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Figure 1: Visualization results of StyleShot for text and image-driven style transfer across six style
reference images. Each stylized image is generated by StyleShot without test-time style-tuning,
capturing numerous nuances such as colors, textures, illumination and layout.
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ABSTRACT

In this paper, we show that, a good style representation is crucial and sufficient
for generalized style transfer without test-time tuning. We achieve this through
constructing a style-aware encoder and a well-organized style dataset called Style-
Gallery. With dedicated design for style learning, this style-aware encoder is trained
to extract expressive style representation with decoupling training strategy, and
StyleGallery enables the generalization ability. We further employ a content-fusion
encoder to enhance image-driven style transfer. We highlight that, our approach,
named StyleShot, is simple yet effective in mimicking various desired styles, i.e.,
3D, flat, abstract or even fine-grained styles, without test-time tuning. Rigorous
experiments validate that, StyleShot achieves superior performance across a wide
range of styles compared to existing state-of-the-art methods.

1 INTRODUCTION

Image style transfer, extensively applied in everyday applications such as camera filters and artistic
creation, aims to replicate the style of a reference image. Recently, with the significant advancements
in text-to-image (T2I) generation based on diffusion models (Ho et al.| 2020} Nichol & Dhariwal,
[2021}; [Nichol et al, 2021}, [Ramesh et al} 2022} [Rombach et al., 2022; [Wang et al.,[2024b)), some

style transfer techniques that build upon large T2I models show remarkable performance. Firstly,

style-tuning methods (Everaert et al., 2023}, [Lu et al.} 2023}, [Sohn et al., 2024} Ruiz et al.| 2023}
Gal et al,[2022; [Zhang et al}[2023)) primarily tune embeddings or model weights during test-time.

Despite promising results, the cost of computation and storage makes it impractical in applications.

Even worse, tuning with a single image can easily lead to overfitting to the reference image. Another

trend, test-time tuning-free methods (Fig. 2] (a)) (Wang et al.| [2023b; [Liu et al.| 2023} [Sun et al.
[2023} [Qi et al., [2024) typically exploit a CLIP (Radford et al.,[2021) image encoder to extract visual

features serving as style embeddings due to its generalization ability and compatibility with T2I
models. However, since CLIP image encoder is primarily trained to extract unified semantic features
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with intertwined content and style information, these approaches frequently result in poor style
representation, with detailed experimental analysis in Sec. 4.4} Moreover, some methods (Liu et al,
2023 |[Ngweta et al., [2023|Q1 et al.| [2024) tend to decouple style features in the CLIP feature space,
resulting in unstable style transfer performance.

To address the above limitations, we propose StyleShot, " Clip-based style encoder ()
which is able to capture any open-domain styles without NS - =]
test-time style-tuning. First, we highlight that proper style ‘.\l _ems T | E2 (.0
extraction is the core for stylized generation. As men- ‘L L g = s o
tioned, frozen CLIP image encoder is insufficient to fully o o
represent the style of a reference image. A style-aware ~—~~ Style-aware encoder | (n)
encoder (Fig. [2| (b)) is necessary to specifically extract 3 N emﬁ . _
more expressive and richer style embeddings from the \‘\\ e Eg E
reference image. Moreover, high-level styles such as 3D, 'j ad | 95’% g8 > g
flat, etc., are considered global features of images. It is =1 B N _>|j‘g £ [mm]

difficult to infer the high_level image Style from small Figure 2: Illustration of style extraction between CLIP
local patches alone, which motivates us to extract style image encoder (a) and our style-aware encoder (b).
embeddings from larger image patches. Considering both low-level and high-level styles, our style-
aware encoder adopts a Mixture-of-Expert (MoE) structure to extract multi-level patch embeddings
through lightweight blocks for varied-size patches, as shown in Figure[2] All of these multi-level
patch embeddings contribute to the expressive style representation learning through task fine-tuning.
Furthermore, we introduce a novel content-fusion encoder for better style and content integration,
to enhance StyleShot’s capability to transfer styles to content images.

Second, a collection of style-rich samples is vital for training a generalized style-aware encoder,
which has not been considered in previous works. Previous methods (Wang et al.l 2023b; [Liu et al.}
2023) typically utilize datasets comprising predominantly real-world images (approximately 90%),
making it challenging to learn expressive style representations. To address this issue, we have
carefully curated a style-balanced dataset, called StyleGallery, with extensive diverse image styles
drawn from publicly available datasets for training our StyleShot, as detailed in the experimental
analysis in Sec. [4.4]

Moreover, to address the lack of a benchmark in reference-based stylized generation, we establish a
style evaluation benchmark StyleBench containing 73 distinct styles across 490 reference images and
undertake extensive experimental assessments of our model on this benchmark. These qualitative and
quantitative evaluations demonstrate that StyleShot excels in transferring the detailed and complex
styles to various contents from text and image input, showing the superiority to existing style transfer
methods. Additionally, ablation studies indicate the effectiveness and superiority of our framework,
offering valuable insights for the community. We further demonstrate the remarkable ability of
StyleShot in learning fine-grained styles.

The contributions of our work are summarized as follows:

* We propose a generalized style transfer method StyleShot, capable of generating the high-
quality stylized images that match the desired style from any reference image without
test-time style-tuning.

 To the best of our knowledge, StyleShot is the first work to designate a style-aware en-
coder based on Stable Diffusion and a content-fusion encoder for better style and content
integration.

 StyleShot highlights the significance of a well-organized training dataset with rich styles for
style transfer methods, an aspect that has been overlooked in previous approaches.

* We construct a comprehensive style benchmark covering a variety of image styles and
perform extensive evaluation, achieving the state-of-the-art text and image-driven style
transfer performance compared to existing methods.

2 RELATED WORK

Large T2I Generation. Recent advancements in large T2I models have showcased remarkable
abilities to produce high-quality images from textual inputs. Specifically, diffusion based T2I models
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Figure 3: The overall architecture of our proposed StyleShot.

outperform GANs (Radford et al., 2015} Mirza & Osindero} 2014} [Goodfellow et al.} [2020) in terms
of both fidelity and diversity. To incorporate text conditions into the Diffusion model, GLIDE
first proposed the integration of text features into the model during the denoising process.
DALL-E2 (Ramesh et all, 2022)) trained a prior module to translate text features into the image
space. Moreover, studies such as[Ho & Salimans| (2022) and [Dhariwal & Nichol| (2021)); [Go et al.
(2023) introduced classifier-free guidance and classifier-guidance training strategies, respectively.
Following this, Stable Diffusion (Rombach et al., [2022)) utilizes classifier-free guidance to train the
diffusion model in latent space, significantly improving T2I generation performance. Our study aims
to advance stable and efficient style transfer techniques on the superior image generation capabilities
of large diffusion-based T2I models.

Image Style Transfer. Image style transfer aims to produce images that mimic the style of reference
images. With deep learning’s evolution, Huang et al.|(2018)); [Liu et al.| (2017); (Choi et al.| (2018));
Zhu et al.| (2017) introduced unsupervised method on GANs (Heusel et al.,[2017) or AutoEncoders
(Hinton & Zemell [1993} [He et al.,[2022) in explicit or implicit manner for automatic style domain
conversion using unpaired data, ensuring content or style consistency. Furthermore, another research
avenue (Gatys et al.| 2016 [Ulyanov et al 2016} [Dumoulin et al.} 2016} Johnson et al.} 2016) utilized
the expertise of pre-trained CNN models to identify style features across different layers for style
transfer. Nonetheless, the limitations in generative performance of conventional image generation
models like GANs and AutoEncoders often result in subpar style transfer results.

Leveraging the exceptional capabilities of large T2I models in image generation, numerous style
transfer methods have exhibited remarkable performance. Style-tuning methods (Everaert et all
[2023} [Lu et al}, 2023}, [Gal et al., 2022} [Zhang et al.} 2023} [Ruiz et all 2023} [Sohn et al., [2024)) enable
model adaptation to a specific style via fine-tuning. Furthermore, certain approaches (Jeong et al]
2023} [Hamazaspyan & Navasardyan| 2023} [Wu et al, 2023}, [Hertz et al., 2023} [Wang et al., 20244
Yang et al., 2023} Chen et al.}[2023)) edit content and style in the U-Net’s (Ronneberger et al.|[2015
feature space, aiming to bypass style-tuning at the cost of reduced style transfer quality. Recently,
Wang et al| (2023b); [Liu et al.| (2023); [Sun et al| (2023); [Qi et al| (2024) employ CLIP image encoder
for extracting style features from each image. However, relying solely on semantic features extracted
by a pre-trained CLIP image encoder as style features often results in poor style representation. Our
study focuses on resolving these challenges by developing a specialized style-extracting encoder and
producing the high-quality stylized images without test-time style-tuning.

3 METHOD

StyleShot is built on Stable Diffusion (Rombach et all 2022), reviewed in Sec. [3.1} We first provide
a brief overview of the pipeline for our method StyleShot, as illustrated in Fig. [3] Our pipeline
comprises a style transfer model with a style-aware encoder (Sec. [3.2) and a content-fusion encoder
(Sec. [3.3), as well as a style-balanced dataset StyleGallery along with a de-stylization (Sec. [3.4).

3.1 PRELIMINARY

Stable Diffusion consists of two processes: a diffusion process (forward process), which incrementally
adds Gaussian noise ¢ to the data xg through a Markov chain. Additionally, a denoising process
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generates samples from Gaussian noise 7 ~ N (0, 1) with a learnable denoising model €y (z¢, ¢, ¢)
parameterized by 6. This denoising model €4 (-) is implemented with U-Net and trained with a
mean-squared loss derived by a simplified variant of the variational bound:

L=Eix.e[lle—éo(xe,t,0)]7] 4))

where ¢ denotes an optional condition. In Stable Diffusion, c is generally represented by the text
embeddings f; encoded from a text prompt using CLIP, and integrated into Stable Diffusion through
a cross-attention module, where the latent embeddings f are projected onto a query (), and the text
embeddings f; are mapped to both a key K; and a value V;. The output of the block is defined as
follows:

. QK
Attention(Q, K¢, Vi) = softmax Vi, 2)
Vd
where Q = Wq - f, Ky = Wk, - fi, Vi = Wy, - fr and Wg, Wk, , Wy, are the learnable weights
for projection. In our model, the style embeddings are introduced as an additional condition and are
amalgamated with the text’s attention values.

3.2 STYLE-AWARE ENCODER

When training a style transfer model on a large-
scale dataset where each image is considered a
distinct style, previous methods
[Wang et al, 20236} [Qi et al., 2024) often use
CLIP image encoders to extract style features.
However, CLIP is better at representing linguis- 1 ;
tic relevance to images rather than modeling B 4 A (7S

i

lmage Style, Wthh Comprlses aSpeCtS llke COlor, Rerene 3 1 ’ A(;urs: high V Ours: med;\.lr: ! Ours: low
sketch, and layout that are difficult to convey Figure 4: Attention map from the CLIP image encoder (left) and our

style-aware encoder (right) on style reference images.

through language, limiting the CLIP encoder’s
ability to capture relevant style features. As shown in Fig. [] (left), the CLIP image encoder pre-
dominantly focuses on semantic information, often resulting in poor style representation. Therefore,
we propose a style-aware encoder designed to specialize in extracting rich and expressive style
embeddings.

Style Extraction. Our style-aware encoder borrows the pre-trained weights from CLIP image
encoder, employing the transformer blocks to integrate the style information across patch embeddings.
However, different from CLIP image encoder, which partitions the image into patches of a single
scale following a single convolutional layer to learn the unified features, we adopt a multi-scale patch
partitioning scheme in order to capture both low-level and high-level style cues. Specifically, we
pre-process the reference image into non-adjacent patches p4, Pm, Ps Of three sizes—1/4, 1/8, and
1/16 of the image’s length—with corresponding quantities of 8, 16, and 32, respectively. For these
patches of three sizes, we use distinct ResBlocks of three depths £y, &,,, and £, as the MoE structure
to separately extract patch embeddings f, at multiple level styles:

fo = [€a(PY); - 1 €a(PR); Em(Pl)i -+ 3 Em(Pae); Es(Pa); -+ ; Es(P2?)]

After obtaining multi-scale patch embeddings f,, from varied-size patches, we employ a series of
standard Transformer Blocks @ for further style learning. To integrate the multiple level style features
from f,, we define a set of learnable style embeddings fs, concatenated with f, as [fs, fp], and feed
[fs, fp] into @. This process yields expressive style embeddings fs with rich style representations
from the output of ®:

[fsafp] = (I) ([fsapr

Also, we drop the position embeddings to get rid of the spatial structure information in patches.
Compared to methods based on the CLIP image encoder, which extracts semantic features from the
single scale patch embeddings, our style-aware encoder provide more high-level style representations
by featuring multi-scale patch embeddings. As shown in Fig. [ (right), we visualized the attention
maps for three distinct levels of patches in the style-aware encoder, our style-aware encoder does not
solely focus on semantic areas but also style areas like the sky and water, which are often neglected
by the CLIP image encoder.
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Style Injection. Inspired by IP-Adapter (Ye et al.|[2023), we infuse the style embeddings f; into a
pre-trained Stable Diffusion model using a parallel cross-attention module. Specifically, similar to
Eq. 2] we create an independent mapping function Wi, and Wy, to project the style embeddings f
onto key K; and value V. Additionally, we retain the query (), projected from the latent embeddings
f. Then the cross-attention output for the style embeddings is delineated as follows:

Attention(Q, K, Vy) ft <QK5T> V. 3)
ention(Q, K, Vs) = softmax - Vi,

Vd
the attention output of text embeddings f; and style embeddings f, are then combined as the new
latent embeddings f’, which are then fed into subsequent blocks of Stable Diffusion:

[ = Attention(Q, Ky, V;) + MAttention(Q, K, V), 4)

where )\ represents the weight balancing two components.

3.3 CONTENT-FUSION ENCODER

In practical scenarios, users provide text prompts or images as well as a style reference image to
control the generated content and style, respectively. Previous methods (Jeong et al.l [2023; Hertz
et al.,|2023) typically transfer style by manipulating content image features. However, the content
features are coupled with style information, causing the generated images to retain the content’s
original style. This limitation hinders the performance of these methods in complex style transfer
tasks. Differently, we pre-decouple the content information by eliminating the style information in
raw image space, and then introduce a content-fusion encoder specifically designed for content and
style integration.

Content Extraction. Currently, Wang et al.
(2023a)) utilizes de-colorization and subsequent
DDIM Inversion (Song et al., [2020) for style
removing. As demonstrated in Fig. E] (a), this
approach primarily targets low-level styles, leav-
ing high-level styles like the brushwork of an oil
painting and low poly largely intact. Edge de-
tection algorithms such as Canny (Cannyl, [1986))

s (b)Canny c
and HED (Xle & Tu, 2015) can explicitly re- Figure 5: Illustration of the content input under different setting.
move style by generating a contour image. However, as illustrated in Figure 5] (b)(c), some high-level
styles are still implicitly present in the edge details. To comprehensively remove the style from
the reference image, we apply contouring using the HED Detector (Xie & Tul 2015) along with
thresholding and dilation. As a result, our content input x. (Fig. E] (d)) remains only the essential
content structure of the reference image.

Given the effectiveness of ControlNet in modeling spatial information within U-Net, we have
adapted a similar structure for our content-fusion encoder. Specifically, our content-fusion encoder
accepts content input x. as input, and outputs the latent representations for each layer as the content
embeddings f.:
0 f1 L
fc: |: co c?'afc v']a

where f0 represents the latent representation of mid-sample block, f1,-, fX represent the latent
representations of down-samples blocks and L denotes the total number of layers in down-sample
blocks. Moreover, we remove the text embeddings and employ style embeddings as conditions for

the cross-attention layers within the content-fusion encoder to facilitate the integration of content and
style.

Content Injection. Similar to ControlNet, we utilize a residual addition that strategically integrates
content embeddings f. into the primary U-Net:

fO=f0+ f2,
fr=fir =1, L,

where 0 represents the latent of mid-sample block in U-Net and f! to f represent the latent
representations of up-sample blocks in U-Net.
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Figure 6: Style distribution analysis in LAION-Aesthetics (left) and our StyleGallery (right), the
value represent the proportion of the top 50 styles in entire stylized data.

Two-stage Training. Given that the style embeddings are randomly initialized, jointly training the
content and style components leads the model to reconstruct based on the spatial information from
the content input, neglecting the integration of style embeddings in the early training steps. To resolve
this issue, we introduce a two-stage training strategy. Specifically, we firstly train our style-aware
encoder and corresponding cross-attention module while excluding the content component. This
task fine-tuning on the whole style-aware encoder enables it to capture style relevant information.
Subsequently, we exclusively train the content-fusion encoder with the frozen style-aware encoder.

3.4 STYLEGALLERY & DE-STYLIZATION

StyleGallery. Previous methods (Liu et al., 2023;|Wang et al., 2023b) frequently utilized the LAION-
Aesthetics (Schuhmann et al.| 2022) dataset. Following the style analysis outlined in McCormack
et al.|(2024), we found that LAION-Aesthetics comprises only 7.7% stylized images. Further analysis
revealed that the style images within LAION-Aesthetics are characterized by a pronounced long-tail
distribution. As illustrated in Fig. [6] painting style accounts for 43% of the total style samples while
the combined proportion of other 42 styles is less than 0.6%. Models trained on the dataset with
extremely imbalanced distribution easily overfit to high-frequency styles, which compromises their
ability to generalize to rare or unseen styles, as detailed in the experimental analysis in Sec. [4.4]
This indicates that the efficacy of style transfer is closely associated with the style distribution of the
training dataset.

Motivated by this observation, we construct a style-balanced dataset, called StyleGallery, covering
several open source datasets. Specifically, StyleGallery includes JourneyDB [Sun et al.| (2024), a
dataset comprising a broad spectrum of diverse styles derived from MidJourney, and WIKIART
Phillips & Mackintosh| (201 1)), with extensive fine-grained painting styles, such as pointillism and
ink drawing, and a subset of stylized images from LAION-Aesthetics. 99.7% of the images in our
StyleGallery have style descriptions. The style distribution within StyleGallery is more balanced and
diverse as illustrated in Fig. [6] which benefits our model in learning expressive and generalized style
representation.

De-stylization. We notice that the text prompts for images frequently contain detailed style de-
scriptions, such as “a movie poster for The Witch in the style of Arthur rackham”, leading to the
entanglement of style information within both text prompt and reference image. Since the pre-trained
Stable Diffusion model is well responsive to text conditions, such an entanglement may hinder the
model’s ability to learn style features from the reference image. Consequently, we endeavor to remove
all style-related descriptions from the text across all text-image pairs in StyleGallery, retaining only
content-related text. Our decoupling training strategy separates style and content information into
distinct inputs, aiming to improve the extraction of style embeddings from StyleGallery.

4 EXPERIMENTS

4.1 STYLE EVALUATION BENCHMARK

Previous works (Liu et al. 2023} Ruiz et al., 2023} Sohn et al.} 2024; Wang et al., [2023b) established
their own evaluation benchmarks with limited style images which are not publicly available. To
comprehensively evaluate the effectiveness and generalization ability of style transfer methods, we
build StyleBench that covers 73 distinct styles, ranging from paintings, flat illustrations, 3D rendering
to sculptures with varying materials. For each style, we collect 5-7 distinct images with variations.
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Figure 7: Qualitative comparison with SOTA text-driven style transfer methods.
In total, our StyleBench contains 490 images across diverse styles. Moreover, we generated 20 text
prompts and 40 content images from simple to complex that describe random objects and scenarios
as content input. Details are available in the Appendix [A] We conduct qualitative and quantitative
comparisons on this benchmark.

4.2 QUALITATIVE RESULTS

Text-driven Style Learning. Fig. [I|has displayed results of StyleShot to six distinct style images,
each corresponding to the same pair of textual prompts. For fair comparison, we also present results
of other text-driven style transfer methods, such as DEADIff (Qi et al.l 2024), DreamBooth

2023) on Stable Diffusion, InST (Zhang et al.l [2023)), StyleDrop (Sohn et al., [2024) (unofficial
implementation), StyleCrafter 2023) and StyleAligned 2023) applied to three

style reference images, with two different text prompts for each reference image. As shown in Fig.
[7] we observe that StyleShot effectively captures a broad spectrum of style features, ranging from
basic elements like colors and textures to intricate components like layout, structure, and shading,
resulting in a desirable stylized imaged aligned to text prompts. This shows the effectiveness of our
style-aware encoder to extract rich and expressive style embeddings.

Furthermore, we train StyleCrafter, a style transfer method adopting a frozen CLIP-based encoder,
on StyleGallery to extract style representations. As illustrated in Fig. setting default scale value
A = 1 during inference on StyleCrafter results in significant content leakage issue while setting
the scale value A = 0.5 diminished the style injection, generating even some real-world images.
Conversely, our StyleShot generates the stylized images align with the text prompt and style reference.
Beyond its effective style and text alignment, StyleShot also demonstrates the capacity to discern
and learn fine-grained stylistic details as shown in Fig. [9] More different baseline comparisons and
visualizations are available in Appendix [B.3]and [B.4]

Image-driven Style Learning. Thanks to our content-fusion encoder, StyleShot also excels at
transferring style onto content images. We compare StyleShot with other SOTA image-driven style

transfer methods such as AdaAttN (Liu et al.}, 2021, EFDM (Zhang et all,[2022a)), StyTR-2




|Under review as a conference paper at ICLR 2025

” k} ‘w 2l h I,
M B

Content Style Ours AdaAttN EFDM StyTR-2 CAST InST StyleID

Figure 8: Qualitative comparison with SOTA image-driven style transfer methods.

2022), CAST (Zhang et al.,[2022b), InST (Zhang et al.l 2023) and StyleID (Chung et al., [2024).

As illustrated in Fig. [8] our StyleShot can transfer any style (including even complex and high-level
styles such as light, pointillism, low poly, and flat) onto various content images (such as humans,
animals, and scenes), while baseline methods excel primarily in painting styles and struggle with
these high-level styles. This shows the efficacy of the content-fusion encoder in achieving superior
style transfer performance while maintaining the structural integrity of the content image.

Table 1: Quantitative comparison from human preference style loss and clip scores on text and image
alignment with SOTA text-driven style transfer methods. Best result is marked in bold.

Metrics StyleCrafter DEADiIff StyleDrop InST  StyleAligned StyleShot
human text 0.097 0.193 0.060 0.127 0.080 0.443
human image 1 0.143 0.080 0.040 0.063 0.173 0.500
clip text 1 0.202 0.232 0.220 0.204 0.213 0.219
clip image 1 0.706 0.597 0.621 0.623 0.680 0.640
style loss | 9.704 30.869 12.327 14.440 15.454 8.691

4.3 QUANTITATIVE RESULTS

Human Preference. Following [Liu et al.| (2023));[Wang et al.| (2023b)); [Sohn et al.| (2024), we conduct

user preference study to evaluate the text and style alignment ability on text-driven style transfer.
Results are tabulated in Tab. [T} Compared to other methods, our StyleShot achieves the highest
text/style alignment scores with a large margin, demonstrating the robust stylization across various
styles and responsiveness to text prompts.

Table 2: Quantitative comparison from clip image score and style loss with SOTA image-driven style
transfer methods. Best result is marked in bold.

Metrics AdaAtN EFDM SuTR-2 CAST InST StyleID StyleShot

clip image 1 0.569 0.561 0.586 0.575 0.569  0.604 0.660
style loss | 6.654 22.003  5.228 9.439  6.645 10.295 7.872

Other Metrics. Following [Wang et al. (2023a), we also measure the clip scores (Radford et all,
2021) and style loss (Gatys et al., 2016; [Huang & Belongiel 2017). As shown in Tab. [I| and Tab.

2l StyleShot achieves the best clip image score and style loss in image-driven and text-driven style
transfer settings, respectively. However, as previously mentioned in [Sohn et al.| (2024)); [Liu et al.|
(2023)) and[Wang et al.| (2023a), CLIP scores and style loss are not ideal for evaluation in style transfer
tasks. We present these evaluation results for reference purposes only.
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Figure 12: The visual illustration of StyleCrafter training
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Figure 11: The visualizations on multi-level style extraction, from top to bottom top to bottom prompts are “A wolf walking stealthily

prompts are “A wolf walking stealthily through the forest”, “A penguin”, “A moose”. through the forest™, “A wooden sailboat docked in a har-

bor”, “A colorful butterfly resting on a flower”.

4.4 ABLATION STUDIES

Style-aware Encoder. By selectively dropping patch embeddings of varying sizes, we verified the
style-aware encoder’s ability to extract style features at multiple levels. As illustrated in Fig. [T1]
retaining only the smallest patches results in gen-
erating images that solely inherit low-level style
information, such as color. However, when larger-
sized patches are included, the generated images
begin to exhibit more high-level style.

Moreover, we utilize a frozen CLIP image en-
coder without multi-scale patch embeddings as a
basline. We then apply task fine-tuning and multi-
scale patch embeddings to this baseline model. As
shown in Fig. [T3] the style extracted by the base- Awolt walkm« stcalihily through the forest.
line is notably different from the reference. After
including task fine-tuning and multi-scale patch

embeddings, the style of reference image is better w J ' *' :
captured by the model. These results demonstrate ad | B adli il |
the effectiveness of incorporating both task fine- Reference baseline  w/ fine-tuning w/ fine-tuning

tuning and multi-scale patch embeddings in the S ) w/ multi-scale
Figure 13: Visualizations incorporating task fine-tuning and a multi-

style encoder to extract more expressive and richer scale patch embeddings in the CLIP image encoder.
style representations. More experiments are shown in Appendlx@

Content-fusion Encoder. To evaluate the content-fusion encoder, we integrated pre-trained Control-
Net models (conditioned on Canny, HED, and our content input) with our style-aware encoder on
Stable Diffusion. As illustrated in Fig. [[4] compared to Canny and HED, our content input enabled
greater stylization, demonstrating the efficacy of our contouring technique for content decoupling.
Moreover, we train the content-fusion encoder with our style-aware encoder. By incorporating style
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Figure 14: Ablation studies on our content-fusion encoder. Columns 3-5 integrate the pre-trained ControlNet. *
represents training content-fusion encoder with style-aware encoder.

embeddings into the content-fusion encoder, the combination of style and content becomes more
smooth, demonstrating the effectiveness of our content-fusion encoder.

Style-balanced Dataset. We conduct ablations by respectively training models on the LAION-
Aesthetics and JourneyDB datasets. As shown in Tab. 3] model trained on StyleGallery achieves
the highest image alignment scores. Visual analysis in Fig. Table 3: Image alignment scores on various datasets.
|'1;5|indicates that the model trained on StyleGallery effec- Dataset LAION JourneyDB  StyleGallery

tively recognizes and generate a butterfly in the pointillism imaget 0614 0618 0.640

style. Moreover, as depicted in Fig. [I2} images generated
by StyleCrafter trained on our StyleGallery also exhibit
superior style alignment with the reference image. This
underscores the importance of utilizing a style-balanced " —

dataset for training style transfer methods. More experi- Rerelr:ichm ﬁg“%’fsﬁjﬂzaif;ﬁ" f,nyTf,b_‘ff?}fﬁ{irﬂy”.
ments are shown in Appendix [B.6]

Partitioning Strategy. We employ a non-
adjacent partitioning strategy (See Appendix Fig.
[19) to disrupt the structural information of the
image so as to reduce the content leakage issue.
To validate the effectiveness of this partitioning
strategy, we implement three other typical parti-
tioning strategies as follow: 1) Random: Patches
are randomly cropped from the image; 2) Over- Style ]Non—adjacenl  Rundom  Overlap & Adjacent  Halhalt
]ap & adjacent: Patches are uniform Sampled in Figure 16: Visual results of different partitioning strategies.
overlapped and adjacent way. 3) Half-half: Largest patches are cropped from the left half of the
image and the remaining patches from the right half. As shown in Fig. [I6] our partitioning (row 2)
yields more stable and superior style transfer performance compared to the Random (row 3) and
Half-half (row 5). Furthermore, the Overlap & Adjacent partitioning (row 4) leads to content leakage
and fails to respond adequately to textual input.

5 CONCLUSION

In this paper, we introduce StyleShot, the first work to specially designate a style-aware encoder to
extract rich style in style transfer task on diffusion model. StyleShot can accurately identify and
transfer the style of any reference image without test-time style-tuning. Particularly, due to the design
of the style-aware encoder, which is adept at capturing style representations, StyleShot is capable
of learning an expressive style such as shading, layout, and lighting, and can even comprehend fine-
grained style nuances. With our content-fusion encoder, StyleShot achieves remarkable performance
in image-driven style transfer. Furthermore, we identified the beneficial effects of stylized data and
developed a style-balanced dataset StyleGallery to improve style transfer performance. Extensive
experimental results validate the effectiveness and superiority of StyleShot over existing methods.
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Figure R1: Visual results for different content extractions on ControlNet or our proposed content-fusion encoder (*).
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Figure R3: Visual result with or without de-stylization.
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APPENDIX / SUPPLEMENTAL MATERIAL

A STYLE EVALUATION BENCHMARK

A.1 STYLE IMAGES

In this section, we provide more details about our style evaluation benchmark, called StyleBench. We
collect images in StyleBench from the Internet. The 73 types of styles in StyleBench are as shown in

the Tab. 4]

Table 4: 73 style types in StyleBench.

3D Model 00/.../05 Abstract 00/01 Analog film Anime 00/.../07 Art deco
Baroque Children’s Painting Classicsm Constructivism Craft Clay
Cublism Cyberpunk Expressionist Fantasy Art Fauvism
Flat Vector Folk art Gongbi Graffiti Hyperrealism
Icon 00/01/02 Impressionism Ink and Wash Painting IsoMetric Japonism
Line Art Low Poly Luminism Macabre MineCraft
Monochrome Neoclassicism Neo-Figurative Art Nouveau Op Art
Origami Orphism Photographic Pixel Art Pointilism
Pop Art Post-Impressionism Precisionism Primitivism Psychedelic
Realism Rococo Smoke & Light Statue Steampunk
Stickers Stick Figure Surrealist Symbolism Tonalism
Typography Watercolor others

Among these, due to the variations in fine-grained style features, categories such 3D models, Anime,
Icons, and Stick Figures can be subdivided into more specific groups. For these subdivisions, we
employ numerical labels for further classification, for example, 3D Model 00 through 05. As depicted

in Fig. each style comprises six to seven images, amounting to a total of 490 style images in our
evaluation benchmark.

Table 5: 20 text prompts in StyleBench.

“A bench” “A bird” “A butterfly” “An elephant”
“A car” “A dog” “A cat” “A laptop”
“A moose” “A penguin” “A robot” “A rocket”

“An ancient temple surrounded by lush vegetation”
“A chef preparing meals in kitchen”

“A colorful butterfly resting on a flower”

“A house with a tree beside”

“A person jogging along a scenic trail”

“A student walking to school with backpack”

“A wolf walking stealthily through the forest”

“A wooden sailboat docked in a harbor”

A.2 TEXT PROMPTS

We have collected 20 text prompts, as shown in Tab. [5] Our text prompts employ sentences that vary
from simple to complex in order to depict a diverse array of objects and character images.

A.3 CONTENT IMAGES

We have collected 40 content images, as shown in Fig.
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Figure 17: 490 style images in StyleBench.
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Figure 18: 40 content images in StyleBench.

B EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

In this section, we first provide some implementation details about our style-aware encoder discussed
in Sec[3.2] We adopt the open-sourced SD v1.5 as our base T2I model. We construct our StyleGallery
with diverse styles, which totally contain 5.7M image-text pairs, including open source datasets such
as JourneyDB, WiKiArt and a subset of stylized images from LAION-Aesthetics. Our varied-size
patches are divided into three sizes 1/4, 1/8 and 1/16 of image length with corresponding quantities of
8, 16, and 32, as shown in Fig. [T9] For patches of varying sizes, we utilize ResBlocks with differing
depths implemented using six, five, and four ResBlocks, respectively. Furthermore, our Transformer
Blocks are initialized from the pre-trained weights of OpenCLIP ViT-H/14 (Ilharco et al. [202T).
Following the Transformer Blocks, we introduce an ad-

ditional MLP for the Style embeddings. Similar to IP- Style Reference Image

Adapter, in each layer of the diffusion model, a parallel
cross-attention module is utilized to incorporate the pro- °

jected style embeddings. We train our StyleShot on a
single machine with 8 A100 GPUs for 360k steps (300k
for stage one, 60k for stage two) with a batch size of 16 per lé*u
GPU, and set the AdamW optimizer (Loshchilov & Hut{
with a fixed learning rate of 0.0001 and weight 2+
decay of 0.01. During the training phase, the shortest side
of each image is resized to 512, followed by a center crop
to achieve a 512 x 512 resolution. Then the image is sent
to the U-Net as the target image and to the Style-Aware
encoder as the reference image. To enable classifier-free
guidance, text and images are dropped simultaneously
with a probability of 0.05, and images are dropped individually with a probability of 0.25. During the
inference phase, we adopt PNDM sampler with 50 steps, and set the guidance scale
to7.5and A = 1.0.

Not used\ \

Figure 19: Illustration of partitioning our
style reference image.

B.2 DETAILS ON HUMAN PREFERENCE

In this section, we provide details about the human preference study discussed in Sec. 3] We
devised 30 tasks to facilitate comparisons among StyleDrop 2024), StyleShot (ours),
StyleAligned (Hertz et al [2023), InST (Zhang et al} [2023)), StyleCrafter (Liu et al., [2023) and
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DEADIfT (Qi et al., [2024)) with each task including a reference style image, text prompt, and a set
of six images for assessment by the evaluators. We describe detailed instruction for each task, and
ultimately garnered 1320 responses.

Instruction.

In our study, we evaluated 30 tasks, each involving a reference style image and the images generated
by six distinct text-driven style transfer algorithms. Participants are required to select the generated
image that best matches based on two criteria:

* Style Consistency: The style of the generated image aligns with that of the reference style
image;

» Text Consistency: The depicted content of generated image correspond with the textual
description;

Questions.

* Which generated image best matches the style of the reference image? Image A, Image B,
Image C, Image D, Image E, Image F.

* Which generated image is best described by the text prompt? Image A, Image B, Image C,
Image D, Image E, Image F.

B.3 EXTENDED BASELINE COMPARISONS

In this section, we first provide additional qualitative comparison with other SOTA text-driven style
transfer methods Dreamstyler (Ahn et al., |[2024)), T21-Adapter (Mou et al.,|[2024), IP-Adapter (Ye
et al., [2023) and InstantStyle(including sdxl version) (Wang et al., 2024a) in Fig. [20] We also
provide the quantitative results of these baselines, as shown in Tab. [6] StyleShot achieves superior
performance compared to these methods. We also observe that these methods have serious content
leakage issue, which leads to a high clip image score and a very low clip text score.

Table 6: Quantitative comparison from style loss and clip scores on text and image alignment with
other SOTA text-driven style transfer methods. Best result is marked in bold.

Metrics Dreamstyle T2I-Adapter IP-Adapter InstantStyle InstantStyle(sdxl) StyleShot

clip text T 0.189 0.133 0.207 0.127 0.212 0.219
clip image T 0.638 0.771 0.714 0.761 0.684 0.640
style loss | 19.273 13.512 10.147 8.721 8.744 8.691

Moreover, we provide more qualitative comparison with SOTA text-driven style transfer methods
StyleDrop (Sohn et al.| 2024), DEADiIff (Qi et al.| [2024)), InST (Zhang et al.,[2023)), Dream-Booth
(Ruiz et al.;|2023)), StyleCrafter (Liu et al., 2023)), StyleAligned (Hertz et al.,|2023)) in Fig. and
SOTA image-driven style transfer methods AdaAttN (Liu et al.;[2021), EFDM (Zhang et al., 2022a)),
StyTR-2 (Deng et al.} 2022), CAST (Zhang et al., 2022b), InST (Zhang et al.| [2023)) and StyleID
(Chung et al.,2024) in Fig.

B.4 EXTENDED VISUALIZATION

In this section, we present additional text-driven style transfer visualization results for StyleShot
across various styles, as shown in Fig. 27, 28] Unlike Fig. 25| each row in Fig. 27} 28] displays
stylized images within a specific style, where the first column represents the reference style image,
and the next six columns represent images generated under that style with distinct prompts. We also
present the additional experiments image-driven style transfer visualization results for StyleShot
across various styles, as shown in Fig. 29]

B.5 STYLE-AWARE ENCODER.

In this section, we provide quantitative evaluations for the experiments discussed in Sec. f.4]paragraph
style-aware encoder in Tab. [7]and Tab.
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Dream 21- Instaﬁf * Instant
styler  Adapter Adapter  Style Style(xI)

Figure 20: Qualitative comparison with other SOTA image-driven style transfer methods.

Table 7: Quantitative comparison between StyleCrafter and StyleShot. Best result is marked in bold.

Metrics StyleCrafter(scale=1.0)  StyleShot

clip image 1 0.780 0.640
clip text T 0.149 0.219
style loss | 18.443 8.691

As shown in Fig. [I0] we observe that StyleCrafter (scale=1.0) has content leakage issue, with a high
clip image score and a low clip text score. According to the visual results in Fig. [[T] maintaining
patches of all sizes in the style-aware encoder yields the best quantitative results.

Table 8: Quantitative comparison between multi-level partitioning. Best result is marked in bold.

Metrics Low Low, Medium Low, Medium, High
clipimage T  0.549 0.586 0.640
clip text 1 0.168 0.208 0.219
styleloss | 130.652 19.062 8.691

Moreover, we visualized the distribution of attention weights for three levels of patches in Fig. 21]
Medium level patches receive the highest attention weights.

B.6 STYLE-BALANCED DATASET.

A large-scale style-balanced dataset is valuable for learning representative style features, enabling
effective generalization to unseen styles. The underlying reason is that models tend to learn low-level
style features such as color, texture if the majority of the training dataset is real-world images.
Consequently, it is difficult for the models to recognize high-level style features such as styles
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Figure 21: Attention weights distributions of StyleShot. Figure 22: More style images from
StyleShot trained on different datasets.

expressed via layout, light, line art, the ones not embodied by real-world images. In this section, we
provide more visual examples on training StyleShot on different dataset in Fig. 22]

B.7 MULTI-SHOT STYLE TRANSFER.

StyleShot is compatible with the multi-shot style transfer by averaging style embeddings. As
demonstrated in Fig. 23] StyleShot shows stable multi-shot style transfer capability.

i Generations

Figure 23: Multi-shot style transfer result of StyleShot.

B.8 DIFFERENT STYLE GUIDANCE SCALE.

As shown in Fig. 24] we show the results that try different style guidance scale \ for the same input
at test time of StyleShot.

Style . A=10  A=08  A=06  A=04 )
Figure 24: Visual results for different style guidance scale for the same input at test time.
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B.9 DE-STYLIZATION.

In Sec. [34] we removed the style descriptions in the text prompt to decouple style
and content into the reference images and text prompts during  Table 9: De-stylization on prompts.
training. To validate the effectiveness of this de-stylization, -
we trained the model with text prompts that did not have the _Frompt — With Style  De-Style
style descriptions removed. The quantitative results in Tab. E] image 1 0.631 0.640
indicate that the style descriptions in the text can adversely
impact our model’s learning of the style to some extent.

B.10 RUNNING TIME COST ANALYSIS.

In this section, we provide the running time cost analysis with StyleShot and other SOTA style
transfer methods StyleDrop (Sohn et al., 2024), DEADIfT (Qi et al.|[2024), InST (Zhang et al.| [2023)),
Dream-Booth (Ruiz et al.}|2023), StyleCrafter (Liu et al.,|[2023)), StyleAligned (Hertz et al., [2023)),
as shown in Tab. [10] Firstly, for StyleShot, DEADIff and StyleCrafter, once training is complete,
the test running time depends solely on the diffusion inference process. Conversely, style-tuning
methods such as Dream-Booth (500 steps), StyleDrop (1000 steps) and InsT(6100 steps) require
additional time for tuning reference style images. Furthermore, StyleAligned shares the self-attention
of the reference image during inference, necessitating an inversion process. It should be noted that all
diffusion-based methods have their inference steps set to 50, and we have calculated the running time
cost for a single image on a A100 GPU.

Table 10: Running time cost between StyleShot and others SOTA style transfer methods.

TYPE  DEADIff D-Booth S-Crafter StyleDrop InST  S-Aligned StyleShot

training - 371s - 302s 1868s - -
inference 3s 5s 5s 7s 5s 18s 5s

C LIMITATIONS & DISCUSSIONS.

In this paper, we highlight that a style-aware encoder, specifically designed to extract style embed-
dings, is beneficial for style transfer tasks. However, we have not explored all potential designs of the
style encoder, which warrants further investigation.

D LICENSE OF ASSETS

The adopted JourneyDB dataset (Sun et al., 2024) is distributed under https://journeydbl
github.io/assets/Terms_of_Usage.html license, and LAION-Aesthetics (Schuhmann
et al., 2022) is distributed under MIT license. We implement the model based on IP-Adapter
codebase (Ye et al.}2023)) which is released under the Apache 2.0 license.

We will publicly share our code and models upon acceptance, under Apache 2.0 License.
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A Robot.
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Reference StyleShot DEADIff D-Booth InST StyleDrop S-Crafter S-Aligned

Figure 25: Qualitative comparisons with SOTA text-driven style transfer methods.
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Content Style Ours AdaAttN EFDM StyTR-2 StyleID

Figure 26: Qualitative comparisons with SOTA image-driven style transfer methods.
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IAEIADOD .

Figure 27: Additional text-driven style transfer visualization results of StyleShot. From left to right, Reference
style image, “A cat”, “A dog”, “A moose”, “A chef preparing meals in kitchen”, “A house with a tree beside”, ”A
wolf walking stealthily through the forest”.
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Figure 28: Additional text-driven style transfer visualization results of StyleShot. From left to right, Reference

style image, “A bench”, “A butterfly”, “A penguin”, “A robot”, “A wooden sailboat docked in a harbor”, ”A
ancient temple surrounded by lush vegetation”.
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Figure 29: Additional image-driven style transfer visualization results of StyleShot.

27



	Introduction
	Related Work
	Method
	Preliminary
	Style-aware Encoder
	Content-fusion encoder
	StyleGallery & De-stylization

	Experiments
	Style Evaluation Benchmark
	Qualitative Results
	Quantitative Results
	Ablation Studies

	Conclusion
	Style Evaluation Benchmark
	Style Images
	Text Prompts
	Content Images

	Experiments
	Implementation Details
	Details on Human Preference
	Extended Baseline Comparisons
	Extended Visualization
	Style-aware Encoder.
	Style-balanced Dataset.
	Multi-shot Style Transfer.
	Different Style Guidance Scale.
	De-stylization.
	Running Time Cost Analysis.

	Limitations & Discussions.
	License of Assets

