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Summary
Though reinforcement learning has been successfully applied to a variety of domains, there

is still room left for improvement, in particular, in terms of the final performance. Ensemble
Reinforcement Learning (ERL) tries to enhance reinforcement learning techniques by using
multiple models or algorithms. We propose a novel ERL technique, called Cascade which in
the context of continuous control tasks and with PPO as the base training algorithm clearly
outperforms standard PPO in terms of the final performance. To shine light on the working
mechanisms of Cascade, we conduct ablation studies, showing how the different components of
Cascade contribute to its overall performance. Furthermore, we demonstrate that Cascade has a
robust monotonicity as the ensemble’s performance increases with each additional base agent
even when weak base agents are added in large numbers.

Contribution(s)
1. The proposition of a novel Ensemble Reinforcement Learning (ERL) algorithm Cascade for

continuous control tasks that outperforms its base learner.
Context: To the best of our knowledge, there is no prior work where the ensemble policy
uses a convex combination of its base learners and still gains a significant performance
advantage.

2. By multiple ablation studies, we investigate the mechanisms contributing to Cascade’s
performance.
Context: We show that Cascade relies on all base learners being trained at all stages of the
training process as well as Cascade relying on sequentially adding base learners instead of
starting with the final network. Lastly, we show that Cascade can chain an arbitrary number
of base learners of arbitrary strengths without a loss in performance.
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Abstract

Though reinforcement learning has been successfully applied to a variety of domains,1
there is still room left for improvement, in particular, in terms of the final performance.2
Ensemble Reinforcement Learning (ERL) tries to enhance reinforcement learning tech-3
niques by using multiple models or algorithms. We propose a novel ERL technique,4
called Cascade which in the context of continuous control tasks and with PPO as the base5
training algorithm clearly outperforms standard PPO in terms of the final performance.6
To shine light on the working mechanisms of Cascade, we conduct ablation studies,7
showing how the different components of Cascade contribute to its overall performance.8
Furthermore, we demonstrate that Cascade has a robust monotonicity as the ensemble’s9
performance increases with each additional base agent even when weak base agents are10
added in large numbers.11

1 Introduction12

Ensemble Reinforcement Learning (ERL) tries to improve reinforcement learning methods by using13
multiple models or algorithms. Advantages of ERL methods might stem from an increase in diversity,14
increased representational capabilities, or avoidance of the reliance on a single, possibly inaccurate15
predictor/decision-maker (Dietterich, 2000).16

This paper’s research question was the development of a novel ERL algorithm that could perform well17
on continuous control tasks. Hence our contribution is the proposal and experimental investigation18
of an ERL algorithm named Cascade which sequentially adds agents to an ensemble as opposed to19
starting with the full ensemble. The latest agent simultaneously learns a policy and how to integrate20
itself into the ensemble consisting of all previous agents. Additionally, the ensemble is designed in21
such a way that all ensemble members, once they are added, can refine their policy. Furthermore,22
Cascade will set the ensemble up so that it can be trained end-to-end, thereby requiring the selection23
of an arbitrary policy-based RL algorithm (such as PPO).24

We show experimentally that Cascade, when using PPO to train the ensemble, outperforms PPO on a25
variety of continuous control tasks in terms of the final performance. Additionally, the individual26
components of Cascade were investigated, discovering that the sequential nature combined with27
allowing every ensemble member to be trainable at all times, are the biggest performance contributors.28
Furthermore, we show that Cascade is robust to the number of base agents as well as their expressivity29
by demonstrating that even for large ensembles consisting of weak base agents, adding a base agent30
almost always yields a performance improvement. In particular, we show that even agents, which on31
their own lack the capacity to solve the considered tasks, can be effectively combined by Cascade32
to solve these tasks. In this paper we focused mainly on PPO as it was the training algorithm that33
synergizes best with Cascade.34

The paper is structured as follows: In Section 2 we give a short overview of ERL methods for35
continuous control tasks. Afterwards, in Section 3 we will define the Cascade algorithm and explain36
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its intuition. The subsequent Section 4 presents experiments to answer structured research questions37
on Cascade’s capabilities. In Section 5 we will give reasons for why Cascade works as well as it does38
and discuss avenues for future work. At last, in Section 6 we summarize our main findings.39

2 Related work40

A plethora of different approaches to continuous control tasks using ERL exists. Januszewski et al.41
(2021) use an ensemble of TD3-like (Fujimoto et al., 2018) agents to counteract the bias an individual42
Q function and consequently the actor π has by using the ensemble to average out the bias. They do43
this by simultaneously training an ensemble of differently initialized agents. At evaluation time, the44
ensemble’s action is simply the average of the individual agents’ actions.45

Li et al. (2023) propose a modification, called TEEN , which also trains an ensemble of actor-critics46
but such that their state-action visit distributions are as diverse as possible to encourage exploration.47
Additionally, they directly decrease the bias of the Q-functions targets by using a shared target that48
contains the average of a random subset of the Q-function ensemble.49

Saphal et al. (2021) developed SEERL which creates an ensemble of agents within just one training50
cycle by regularly saving the agent’s current parameters. To promote diversity between the ensemble51
members, they use a cyclical learning rate which ensures convergence before parameters are saved52
and enough disturbance to get out of any local minimum. After training, they pick a subset of53
the saved agents and combine them without any extra training phase by averaging or binning the54
individual action outputs.55

Chen & Huang (2023) introduce a hierarchical ensemble method named HED that trains an ensemble56
of actor-critics on two different levels. First, on a lower level, where the agents are trained indepen-57
dently of each other, and secondly on a higher level where the ensemble’s policy, which is the average58
of the individual actor outputs, is updated in a fashion that promotes cooperation among the base59
learners.60

Liu et al. (2023) took a slightly different approach that aims at increasing the stability of the ensemble61
algorithm. During training, they maintain an ensemble of actor-critics and compute their standard62
policy gradients which are used to construct a single so-called robust policy gradient which is then63
applied to all agents. The robust policy gradient is chosen in such a fashion that when applied to all64
agents at once, maximizes the average of the expected returns of all ensemble agents.65

Yet another approach, SUNRISE, is demonstrated by Lee et al. (2021) who also use an actor-critic66
ensemble. They use the standard deviation of the ensemble’s Q-functions as an uncertainty measure67
which is used to weigh samples and to construct an upper-confidence bound (UCB) during inference.68
More specifically, each ensemble agent samples an action during inference. The action that maximizes69
the UCB (which is a weighted sum of the Q-functions mean and standard deviation) is chosen as the70
ensemble’s action.71

Jaderberg et al. (2017) showed that an ensemble of agents can be used to optimize a hyperparameter72
schedule. They keep a fixed size population of agents which are trained individually in parallel.73
Regularly, the lowest scored agents are discarded and replaced by the better performing ones. To74
promote further hyperparameter exploration, once the training state and hyperparameters have been75
copied, the hyperparameters are slightly perturbed. Their method is applicable to continuous control76
tasks even though it was not specifically designed for it.77

In contrast to these works, Cascade does not necessarily produce an ensemble of agents that would78
perform well on their own. The idea is that not every agent needs to know everything about the79
task. They just need to be able to account for the weaknesses of other agents. Hence, Cascade solely80
focuses on the performance of the entire ensemble and how the agents can optimally cooperate and81
complement each other.82
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Figure 1: Cascade net of size 3. Except for the bottom net b1, each net outputs a fallback action λi

∈ [0, 1] which is used for the convex combination.

More generally, Song et al. (2024) published a comprehensive survey on ERL thereby giving an83
overview of the entire field. Their scope is broader than the restriction to continuous control as done84
here.85

3 Method86

The main idea behind Cascade is to sequentially train base agents in such a fashion that a new base87
agent always tries to optimally complement the current ensemble. This means that the base agent88
should only learn to perform well or learn to adjust the ensemble in a subspace where the ensemble89
performs poorly and otherwise delegate the task of choosing an action to the ensemble. The new base90
agent can then be integrated into the ensemble to obtain a new, improved ensemble.91

A naive approach to this is to train a base agent on a surrogate environment that extends the action92
space of the original environment by an action we call the fallback action. The values of this fallback93
action lie in the range [0, 1]. With a probability equal to the fallback action, instead of executing94
the given action on the original environment, the action of the current ensemble is executed. The95
newly trained base agent can then be integrated into the ensemble. The action of the new ensemble96
is the action of the latest base agent with probability equal to its fallback action and otherwise the97
action of the previous ensemble. Since the base agent could learn to fall back with a probability that98
is arbitrarily close to 1 in all states, it is ensured that theoretically an arbitrary amount of base agents99
can be chained without a loss in performance.100

However, by sampling and then taking either the action of the base agent or the ensemble at each101
step as well as treating the ensemble as a blackbox (surrogate environment), non-differentiability is102
introduced. Additionally, the weaknesses of older base agents cannot be corrected, as only the latest103
base agent is trained. To overcome this, a convex-combination of the current ensemble-policy πe and104
the new base agent πb is used to obtain a policy π:105

π(x) = λw(x) · πe(x) + (1− λw(x)) · πb(x) (1)

where x is a state and λw is the fallback action of the base agent. This policy π is then used for106
training. Both the parameters of πe and πb remain trainable.107

Any model that is used to represent base agents has to output the fallback action λ(x) ∈ [0, 1] in108
addition to its usual action outputs. In the case of artificial neural networks (ANNs), the policy109
π can be approximated by taking a convex combination of the network’s action outputs directly110
(instead of the distributions they represent. For example, the convex combination of two normal111
distributions is in general not the same as the distribution induced by the convex combination of112
their parameters). If several ANNs are stacked this way, then this results in an architecture called113
Cascade net. Fig. 1 shows how 3 base agents are chained which results in a Cascade net of size 3. For114
reference, the pseudocode of the proposed technique to sequentially train a Cascade net is presented115
in the supplementary materials. This algorithm will be referred to as Cascade.116
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4 Experiments117

First, it will be demonstrated that Cascade is able to clearly outperform the baseline on most MuJoCo118
(Todorov et al., 2012) environments using PPO. The subsequent experiments will then shift their119
focus towards studying individual components of Cascade to gain insights into the reasons for this120
performance increase.121

4.1 Experiment setup122

Cascade as described in Section 3 was run on various MuJoCo tasks with a focus on the Ant-v4 and123
Walker2d-v4 environments because these two differ greatly in terms of dynamics and complexity124
which gives a good impression of how Cascade behaves in different settings. When not mentioned125
otherwise, PPO was used as the algorithm to train the Cascade, 6 million environment steps took126
place, and the Cascade net was extended every 1 million steps. For details and how performances (and127
other metrics) were measured see supplementary materials Section B. The code for our experiments128
is publicly available at 1: https://anonymous.4open.science/r/Cascade-6910.129

4.2 Standard Cascade130

Fig. 2 shows the result when Cascade without any modifications as described in the experiment131
setup was run on Ant-v4, Walker2d-v4, Humanoid-v4, Hopper-v4, and HalfCheetah-v4. We refer132
to this setup as standard Cascade. For comparison, each graph also shows the PPO baseline (see133
supplementary materials Section B.4) trained for 6 million steps. However, as mentioned in the134
study design, different baseline performances emerge for different training durations since learning135
rate annealing is used (see supplementary materials Fig. 9). Except for the Hopper-v4 and Walker136
environment where Cascade performs slightly worse or only slightly better than the baseline, Cascade137
decisively outperforms the baseline in all other environments after 6M steps. While in Ant-v4,138
Humanoid-v4, and HalfCheetah-v4 the baseline performances are about equal when Cascade consists139
only of one base net, Cascade takes the lead in performance shortly after a second base net is added140
and grows the lead from there.141

Next, we compared Cascade to a slightly different PPO agent that mimics a base agent of Cascade142
as closely as possible. Therefore, a single base net (see supplementary materials Section B) will be143
trained with PPO for 6 million steps. To mimic the conditions under which Cascade trained, the144
learning rate was cyclical, linearly decreasing from its initial value to 0, every 1 million timesteps.145
Other than changing the network architecture and learning rate schedule, everything else is identical146
to the baseline PPO. Fig. 3 shows the performance results compared with standard Cascade.147

Surprisingly, in Ant-v4, a single base agent reached a significantly higher performance than the PPO148
baseline which just differs in the network size and learning rate schedule, which might suggest that149
the byproduct of having a cyclical learning rate (remember, a new PPO instance is used every time150
the Cascade net expands) adds to the performance of Cascade. This is not the case however, as151
Cascade is very robust to different learning rate schedules (for details, see supplementary materials152
F). Nonetheless, there is still a clear gap between the base agent and Cascade both in Ant-v4 and153
Walker2d-v4.154

Additionally, we evaluated the Cascade algorithm with SAC and DDPG as the base training algorithm,155
as detailed in the supplementary materials in Section H. Using these training algorithms Cascade156
did not outperform PPO, therefore we chose PPO as the default training algorithm for subsequent157
experiments. It remains to be researched why Cascade synergizes so well with PPO in particular.158

1The repository has been anonymized for review and will be replaced once the paper has been accepted.
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(a) Ant-v4 (b) Walker2d-v4

(c) Humanoid-v4 (d) Hopper-v4

(e) HalfCheetah-v4

Figure 2: Performance graphs of standard Cascade (blue) vs PPO (red) on Ant-v4 (top left), Walker2d-
v4 (top right), Humanoid-v4 (bottom left), Hopper-v4 (bottom middle) and HalfCheetah-v4 (bottom
right) for 6 million environment steps.

Question 1: Can Cascade outperform any RL-algorithm while using the same RL-algorithm to train159
its base agents?160

Yes, Cascade using PPO as the training algorithm outperforms PPO in most of the considered
environments. In the cases Cascade outperformed PPO it managed to do so rather early,
requiring only two base agents. And in the environments Cascade does not or barely outperform
the baseline, the peak performance throughout training at least draws even with peak PPO
performance.

Though this paper’s focus was continuous action space environments, we also applied a slightly161
modified version of Cascade to discretized versions of the MuJoCo environments (see supplementary162
materials Section I) and found that though Cascade also outperforms PPO in most of the discrete163
settings, the margins were very slim and Cascade took far longer to converge.164

The final Cascade nets, obtained after running standard Cascade on Ant-v4 and Walker2d-v4, were165
investigated in more detail to see how many changes were applied to the initial base agent after its166
initial training phase. Ant: In this case, the entire Cascade mostly relies on the bottom base net167
(i.e. the net at the bottom of the Cascade net with no fallback action): While the entire Cascade168
net achieves an average performance of around 5.1k the bottom net alone reaches an average return169
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Figure 3: Performance graph of Cascade (blue) and PPO with cyclical learning rate on a base net of
Cascade (green) for 6 million environment steps on Ant-v4 (left) and Walker2d-v4 (right).

of approximately 3.2k. All other policies further up the chain have a negative average return. As170
hypothesized in the algorithm-description this base policy improved even past 1 million steps when171
other agents were starting to be stacked on top. At 1 million steps the base policy performance was at172
around 1.5k while it was approximately 3.2k by the end of training. Walker2d: These characteristics173
differ for Walker2d-v4, as instead of improving past 1 million steps, the base policy degraded, going174
from 2.5k to approximately 600. However, all other policies further up the chain still perform poorly175
on their own, each with a performance of less than 100. Nonetheless, the entire chain still performs176
well, performing slightly better than the PPO baseline with a performance of roughly 3.9k at the end177
of training.178

Question 2: Does Cascade still apply big changes to base agents once they are no longer at the top179
of the cascade?180

Yes, judging by the performance of the bottom base agent. However, depending on the
environment its performance may degrade or improve. Either way, the Cascade improves.

4.3 Keeping base nets frozen181

Next, it was investigated how allowing every base net to be trainable at every stage of the training182
process impacted the performance. For this, only the parameters of the latest base agent were trainable,183
the rest were kept frozen. Fig. 4 shows the performance graphs compared to standard Cascade. It can184
be observed that even though each training iteration leads to a minor improvement in performance for185
the frozen version, the overall performance is drastically worse compared to the non-frozen version186
for Ant-v4 and slightly worse for Walker2d-v4. This suggests that it is in fact vital for all base agents187
to remain trainable to correct for imperfections, adapt to new normalization states (observation/reward188
normalization is used by default, for details see supplementary materials Section B.4) and in general189
make the entire network less rigid. The difference could in fact be partially explained by the ability to190
adapt to new normalization states as both versions only slightly differ in their final performance when191
no normalization is used (see supplementary materials Fig. 13). However, in the normed setting, older192
base agents are modified beyond just adapting to new normalization states as could be seen in the193
previous section where the policy of the oldest base agent changed drastically which was indicated194
by the drastic change in its average performance.195

Question 3: What is the impact on the performance when keeping the parameters of the current196
ensemble frozen when training a new base agent?197

Keeping the parameters frozen severely worsens performance.

4.4 Starting with the final Cascade net198

Next, the effect of sequentially adding base agents to the Cascade was tested. For this, the Cascade net199
obtained at the end of training was used right from the start. To have the same training conditions, the200
learning rate was cyclical, linearly decreasing from its initial value to 0, every 1 million environment201
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Figure 4: Performance graphs of standard Cascade (blue) vs Cascade with the weights of all but the
latest base-net frozen (green) on Ant-v4 (top) and Walker2d-v4 for 6 million environment steps.

Figure 5: Performance graphs of standard Cascade (blue) versus Cascade where the final net of
standard Cascade is trained right from the start (green) on Ant-v4 (top) and Walker2d-v4 (bottom) for
6 million environment steps.

steps (as PPO used to train the base agents in standard Cascade uses learning rate annealing. See202
supplementary materials Section B). Fig. 5 shows the performance results for this experiment on203
Ant-v4 and Walker2d-v4.204

In both environments, the sequential variant clearly outperforms its non-sequential counterpart. While205
in Ant-v4, the sequential variant outperforms right from the start and ends with a final performance206
almost twice that of the non-sequential version, in Walker2d-v4 the sequential variant only takes the207
lead in performance during the third iteration and ends only with a small advantage.208

This shows that the architecture itself is not the deciding factor for performance. In fact, there209
seems to be nothing inherently special to this architecture, as it performs worse than the standard210
feedforward architecture used for the baseline experiments.211

Question 4: How does the performance of training the final Cascade net right from the start compare212
to adding the base agents sequentially?213

Training the final Cascade net right from the start performs significantly worse than adding the
base agents sequentially, thus proving that it is in fact vital to slowly build up the Cascade.

4.5 Fallback action characteristics214

Now, the tendency of base agents to fallback will be looked into. This was done by measuring the215
average fallback actions of different base nets over the course of training. This was done for three216
different fallback action initializations, namely {0.05, 0.5 (Default), 0.9} (To see how this is done,217
see supplementary materials Section E).218

First, simply the product of all fallback actions of all base agents within the Cascade net was measured.219
This is the contribution of the bottom base net to the final output. Fig. 6 shows this product over the220
course of training on Ant-v4 and Walker2d-v4. In all settings, the fallback product slowly decreases221
as the Cascade grows. However, during every iteration, the product mostly increases (except for222
the first two iterations with the 0.9 initialization). This shows that the base agents have a clear223
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Env Init λ2 λ3 λ4 λ5 λ6

Ant 0.05 0.97 0.99 0.99 0.97 0.55
Ant 0.5 0.96 0.96 0.96 0.96 0.88
Ant 0.9 0.95 0.97 0.97 0.97 0.96

Walker2d 0.05 0.66 0.82 0.79 0.80 0.56
Walker2d 0.5 0.82 0.85 0.92 0.90 0.81
Walker2d 0.9 0.84 0.89 0.91 0.95 0.94

Table 1: The final average fallback action of each base net in the Cascade net when standard Cascade
was run on Ant-v4, Walker2d-v4 and with different fallback initializations for 6 million environment
steps. λ2 is the average fallback of the second oldest base net and λ6 is the fallback of the one added
last. The first base net isn’t listed because it does not have a fallback action.

tendency towards fallbacking. This tendency is slightly stronger in Ant-v4 than in Walker2d-v4. For224
reference, if each base net would assign 0.5 to its fallback action then the bottom base net would only225
account for 0.55 = 0.03125 of the final output. Since in each setting (except the 0.05 initialization in226
Walker2d-v4) the fallback product is ≥ 0.5 means that it is the bottom base net that contributes most227
to the final output.228

(a) Ant-v4 (b) Walker2d-v4

Figure 6: Product of all base agents’ fallback actions over the course of training for 6 million
environment steps with fallback initializations of 0.9 (yellow), 0.5 (blue) and (0.05) green.

To see how the product is made up and how different base nets contribute to it, the fallback action of229
the individual base nets was tracked. Tab. 1 lists the final average fallback action of each base net for230
all settings. In the case of the 0.05 or 0.5 initialization, it is the 6th base net that contributes either231
the most or second most to the final output of the Cascade net. In the case of the 0.9 initialization,232
the base nets (except the bottom one) contribute roughly equally to the final output. Note that the233
contribution of the i-th net is (1 − λi) · λi+1 · . . . · λ6 for i > 1 and λ2 · . . . · λ6 for i = 1 . Still,234
in all cases (except for 0.9 initialization) and no matter the position in the Cascade, the final base235
agent’s fallback is always significantly higher than what it started with, in most cases ending up well236
above 0.8.237

Why for the cases 0.05 and 0.5 the 6th base net is the biggest or second biggest output-contributor can238
be best understood by looking at the fallback graph over the course of the training of an individual239
base agent. Fig. 7 shows this graph for the second to bottom base net for Ant-v4 and Walker2d-v4.240

It becomes evident, that the base nets only reach their highest fallback value once they are no longer241
at the top of the Cascade. So naturally it is the last added base net (in this case the 6th) that has the242
lowest fallback value. On top of that, its final output contribution is directly given by 1− λ6 (i.e. no243
other nets can lower the contribution other than itself). This explains why it is either the biggest or244
second biggest contributor to the final output.245
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(a) Ant-v4 (b) Walker2d-v4

Figure 7: The average fallback action value for the second oldest base agent (i.e. the first one that has
a fallback action) over the course of 5 million environment steps after this base agent has been added.
This value has been plotted for Cascade with 0.5 (blue) and 0.05 (green) as the fallback initialization.
Note that the spiky fallback change that occurs whenever a base net is added to the Cascade comes
from the sudden change in the state distribution that goes along with adding a new base net.

Question 5: Do the base agents have a tendency towards fallbacking or not and which base agents246
contribute most to the final output?247

Given different fallback action initializations of different magnitudes, all base agents always
learned to assign a large value to the fallback action. Hence there is a clear tendency to fallback.
In general, it is the bottom base net that contributes the most and the last added base net that
contributes the second most to the final output.

4.6 Tiny Cascade nets248

To push the hypothesis to its limits, Cascade will be applied to extremely small base nets with249
only one hidden layer of size 1. A lower training duration of only half a million steps will also be250
considered to make it hard for Cascade to effectively chain base agents. 16 of these tiny base nets251
will be combined with Cascade. Fig. 8 shows the results of this experiment.252

Figure 8: Performance graphs of Cascade with minimal base agents (one hidden layer of size 1) that
are added every 1 million (green) or 0.5 million (yellow) steps for 16 million environment steps on
Ant-v4 (top) and Walker2d-v4 (bottom).

As expected, the performances are much worse than those of standard Cascade. However, even253
though 16 base agents were chained, there was always a monotone performance increase from one254
iteration to another, even near the end when the Cascade consisted already of more than 10 base255
agents. At worst, the performance after a base agent was added only drew even to that of the previous256
iteration. This even held true for the case with only half a million training steps per iteration.257
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Question 6: Can a high number of base agents be chained without a loss in performance?258

Yes. In all considered settings (Standard Cascade and Cascade with tiny base agents) adding
additional agents to the Cascade has always been beneficial regardless of the training duration
per iteration or the expressive capabilities of the added base agents.

5 Discussion259

5.1 Reasons for the performance gain260

Though the conducted experiments showed that the performance increase of Cascade over the standard261
PPO baseline is nontrivial and coming mainly from the fact that the base agents are added sequentially262
and that even older base nets are trainable at all times, the reasons why this is so effective remain263
unclear. Likely, there are many factors contributing to it. Two of these might be the following:264
First, regularly adding a net base agent helps with exploration: Directly after adding a base net the265
output of the entire cascade is greatly perturbed such that it initially becomes essentially random, as266
can be observed by the sharp drops in the performance graphs, thereby causing a huge shift in the267
state-distribution. Secondly, adding fresh networks prevents the Cascade net from losing its plasticity.268
Neural plasticity loss (Lyle et al., 2023) is a phenomenon where neural networks slowly lose their269
ability to train and adapt to new optimization targets which is present in reinforcement learning. In270
Section J in the supplementary materials, we measured the plasticity gain caused by adding a new271
ensemble member to the cascade.272

5.2 Future work273

First, pinpointing the exact causes of performance gain remains an open question that should be274
addressed in future work. In particular, it can be investigated why Cascade synergizes so well PPO yet275
yields only very little improvement in conjunction with other RL-algorithms. Even when considering276
only PPO, there are performance differences depending on the environment. It is worth investigating277
why in Hopper specifically, Cascade did not outperform PPO.278

Future work might also include generalizing the strictly sequential nature of the resulting chain. It279
could be interesting to see what happens if the base nets choose between k nets (instead of k = 1)280
to fall back to. One possibility to implement this is to train groups of k nets (perhaps as diverse as281
possible), each of which has fallback access to each of the k nets of the previous group. Or more282
extremely, the entire output is directly determined by the latest base agent in the cascade, which283
assigns a fallback weight to all other base nets. In standard Cascade, all agents remain trainable and it284
showed that freezing all base nets except the top one mostly hampers performance. However, it could285
be interesting to see if this holds true if some sort of attention mechanism is used to dynamically286
control which base nets are frozen and which remain trainable. Perhaps at a certain size of the287
cascade, no new agents should be added and it is beneficial to train inner agents and leave the top288
agent frozen.289

Application to different domains: The behavior of Cascade could be studied on a larger suite of290
environments. For example, surveying the Atari benchmark could lead to new insights. Additionally,291
multi-agent problems with a combinatorial action space might be worth investigating as they come292
with a natural way of delegating the task between the action nets (one action net for each agent).293

Hyperparameter optimization: The RL-baselines used for comparison were highly optimized version294
of PPO, SAC and DDPG. However, little to no hyperparameter optimization took place for Cascade.295
And the hyperparameters that were tuned, were high-level ones such as the number of base agent’s296
training steps in Cascade. However, Cascade might be sensitive to the hyperparameters of the297
employed training algorithm.298
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6 Summary299

In this work, an ERL method, called Cascade has been proposed and experimentally verified on some300
MuJoCo environments. With some minor high-level hyperparameter tweaking, Cascade managed to301
decisively outperform the PPO baseline on 4 out of 5 MuJoCo environments. Also, standard Cascade302
proved to be an effective tool for combining a large number of base agents no matter their training303
time or expressive capabilities. The characteristics of Cascade were investigated and it was found that304
the base agents have a natural tendency to assign a large value to their fallback action which led to the305
bottom base agent contributing most to the Cascade’s output. By observing the bottom base agent’s306
performance, it was discovered that Cascade makes heavy use of the freedom to change older agents307
in the cascade. In fact, keeping older base agents frozen proved detrimental to performance in a308
normalized environment. It also proved vital that the Cascade is built sequentially since starting with309
the final Cascade net also hampered performance thus showing that the architecture is not special but310
rather its sequential buildup.311
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Supplementary materials376

A Cascade pseudocode377

Algorithm 1: Cascade
Input: Cascade size n, number of training steps per iteration k
E ← ∅ // Current ensemble
for i = 1 to n do

Initialize base net bi
E ← E ∪ {bi}
Train E for k steps // E is interpreted

// as a Cascade net
end for
Return: E

B Experiment setup378

If not explicitly mentioned otherwise, all experiments ran the Cascade-algorithm as described in379
Section 3. In the following, the default hyperparameter setup will be described. Modifications will380
always be explicitly mentioned.381

B.1 Base nets382

A base net as part of a Cascade net has the following architecture dependent on its position in the383
Cascade net:384

• Bottom: The exact same architecture and initialization scheme was used for the standard PPO385
baseline (see supplementary materials Section B.4) except that the hidden size of the mean network386
is 16 instead of 64.387

• Not Bottom: Same as bottom, except that only the output dimension of the mean network is388
increased by 1. The output of this extra dimension is the fallback action and followed by a sigmoid389
function to ensure its value lies in the range [0, 1].390

B.2 Cascade net391

Initially, the Cascade net consists only of the bottom base net. After every k steps, the Cascade net C392
is extended by another base net b as follows: If (mb, logb) are the outputs (without fallback action)393
and λ ∈ [0, 1] is the fallback action of b and (mC , logC) are the outputs of C, then the output of the394
extended Cascade net C̃ is (λmC + (1− λ)mb, λ logC +(1− λ) logb). As usual, these outputs are395
interpreted as the mean and logstd of a normal distribution. The set of base nets making up C is the396
set E in Algorithm 1 for Cascade.397

B.3 Hyperparameters398

If not mentioned otherwise, all experiments were conducted on Ant-v4 and Walker2d-v4 and as the399
long-term behavior was of interest, 6 million steps were performed for each experiment. The entire400
Cascade net is always trained with standard PPO as described in supplementary materials Section B.4401
with the Cascade net used as the actor. The only exception to this is Section H in the supplementary402
materials where we deliberately vary the training algorithm. At each iteration (i.e. when a base403
net has been added) the Cascade net is always trained with a new instance of PPO (i.e. new value404
function and fresh learning rate schedule) but the observation/reward normalizations stay the same.405
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Different training times per iteration were tested (see supplementary materials Section D). Using 1406
million steps (i.e. Cascade size n = 6 and k = 1 · 106) proved to be the best choice and was taken as407
a default value for the subsequent experiments. Additionally, different initializations for the fallback408
action were tested (see supplementary materials Section E) and having an initial fallback action of 0.5409
proved to be the best choice. Therefore, this was also chosen as the default value for the following410
studies. This default choice for running the Cascade algorithm will be referred to as standard/default411
Cascade.412

B.4 Algorithm choice and hyperparameters413

The exact version of PPO used to train the Cascade net is the one from CleanRL (Huang et al., 2022)414
(more specifically ppo_continuous_action.py). This is a highly optimized version of PPO as415
many optimizations such as observation/reward-normalization, learning-rate annealing, generalized416
advantage estimation, observation/reward-normalization, etc. have been implemented. When not417
explicitly mentioned otherwise, all hyperparameters are the default values of this implementation.418

B.5 Measurements419

For each experiment, every 10, 000 environment steps the exact policy that was used in training at420
that point was frozen and 10 evaluation runs were conducted. In particular, this evaluation policy421
was non-deterministic, as actions were sampled from a normal distribution with mean and standard422
deviation obtained from the network outputs. The average, undiscounted return from the 10 runs423
was used as the performance measure. Each experiment was run at least 10 times and no two run424
across all experiments used the same seed. Plots show the average of a measured metric (mostly the425
performance) over these 10 seeds along with the standard error for that experiment.426

C Baselines427

The chosen PPO version (see Section B.4) was run on MuJoCo environments to act as a baseline428
for the experiments. Fig. 9 shows the performance over the course of k ∈ {2, 3, 4, 5, 6} million429
environment steps. Note, that for different k, different graphs emerge. This is because learning rate430
annealing is used in the PPO implementation.431

D Varying base agents’ training duration432

The impact of the rate at which new base agents are added was tested. To investigate this, the433
training duration per iteration was varied such that in 6 million timesteps a Cascade of size n ∈434
{2, 3, 4, 5, 6, 7, 8} could be built. For clarity, only n ∈ {2, 4, 6} were visualized in Fig. 10. The435
others followed the general trend. A higher number of cycles led to a higher performance up to the436
peak of n = 6, after which the performance slightly degraded for n ∈ {7, 8}. Given these results, a437
training duration of 1 million steps per iteration was chosen as the default for the Cascade experiments438
which results in a Cascade of size 6.439

E Fallback action initialization440

The impact of the fallback action initialization was tested in regard to performance. For this, the441
bias of the fallback-action output was initialized such that the fallback-action λ was initially equal442
to λ ∈ {0.05, 0.5, 0.95} on average. This was possible because like any other neuron, the neuron443
responsible for the fallback action λ is a weighted sum of the activations of the prior layer (li)i≤n444
followed by a sigmoid activation:445
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(a) Ant-v4 (b) Walker2d-v4

(c) Humanoid-v4 (d) Hopper-v4

(e) HalfCheetah-v4

Figure 9: Performance graphs of PPO for 2 million (red), 3 million (blue), 4 million (green), 5 million
(yellow) and 6 million (beige) environment steps.

Figure 10: Performance graphs of Cascade when adding a new base agent every 3 million steps (red),
every 1.5 million steps (green), and every 1 million steps (blue) on Ant-v4 (left) and Walker2d-v4
(right) for 6 million environment steps.
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λ = sigmoid(bλ +

n∑
i=1

wλ,i · li) (2)

But since the weights (wλ,i)i≤n are initialized with mean 0 and low variance (see implementation446
CleanRL (Huang et al., 2022)), λ can initially be approximated by λ ≈ sigmoid(bλ). Therefore, by447
setting bλ = sigmoid−1(λ) the initial fallback action can be set.448

Fig. 11 shows the results of this experiment with respect to performance for Ant-v4 and Walker2d-v4.449
The value of 0.5 appears to be the strongest choice for both environments. The poor performance of450
the 0.05 initialization could be explained by the natural tendency of the base agents to strive for a451
high fallback weight (shown in Section 4.5), hence the agent started in an unfavorable position. The452
0.9 initialization was only slightly worse than 0.5. This could be explained by a lack of exploration453
as the newly initialized base nets are initially dominated by the base policy. Given these results, an454
initial fallback weight of 0.5 was picked as the default value for the Cascade experiments.455

Figure 11: Performance graphs of Cascade on Ant-v4 (left) and Walker2d-v4 (right) for 6 million
environment steps with 0.05 (green), 0.5 (blue) and 0.9 as the initial fallback value for new base
agents.

F Learning rate schedules456

Cascade will be investigated in terms of its sensitivity to different learning rate schedules. To do this,457
instead of having a cyclical learning rate that linearly decays to 0 every iteration, the learning rate458
will now linearly decrease from its initial value to 0 over the course of the entire training - exactly as459
the PPO baseline. Fig. 12 shows the performance result of this modification compared with standard460
Cascade on Ant-v4 and Walker2d-v4. Up until the last iteration, modifying the learning rate schedule

Figure 12: Performance graphs of standard Cascade (blue) and Cascade with a learning rate that
linearly decays over the course of the entire training (green) as opposed to being cyclical for 6 million
environment steps on Ant-v4 (left) and Walker2d-v4 (right).

461
had no significant impact on performance. The performance dip in the last iteration is explained by462
the learning rate having already decayed too much to guarantee convergence as usual. Therefore,463
when disregarding the last iteration it can be concluded that the cyclical learning rate that comes with464
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standard Cascade has little to no impact on the performance. This shows that Cascade is more robust465
to different learning rate schedules than standard PPO where performance could vary drastically466
depending on the schedule (see C).467

G Frozen base nets with no input/reward normalization468

Keeping the base nets of Cascade frozen for the experiment in Section 4.3 naturally favors standard469
Cascade as it allows the adaptation to new normalization states of the environment. Therefore, this470
experiment was repeated for the non-normalized environments. Fig. 13 shows that indeed there is not471
much difference in terms of the final performance for both Cascade versions.472

Figure 13: Performance graphs of standard Cascade (blue) vs Cascade with the weights of all but the
latest base-net frozen (green) on Ant-v4 (left) and Walker2d-v4 (right) with no observation/reward
normalization for 6 million environment steps.

H Using different base training algorithms473

Besides PPO, we also evaluated Cascade with different base training algorithms, namely SAC474
(Haarnoja et al., 2018) and DDPG (Lillicrap et al., 2019), which required a slightly different experi-475
ment setup. In the following, we mention only the differences to our PPO experiment setup in Section476
B.477

H.1 SAC478

For SAC, we used the implementation of SAC along with its hyperparameters from CleanRL (Huang479
et al., 2022) (more specifically, sac_continuous_action.py). The only change we did apply480
was using orthogonal weight initialization for the networks’ parameters (instead of Pytorch’s default481
initialization). This is the setup we used as the baseline for SAC.482

Next, we describe the changes made to the baseline for Cascade. Firstly, we set the actor’s hidden483
dimension to 128 instead of 256 so that the parameter counts of the fully stacked Cascade net is about484
the same as the baseline SAC network. In contrast to PPO, SAC uses a replay buffer which we reset485
whenever a new base agent is added. Additionally, we discovered that SAC is much more sensitive to486
fully re-initializing the critic whenever a new base agent is added. Therefore, we simply kept the487
critic network whenever a new base agent is added by simply not resetting its parameters.488

We ran the experiments using SAC only for 2 million total environment steps and updated added a489
new base agent every 5 · 106 steps as our version of SAC converged much faster than PPO.490

Fig. 14 shows the performance of the SAC baseline compared to Cascade with SAC. In contrast to491
the PPO experiments, using Cascade yields very little or no improvement at all.492
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(a) Ant-v4 (b) Walker2d-v4

(c) Humanoid-v4 (d) Hopper-v4

(e) HalfCheetah-v4

Figure 14: Performance graphs of Cascade with SAC (blue) vs SAC (red) on Ant-v4 (top left),
Walker2d-v4 (top right), Humanoid-v4 (bottom left), Hopper-v4 (bottom middle) and HalfCheetah-v4
(bottom right) for 2 million environment steps.

H.2 DDPG493

For DDPG, we also used the DDPG implementation along with its hyperparameters from CleanRL494
(Huang et al., 2022) (more specifically, ddpg_continuous_action.py). This is the setup we495
used as the baseline for DDPG.496

Like SAC, DDPG also uses a replay buffer which we reset every time a new base agent is added.497
Similarly, to SAC we found that a full re-initializing of the critic is detrimental to performance.498
Therefore, we also keep the critic network when we add a new base agent.499

Fig. 15 shows the performance of the DDPG baseline compared to Cascade with DDPG. Like SAC,500
using Cascade yields very little to no improvement at all.501

I Cascade for discrete action spaces502

To test Cascade on a greater variety of tasks, Cascade was applied to environments with discrete503
action spaces. For this, the MuJoCo environment’s action spaces were discretized to allow for a direct504
comparison to the performances on the continuous versions. The following discretization was used505
for a continuous action space Acont = [a1, b1] × · · · × [an, bn] ⊆ Rn: Adiscr = {0, . . . , 2n − 1}506
and action 0 ≤ i ≤ 2n − 1, is mapped to507

i1 . . . in 7→ (a1i1 + b1(1− i1), . . . , anin + bn(1− in))

where i1 . . . in (ij ∈ {0, 1}) is the binary representation of i. This discretization allowed us to use508
the discrete version of PPO from CleanRL (Huang et al., 2022) (more specifically ppo.py) without509
any modifications. Though this simple discretization does not scale well in terms of dimensions, the510
discretized action spaces were still small enough to work well on all considered MuJoCo environments511
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(a) Ant-v4 (b) Walker2d-v4

(c) Humanoid-v4 (d) Hopper-v4

(e) HalfCheetah-v4

Figure 15: Performance graphs of Cascade with DDPG (blue) vs DDPG (red) on Ant-v4 (top left),
Walker2d-v4 (top right), Humanoid-v4 (bottom left), Hopper-v4 (bottom middle) and HalfCheetah-v4
(bottom right) for 6 million environment steps.

except Humanoid where this discretization would have 217 actions. More precisely, discrete PPO on512
the discretized MuJoCo environments even managed to outperform its continuous counterpart on513
Hopper, HalfCheetah, and Walker2d. The performances on discrete Ant were poor even though Ant514
has an equally small action space which indicates that good performances on Ant require usage of the515
entire spectrum of its continuous action space which is not possible here since the discretization is too516
coarse. Therefore, we only compare Cascade to PPO on discrete Walker2d, Hopper, and HalfCheetah.517

For Cascade to work on a discrete action space, the Cascade net is now trained with a discrete version518
of PPO from CleanRL (Huang et al., 2022) (more specifically ppo.py, in the following referred519
to as discrete PPO) along with their hyperparameter choice. The Cascade-specific hyperparameters520
like the fallback initialization and the frequency of base nets remained the same. The only change is521
that the hidden layer width of base agents was increased to 64 from 16 to deal with the large action522
spaces of the discretized environments (For example, in the discretized version of Ant, there are523
256 = 28 possible actions). The bigger hidden size always outperformed the smaller one in this524
discrete setting. The output of the Cascade net is interpreted as the logits of a Categorical distribution,525
therefore actions are chosen by applying softmax to Cascade’s outputs and then sampling from that526
distribution.527

Fig. 16 compares the performances of the above-described discrete version of Cascade compared to528
discrete PPO applied to the discretized MuJoCo environments Walker2d, Hopper, and HalfCheetah529
for 10 million environment steps. Discrete PPO was also tested for shorter durations to account for530
the different learning rate schedules. However, the 10 million versions always performed best in531
terms of final performance. In contrast to previous experiments, 10 million steps were chosen since532
Cascade did not yet seem to converge for the 6 million version.533
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(a) Walker2d-v4 (b) Hopper-v4

(c) HalfCheetah-v4

Figure 16: Performance graphs of discrete PPO (red) compared to Cascade (blue) for 10 million steps
on discretized versions of Walker2d, Hopper, and HalfCheetah.

Though not by much, Cascade manages to outperform PPO in terms of final performance on Walker2d534
and Hopper and draws even on HalfCheetah. Though Cascade on discrete action spaces takes longer535
to train, it is mostly still superior to PPO in these settings.536

J Plasticity gain537

In Section 5 we claimed that adding new base agents to the Cascade net improves its plasticity. In538
this subsection, we will formally introduce network plasticity and investigate the claim above. Lyle539
et al. (2023) describe network plasticity as "[...] the ability of a neural network to quickly change its540
predictions in response to new information [...]". Formally, they define it as the expected loss that is541
obtained after running an optimization algorithm to minimize a loss sampled from a distribution of542
losses. In the following, we describe the concrete optimization problem Lyle et al. used to measure543
their network’s plasticity which is the one we employed here too. For details, we refer to their original544
paper (Lyle et al., 2023).545

Assume f is an ANN architecture whose output layer has a dimension of one and Θ ⊆ Rn is the set546
of parameters for f . Furthermore, assume that X is a distribution of inputs for f . For θ ∈ Θ we can547
define a family of optimization problems548

lω := Ex∼X

[
(f(x, θ)− (a+ sin(105f(x, ω))))2

]
where a = Ex∼X [f(x, θ)] ∈ R, ω ∈ Θ. (3)

If we use θ∗(ω) to denote the final parameters obtained by running an optimization algorithm on lω ,549
and W denotes a distribution over Θ, then the plasticity P(θ) of θ is defined as550

P(θ) = b− Eω∼W [lω(θ
∗
ω)] where b = Ex∼X,ω∼W

[
sin(105f(x, ω))

]
. (4)

Intuitively, this definition of plasticity quantifies how well f can adapt to perturbations of its output.551

We measured the plasticity of the Cascade net from the experiments in Section 4.2 right before the552
second base agent is added and directly afterwards for the Walker2d and Ant environment. The553
Cascade net has an output dimension greater than one as we output a mean and a logstd value554
for each dimension of the action space. To fix this, we simply averaged over the network’s mean555
output and discarded the logstd output. We used a uniform distribution over 1000 samples from556
the observation distribution of the current Cascade net (after adding the new agent) for X and the557
parameter distribution W is the initial parameter distribution of our Cascade net. Furthermore, we558
used the same optimization as the Cascade net used during training and defined θ∗(ω) as the result of559
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Env Parameters PPO Parameters Cascade Runtime PPO Runtime Cascade

Ant 12497 11286 5.5h 8.6h
Walker2d 11085 9470 5.1h 7.7h
Hopper 10119 8186 4.6h 7.4h

Humanoid 57763 68098 6.5h 8.7h
HalfCheetah 11085 9470 5.2h 8.1h

Table 2: Average runtime in hours of Cascade and vanilla PPO for 6 million steps along with the
parameter count.

Env σ2 σ3 σ4 σ5 σ6

Ant 0.051 0.039 0.041 0.046 0.087
Walker2d 0.198 0.174 0.144 0.113 0.095

Table 3: The standard deviation of the fallback action within one episode for each base net in the
Cascade net when standard Cascade was run on Ant-v4 and Walker2d-v4 for 6 million environment
steps. We denote the fallback standard deviation of the second oldest base net by σ2 and σ6 is the
fallback standard deviation of the one added last. The first base net isn’t listed because it does not
have a fallback action.

optimization after 104 parameter updates. The expectations in Equation 4 are approximated using 10560
samples from W .561

Taking the average of 5 runs, the Cascade net before adding the second base agent had the plasticity562
P = 0.014 in Walker2d and P = 0.16 in Ant. After the base agent has been added, the plasticity was563
P = 0.042 in Walker2d and P = 0.30 in Ant. The baseline b’s average was 0.50 in Walker2d and564
0.56 in Ant. This clearly shows that the addition of extra-base agents hugely improves the network’s565
plasticity.566

K Runtime measurements567

In this section, we compare the runtime of Cascade to the baseline PPO agent that was measured in568
the experiments 4.2. Tab. 2 compares the runtimes of PPO and Cascade along with their parameter569
count for Ant, Walker2d, Hopper, Humanoid, and HalfCheetah for a training duration of 6 million570
steps which results in a Cascade net of size 6 for Cascade. The experiments have been run on Xeon571
Gold 5120 CPUs with 28 cores à 2.20GHz. Though by construction both PPO and Cascade have the572
same parameter count, Cascade is around 50% slower because its inference step is not parallelizable573
as each base agent has to wait for the output of the previous one.574

L Fallback action distribution575

In this section, we take a closer look at how the fallback actions reported in Tab. 1 are distributed576
over the state space. Firstly, just by looking at the standard deviation of the fallback action within one577
episode, we can directly see that the learned fallback behavior is non-trivial as the fallback action578
does not just assume a constant value. Tab. 3 lists these standard deviations for the final Cascade net579
for Ant and Walker2d.580

We can go even one step further and look directly at the course of the fallback action within one581
episode for one concrete model. Fig. 17 visualizes the course of the fallback action over one episode582
for the second oldest and latest base agent on Ant-v4 and Walker2d-v4 for one randomly picked583
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model (Though the individual graphs differ for each model, the main patterns are the same for each584
model).585

Figure 17: Course of the fallback action of a trained Cascade net over the course of one episode
(capped at 1000 steps) for the second oldest base agent (blue) and the latest base agent (red) on
Ant-v4 (left) and Walker2d-v4 (right)

It can be observed that base net 2 (second oldest base net) in general assumes values close to 1586
meaning it mostly delegates its action to the original base net. However, there are some regularly587
spaced spikes (more so in Walker2d) where suddenly a much lower fallback value is assigned588
suggesting that it specialized itself to certain regions of the state space. The same can be said for base589
net 6 (lastest base net) on Walker2d where the fallback action regularly switches between roughly590
0.8 to values as low as roughly 0.4. However, in Ant, base net 6 does not seem to have any spikes591
and oscillates only within a range of roughly 0.1 (We note though that in general this range is much592
larger and only coincidentally this small for the model we picked).593
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