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Abstract
Slow concept drift is a ubiquitous, yet under-studied problem
in practical machine learning systems. In such settings, al-
though recent data is more indicative of future data, naively
prioritizing recent instances runs the risk of losing valu-
able information from the past. We propose an optimization-
driven approach towards balancing instance importance over
large training windows. First, we model instance relevance
using a mixture of multiple timescales of decay, allowing us
to capture rich temporal trends. Second, we learn an auxil-
iary scorer model that recovers the appropriate mixture of
timescales as a function of the instance itself. Finally, we pro-
pose a nested optimization objective for learning the scorer,
by which it maximizes forward transfer for the learned model.
Experiments on a large real-world dataset of 39M photos over
a 9 year period show upto 15% relative gains in accuracy
compared to other robust learning baselines. We replicate
our gains on two collections of real-world datasets for non-
stationary learning, and extend our work to continual learning
settings where, too, we beat SOTA methods by large margins.

1 Introduction
We study the problem of concept drift–a slow change in pat-
terns of input data and label associations over time–in super-
vised models trained in an offline or batch-learning fashion
(see e.g., (Yao et al. 2022)). Although concept drift is ubiqui-
tous in user-facing AI applications, prevalent practice is still
to train batch-learned models from scratch on newer data
at regular intervals. By giving equal weight to each train-
ing instance, standard batch-learned models overemphasize
past, irrelevant data. Alternative approaches favor sequen-
tial updates in a streaming data setting, including online
learning (Hazan et al. 2016), and continual learning (Zeno
et al. 2018; Aljundi, Kelchtermans, and Tuytelaars 2019;
Delange et al. 2021). These approaches are myopic by de-
sign (i.e., only have access to the very latest data) and typ-
ically overemphasize recent data–in particular, they implic-
itly downweight past data exponentially as a function of in-
stance age (see e.g., Hoeven, Erven, and Kotłowski (2018);
Jones et al. (2023)).

We believe that modeling concept drift can benefit sub-
stantially from a richer representational language for im-
portance weighting to improve forward transfer, and an
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Performance Gains on Various Datasets

Figure 1: MUSCATEL: (a) Our approach significantly im-
proves model performance on future data compared to best-
performing baselines. (b) Gains are replicated across a wide
range of real-world datasets. See text for details.

optimization-driven approach towards effectively estimating
the relevance of past information for future performance. To-
wards this end, we make 3 technical contributions: First, we
model the age-dependent importance of an instance using
a mixture of exponential basis functions, allowing signif-
icant flexibility in capturing temporal trends. Second, we
customize importance weights for individual instances by
learning an auxiliary instance-conditional importance scor-
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ing model–thus, instance importance is a function of both
age and instance properties. Finally, we formulate and ef-
ficiently solve a nested optimization problem that jointly
learns the supervised model and the scoring model with the
mathematical objective of maximizing forward transfer of
learned models.

We call our approach MUSCATEL: Multi-Scale
Temporal Learning, and summarize our findings and results
below:

• We show substantial gains (Fig. 1(a)) on a large, real-
world dataset of 39M images over ∼ 10 years (Cai,
Sener, and Koltun 2021)–we improve accuracy and re-
duce rate of model decay compared to baselines.

• We perform a comprehensive evaluation of MUSCATEL,
combining real-world non-stationary learning datasets
from 4 different sources (Cai, Sener, and Koltun 2021;
Yao et al. 2022; Awasthi, Cortes, and Mohri 2023; Lin
et al. 2021) for a total of 11 batch learning datasets, and
6 continual learning datasets. From an algorithmic per-
spective, too, we compare against SOTA algorithms in
robust learning, meta-learning, and non-stationary learn-
ing. Fig. 1(b) summarizes our gains on a large number of
real-world batch learning datasets over nearest SOTA for
each dataset.

• We extend our approach to continual learning settings as
well, by performing temporal reweighting within large
minibatches, and compare against a range of online and
continual learning baselines (see Jain and Shenoy (2023),
appendix, for an extensive list of baselines). Across
datasets and evaluation protocols, MUSCATEL shows
consistent gains over and above all compared algorithms.

• We provide insight into the workings of our algorithm,
and in particular our SCORER, showing that it focuses
on relevant features and upweights instances in a manner
that resonates with visual intuition in addition to being a
key component in the substantial accuracy gains.

We believe that instance-specific temporal reweighting is
a broadly applicable idea for learning under concept drift,
and hope that our work contributes to vigorous discussion
and development of new algorithms for this important, in-
creasingly relevant problem.

2 Related Work
2.1 Data Drift and Adaptation
Early theoretical work on slow concept drift aimed to prove
learning bounds under various models of drift such as la-
bel drift (Helmbold and Long 1994), and joint distribution
drift (Bartlett 1992); see also Barve and Long (1996). Typ-
ically they advocated using only recent data for training (a
windowed approach), although subsequent work (Mohri and
Muñoz Medina 2012) introduced a notion of discrepancy
that allowed effective use of older data. This discrepancy re-
lies on measuring data-distribution change over time, rather
than making overly restrictive assumptions. Recent work
(Awasthi, Cortes, and Mohri 2023) built on this notion and
proved more general performance bounds for arbitrary hy-
pothesis function sets.

On the empirical side, multiple recent papers have pro-
posed benchmark datasets for non-stationary learning, draw-
ing from a wide range of applications (social media, med-
ical records, satellite imagery, etc.) and spanning several
years of data collection (Cai, Sener, and Koltun 2021; Yao
et al. 2022; Lin et al. 2021) (see also (Awasthi, Cortes, and
Mohri 2023) for additional benchmarks). We merge datasets
from these disparate sources to perform a comprehensive,
real-world evaluation of our approach applied to both batch-
learning and continual learning settings.

2.2 Learning with Importance Weights
A number of recent proposals learn instance-specific param-
eters for training data in order to achieve certain secondary
objectives; for instance, improved generalization (Ren et al.
2018; Shu et al. 2019; Mindermann et al. 2022), handling
noisy labels (Vyas, Saxena, and Voice 2020), or implicit cur-
ricula for learning (Saxena, Tuzel, and DeCoste 2019). Typ-
ically the instance weights are free parameters (Ren et al.
2018) or functions of instance loss (Shu et al. 2019), and not
the instance itself. Other work implicitly weights instances
by sampling according to some loss criterion (Mindermann
et al. 2022), in order to reduce training cost.

2.3 Continual & Online Learning
Continual Learning (CL) and online learning address sce-
narios where data is available in streaming fashion, and one
instance (or a small buffer of instances) from the stream
can be used to update the model before being discarded
entirely. Settings include new task acquisition (Van de Ven
and Tolias 2019; Delange et al. 2021; De Lange and Tuyte-
laars 2021), increased output range (Shmelkov, Schmid,
and Alahari 2017; Rebuffi et al. 2017) or distribution shift
whether discrete (domain-incremental CL (De Lange and
Tuytelaars 2021; Delange et al. 2021)) or smooth (concept
drift (Schlimmer and Granger 1986)). Other work in on-
line learning aims at regret guarantees under certain mod-
els of environmental change (Herbster and Warmuth 1998),
or combine an adaptive regret objective (Gradu, Hazan, and
Minasyan 2020; Daniely, Gonen, and Shalev-Shwartz 2015;
Duchi, Hazan, and Singer 2011; Hazan and Seshadhri 2009)
with models of environment dynamics.

Due to two key reasons, we focus primarily on the batch
learning problem (although we also extend our work to CL
settings and compare in them): 1) CL and online learn-
ing implicitly downweight past data in a simplistic manner
(exponential downweighting, see e.g., (Jones et al. 2023))–
this is much less expressive than our instance- and age-
dependent model of importance weights, 2) Due to inherent
weaknesses (catastrophic forgetting (McCloskey and Cohen
1989), also related to previous point) and lack of access to
past data for iterated learning, CL methods are vastly out-
performed by batch learning except in specific settings (see
e.g., our comparisons in Jain and Shenoy (2023), appendix).

3 MUSCATEL: Learning with Concept Drift
We study a learning problem where data is collected over a
significantly long period of time, and the data distribution is
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expected to continually evolve over time. Such concept drift
is ubiquitous in practical machine learning systems, and is
receiving significant attention in the academic literature re-
cently, in benchmark development (Lin et al. 2021; Yao et al.
2022) as well as solution approaches (Cai, Sener, and Koltun
2021; Awasthi, Cortes, and Mohri 2023). We address batch
learning in the face of such concept drift, and propose in-
stance reweighting schemes that can effectively capture as-
pects of this temporal evolution, with the mathematical ob-
jective of maximizing forward transfer.

3.1 Preliminaries
Consider a supervised data stream with distribution Dt

evolving with time, from which samples (xt,yt) are drawn
at timesteps t. Here, xt is an input instance with the corre-
sponding label yt. Given data collected upto time T from
this stream, we aim to learn a model fθ: X → Y where (X ,
Y) denote the (input, label) spaces and θ represents model
parameters, in order to maximize the likelihood of future
data upto some time T +K:

K∏
k=∆t

IP
(
yT+k

∣∣xT+k, {xt, yt}Tt=1, θ
)

(1)

The data from T to T +∆t is the validation data. To achieve
this goal in presence of concept drift, we want to augment
the loss on training instances using an importance function
Imp(.), such that it more closely represents the loss on fu-
ture data. This corresponds to decreasing the gap between
the expected loss value (for instance cross entropy in classi-
fication) for the given and future data:

E(x,y)∼Dt
[Et∼p(t+T )[l(x,y)]− Et∼p(t)[Imp · l(x,y)]] (2)

where l(x,y) = l(y, fθ(x)) is the loss function, p(t) =
1
N

∑N
i=1 δ(ti) where δ is the dirac-delta distribution, and ti

are the ordered timestamps at which any new data-samples
were received. We operate in an offline/batch setting, where
the standard learning strategy is to minimize the expected
value of this desired loss over the data distribution Dt via
Empirical Risk Minimization (ERM):

Et∼p(t)E(x,y)∼Dt
[l(fθ(x), y)] ≈

1

T

T∑
t=1

l(yt, fθ(xt)) (3)

3.2 Modelling Temporal Drift
ERM generally performs well when the data distribution D
is static. However, for evolving Dt, the approximation in eq.
3 is poor, leading to high error on test data from the future.
In a real-world scenario, the relationship between Dt+δt and
D1,...,t might be complex and difficult to model in a general
manner. Instead, many recent works approximate the depen-
dency using only the most recent data:

IP(Dt+δt|Dt, Dt−δt1 , ....., Dt−δtn) ≈ IP(Dt+δt|Dt) (4)

With this myopic view of data evolution, an online learning
approach may appear reasonable, as it implicitly places more
emphasis on more recent data. In fact, previous work (Ho-
even, Erven, and Kotłowski 2018) has drawn an equivalence

between online learning and an exponential downweighting
of past data. We therefore consider exponential downweight-
ing of data in a batch learning setting as our first baseline.
Specifically, instead of equal weights assigned to instances
(Eq. (3)), we model importance as as exponentially decaying
function resulting in p̂(t) = p(t)e−λ(T−t) for some fixed λ
which can be tuned using a validation dataset from the near
future. We call this approach EXP. This modifies Eq. (3) as
follows:

Et∼p̂(t)E(x,y)∼Dt
[l(fθ(x), y)] ≈

1

N

T∑
i=1

Imp(t)l(yt, fθ(xt))

(5)
where the importance Imp(t) = e−λ(T−t) is a function of
instance age (T − t). Note, in this proposed approach, we
iterate multiple times over all weighted training instances;
thus, it has significant advantages over online learning.

In the above model, using a single exponentially decaying
function with a fixed decay rate may limit modeling flexi-
bility. We instead broaden the definition of the importance
function Imp(t) to a linear mixture of exponential basis
functions:

Imp(t) =
∑
k

zke
−ak(T−t) = zT e−a(T−t) (6)

This increases the expressivity of Imp(t) by allowing
us to model more heavy-tailed functions of time. Here,
a = {ak}k∈{1,...,K} are constants, and represent a basis
set that capture different timescales of importance decay in
the data. The K free parameters z = {zk}k∈{1,...,K} (the
mixing weights) assign relative importance to each of the
timescales. We call this weighting approach MIXEXP. We
make an additional design choice of setting ak = ak0 for
some fixed a0 – this allows us to compactly represent a very
wide range of timescales, while also reducing the number
of free parameters in the formulation. Further, the choices
of a0,K are also not critical, as for moderate K, a very
wide range of timescales are covered for any choice of a0
(K = 16, a0 = 2 in our experiments), to be mixed by
the free parameters z. Thus, we have z as the key hyper-
parameters to be tuned using the validation set.

3.3 Instance-Conditional Timescales
We come to the final, key component of our proposal for
temporal importance weighting: instance-conditional time-
scales. In the discussions above, each instance receives an
importance weight entirely controlled by its age. In practi-
cal settings, however, there are several latent variables that
determine the rate of decay of importance. Consider, for in-
stance, topics of discussion on social media–certain topics
are reliably constant, while others are more short-lived. This
suggests that a one-size-fits-all approach towards temporal
reweighting may miss significant opportunities for optimiza-
tion. To address this, we propose computing the parameters
z as a function of the instance x, i.e.,

Imp(x, t) = g(x)T e−a(T−t) (7)
where the function g(x) now controls the scoring of in-
stance importance in a compact, instance-conditional man-
ner. In particular, we learn an auxiliary neural network (the
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SCORER) with network parameters ϕ, i.e., gϕ(x). Note that
we have deliberately chosen to separate instance-specific
and time-specific components of Imp(x, t) in Eq. (7); in-
deed, experimenting with more general functions was not
helpful due to the added complexity (see Jain and Shenoy
(2023), appendix).

3.4 Learning a SCORER for Instance Importance
Our goal is to optimize for forward transfer, i.e., the per-
formance of the learned classifier fθ(·) on future instances,
through the use of the SCORER. This naturally leads to the
following objective for the SCORER:

Lv =
1

M

T+∆t∑
t=T+1

l(yvt , fθ(x
v
t )) (8)

i.e., learn a SCORER that minimizes loss on a small amount
of data immediately following the training data (denoted
as (xv

t , yvt )). This loss implicitly depends on the pri-
mary model’s parameters θ, which in turn depends on the
SCORER’s parameters. More specifically, θ is learned as:

θ∗(ϕ) = argmin
θ

1

T

T∑
t=1

gϕ(xt) · e−a(T−t)l(yt, fθ(xt))

(9)
with the choice of θ∗ being a function of the SCORER’s
parameters ϕ. Thus, optimizing the SCORER objective in
Eq. (8) can be written as an outer optimization over the
above optimization for θ∗:

ϕ∗ = argmin
ϕ

1

M

T+∆t∑
t=T+1

l(yvt , fθ∗(xv
t )) (10)

where, again, the objective is implicitly a function of ϕ
through the dependence on θ∗(ϕ).
Optimization: The above bilevel optimization structure has
been used by previous work, e.g., in gradient-based based
hyperparameter optimization methods (Lorraine, Vicol, and
Duvenaud 2020; Blondel et al. 2021), and in reweighting
for mitigating label noise (Shu et al. 2019; Zhang and Pfis-
ter 2021). The former works use implicit gradients for the
outer optimization, while the latter used an approximation of
a one-step unroll of the inner optimization, and alternating
updates to (θ, ϕ). These two approaches have complemen-
tary strengths; implicit gradients allow for more precise opti-
mization, while also incurring additional computation costs
involving calculating the Hessian. We discuss both below.
Given the objective of the SCORER in eq. 10 and θ be-
ing a function of ϕ (eq. 9), the aggregated objective of the
SCORER can be written as L(v) = Gv(θ∗) and its gradient
w.r.t. ϕ can be calculated using chain rule as follows:

∂Gv(θ∗)

∂ϕ
=

∂Gv(θ∗)

∂θ

∂θ∗

∂ϕ
(11)

Calculating the second term in the above equation requires
the gradient of optimal classifier parameters with respect to
SCORER parameters and can be calculated as follows (re-
fer Jain and Shenoy (2023), appendix for more details) :

∂θ∗

∂ϕ
= −

[
∂2Ltr

∂θ∂θT

]−1

× ∂2Ltr

∂θ∂ϕT

∣∣∣∣∣
θ∗,ϕ

(12)

where Ltr denotes the training objective from eq. 9. The first
term corresponds to the inverse of a Hessian and the sec-
ond is a second-order term involving gradient w.r.t. SCORER
followed by target network parameters. We followed recent
work on implicit differentiation to approximate the inverse
of the Hessian term (Lorraine, Vicol, and Duvenaud 2020).
This leads to a nested optimization setting where we update
the SCORER for every L updates to the classifier, and the
classifier parameters after these L updates are denoted as θ̂∗,
approximating the optimal classifier parameters in Eq. (10).
For more details regarding the implicit gradient and approx-
imation, please refer Jain and Shenoy (2023), appendix.
Alternating updates: As discussed above, some works (Shu
et al. 2019; Ren et al. 2018) avoid this term and use an online
approximation to arrive at a single optimization loop with al-
ternating updates to θ and ϕ. We also implemented this vari-
ant for our formulation; our findings were qualitatively un-
changed, with a modest quantitative trade-off between run-
time and accuracy between the two options (see Jain and
Shenoy (2023), appendix). The final update for θ, ϕ, comes
out to be as follows:

ϕb+1 = ϕb + αβ
1

MN

T∑
i=1

T+∆t∑
j=T+1

∂

∂θ
l(yvj , fθ(x

v
j ))

∣∣∣∣∣∣
θb

· ∂
∂ϕ

gϕ(xi1)

∣∣∣∣
ϕb

· e−ati ∂

∂θ
l(yi, fθ(xi))

∣∣∣∣
θb

θb+1 = θb − β · gϕb
(xi) · e−ati 1

N

T∑
i=1

∂

∂θ
l(yi, fθ(xi))

∣∣∣∣
θb

(13)
where M = ∆t and b is the number of epochs. A detailed
derivation of the optimization process along with the above
approximations is provided in Jain and Shenoy (2023).

4 Experiment Setup
4.1 Datasets
Geolocalization. We experiment extensively with the ge-
olocalization (GEO) dataset proposed by (Cai, Sener, and
Koltun 2021): 39M images from YFCC100M (Thomee et al.
2016), spanning 2004-2014 and containing natural distribu-
tion shifts due to changes in image contents. The task is clas-
sification of image region-of-origin (712 geolocations span-
ning the globe). Images timestamps are used to conduct tem-
poral learning & evaluation experiments. The authors (Cai,
Sener, and Koltun 2021) show evidence of gradual distribu-
tion shift through a range of experiments in a CL setting.

Wild-Time Benchmark. This collection of 5 datasets
captures real-world concept drift (Yao et al. 2022)–
Yearbook, FMoW-time, MIMIC, Huffpost, and arxiv –and
spans multiple years. The data covers multiple domains
(American high school yearbook photos, satellite images,
medical records, news headlines, arxiv preprints). A quick
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summary is in Jain and Shenoy (2023), appendix; please also
refer to the source paper for more details.

CLEAR Benchmark. We also experiment with the
CLEAR-100 Benchmark (Lin et al. 2021), designed to eval-
uate continual algorithms under realistic distribution shifts
and a single-task setting. Like GEO, CLEAR is also sam-
pled from YFCC100M (8M images, sorted in order of times-
tamps), and aims to capture slow drift in the visual appear-
ance of objects such as laptops, cameras, etc.. The authors
divide the data into 10 temporal buckets and suggest evalu-
ation schemes for testing CL models.

Other Real-World drifting datasets. We further compare
on more real-world datasets inheriting concept drift based
on a recent paper (Awasthi, Cortes, and Mohri 2023). We
compare on both regression and classification tasks follow-
ing the paper. For the regression task Wind, Airline, Gas,
News, Traffic datasets are used. We follow the same setup as
the (Awasthi, Cortes, and Mohri 2023) paper, using a com-
pletely different source as well as time-segment for testing.
The datasets capture the temporal variation ranging from 1
day to 26 years. For more details on these and for description
of the classification datasets, please refer Jain and Shenoy
(2023).

4.2 Batch Training & Baselines
Our primary focus is on conventional supervised learning
where a model is trained to convergence by iterating over a
single, large training dataset. For GEO dataset, no baselines
for this setup were proposed in the paper, so we propose the
following list. Although they were not designed for concept
drift, they all (like our approach) use a specialized valida-
tion set as “target” for optimizing model performance, and
indeed do outperform the ERM baseline:
MetaWeightNet: Reweights training instances as a func-
tion of instance loss, to minimize loss on a given meta-
dataset (Shu et al. 2019).
Fast sample reweighting: Loss-based reweighting of in-
stances similar to MetaWeightNet, with automatic selection
and updates to the meta-set (Zhang and Pfister 2021).
RHO-loss: Ranking training instances for each batch based
on minimizing loss on a hold-out set, and selecting top-
ranked instances for training (Mindermann et al. 2022).
For the WILD-TIME datasets, we report on all the base-
lines reported in that paper; likewise, we compare against the
already published benchmarks reported in Awasthi, Cortes,
and Mohri (2023) for the additional datasets contained there
(please refer to the respective papers for details).

We split each dataset into train, validation, and test sets
in temporal order, reusing existing partitions where avail-
able. Thus, validation data is more recent than train data.
For the GEO dataset (see Fig. 1(a)), these sets contain 18M,
2M, 19M images covering time periods of around 54,6,60
months respectively. In addition, for this dataset we also held
out small data samples from the train and validation period
too, so we could compare train/test period accuracy in an
unbiased manner. All methods are trained to converge, and
performance on the test period is reported as metric (classi-
fication accuracy, or RMSE for regression).

Method \ Year 1 2 3 4 5

ERM 45.9 45.4 44.1 42.7 41.0
MWNet 46.8 46.3 44.8 43.7 42.0

FSR 46.9 46.1 45.2 44.1 42.6
RhoLoss 47.2 46.7 46.0 44.6 43.3

MUSCATEL(ours) 49.1 48.7 48.4 47.6 47.2

%gain vs ERM 6.7 7.1 9.8 11.5 15
%gain vs SOTA 3.9 4.1 5.1 6.8 8.8

Table 1: Year-wise error rate for our test set from Geo-
localization Dataset. Our method outperform all the other
baselines by significant margins.

4.3 Continual Learning & Baselines
We also evaluate our approach in the offline continual learn-
ing setting, where data is presented to the model in small
buckets in sequence, and each bucket is processed and dis-
carded before the next bucket is made available.

We compare against a suite of recently proposed pop-
ular CL baselines including Reservoir Sampling (Kim,
Jeong, and Kim 2020), MiR (Aljundi et al. 2019),
GDUMB (Prabhu, Torr, and Dokania 2020); see Jain and
Shenoy (2023), appendix for additional comparisons namely
ER (Chaudhry et al. 2019), LwF (Li and Hoiem 2017),
EwC (Kirkpatrick et al. 2017), AGEM (Chaudhry et al.
2018) and other recent methods. In addition, we com-
pare against two recent task free-continual learning meth-
ods proposed specifically for non-stationary data streams–
Continual Prototype Evaluation(De Lange and Tuytelaars
2021) and SVGD (Wang et al. 2022). Finally, we compare
against representative online learning algorithms designed
for non-stationary data–Ader (Zhang, Lu, and Zhou 2018)
and Scream (Zhao, Wang, and Zhou 2022). Please see Jain
and Shenoy (2023) for detailed descriptions of the various
baselines.

We split GEO into 39 buckets of 1M images each, with
one bucket roughly spanning 3 months. For CLEAR, we use
the provided temporal data splits (10 buckets of 160k images
each plus a corresponding test set). For adapting MUSCA-
TEL to this continual setting, we use the most recent 10%
of each bucket as validation data. Other baselines use the
whole bucket (including our validation) as training data. Our
temporal reweighting operates only over the time span of
the bucket (3 months), since older data are not available in
the continual learning setup. All algorithms iterate over each
bucket of data k times (k=5 for GEO, and as per the bench-
mark proposal for CLEAR100).

5 Results
5.1 MUSCATEL Maximizes Forward Transfer
We first illustrate the complexities of non-stationary learn-
ing, and the substantial benefits of our approach, on a large-
scale real-world dataset (GEO, 39M photos spanning a 9
year period) (Fig. 1(a)), followed by quantitative analysis on
a range of benchmark datasets (Tab. 1,Tab. 2,Tab. 3).
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Method YB FMoW MIMIC HP Arxiv

ID OOD ID OOD ID OOD ID OOD ID OOD

ERM 97.99 79.50 58.07 54.07 71.30 61.33 79.40 70.42 53.78 45.94
GroupDRO-T 96.04 77.06 46.57 43.87 69.70 56.12 78.04 69.53 49.78 39.06

mixup 96.42 76.72 56.93 53.67 70.08 58.82 80.15 71.18 50.72 47.82
LISA 96.56 83.65 55.10 52.33 70.52 56.90 78.20 69.99 50.72 47.82

CORAL-T 98.19 77.53 52.60 49.43 70.18 57.31 78.19 70.05 53.25 42.32
IRM-T 97.02 80.46 46.60 45.00 72.33 56.53 78.38 70.21 46.30 35.75

MUSCATEL 98.13 82.78 59.87 56.95 72.80 64.12 81.56 73.12 55.89 49.57

Table 2: Average accuracy on various datasets of the Wild-Time benchmark for both In-Dist. and OOD due to temporal shift
setting. Our method is able to outperform all other methods on both In-Dist. and OOD settings, even though it downweights
past. This shows it can robustly learn time-invariant features.

Figure 2: Comparison of MUSCATEL against various continual learning baselines, on the GEO dataset, with CL baselines (a)
and non-stationary online learning methods (b). Panel (c) shows comparison on the CLEAR-100 concept drift benchmark for
continual learning, where, too, we show clear gains.

Method DM MM EXP BSTS SDRIFT Ours

Wind 1.12 1.19 0.98 0.98 0.95 0.95
Airline 1.78 1.41 0.98 0.94 0.94 0.92

Gas 0.42 0.47 0.94 1.02 0.40 0.38
News 1.13 1.10 0.98 1.00 0.97 0.93
Traffic 2.20 0.99 0.996 0.98 0.96 0.95

Table 3: Comparison with drift datasets and baselines from
the SDRIFT paper (Awasthi, Cortes, and Mohri 2023). Our
method consistently performs best across all datasets.

Figure 1(a) compares various baselines for batch training
on the GEO dataset, over the training period (past data) as
well as the testing period (future data). First, ERM has flat
performance over the training window, but decays rapidly
over time in the test period, confirming the non-iid nature
of the data. Most methods beat ERM on the test period,
strongly supporting the value of using a temporally appro-
priate validation set as a “target set” in concept drift scenar-
ios. MUSCATEL outperforms other methods by a significant
margin over the test period (upto 15% relative), showcasing
the power of our temporal importance weighting approach.
Note that MUSCATEL clearly trades off past accuracy in fa-
vor of more recent data; this is due to the meta-objective of
maximizing validation accuracy, which is more recent and
more representative of future (test) data.

5.2 Quantitative, Cross-Dataset Gains

We first quantified the gains of our approach as a function of
time since the models were trained; Tab. 1 compiles these
findings (cf. Fig. 1(a)). We note a steep decay in perfor-
mance for all algorithms; however, MUSCATEL not only
beats the baselines consistently but by a widening margin
as time passes, with upto 15% relative gains over ERM, and
8.8% relative over the nearest baseline.

Next, we replicate our findings on a range of datasets
included in the recent Wild-Time concept drift benchmark
suite (Yao et al. 2022)–5 real-world datasets spanning social
media, satellite imagery, and medical records over long time
spans. Here, older data is used for training and “in-domain
(ID)” testing, and newer data for “out-of-domain (OOD)”
testing. Tab. 2 shows model accuracy over training and test
periods (past & future respectively) for a range of baselines
included in the benchmark. Note the following trends: a)
large gaps between ID & OOD accuracies, highlighting the
data drift, b) No baseline consistently outperforms the others
across datasets, and c) MUSCATEL handily beats all base-
lines in both in-domain and out-of-domain accuracy.

We then evaluated another set of non-stationary regres-
sion datasets (see e.g., Awasthi, Cortes, and Mohri (2023)
for dataset details & baselines). Again, MUSCATEL consis-
tently beats other baselines by noticeable margins in the test
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Figure 3: Visualizing the highest weighted examples, using our SCORER on the CLEAR-100 benchmark.

period (Tab. 3), confirming the value of our approach in non-
stationary offline learning. Fig. 1(b) summarizes relative %
gain of our approach across datasets, over and above nearest
baseline in each datasets.

5.3 Adapting MUSCATEL for Continual Learning
Although our focus is on importance weighting in the
widely-prevalent batch learning scenario, our broader goal
is to address learning when data distributions change slowly
over time. Since continual learning is an alternate approach
for non-stationary learning, we adapted our reweighting
scheme for offline continual learning, and compared against
SOTA techniques in this domain (see Section 4.3 for more
details). MUSCATEL clearly outperforms these baselines
on the GEO dataset (Fig. 2a), and many others (see Jain
and Shenoy (2023), appendix), as well as online learning
algorithms designed with theoretical guarantees for non-
stationary learning (Fig. 2(b)). Finally, we also replicated
these findings on the recently proposed CLEAR benchmark
(Fig. 2(c)), designed explicitly to test CL algorithms against
concept drift.

5.4 Understanding the SCORER’s Role
We summarize various analyses showcasing the value of
our auxiliary SCORER model in producing gains, as well as
some insights into its workings. Detailed data is presented
in the extended version (Jain and Shenoy 2023) due to space
considerations; we only summarize findings here.
Value add: We compared temporal scoring options on the
GEO dataset, and found a strict ordering in performance:
ERM < EXP< MIXEXP< INSTMIXEXP, suggesting that
each of the design choices in our approach provided notice-
able additional gains.
Interpretability: (1) Post-hoc analysis of INSTMIXEXP
weights shows a shallower dropoff on average as a function
of time compared to exponential fit; however, in any given
temporal bucket, the instance weights varied substantially.
This supports the idea that the SCORER plays a large role in
instance-specific customization of weights (cf. Eq. (7)). (2)
Figure 3 shows the most and least SCORER-weighted im-
ages on the CLEAR dataset (a collection of object images
through time), clearly showcasing that the SCORER empha-
sizes more modern-looking instances, and conform to our in-
tuitions & expectations. GradCam analysis (Selvaraju et al.

2017) of the SCORER’s most relevant features confirms that
the network focuses on the primary object in the image, and
associated relevant features for determining its importance
for forward transfer (see Jain and Shenoy (2023), appendix).
Tuning: Our results are relatively insensitive to the choice
of the parameter a0. Scaling a0 by 0.5,2, or 4 showed min-
imal influence on the results. Similarly, given the geometric
spacing of the ai’s , increasing K beyond a point made no
difference. In short, our results are stable over a very broad
range of settings for these hyperparameters, by design and
in practice (see Jain and Shenoy (2023) for details).
Cost: 1) All numbers presented in this work used a simple
4-layer CNN for the SCORER; increasing SCORER complex-
ity improved accuracy marginally, up to a point. 2) Per epoch
running time for MUSCATEL is consistently 1.2x-1.5x that
of the ERM baseline, and convergence is roughly similar.

Please see supplementary materials in Jain and Shenoy
(2023) for a range of additional experiments including a
more general SCORER g(x, t) that is not constrained to a
mixture of exponentials, other modifications to the tempo-
ral reweighting functions, a head-to-head comparison of CL
and batch learning, etc., and implementation details omitted
due to lack of space.

6 Conclusion

We address the problem of supervised learning in the face
of slow concept drift, and propose MUSCATEL–instance-
specific multi-scale temporal importance weighting–as an
approach towards addressing this issue. We propose a
SCORER to compactly represent instance-specific impor-
tance weights, and a nested optimization objective with an
efficient implementation for learning the SCORER. Exten-
sive experiments on a suite of real-world datasets confirm
substantial concept drift, and show MUSCATEL providing
significant performance gains in both offline/ batch train-
ing & continued training settings. Interestingly, MUSCA-
TEL improves both backward and forward transfer perfor-
mance compared to baseline, despite its use of weighted dis-
counting for past data. Our results also show that under non-
stationary data conditions, standard CL approaches are at a
significant disadvantage compared to batch training, which
should be preferred where practicable.
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