polishing grammar). No ideas, claims,
methods, results, or references are generated by LLMs. All content decisions and revisions are made
by the authors.
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