
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMIZABLE LLM PLANNING: A BRANCH-AND-
BOUND FRAMEWORK FOR COMPLEX TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimizing reasoning and action planning with LLMs under limited computa-
tional budgets is a fundamental problem in solving complex tasks that require
multi-step decomposition. Existing approaches, including greedy step-by-step
reasoning and tree-based search, remain largely budget-blind. For these methods,
budget is enforced by ad-hoc stopping rules rather than treated as explicit opti-
mization objectives, which prevents them from adapting the depth and breadth of
reasoning to different levels of budget. To address this, we introduce Optimizable
LLM Planning (OLP), a branch-and-bound framework that formulates planning
as a budgeted optimization problem for task success. At each step, each candidate
plan is expanded by decomposing the task into an immediately solvable subtask
and a residual subtask. For the residual, the planner estimates lower and upper
bounds on utility calibrated from reward and cost signals, where the reward model
is adaptable to different execution operators (e.g., retrieval, LLM reasoning). This
calibration enforces budget feasibility and supports principled ranking of candi-
date plans. The bound-guided search avoids unrolling entire trajectories, focuses
exploration on candidates whose upper bounds dominate, and prunes branches
whose upper bounds fall below competing lower bounds, enabling effective ex-
ploration of both depth and breadth under budget constraints. We instantiate this
general framework for retrieval-augmented generation (RAG) problems that re-
quire reasoning. Across multiple benchmarks, our framework achieves higher
accuracy than strong agentic baselines using different search algorithms while
substantially reducing computation, demonstrating the effectiveness of making
planning explicitly optimizable under budget constraints.

1 INTRODUCTION

ReAct-style planning (Yao et al., 2023b), which alternates between reasoning and action steps, has
become widely adopted in LLM-powered systems for solving complex tasks. However, at each
step, ReAct planning makes a greedy decision about the next action, making it inherently non-
optimizable under varying constraints such as computational budgets. While budget information
could in principle be provided to the planner, mere awareness of the budget does not enable ReAct
to optimize its plan based on the budget constraints. Once an action is chosen, the trajectory becomes
fixed, and the system cannot globally adjust its reasoning path in response to the remaining budget.
Tree-based search algorithms (Yao et al., 2023a; Hao et al., 2023), such as Monte Carlo Tree Search
(MCTS) (Świechowski et al., 2023), broaden the search space by introducing exploration through
selection, expansion, simulation, and backpropagation. Although MCTS allows a fixed simulation
budget (e.g., number of rollouts or time), this budget is used only as an external cap on the number
of simulations. The exploration process remains heuristic-driven and does not provide a formulation
that allows steps along the trajectories to be explicitly optimized with respect to budget. In practice,
search is still governed by ad-hoc limits, such as maximum steps or rollouts (Muennighoff et al.,
2025), rather than dynamically scaling with available resources.

This limitation becomes clear in realistic tasks. Consider the question “(In 2023) How has Apple’s
net sales in Greater China changed over time relative to total net sales?” with EDGAR1 as the

1EDGAR is a financial database provided by the US SEC.

1

https://www.sec.gov/submit-filings/about-edgar

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

RAG
tasks

Task: (In 2023) How has Apple’s net sales in Greater
China changed over time relative to total net sales?

What does Apple report
about Greater China

sales trends in its 2023
10-K?

How does this narrative
compare to the overall

sales trend?

What are Apple’s
quarterly net sales in
Greater China during

2023?

How do they compare
to Apple’s total

quarterly net sales
during 2023?

Plan 1

Plan 2

… …

Math
tasks

Task: The first 40 odd counting numbers are written.
How many times does ‘3’ appear as a digit?

What are the first 40
odd counting numbers

(identify the exact set or
its range)?

Within that set, how
many times does the

digit '3' appear across
all numbers?

Solvable subtasks

Which of the first 40
odd counting numbers

contain the digit '3'?

For each of those
numbers, how many

times does '3' occur in
it, and what is the

total across the set?

Residual subtasks

Plan 1

Plan 2

… …

Branching

Solvable subtasks Residual subtasks

Utility estimation Bounding

Utility lower bound of a plan Utility upper bound of a plan

Plan ranking
based on utility bounds

Plan 1

Plan 2

Utility lower bound
Utility upper bound

Utility lower bound
Utility upper bound

…

Plan Pruning
1. Prune plans whose upper bound
is dominated by k-th largest lower

bound of all plans

2. Check if there exists k plans whose
lower bounds greater than upper

bounds of all other plans

Termination
Return the top
ranked k plans

Bound refinement
Remove dependencies of residual

subtasks based on solution of
solvable subtasks, then continue

branching on decontextualized
residual subtasks

Estimated utility of
residual subtasks

Estimated utility of
solvable subtasks

Maximum
achievable utility of
residual subtasks

Solvable subtasks Residual subtasks

Artifacts
(e.g., retrieved documents)

Yes

No

Utility model:
Reward model (e.g., reranker)

Cost model (e.g., #LLM tokens)

Execution operator
(e.g., dense retriever)

Artifacts
(e.g., retrieved documents)

Utility model:
Reward model (e.g., reranker)

Cost model (e.g., #LLM tokens)

Execution operator
(e.g., dense retriever) Maximum

achievable
reward

assigned
by Reward

model

Minimum
required

cost
assigned
by Cost
model

Utility lower bound of a plan Utility upper bound of a plan

Estimated utility of
residual subtasks

Estimated utility of
solvable subtasks

Maximum
achievable utility of
residual subtasks

Solvable subtasks Residual subtasks

Artifacts
(e.g., LLM reasoning)

Utility model:
Reward model (e.g., LLM judge)
Cost model (e.g., #LLM FLOPs)

Execution operator
(e.g., LLM)

Artifacts
(e.g., LLM reasoning)

Utility model:
Reward model (e.g., LLM judge)
Cost model (e.g., #LLM FLOPs)

Execution operator
(e.g., LLM) Maximum

achievable
reward

assigned
by Reward

model

Minimum
required

cost
assigned
by Cost
model

Plan enumeration via divide-and-conquer

Figure 1: An overview of our branch-and-bound LLM planning framework, OLP, instantiated on
complex tasks such as RAG and Math, each with suitable execution operators, reward models, and
cost models (underlined). The framework generates alternative task decompositions, ranks them by
estimated utility, and recursively refines these estimates to determine the best plans.

available database. This could be answered in several ways, each with different cost-accuracy trade-
offs. For example, a single text snippet from Apple’s 2023 annual 10-K forms provides a low-
cost but highly summarized answer. Combining a snippet with a financial table yields more detail
but requires additional table reasoning, increasing generation cost. Using multiple snippets from
quarterly 10-Q filings offers a more comprehensive, fine-grained view, but incurs higher retrieval
and generation costs. Finally, aggregating multiple tables across filings produces the most detailed
analysis, yet requires both substantial retrieval and costly multi-table reasoning. These alternatives
illustrate that solving the same task admits plans of varying granularity and expense, which in turn
highlights the need for a planner that can dynamically adjust its reasoning path based on the available
budget.

We refer to this capability as optimizable planning, the ability to systematically explore candidate
plans and select the one that maximizes utility subject to a computational budget. Here, utility
denotes the overall goodness of a plan under a given budget. In this view, planning is not only about
producing a feasible reasoning trajectory but also about comparing alternatives under varying budget
conditions.

We propose Optimizable LLM Planning, a branch-and-bound style framework for complex reason-
ing tasks. While branch-and-bound is a classic paradigm in optimization (Nelder et al., 1960), our
work is the first to adapt it to planning with LLMs. In our setting, branching corresponds to enu-
merating multiple candidate plans by generating alternative decompositions of the task at each step.
Each decomposition produces a distinct branch consisting of (i) an immediately solvable subtask
that can be executed directly (e.g., a single retrieve-then-generate step in RAG), and (ii) a residual
subtask that may require further reasoning and may depend on the result of the first. The bound-
ing step is realized through utility calibration, which makes the abstract notion of plan “goodness”
concrete by integrating both reward and cost into a measurable utility. The reward from the solvable
subtask can be assessed directly through a task execution operator (e.g., retrieval, LLM reasoning, or
agentic workflows) together with a reward model, while the residual subtask is evaluated indirectly
by assigning lower and upper bounds on its utility. The lower bound is estimated by treating the
residual in its current contextualized form as a task query, which typically yields a weaker (low-
reward) signal since it has not yet been decontextualized. The upper bound reflects the best outcome
the residual could achieve once fully specified. These bounds define an interval for the plan’s utility,
enabling principled ranking, early pruning of non-promising candidates, and efficient exploration
without unrolling full trajectories. The process is applied recursively, where after solving the imme-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

diate subtask, the residual is decontextualized based on its answer, tightening its utility bounds and
updating the plan ranking. This refinement continues until the budget is exhausted or the top-ranked
plan is found. The above process is illustrated in Figure 1.

Unlike greedy methods that commit to a single trajectory or heuristic tree search that explores
broadly without budget awareness, OLP maintains a utility-driven branch-and-bound search that
adapts continuously and efficiently as reasoning unfolds. While our framework still relies on heuris-
tic models to calibrate reward and cost, the bounding mechanism ensures that these heuristics are
used in a principled way: they approximate branch-and-bound by providing lower and upper utility
estimates, which guide pruning and prioritization. Thus, although OLP does not guarantee global
optimality, it systematically searches for the best plan among enumerated alternatives under the
given budget.

We instantiated OLP on RAG tasks and evaluated it on both traditional multi-hop QA datasets as
well as more recent complex agentic browsing datasets. OLP outperforms existing greedy search,
beam search, and MCTS techniques, achieving superior accuracy with lower cost. Relative to simple
strategies like greedy search, which prioritize efficiency over accuracy, OLP achieves a similar cost
while improving accuracy by 2.04×. Compared to more advanced strategies such as beam search
and MCTS, which favor accuracy over efficiency, OLP improves accuracy by 1.74× while reducing
cost by 2.58×.

2 METHODOLOGY

Our framework addresses planning subject to a computational budget for complex tasks that require
multi-step reasoning and interaction with external information sources. We formulate such tasks as
a search problem over candidate plans, where each plan is a sequence of subtasks solved through
actions (e.g., retrieve–then–generate) that collectively yield an answer while incurring computa-
tional cost. The objective is to identify the best plans that can be executed within the given budget.
Achieving this requires exploring alternative plans rather than committing to a single one. However,
exhaustively enumerating all execution plans is infeasible, and heuristic search methods offer no
principled way to optimize planning under budget constraints.

To address this challenge, we formulate planning as a plan ranking problem, where candidate plans
are ordered by their estimated utility. A plan’s utility captures its likelihood of being the optimal
choice within the given budget, allowing the planner to adapt its decisions as budget constraints
change. Since computing the complete utility of each plan is impractical, OLP estimates it in a
divide-and-conquer manner: each plan is decomposed into a simple subtask that can be solved di-
rectly and a residual subtask that requires further reasoning. The simple subtask provides immediate
evidence of utility, while the utility of solving the residual subtask is approximated through bound
estimation. The planner iteratively compares these utility estimates, refining them as more context
becomes available, until it identifies a plan whose lower bound dominates all other upper bounds.
This approach allows OLP to efficiently identify the best plan without fully executing every candi-
date, ensuring that planning remains optimizable under budget constraints.

The remainder of this section details the process of OLP: (1) divide-and-conquer plan enumera-
tion describes branching of our framework, i.e., how the planner iteratively decomposes a task in a
divide-and-conquer fashion, producing candidate plans; (2) utility modeling defines how plan util-
ity is measured under a computational budget; (3) utility estimation and refinement, the bounding
part of our framework, explains how utilities are approximated and iteratively tightened through
decontextualization as planning progresses; and (4) plan pruning formalizes how candidate plans
are compared and discarded based on their utilities under budget constraints. The full algorithm is
described in Algorithm 1. In this section, we denote a set of possible plans as T , where each plan
τ ∈ T is a sequence of subtasks: τ = [s1, s2, . . . , sn].

Plan Enumeration via Divide-and-Conquer. Our planning framework starts with generating
multiple candidate decompositions of the input task, each of which represents an alternative plan
for solving it. As shown in line 5 of Algorithm 1, the planning model produces several decomposi-
tions, where each plan consists of (i) an immediately solvable subtask and (ii) a residual subtask that
may depend on the solution of the first. The immediately solvable subtask can be addressed directly
(e.g., through a single generation or retrieve–then–generate step), while the residual subtask cap-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Overview of our branch-and-bound framework that estimates the lower and upper
bound utility of different candidate plans for efficient exploration.
Require: Task decomposer DC, Task decontextualizer DT , execution operator O, utility model U
1: Input: input task t, budget B, Output: top-k plans with the highest utility
2: Initialize: the set of plans T ← {[t]}, the total cost c← 0
3: while c < B do
4: for plan τi = [s1, . . . , sn−1, sn] in T do
5: Decompose the residual subtask sn into directly solvable subtask s1n and residual subtask s2n using
DC; Update c with cost of decomposition

6: Add plan [s1, . . . , sn−1, s
1
n, s

2
n] to T

7: Compute the exact utility of s1n, and estimate the lower and upper bounds of the utility of s2n using
U

8: Prune plans with utility upper bound < k-th largest utility lower bound of all plans or with cost lower
bound exceeding the budget

9: if there exists k plans with utility lower bound ≥ utility upper bound of all other plans then
10: Return these k plans
11: for plan τi in T do
12: Apply the execution operator O to s1n to obtain artifact O(s1n); Update c with cost of executing O
13: Decontextualize s2n based on s1n and O(s1n) using DT ; Update c with cost of decontextualization
14: Compute the exact utility of s2n using U
15: Return top plans

tures the remaining reasoning needed to complete the task. In this way, our framework enumerates
a frontier of candidate plans by recursively decomposing the task in a divide-and-conquer fashion.
Examples of decompositions that include solvable and residual subtasks are illustrated in Figure 1.
Details of the prompts used by the planning model for this process are provided in Appendix A.

Calibration of Utility. In OLP, the utility of a plan τ is not directly observable and must instead
be calibrated through measurable signals that approximate its quality under a computational budget.
For each subtask s ∈ τ , calibration proceeds in two stages. An execution operator O is first applied
to s under the current budget to produce an intermediate artifact O(s). This artifact is then evaluated
by a reward model R, which estimates how likely the subtask can be successfully solved given O(s),
and a cost model C, which estimates the resources consumed and thus the chance of exceeding the
total budget B in the future.

A key design is to aggregate reward and cost in a manner that reflects the compounding nature
of multi-step plans. Because the failure or budget overconsumption of any individual subtask can
compromise the entire plan, utility must penalize weak subtasks rather than allowing them to be
masked by stronger ones. To this end, we define plan utility as a multiplicative combination of
reward and cost terms across subtasks. This formulation jointly captures progress toward solving
the task and adherence to budget constraints, while naturally enforcing that a plan’s utility decreases
if any subtask is either low-reward or highly costly.

Formally, the calibrated utility of a plan τ under budget B is

uτ = U(τ,B) =
∏
s∈τ

us =
∏
s∈τ

R
(
s,O(s)

)w · C
(
O(s), B

)1−w
(1)

where us is the utility of subtask s and w ∈ [0, 1] balances the contributions of reward and cost.

In practice, we compute utility in log-space:

log uτ =
∑
s∈τ

[
w logR

(
s,O(s)

)
+ (1− w) log C

(
O(s), B

)]
(2)

This representation yields a convex combination of logR and log C, making the role of w in me-
diating the trade-off explicit and mitigating numerical underflow. Through this calibration, utility
provides a principled measure of how likely a plan is to achieve task success while remaining feasi-
ble under the computational budget.

This calibration process is generalizable to different settings. In the RAG setting, the operator O can
be a search module that retrieves passages, the reward model R can be a reranker that scores their

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

relevance to the query, and the cost model C can be based on the number of retrieval and generation
tokens, where using more tokens leads to a lower score. This choice provides a lightweight proxy
for task progress without requiring OLP to generate a full answer at this stage.

More generally, for reasoning tasks beyond RAG, O could be a solver such as an LLM or an agentic
workflow that produces a candidate derivation or answer. R can then score this output via LLM-
as-a-judge or consistency checks, while C can evaluate cost based on FLOPs, latency, or energy
predictors. By framing utility itself as a calibrated combination of reward and cost, OLP provides a
unified and extensible mechanism for ranking and pruning candidate plans under budget constraints.

Utility Estimation and Refinement. As discussed above, computing the full utility of a plan τ is
generally infeasible. Instead, OLP estimates utilities by assigning exact values to directly solvable
subtasks and bounded estimates to residual subtasks. These bounds (ulb for lower bound and uub for
upper bound), capture the range of possible utility until additional information becomes available.

For a directly solvable subtask s (line 7 in Algorithm 1), exact utility means lower and upper bounds
are equal (i.e., us = ulb

s = uub
s). This is estimated by combining the subtask reward with the cost of

the LLM call that instantiates the subtask, either during plan enumeration or decontextualization.

For residual subtasks prior to decontextualization (line 7 in Algorithm 1), utility can only be ap-
proximated since they depend on upstream solvable subtasks. We therefore treat them as not self-
contained: the reward estimated from the current contextualized form provides a conservative lower
bound, while the upper bound is set to the maximum achievable reward. As an illustration, con-
sider the RAG setting with the residual subtask “How do they compare to Apple’s total quarterly net
sales during 2023?” in Figure 1. Here, the reference they links back to upstream solvable subtasks,
making the residual not self-contained. When we compute its utility with a reranker applied to doc-
uments retrieved by the search module, the reranker’s score is taken as the lower bound. The upper
bound is fixed to the maximum score the reranker can output (equal to 1).

As for cost, lower and upper bounds are estimated using the token budget of the forthcoming decon-
textualization call together with the minimum and maximum possible output tokens. These reward
and cost estimates are then combined to produce utility bounds, which are progressively refined as
planning unfolds.

Formally, the lower and upper bounds of a plan τ are computed as follows:

log ulb
τ =

(∑
s1,...,sn−1

log usi

)
+ log usn ; log uub

τ =
(∑
s1,...,sn−1

log usi

)
+ log umax

sn (3)

where τ = [s1, . . . , sn−1, sn], with each of the first n−1 subtasks directly solvable and the last sub-
task sn being residual, umax

sn denotes its maximum achievable utility, while each log usi is computed
using Equation (2).

To refine these utility estimates, the planner performs decontextualization. As shown in line 13 of
Algorithm 1, given a solvable subtask s1i and its dependent residual subtask s2i , the decontextualizer
obtains the solution to s1i and rewrites s2i so that it no longer depends on s1i (prompt details in
Appendix B). In line 14, the utility of the decontextualized residual is then recomputed with tighter
bounds, reflecting the reduced uncertainty.

Because a decontextualized residual can itself be decomposed further, the planner recursively ap-
plies this decomposition–decontextualization cycle. In doing so, the utility bounds are progressively
tightened and plan estimates become more accurate, enabling increasingly reliable ranking and prun-
ing of candidate plans as the search proceeds.

Pruning Plans. Once utilities for the subtasks are estimated, the lower and upper bounds (denoted
as ulb

τ and uub
τ) of an entire plan’s utility can be computed via Equation (3). These bounds allow the

planner to eliminate unpromising candidates without fully unrolling every plan. In particular, we
check whether there exist k plans such that

min
τi∈{τ1,...,τk}

ulb
τi ≥ max

τj /∈{τ1,...,τk}
uub
τj (4)

If this condition holds, we can safely conclude that the current top-k plans (ranked by utility) have
already been identified (lines 9 and 10 of Algorithm 1). Further unrolling of the remaining candi-
dates cannot change the outcome, since their future utilities are bounded above by their current uub

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

values, while the selected plans already have ulb values that dominate these bounds (Fagin et al.,
2001; Zhang et al., 2024).

Similarly, as described in line 8 of Algorithm 1, any plan τi can be pruned if

uub
τi < min

τj∈{τ1,...,τk}
ulb
τj (5)

where τ1, . . . , τk are the k plans with the highest current ulb. Such a plan is already dominated and
cannot enter the top-k set in the future. Pruning these dominated candidates improves efficiency by
focusing exploration on plans whose bounds still leave room for optimality.

Finally, we also track the cost of producing the plan and its execution cost. If the cumulative cost of
a plan τ exceeds the budget B, the plan is immediately discarded.

3 EXPERIMENTAL EVALUATION

A defining feature of OLP is its ability to optimize the likelihood of task success under varying
budget constraints. Unlike existing search algorithms, it avoids explicit trajectory rollouts and prunes
dominated plans, enabling more effective exploration. To evaluate these advantages, we study both
accuracy and cost, asking two key questions:

• No budget imposed: How does OLP compare to existing methods when computation is
unconstrained? This setting applies to domains (e.g., finance, medicine) where exhaustive
reasoning is preferred and higher costs are acceptable in exchange for maximum result
quality.

• Budget-constrained: How does OLP compare to existing methods across different budget
levels? This setting reflects cost-sensitive domains (e.g., online services) where answers
must remain accurate but reasoning must be adapted in granularity and efficiency to fit
within the available budget.

We instantiate these evaluations on complex RAG tasks, which provide a representative proxy for
real-world applications. Such tasks usually demand multi-step reasoning and careful decomposition,
which makes them naturally amenable to being solved through alternative plans. In addition, RAG
tasks involve interactions with external tools (e.g., retrievers, document corpora), a characteristic
that closely mirrors real-world applications.

As outlined in Section 2, instantiating OLP requires specifying an execution operator O, a re-
ward model R, and a cost model C. For RAG tasks, we employ the dense retriever Snowflake-
arctic-embed-m-v2.0 (Yu et al., 2024) as the operator, the reranker BGE-reranker-v2-minicpm-
layerwise (Li et al., 2023; Chen et al., 2024) as the reward model, and a token-based pricing model
as the cost model. The details of our experimental setup are provided in Section 3.1, and the corre-
sponding results are reported in Section 3.2.

3.1 EXPERIMENTAL SETUP

Datasets and metrics. We evaluated our framework on two representative RAG datasets that re-
quire addressing complex user queries with document-based evidence: Musique (Trivedi et al.,
2022), a multi-hop QA benchmark, and BrowseComp-Plus (Chen et al., 2025), a challenging dataset
for deep research tasks. For accuracy, we reported exact match (EM) and F1 scores by comparing
predicted answers against the gold references, as both datasets contain short-text answers. For cost,
we adopted a token-based pricing model that accounts for all LLM calls during task execution,
following OpenAI’s pricing scheme.2 To improve readability, we scale the cost by a factor of 103.

Baselines. We evaluated our approach against several search algorithms built on the ReAct
problem-solving framework, each representing a different accuracy–cost tradeoff. Broadly, we com-
pare two types: methods that explore only a few trajectories, emphasizing cost reduction over accu-
racy, and methods that explore multiple trajectories, emphasizing accuracy at a higher cost.

2https://openai.com/api/pricing/

6

https://openai.com/api/pricing/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

For the cost-focused case, we consider greedy search, which follows a single trajectory. Since ReAct
by default uses chain-of-thought (CoT) reasoning at each step, we further include a baseline variant
that removes CoT entirely, pushing cost minimization to the extreme.

For the accuracy-focused case, we consider beam search and Monte Carlo Tree Search (MCTS),
both of which explore multiple actions per step to form multiple trajectories. Beam search retains
the top-scoring partial plans at each step, while MCTS simulates rollouts to estimate rewards: an
approach that is more computationally expensive but can achieve higher accuracy.

The details of these search algorithm implementations are provided below:

• Greedy: the default implementation of ReAct that operates iteratively, deciding at each
step a single action (provide an answer or initiate a new reasoning step) through chain-of-
thought, which may include interactions with external tools.

• Greedy without CoT: a greedy variant where the model outputs the action directly without
chain-of-thought.

• Beam Search: Rather than pursuing a single action at each step, beam search maintains
up to k beams with the highest scores, thereby considering up to k2 actions per step. The
scores are computed using a reward model R.

• MCTS: MCTS explores k actions, retaining the best one at each step. It uses UCT to run
multiple simulations, where actions are selected and rolled out to completion, producing
scores (via a reward model R) that inform subsequent UCT decisions. The action chosen
most frequently is then selected.

To ensure fairness, all baseline methods employ the same BGE-reranker as our framework, using it
either as the reward model or directly in the retrieval stage.

Implementation details. We adopted an open, off-the-shelf LLM, Qwen2.5-7B-Instruct, as the
backbone for executing all methods. As noted earlier, we evaluate all methods under two execution
settings: with and without a cost budget. When a budget is given, execution stops once the budget is
consumed. Without a budget, since the methods run iteratively until producing an answer and may
not converge, we cap the execution at 10 iterations to prevent indefinite runs, a limit chosen to be
sufficiently large. In either setting, if the budget is consumed or the iteration cap is reached without
an answer, the model is given a final opportunity to generate an answer to ensure task completion.

3.2 RESULTS

Table 1: Performance of all methods without a budget. Bolded and underlined numbers represent
the performance of our method when it ranks as the best and second best, respectively.

Musique BrowseComp-Plus

EM F1 Cost ↓ EM F1 Cost

Greedy w/o CoT 12.0 18.6 1.12 11.0 13.8 6.47
Greedy 10.0 17.7 1.66 7.90 9.60 8.29
Beam search 13.3 22.7 4.38 11.4 14.3 29.85
MCTS 9.10 14.9 29.3 11.4 15.1 132.90
OLP (ours) 22.8 36.8 1.05 24.2 30.3 5.91

Table 1 and Table 2 report the performance of all methods without a budget and under varying budget
levels, respectively. Across both settings, our method consistently outperforms the greedy baseline,
whether or not chain-of-thought is used, while incurring comparable cost. This demonstrates that,
given the same budget, OLP can explore multiple plans effectively and produce better answers.

When compared to more advanced search strategies (beam search and MCTS), we observe that
although they generally improve over greedy, OLP still achieves higher accuracy at substantially
lower cost. This advantage arises because our framework (1) avoids costly explicit rollouts by using
efficient reward model estimates, and (2) prunes plans whose upper bounds are dominated by the
lower bounds of others, thereby focusing exploration on the most promising candidates.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance of all methods under different levels of budget.
Low budget Mid budget High budget

EM F1 Relative cost ↓ EM F1 Relative cost EM F1 Relative cost

Musique: low budget = 0.5, mid budget = 1, high budget = 1.5

Greedy w/o CoT 9.1 16.2 1.00x 8.1 14.4 1.00x 12 17.5 1.00x
Greedy 11.0 15.7 1.13x 14.4 19.7 1.30x 11.1 15.8 1.36x
Beam search 12.0 18.3 1.23x 18.0 24.3 1.54x 13.0 21.3 1.81x
MCTS 10.0 18.6 1.28x 14.3 23.9 1.68x 11.2 20.4 2.02x
OLP (ours) 13.4 24.8 0.75x 20.4 33.0 1.06x 18.7 31.2 1.09x

BrowseComp-Plus: low budget = 2.5, mid budget = 5, high budget = 7.5

Greedy w/o CoT 8.7 10.3 1.00x 11.1 12.9 1.00x 10 11.7 1.00x
Greedy 6.4 10.6 1.15x 6.5 8.6 1.23x 5.5 9.0 1.32x
Beam search 9.8 12.9 1.26x 11.8 14.0 1.46x 6.7 11.4 1.75x
MCTS 10.8 13.9 1.28x 7.7 10.7 1.64x 10.6 12.0 2.07x
OLP (ours) 18.1 22.8 0.78x 22.8 28.9 1.06x 27.0 31.1 1.14x

Furthermore, as shown in Table 2, the performance of OLP generally improves as the budget in-
creases, highlighting its ability to leverage additional budget to yield more accurate answers.

4 ANALYSIS

Section 3 demonstrates the overall effectiveness of our approach compared to existing search al-
gorithms. In this section, we present a deeper analysis to better understand the sources of this
improvement (Section 4.1). We also evaluate how the performance of our framework varies with
different reward models (Section 4.2).

4.1 UNDERSTANDING THE GAINS OF OUR FRAMEWORK

Section 3 demonstrates that OLP achieves higher result quality than existing search algorithms while
maintaining cost comparable to simple greedy search, and substantially lower than more complex
approaches such as beam search and MCTS. In this section, we provide a deeper analysis to under-
stand why our framework delivers both quality and efficiency gains.

For quality, we measure whether OLP can explore more plans. As highlighted in Section 1, the
key features of our framework are avoiding explicit rollouts of all candidate plans and pruning
unpromising ones, which enable more effective budget allocation toward higher-quality plans. As a
result, under the same budget or iteration limit, OLP can often explore more plans, leading to higher
quality. The number of trajectories/ plans explored by each method is reported in Table 3.

For efficiency, we evaluate how many iterations each method requires to finish execution. Fewer
iterations imply lower cost. We also measure the proportion of tasks that successfully produce an
answer within the budget or iteration cap. As noted in Section 3.1, existing search algorithms lack
convergence guarantees, so they may exhaust resources without yielding an answer, requiring extra
computation to force a final output. Thus, we allow models to have a final opportunity to generate
an answer, though it incurs additional cost. Results for these metrics are reported in Table 4.

From Table 3, we observe that OLP generally explores the most plans among all methods, naturally
yielding higher quality. It also generally prunes 20–30% of dominated plans, demonstrating effective
budget allocation toward higher-quality plans, which further boosts quality and efficiency.

As shown in Table 4, OLP also requires the fewest iterations to complete, resulting in greater effi-
ciency and lower cost. In addition, it achieves the highest task completion rate, providing stronger
empirical convergence guarantees while incurring minimal extra cost for generating answers.

4.2 IMPACT OF DIFFERENT REWARD MODELS ON PERFORMANCE

As outlined in Section 2, our framework leverages a reward model to estimate the rewards of sub-
tasks, thereby signaling the likelihood of a plan’s success. Consequently, the quality of these re-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Total number of trajectories/plans explored by all methods, along with the proportion of
plans pruned by our method, under both budgeted and non-budgeted settings.

Musique BrowseComp-Plus

None Low Mid High None Low Mid High

Greedy w/o CoT 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Greedy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Beam search 5.64 1.92 2.59 3.20 6.18 3.07 3.37 4.10
MCTS 4.32 2.00 2.00 2.38 4.11 2.00 2.50 2.78
OLP (ours) 5.35 2.22 4.38 5.10 7.03 2.80 5.24 6.44
% plans pruned in OLP 28.6 4.50 21.7 27.1 33.1 9.6 30.2 30.9

Table 4: Number of execution iterations to complete and percentage of tasks with answer generated
within the maximum allowed execution iterations.

Musique BrowseComp-Plus

#Iteration ↓ %Task with answers #Iteration %Task with answers

Greedy w/o CoT 4.08 85.0 4.08 84.6
Greedy 5.39 71.0 5.45 71.9
Beam search 3.85 85.7 4.74 76.1
MCTS 5.52 67.0 5.61 63.6
OLP (ours) 2.74 96.7 2.64 100.0

ward estimates is crucial. To assess this, we examine the performance of our method under reward
models of varying strengths. In Section 3, we employed a 2.7B-parameter reranker (BGE-reranker-
v2-minicpm-layerwise) as the reward model. For comparison, we also evaluate a smaller reranker,
BGE-reranker-v2-m3, with 0.6B parameters.

Table 5 presents the results across different reward model sizes. Across both datasets, we find that
smaller reward models, while somewhat less accurate, still maintain reasonable performance with
costs remaining stable. Notably, even with the smaller reranker, our framework still surpasses the
best search baseline that uses the 2.7B reranker, underscoring the effectiveness of our approach.

Table 5: Performance of our method under reward models of different sizes (and thus strength).
Musique BrowseComp-Plus

EM F1 Cost ↓ EM F1 Cost

Best baseline + 2.7B reranker 13.3 22.7 4.38 11.4 15.1 132.90
OLP + 0.6B reranker 20.4 29.5 0.92 15.6 20.5 5.70
OLP + 2.7B reranker 22.8 36.8 1.05 24.2 30.3 5.91

5 CONCLUSION

We introduce Optimizable LLM Planning (OLP), a branch-and-bound framework that formulates
planning with LLMs as a budget-constrained optimization problem. Unlike greedy or heuristic
search methods, OLP systematically enumerates and evaluates candidate plans through recursive
decomposition, and calibrates their utility by integrating reward and cost. Bounding via utility inter-
vals enables principled ranking, early pruning of dominated plans, and efficient exploration without
unrolling entire trajectories. We instantiated OLP on retrieval-augmented generation (RAG) tasks
across multi-hop QA and agentic browsing benchmarks. OLP consistently outperforms existing
search strategies, matching greedy search in cost while improving accuracy by 2.04×, and surpass-
ing beam search and MCTS with 1.74× higher accuracy at 2.58× lower cost.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation, 2024.

Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
Kshama Patel, Ruoxi Meng, Mingyi Su, et al. Browsecomp-plus: A more fair and transparent
evaluation benchmark of deep-research agent. arXiv preprint arXiv:2508.06600, 2025.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware.
In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pp. 102–113, 2001.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao. Making large language models a better
foundation for dense retrieval, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

JA Nelder, Mead AH Land, and AG Doig. An automatic method for solving discrete programming
problem. Econometrica, 28:497–520, 1960.

Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte carlo tree
search: A review of recent modifications and applications. Artificial Intelligence Review, 56(3):
2497–2562, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv. org/abs/2305.10601, 3:1, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Puxuan Yu, Luke Merrick, Gaurav Nuti, and Daniel Campos. Arctic-embed 2.0: Multilingual re-
trieval without compromise. arXiv preprint arXiv:2412.04506, 2024.

Yi Zhang, Peter Baile Chen, and Zachary G Ives. Searching data lakes for nested and joined data.
Proceedings of the VLDB Endowment, 17(11):3346–3359, 2024.

A DECOMPOSITION PROMPT

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Table 6: Prompts for decomposition.

Decomposition prompt

You are an expert at question decomposition. Your task is to analyze and transform complex
questions into simpler, more focused components.
Given a question, decompose it into two sub-questions by:

• Breaking down the complex question into two logical components
• The decomposition must be complete: combining the answers of sub-questions

must be enough to solve the given question
• It is ok to have dependencies between the two sub-questions
• Providing multiple decomposition approaches when possible
• Do not attempt to solve the sub-questions

The output should be a JSON-formatted list where each element represents one decomposi-
tion approach:
[

{
"question 1": "First sub-question",
"question 2": "Second sub-question"

},
{

"question 1": "First sub-question",
"question 2": "Second sub-question"

}
]

Here is an example.
Question: How many academic staff are at the university in Budapest that has the official
abbreviation BME ?
Output:
[
{

"question 1": "How many academic staff are at each
university in Budapest?",

"question 2": "Which university from these universities
has the official abbreviation BME?"

},
{

"question 1": "Which university in Budapest has the
official abbreviation BME?",

"question 2": "How many academic staff are there at this
university?"

},
{

"question 1": "What universities are in Budapest?",
"question 2": "How many academic staff are there at the

university that has the official
abbreviation BME from these universities?"

}
]

Your response must follow the output format without generating anything else.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

B DECONTEXTUALIZATION PROMPT

Table 7: Prompts for decontextualization.

Decontextualization prompt

You are an expert at question rewriting. Your task is to analyze and transform complex
questions into simpler, more focused components.
Given question 1, question 2, and a document that can potentially be used to answer question
1, rewrite question 2 so that it is context-independent:

• Remove any dependencies from question 1
• Incorporate only the answer to question 1 based on the given document
• Make question 2 self-contained and clear

Here is an example.
Question 1: What universities are in Budapest?
Question 2: How many academic staff are there at the university that has the official
abbreviation BME from these universities?

Document:
Document title: Budapest
Document content: Budapest is home to several prestigious universities including the Uni-
versity of Veterinary Medicine, Corvinus University, Budapest University of Technology
and Economics (BME), and Budapest University of Economics and Business.

Output:
Answer: University of Veterinary Medicine, Corvinus University,
Budapest University of Technology and Economics (BME),
and Budapest University of Economics and Business

Question: How many academic staff are there at the university
that has the official abbreviation BME among the University of
Veterinary Medicine, Corvinus University, Budapest University
of Technology and Economics (BME), and Budapest University
of Economics and Business?

Your response must follow the output format without generating anything else.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLM was used only to aid writing quality (proofreading and polishing grammar). No ideas, claims,
methods, results, or references are generated by LLMs. All content decisions and revisions are made
by the authors.

13

	Introduction
	Methodology
	Experimental Evaluation
	Experimental setup
	Results

	Analysis
	Understanding the gains of Our Framework
	Impact of different reward models on performance

	Conclusion
	Decomposition prompt
	Decontextualization prompt
	The Use of Large Language Models (LLMs)

