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AI is now an integral part of everyday decision-making, assisting us in both routine and
high-stakes choices. These AI models often learn from human behavior, assuming this
training data is unbiased. However, we report five studies that show that people change
their behavior to instill desired routines into AI, indicating this assumption is invalid.
To show this behavioral shift, we recruited participants to play the ultimatum game,
where they were asked to decide whether to accept proposals of monetary splits made by
either other human participants or AI. Some participants were informed their choices
would be used to train an AI proposer, while others did not receive this information.
Across five experiments, we found that people modified their behavior to train AI
to make fair proposals, regardless of whether they could directly benefit from the AI
training. After completing this task once, participants were invited to complete this
task again but were told their responses would not be used for AI training. People who
had previously trained AI persisted with this behavioral shift, indicating that the new
behavioral routine had become habitual. This work demonstrates that using human
behavior as training data has more consequences than previously thought since it can
engender AI to perpetuate human biases and cause people to form habits that deviate
from how they would normally act. Therefore, this work underscores a problem for AI
algorithms that aim to learn unbiased representations of human preferences.

AI training | ultimatum game | fairness | decision-making | habit formation

AI plays an increasingly important role in everyday decision-making. It is used not only
by social media and streaming services to provide recommendations but also in more
crucial contexts including patient care (1–4), the judicial system (5–7), and policymaking
(8, 9). Most of these models learn how to make decisions from human behavior. One
important implicit assumption underlying such training is that the observed choice data
is unbiased (10). However, when people are aware their behavior is used to train AI,
they might deviate from how they would normally act (11, 12). For example, they may
deliberately change their behavioral policy to instill desired behaviors in the algorithm.
This behavioral shift would pose a fundamental problem for AI algorithms that aim
to learn unbiased representations of human decision-making. Therefore, we sought to
investigate how humans modify their behavior when they are aware they are training AI.

It is well established that humans act differently when interacting with AI systems
(13–15), displaying less socially desirable traits (16) and becoming more prone to cheat
(17). In fact, humans are willing to incur a cost to avoid interacting with AI altogether
(18). These findings demonstrate that people are sensitive to the presence of AI systems,
but they do not reveal whether people alter their behavior if they are aware that it is used
for AI training.

Nevertheless, humans are characterized by their ability for goal-directed behavior.
Psychological science is replete with demonstrations of how we exploit task structure to
our advantage (19–22). Computer scientists study similar principles from a reverse
perspective, focusing on designing AI systems that consider users’ responses to AI
deployment (23–25). For example, Goodhart’s Law, originating from economic and
financial policy making, predicts that when AI systems set a particular measure as a
target, people change their behavior to “game the system” by focusing on that target
(26). A notable example of Goodhart’s law comes from Camacho and Conover (27),
who showed that, as the rules of social welfare distribution became known, people in
Colombia reported exaggerated financial needs so that they just reached the threshold to
qualify for aid. Thus, if humans become aware AI learns from their behavior, then they
may start using (intuitive) internal models of the algorithm’s learning rules to strategically
instill behavior that benefits them.

This change in behavior may persist beyond AI training. Research from experimental
psychology has shown that behavior initially implemented to pursue a goal will eventually
become habitually engrained (28, 29). A hallmark characteristic of such habits is that
they persist even when the environment has changed in such a way that they become
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Fig. 1. Example trials for the control (A) and AI training (B) conditions for each partner type (Left human participant and Right AI). For participants assigned to
the AI training condition, a webcam was shown to remind the participants that their responses were training AI. Participants in the control condition did not
see a webcam since their responses were not training AI. With the exception of the webcam, the trial format was the same for both conditions. On each trial,
participants first saw a fixation cross (750 ms) to indicate the start of the trial. Next, they saw the partner type (human or AI) for 2 s. They then saw the offer
amount for 2 s before they could make a choice. Participants had unlimited time to choose. Each participant made multiple choices with varying partner types
and offer amounts. Only training condition was varied between participants.

costly [i.e., reinforcer devaluation; (30, 31)]. In our case, habits
would reveal themselves when the behavior initially used to train
AI is implemented in the absence of AI training. This would be
problematic for machine learning algorithms that are designed to
learn people’s unbiased preferences.

Here, we aimed to determine whether humans modulate their
behavior when they know it will be used to train AI and whether
these changes persist after AI training. To do this, we used the
ultimatum game (32). In this game, two players allocate a sum
of money. One player, the proposer, divides the money, and
the other player, the responder, decides to accept or reject it.
Even though rational responders should accept any nonzero offer,
behavior on this task shows that people are prone to reject “unfair”
offers (e.g., below 30% of the total), foregoing monetary rewards
(33–35). In other words, the ultimatum game measures how
subjective fairness affects decision-making (36). We used this
feature of the task to test our main hypothesis, predicting that
people are less likely to accept unfair offers when their behavior
trains an AI proposer.

Our studies* show that people are willing to incur costs to train
an AI system to make fair offers, even when this does not result
in increased personal gains. Importantly, this behavior persisted
across several days and in the absence of AI training, suggesting
that people form habits when training AI systems. Our work
reveals an important blind spot for AI developers, who should
account for these biases when designing algorithms that aid hu-
man choice (10). They also provide an applied context in which
goal-directed and habitual forms of control coordinate to guide
decision-making. Stimuli, data, and analysis scripts from all ex-
periments can be found on the Open Science Framework (OSF).†

*A preliminary version of this dataset was published in ref. 37.
†Preregistration link found here: https://osf.io/b7w5c.

Results

Across five preregistered experiments, we tested whether people
modify their behavior in the ultimatum game (32) when
informed their responses would be used to train an AI (Fig. 1).
In all of these experiments, we manipulated this “AI training”
condition between groups of participants. Some participants were
told their behavior would train an AI while other participants
were not given this information. For both groups of participants,
each round of this game involved a different partner. On some
rounds, this was a participant recruited from another experiment.
On other rounds, the partner was an AI algorithm. On each
round, participants were shown the type of partner and their
proposal on allocating $10 between the two players (offers
ranging from $1 to $6). Participants then chose whether to accept
or reject the offer. At the end of each session, one randomly
selected proposal was resolved. If the participant accepted it, the
money would be shared according to the proposal. If they rejected
it, neither player received a reward.

Humans Forgo Reward to Train an AI to Make Fair Offers. In
Experiment 1,‡ some participants (n = 110) were informed
that their responses would be used to train an AI they would
encounter in a subsequent session (“AI training” condition) while
others (n = 103) did not receive this information (control
condition). In the AI training condition, each round started
with a webcam icon and a line of text reminding participants
their behavior would be used to train AI (Fig. 1B). Two days
later, all participants were invited to complete a second session
of the same task, where participants in the AI training condition
were informed their responses would no longer train AI. To

‡Preregistration link for session 1 found here: https://osf.io/ajxk4.
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Fig. 2. Results for session 1 for Experiments 1 to 3. All figures show the proportion of accepting an offer based on offer amount (Top row: A, C, E) and by
fairness (Bottom row: B, D, F ) conditioned on partner type and fairness. Error bars indicate SE.

incentivize participation, the bonus rate was increased by 300%
for this second session. The results from this second session are
described at the end of Results.

We analyzed the data by modeling participants’ probability of
accepting an offer as a function of the dollar amount, the partner
type, and the training condition using both mixed-effects models
as well as ANOVAs. Full regression and ANOVA tables can be
found in SI Appendix.

A preregistered logistic mixed-effects model revealed that
participants were more likely to accept offers with larger dollar
amounts (b = 1.87, SE = 0.06, P < 0.001), replicating prior
findings (38–40). However, they did not respond differently
when partnered with a human compared to AI (b = −0.11,
SE = 0.05, P = 0.051). Most importantly, even though we
found no main effect of training condition (b = −0.37,
SE = 0.20, P = 0.064), there was a significant interaction
between training condition and offer amount (b = 0.17,
SE = 0.05, P = 0.002). As can be seen in Fig. 2 A and B,
participants in the AI training condition were more sensitive
to the offer amount than participants in the control condition,
particularly for unfair offers (≤$3). No other interaction effect
was significant (Ps ≥ 0.22).

A preregistered ANOVA provided evidence for this interpre-
tation. Here, we found main effects of fairness (F1,211 = 592,
P < 0.001) and training condition (F1,211 = 4.23, P = 0.04),
but these effects were qualified by an interaction between these
terms (F1,211 = 8.97, P = 0.003). Specifically, participants
in the AI training condition were more likely to reject un-
fair offers compared to participants in the control condition
(t196 = 2.62, P = 0.01), but no difference was found for fair
offers (t200 = −0.55, P = 0.58). The ANOVA did not show
a main effect of partner type (F1,211 = 1.82, P = 0.18) or any
additional interactions (Ps ≥ 0.52).

Our first experiment showed that participants rejected more
unfair offers in the AI training condition. This result indicates

that people are willing to forgo monetary reward to train an AI
system to make fairer proposals. However, it does not reveal the
motivation behind this change in behavior. While participants
may have been motivated by an intrinsic motivation to increase
fairness, it’s also possible that they rejected more unfair offers to
increase their rewards in the second session (where they would
encounter the AI they trained).

Humans Incur Costs to Train a Fair AI for Other People. We de-
signed Experiment 2§ to distinguish between these explanations.
This experiment followed the same procedure as Experiment 1
(Fig. 1), but we introduced a third AI training condition. In this
new condition, participants were informed their responses would
train an AI they would not encounter but others would face in
the second session (“AI training for others” condition; n = 107).
They were not explicitly told they would face an AI trained by
someone else in the second session. By comparing behavior in
this new condition to a replication of the original AI training
condition (now “AI training for self” condition) (n = 127) and
the control condition (n = 100), we could test whether people
would still be willing to train an AI to be fair for only altruistic
motivation.

The results of this new experiment were clear. In short,
participants in the new “AI training for others” condition showed
a similar willingness to incur a monetary cost to train AI to be
fair.

A preregistered logistic mixed-effects model revealed a main
effect of offer amount (b = 2.25, SE = 0.11, P < 0.001).
Additionally, participants in both the AI training for self
condition (b = −1.92, SE = 0.43, P < 0.001) and the
AI training for others condition (b = −1.76, SE = 0.45,
P < 0.001) were more likely to reject proposer offers than those
in the control condition. However, two significant interaction

§Preregistration link for session 1 found here: https://osf.io/krhz9.
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effects between offer amount and both the AI training for self
(b = 0.30, SE = 0.14, P = 0.03) and the AI training for others
(b = 0.55, SE = 0.16, P < 0.001) showed that participants in
the training conditions were particularly punitive for lower offers
than those in the control condition. This pattern of behavior is
shown in Fig. 2 C and D. An additional mixed-effects model
indicated that participants in the AI training conditions accepted
offers similarly (b = −0.16, SE = 0.41, P = 0.71) and
were comparably sensitive to the offer amounts (b = −0.24,
SE = 0.15, P = 0.11). There was no main effect of partner type
(b = 0.07, SE = 0.10, P = 0.51). No other interaction effects
were significant (Ps ≥ 0.22).

The results from a preregistered ANOVA were consistent with
this interpretation. We found a significant interaction between
training condition and offer fairness (F2,331 = 11.43, P <
0.001). Specifically, compared to the control condition, unfair
offers were less likely to be accepted by participants in both
the AI training for self condition (t193 = 4.67, P < 0.001)
and AI training for others condition (t187 = 4.99, P <
0.001). There was no statistical difference in acceptance rates
between participants in the two AI training conditions (t230 =
−0.39, P = 0.69).

Interestingly, we found similar results for fair offers. Par-
ticipants in both the AI training for self condition (t201 =
3.55, P < 0.001) and AI training for others condition
(t179 = 2.08, P = 0.04), accepted fewer fair offers than the
control condition, but there were no differences between training
conditions (t232 = 1.34, P = 0.18). This finding stands in
contrast to Experiment 1, where we found no difference in
acceptance rates for fair offers. We believe this is driven by
responses to $4 offers. As shown in Fig. 2C, participants in the
control condition were more likely to accept $4 offers compared
to either AI training condition, but there was no difference for
higher offers. Regardless of this effect, the observed interaction
indicated that the effect of training condition was stronger for
unfair offers compared to fair offers, which is consistent with our
hypothesis. The ANOVA found no main effect of partner type
(F1,331 = 0.011, P = 0.91) nor other significant interactions
(Ps ≥ 0.16).

In addition to replicating the findings from Experiment 1,
these results show that participants were willing to incur a
personal cost to train an AI to make more fair offers even if they
could not directly benefit. Strikingly, participants that trained an
AI for others responded no differently than those who trained an
AI for themselves. These results are consistent with the idea that
people are motivated to train AI to promote fairness. However,
it’s also possible that they did so for reciprocal reasons (41–43):
People may have only trained an AI to be fair because they
assumed other participants were doing the same for them.

Humans Are Willing to Train Fair AI in the Absence of Personal
Benefits. We designed Experiment 3¶ to test whether people
would still be willing to train AI to be fair even if they could
not personally benefit in future sessions. This experiment closely
followed the design of Experiment 2 (Fig. 1), except there was
only the AI training for others condition (now referred to as
“AI training” condition) (n = 117) and control condition
(n = 101). The key change, however, was that we removed the
second session, eliminating the possibility of anyone benefiting
from AI training in the future. By removing the second session,
we could determine whether people are genuinely motivated to
train AI to be fair.
¶Preregistration link found here: https://osf.io/hp3b2.

A preregistered logistic mixed-effects model once again showed
an increase in acceptance rates with higher offer amounts
(b = 1.99, SE = 0.07, P < 0.001) but no effect of partner
type (b = −0.02, SE = 0.06, P = 0.70). More importantly,
we found a main effect of training condition (b = −0.59,
SE = 0.24, P = 0.014), suggesting that participants accepted
less offers in the AI training condition compared to the control
condition. This main effect was qualified by an interaction with
offer amount (b = −0.19, SE = 0.06, P = 0.003), replicating
that participants in the AI training condition were more likely to
reject unfair offers (Fig. 2 E and F ). No other interaction effects
were significant (Ps ≥ 0.17).

A preregistered ANOVA provided results that were mostly
consistent with this analysis. Even though there was no main
effect of partner type (F1,216 = 0.006, P = 0.94), training
condition (F1,216 = 3.68, P = 0.056), or their interactions
with offer amount (partner type: F1,216 = 0.626, P = 0.43;
training condition: F1,216 = 2.04, P = 0.15), we found a
significant three-way interaction between these variables and
partner type (F1,216 = 4.40, P = 0.037). Post hoc two-way
ANOVAs suggested that when playing against an AI, participants
were more likely to reject offers in the AI training condition
(F1,216 = 5.43, P = 0.02), even though this was not qualified
by an interaction with fairness (F1,216 = 3.60, P = 0.06).
When playing against a human, we found neither a main effect of
training condition (F1,216 = 2.02, P = 0.16) nor an interaction
effect of training condition and fairness (F1,216 = 0.81,
P = 0.37).

These results suggest that participants were willing to incur
personal costs to train an AI to make more fair offers, even if they
were unable to personally benefit. This pattern of behavior reveals
a genuine motivation to promote fairness in AI. We should note
that there was some inconsistency in the results between our
ANOVA and mixed-effects models. The mixed-effects model
showed increased sensitivity to unfair offers among participants
in the AI training condition, but the ANOVA revealed this effect
only for rounds that involved AI partners. While this latter pattern
is intriguing, we place more confidence in the mixed-effects
results. Not only are they consistent with our earlier findings,
but this method of analysis predicts each individual response
(unlike the ANOVA where a subject-wise averaging step occurs
before conducting the analysis).

In these first three experiments, we found that people assigned
to the AI training conditions rejected more unfair offers than
those in the control conditions. We interpret these findings
to suggest that people in the AI training conditions are more
punitive due to their motivation to train AI for fairness.
However, there is an alternative explanation for these results.
It is possible that people in the AI training conditions rejected
more unfair offers because they felt that they were observed when
making choices (44). Specifically, participants in all AI training
conditions saw an image of a webcam to remind them of AI
training. Even though the webcam icon was only an image, it
is possible that it made participants feel as if they were being
watched. Consequently, participants may have been more self-
aware in the AI training conditions (45), leading to more prosocial
behavior and conforming to social norms (46–48). In other
words, under this alternative explanation, the participants in our
experiments were not deliberately trying to instill fairness into AI.

Humans Train AI to Be Fair When No Longer Observed. To rule
out the alternative explanation that the behavior change in the
AI training conditions was only caused by the presence of the
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AI training condition

++ Partner: Prolific Participant

Offer used to train AI
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Offer used to train AI

Accept
“I get $6 and you get $4”
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Offer used to train AIOffer used to train AI
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“I get $6 and you get $4”
“I get $6 and you get $4”
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+ Partner: AI

“I get $7 and you get $3” “I get $7 and you get $3”

Accept

A Control condition

Human partner trial type AI partner trial type

Human partner trial type AI partner trial type
B

Fig. 3. Example trials for the control (A) and AI training (B) conditions for each partner type (Left human participant and Right AI). For participants assigned to
the AI training condition, additional text was shown to remind the participants that their responses were training AI. Participants in the control condition did
not see this text since their responses were not training AI. With the exception of the text appearing on an additional screen (2 s) and when making a choice,
the trial format was the same for both conditions. On each trial, participants first saw a fixation cross (750 ms) to indicate the start of the trial. Next, they saw
the partner type (human or AI) for 2 s. Participants in the AI training conditions then saw an additional screen reminding them of AI training for 2 s. They then
saw the offer amount for 2 s before they could make a choice. Participants had unlimited time to choose. Each participant made multiple choices with varying
partner types and offer amounts. Only training condition was varied between participants.

webcam image, we ran two new studies (Experiments 4 and 5).
These studies were direct replications of Experiments 2 and
3# except we did not use a webcam icon (Fig. 3). Instead, to
remind participants in the AI training condition (Experiment
4: AI training for others condition n = 129, AI training for
self condition n = 100; Experiment 5: n = 105) that their
responses would be used for AI training, they saw an additional
screen with the text “Offer used to train AI” for 2 s. This text
also appeared when participants were asked to make a choice.
Participants in the control condition (Experiment 4: n = 116;
Experiment 5: n = 103) completed the same task as before
(Fig. 3A). By removing the webcam icon, we could determine
whether people change their behavior to train AI even if there are
no visual cues suggesting they are being observed. We reasoned
that if we replicated these results without the visual cue, we could
more confidently claim that people changed their behavior to
train AI.

In Experiment 4, we found that participants in both AI
training conditions rejected more offers than those in the
control condition (Fig. 4 A and B), replicating the results
of Experiment 2. A preregistered logistic mixed-effects model
showed that people in the AI training for self condition (b =
−1.17, SE = 0.45, P = 0.009) and AI training for other
condition (b = −1.45, SE = 0.42, P < 0.001) rejected more
offers than those in the control condition. Although we found a
main effect of offer amount (b = 1.90, SE = 0.08, P < 0.001),
there were no significant interactions between offer amount
and training condition when comparing the AI training for self
condition (b = 0.14, SE = 0.12, P = 0.24) and AI training
for others condition (b = −0.055, SE = 0.10, P = 0.60)
to the control condition. However, from inspection of Fig.
4A, we hypothesize that the main effect of AI training was so
strong for offers ≤$3 that the mixed effects model could not
capture the interaction effects. Therefore, we ran an exploratory

#We did not run a version of Experiment 1 without the webcam icon since Experiment 2
includes its conditions.

ANOVA and found both a main effect of training condition
(F2,342 = 6.15, P = 0.002) and an interaction effect between
fairness and training condition (F2,342 = 4.87, P = 0.008).
Post hoc t tests revealed that participants in the AI training
for self condition (t214 = 2.91, P = 0.004) and AI training
for others condition (t230 = 3.18, P = 0.002) rejected more
unfair offers than those in the control condition. However, when
considering only fair offers, there was no difference in acceptance
rates when comparing the control condition to the AI training
for self (t213 = 0.45, P = 0.66) and AI training for others
(t243 = 1.57, P = 0.12), consistent with previous findings.

We ran an additional preregistered mixed effects model to
compare the acceptance rates between AI training conditions.
The mixed effects model found no main effect (b = 0.29,
SE = 0.43, P = 0.51) nor interaction effect between offer
amount and training condition (b = 0.19, SE = 0.11,
P = 0.07). Post hoc t tests were consistent with this finding,
as there was no difference in acceptance rates for unfair offers
(t211 = −0.08, P = 0.94) and fair offers (t227 = −1.24,
P = 0.22) between AI training conditions. We also found no
effect of partner type (b = −0.01, SE = 0.08, P = 0.89) and
no other interactions were significant (Ps ≥ 0.54).

We preregistered the same analysis for Experiment 5. This
study used the same procedure as Experiment 3, with participants
in the AI training condition being informed that their behavior
would train an AI for other participants but that they would not
return for a follow-up session. As in Experiment 4, we did not
use the webcam icon to remind people of the training condition,
and used text (“Offer used to train AI”) instead. The results were
consistent with Experiment 3 (Fig. 4 C and D). Specifically, the
mixed effects model showed an increase in acceptance rate as offer
amount increases (b = 1.86, SE = 0.06, P < 0.001) but found
no effect of partner type (b = −0.07, SE = 0.05, P = 0.23).
More importantly, although there was no main effect of training
condition (b = −0.28, SE = 0.23, P = 0.22), there
was an interaction effect between training condition and offer
amount (b = −0.19, SE = 0.06, P = 0.001), once again
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Fig. 4. Results for session 1 for Experiments 4 and 5. All figures show the proportion of accepting an offer based on offer amount (Top row: A, C) and by
fairness (Bottom row: B, D) conditioned on partner type and fairness. Error bars indicate SE.

demonstrating that participants in the AI training condition
were more sensitive to the offer amount than those in the
control condition as the offer amount decreased. We also found
a three-way interaction between offer amount, opponent, and
training condition (b = 0.10, SE = 0.04, P = 0.019). To
interpret this three-way interaction, we ran post hoc mixed effects
models conditioning on training condition. When conditioning
on participants in the AI training condition, we found neither a
main effect of partner type (b = −0.08, SE = 0.07, P = 0.28)
nor an interaction effect of offer amount and partner type
(b = 0.02, SE = 0.05, P = 0.67). Thus, participants in the
AI training condition responded similarly to each partner type.
When only considering participants in the control condition,
we found no main effect of partner type (b = −0.05,
SE = 0.09, P = 0.54). However, there was a significant
interaction between partner type and offer amount (b = −0.18,
SE = 0.07, P = 0.0053). Specifically, these participants
accepted more unfair offers made by the AI than by the
human participant. However, this difference in acceptance rates
decreased as the offer amount became more fair. We found no
other significant interactions (Ps ≥ 0.08).

We ran an exploratory ANOVA for Experiment 5 since we ran
this analysis for all other experiments in this paper. Once again,
we found a main effect for fairness (F1,206 = 62.55, P < 0.001).
However, no other main nor interactions were statistically
significant (Ps ≥ 0.22). Although the results from the ANOVA
model are inconsistent with the results from the mixed-effects
model, we place more confidence in the mixed-effects model
results for similar reasons outlined in Experiment 3.

The results from Experiments 4 and 5 show that people
training AI rejected more unfair offers than those in the control
condition even without a visual cue suggesting they were being
observed. This suggests that people in the AI training conditions

are not changing their behavior because they are more self-
aware (48) but rather are genuinely motivated to instill fairness
into AI.

Persistence of the Effect of AI Training. Finally, we investigated
whether the effects of AI training persisted over time. To do
this, we analyzed choice behavior from the second sessions of
Experiments 1, 2, and 4. In these sessions, participants in the
AI training conditions (Experiment 1: n = 95; Experiment
2: AI training for others condition n = 88, AI training for
self condition n = 110; Experiment 4: AI training for others
condition n = 112, AI training for self condition n = 92)
were informed that their responses would no longer be used for
AI training while those in the control condition (Experiment
1: n = 84; Experiment 2: n = 90; Experiment 4: n = 107)
completed the same task as in the first session. Thus, rational
responders should revert to their baseline preferences and no
differences between groups should be observed.

However, in an exploratory analysis of the second session in
Experiment 1, we found that the AI training group continued
to reject unfair offers at a higher rate (Fig. 5 A and B). A mixed-
effects model revealed that people in the second session were more
likely to accept higher offer amounts (b = 2.68, SE = 0.12,
P < 0.001). Although there was no main effect of training
condition (b = 0.48, SE = 0.40, P = 0.22), there was an inter-
action with offer amount (b = 0.75, SE = 0.11, P < 0.001),
demonstrating that participants who were previously assigned to
the AI training condition were more sensitive to the offer amount
than those in the control condition. Specifically, participants
who were previously training an AI continued to reject more
unfair offers. There was no main effect for partner type
(b = −0.11, SE = 0.08, P = 0.21) or additional interaction
effects (Ps ≥ 0.37).
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Fig. 5. Results for session 2 for Experiments 1, 2, and 4. All figures show the proportion of accepting an offer based on offer amount (Top row: A, C, E) and by
fairness (Bottom row: B, D, F ) conditioned on partner type and fairness. Error bars indicate SE.

We preregistered this same analysis for the data from the
second session of Experiment 2|| and replicated these results (Fig.
5 C and D). There were no main effects for either partner type
(b = 0.04, SE = 0.13, P = 0.78) or training condition for ei-
ther the AI training for self (b = −0.99, SE = 0.66, P = 0.13)
or AI training for others (b = −1.32, SE = 0.69, P = 0.06)
conditions than the control condition. Participants were sensitive
to the offer amount (b = 1.98, SE = 0.11, P < 0.001), but this
sensitivity was increased for both the AI training for self condition
(b = 0.77, SE = 0.17, P < 0.001) and the AI training for
others condition (b = 0.55, SE = 0.17, P = 0.001). These
groups of participants continued to reject unfair offers at a higher
rate, even when they were informed their behavior would no
longer train AI. There was neither a main effect of condition
(b = 0.33, SE = 0.65, P = 0.61) nor an interaction effect
(b = 0.21, SE = 0.18, P = 0.25) between training condition
and offer amount between AI training conditions. There were no
additional significant interactions (Ps ≥ 0.09).

We preregistered the same analysis for the second session
of Experiment 4** and found mixed results (Fig. 5 E and
F ). Participants were once again sensitive to the offer amount
(b = 1.96, SE = 0.10, P < 0.001). However, the mixed
effect model did not reveal a main effect of either partner type
(b = 0.10, SE = 0.10, P = 0.29) or training condition for
either the AI training for others (b = −1.08, SE = 0.58,
P = 0.065) or AI training for self (b = −0.77, SE = 0.62,
P = 0.21) conditions compared to the control condition.
Interestingly, there was no interaction effect between offer
amount and training effect when comparing the AI training for
others (b = 0.06, SE = 0.13, P = 0.64) or AI training for self
(b = −0.07, SE = 0.14, P = 0.63) to the control condition,
not replicating previous results. Additionally, there was no main

||Preregistration link found here: http://osf.io/f8sp6.
**Preregistration link found here: https://osf.io/fpqr9.

effect of training condition (b = 0.31, SE = 0.60, P = 0.61)
or interaction effect between offer amount and training condition
(b = −0.13, SE = 0.13, P = 0.33) between training
conditions. There were no additional significant interactions
(Ps ≥ 0.27).

In Experiments 1 and 2, participants continue to reject more
unfair offers after AI training, providing strong evidence that
this behavior persists after AI training. Strikingly, this result did
not replicate in Experiment 4. While it is possible that habit
formation requires more salience than we used in this study
(especially in the short experimental paradigms used here), visual
inspection of Fig. 5E, suggests that people previously in the AI
training conditions were more punitive than those in the control
condition for unfair offers. Exploratory follow-up analyses
provided provisional evidence for this conjecture. Specifically,
when conditioning our analyses only on unfair offers, we found
a significant effect of training condition for the AI training for
others condition (b = −1.72, SE = 0.81, P = 0.034) but
not for the AI training self condition (b = −1.00, SE = 0.85,
P = 0.24). However, there was a three-way interaction between
the effect of the training for self, offer amount, and training type,
(b = 0.40, SE = 0.20, P = 0.048). As described in more detail
in SI Appendix, this effect suggests that people in the training for
self-condition only showed persistence of training effects when
interacting with AI (b = 0.92, SE = 0.44, P = 0.034).

These effects indicate that the behavioral changes adopted to
train AI can persist, even after AI training finishes. However,
they also suggest that these effects may be amplified when people
adopt changes in behavioral policy under more salient conditions
(i.e., when a webcam icon emphasizes the idea that their behavior
is directly observed).

Discussion

AI models help us make decisions, but we help AI models by
letting them learn from our behavior. Therefore, AI models
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risk tailoring their recommendations around the human biases
they observe. This paper presents evidence for this claim. In
five experiments, we told participants that their behavior would
be used to train an AI algorithm. Some of them were told
their responses would train AI that they would encounter again
(Experiments 1, 2 and 4), whereas others trained an AI that would
play against other participants (Experiments 2 to 5). Regardless
of who the recipient was, or whether a visual cue enforced the
idea that people were observed during decision-making, people
became less likely to accept unfair offers when their behavior was
used to train AI compared to those in the control conditions.
This effect appeared differently across experiments: as a main
effect (Experiment 4), as an interaction effect with offer amount
(Experiments 1 and 5), or as both (Experiments 2 and 3). Most
importantly, the results from each experiment showed that people
training AI were more punitive for lower offers. Therefore, we can
conclude that people were willing to give up money to train AI
to be fair, even if they would not benefit from the training. These
findings expose a problem for AI models that aim to learn user
preferences: AI algorithms assume that human behavior provides
an unbiased training set (10), but people shift their behavior away
from baseline preferences when given control over training.

Such issues are most likely to occur when AI developers are
unaware that their training data is biased. Specifically, when
behavior exhibited during training differs from that in a natural
setting, AI will learn preferences that do not reflect natural
behavior but, rather, align with their biases (49–51). This is
particularly problematic if people believe AI is making unbiased
recommendations. Thus, AI developers need to consider the
ways in which people can intentionally shift their behavior to
shape their algorithms to their preferences. This information
may help them to invent safeguards that can debias algorithms
during training. It may also be useful to transparently relay this
information to the organizations that plan to use the AI (52),
allowing them to design environments in which training biases
are less likely to arise.

The participants in our studies were motivated to train AI to
be fair, even when they did not benefit from such training. This
indicates that communal motivations can play a significant role
in the training of AI (53). Specifically, if people are concerned
about the needs and welfare of other people using the same AI
system, this may prompt them to act in ways that will make
the AI act more beneficial to those other users (54–57). This
finding prompts an intriguing question: Why do people change
behavior when training AI? It has been argued that preferences for
fairness may reflect a desire to adhere to societal norms instead of
a genuine consideration of others’ well-being (58, 59). However,
participants in our studies never interacted, casting doubt on this
reputational hypothesis. It remains possible, however, that people
forgo rewards from unfair offers to maintain a positive image of
the self (60). Using tools from social psychology, future research
should distinguish between these competing hypotheses.

Regardless of the underlying mechanism, the motivation to
train AI to make more fair offers seems to be positive. However,
it is important to consider that interpretations of fairness vary
greatly between people. For example, subjective estimates of
fairness in the ultimatum game differ between geographic regions
(35), with responders in Asian regions having higher rejection
rates than those in the United States. People may even disagree
on definitions of fairness in AI contexts (5, 61–66). For example,
some people prefer AI systems to strive for equality (i.e., equal
opportunity) whereas others argue that AI systems should aim to
implement equity (allocating resources needed to achieve equal

outcomes). Thus, even with a shared motivation to integrate
fairness into AI, diverse perspectives on what constitutes fairness
may result in conflicting training objectives and AI systems that
are not well tailored for particular populations.

The participants in our studies did not just change their
behavior while it was used for AI training but also endured
this behavioral change beyond the training session. In short,
we invited some of our participants to take part in a follow-
up session (at least two days later) and informed those who
were previously assigned to the AI training condition that their
responses would no longer be used for AI training. Even though
they were no longer training AI, they continued to reject unfair
offers at a higher rate than in the control condition. That is, they
persisted with the behavioral policy they had adopted in the first
session, even when the change in context rendered this strategy
suboptimal. In the animal learning literature, such insensitivity
to changes in the structure of the environment is a hallmark
feature of the formation of habit (30, 67). That is, after initially
engaging in more goal-directed deliberation, choosing between
actions after reasoning through their consequences (68, 69),
repeated sequences of behavior are encoded as habits. These
habitual sequences of behavior are then triggered, irrespective
of their current value, by the stimuli that initially elicited the
response. Our results indicate that deliberately training an AI
algorithm can lead to a similar formation of habits. Moreover,
because habits are triggered by the specific learning contexts in
which they are encoded (70), repeated encounters with the same
AI systems will perpetuate and reinforce habitual behavior. In
short, if humans have control over AI training, then this does not
only cause issues for the AI systems during training but also in
subsequent sessions. In order to better understand its implications
for AI developers, future research should systematically explore
how and when habits form during AI training as well as how they
can be prevented.

However, the strength of this newly acquired behavior fol-
lowing the AI training phase was diminished when participants
were not given the impression that they were being observed.
Specifically, in Experiments 1 and 2, participants were reminded
of AI training by seeing a webcam cue on every trial, whereas
those in Experiment 4 were only reminded through text prompts.
The presence of the webcam icon may have induced self-
awareness in participants (45), prompting them to engage in
more goal-directed deliberation and consequently reinforcing the
adoption of the new behavioral policy (68, 69, 71). Nevertheless,
exploratory analyses of our data suggested that AI training still
contributes to these transfer effects, given that motivation plays
a crucial role in habit formation (72, 73). Future research can
elucidate the influences of AI training and self-awareness created
by the webcam on these transfer effects.

In our first three experiments, a webcam icon reminded
participants that they were in the AI training condition. It is
possible that this image may have caused people to become
more self-aware (45), and therefore to change their behavior
because they were concerned about their social image (74). To
rule out this alternative explanation of our results, we removed
the webcam icon in Experiments 4 and 5. The results from these
experiments demonstrated that people remained motivated to
train AI, even without reinforcing the idea of being observed.
Even though we were able to control for this variable, it should
be noted that AI developers are typically unable to remove the
feeling that users are being watched. Specifically, AI users may
still infer their behavior is being observed even when they are not
explicitly told so, especially when subsequent recommendations
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reflect prior behavior. Therefore, it is likely that our first three
experiments are a better model to understand the consequences
of AI training on human behavior.

Nevertheless, it is likely that humans are sensitive to how AI
algorithms signal that they are learning from human behavior.
To study this question, researchers could adopt the current
framework and vary how AI training is cued. We should note
that while this paper reports two sets of experiments that differ
in the way in which AI training was cued, we are unable
to draw conclusions from a direct comparison between them
because these studies were conducted months apart. This makes
it impossible to ensure that the populations only differed in their
experimental treatment (75). Thus, the current work opens an
avenue for future research systematically exploring the ways in
which AI training can affect human decision-making.

Participants in our experiments responded to offers made by
both humans and AI. This manipulation was mainly included
to lend credence to the idea that AI systems take part in our
behavioral studies, and therefore that it would be useful to train
them for future experiments. However, it also allowed us to test
whether people changed their responses when interacting with AI
compared to other humans. Indeed, several studies (38–40, 76,
77) report that people are more likely to accept unfair offers from
AI proposers. In contrast, we found no difference in acceptance
behavior between partner types. There are several explanations
for this discrepancy. For example, participants may have felt
less interpersonal connection with the human proposers, because
they were displayed as abstract silhouettes. Another possibility is
that our study was conducted entirely online, whereas the other
studies were conducted in person. Finally, our study framed the
AI systems as capable of learning, which may have prompted our
participants to treat them more like their human counterparts.

Of course, several limitations remain. Because we only used
the ultimatum game, it remains unknown whether AI training
effects can be observed in other decision-making contexts. For
example, the ultimatum game involves the notion of morality
(27, 32, 33, 35, 78, 79), but AI recommendations in real life
often occur in nonmoral contexts. It remains unknown how
willing people are to train AI in nonmoral situations. Moreover,
the ultimatum game has a clear definition of fairness in our study
population (27, 32, 33, 35, 78, 79), but many moral situations in
which people rely on AI recommendations do not have an agreed-
upon definition of fairness (61, 63). For example, humans rely
on AI to make serious decisions such as allocating kidneys to
patients (80) and resources to the homeless (81). Our results do
not speak to how people approach the training of AI in such
situations.

We should also note that the stakes in our study were relatively
low (participants earned 5% of the amount they earned in one
of their negotiations). Therefore, it is unclear how participants
would train AI with higher stakes. Research has shown that people
are more likely to accept lower offers when the stakes are higher
(82–84). Thus, it is possible that training effects can only be
observed when the perceived benefits of AI training outweigh
personal gains. This observation brings a host of intriguing
questions to the fore, revolving around whether people are
sensitive to this tradeoff and which cognitive mechanisms they
use to resolve it.

However, in many practical applications of AI training, the
stakes for each individual are low, both in terms of value and
the immediacy of the outcome. On social networking sites, a
poor recommendation from an AI only results in a waste of a
few seconds. These real-life consequences are equal, or perhaps
even lower, to what participants encountered in our task. At the

same time, many low-stakes decisions can collectively lead to
high-stakes outcomes. For example, not accounting for potential
human behavior during AI training can lead to significant social
impacts, such as the echo chamber effect (85). This highlights
the importance of understanding human decision-making in AI
training, even when the individual stakes are low.

In short, because this is the first demonstration that AI training
impacts human behavior, many questions remain. We hope that
they will inspire a program of research that aims to achieve such an
understanding. Researchers may study the effects of AI training in
novel decision-making contexts to study issues of generalizability.
They may also vary the payoffs associated with choices in these
tasks to study the tradeoff between AI training and personal gains.
We believe that the general AI-training methodology introduced
here will provide a valuable experimental tool for this line of
research.

To conclude, we found that people change their behavior
when they are aware it is used to train AI. In the context of
a social decision-making game, we found that people prioritize
fairness when training AI, not just to increase their own reward
but also because of a consideration for the well-being of others.
This behavior change persisted even in subsequent sessions
where no AI training took place. Together, our results suggest
that, when presented with the opportunity, people instill their
preference into AI algorithms. Our work poses a challenge for the
development of AI systems that collaborate with humans since
it is assumed that humans produce unbiased training data (10).
Therefore, developers should consider how humans can exploit
their algorithms and consider ways in which such bias can be
minimized.

Materials and Methods

Participants. Participants were recruited from Prolific for all five experiments.
In Experiment 1, a total of 217 participants (113 female, 3 nonbinary, 1
missing; M = 38.25, SD = 14.15) were initially recruited, with 181
participants returning for the second session (91 female, 3 nonbinary, 1 missing;
M = 38.78, SD = 14.07). Four participants were excluded from the analysis
because they were exposed to both conditions by refreshing the webpage and
were assigned to a different condition than the original one. For Experiment
2, 337 participants (159 female, 10 nonbinary; M = 38.20, SD = 12.81)
were recruited, and 291 participants returned for the second session (132
female, 8 nonbinary; M = 39.21, SD = 13.16). Three participants were
excluded for refreshing the webpage and being exposed to more than one
condition. In Experiment 3, a total of 221 participants (89 female, 1 nonbinary;
M = 41.01, SD = 13.51) were recruited, with three participants excluded
for the same reasons. For experiment 4, 346 participants (175 female, 4
nonbinary, 1 missing; M = 43.17, SD = 25.66) were recruited, with 312
of them returning for the second session (155 female, 4 nonbinary, 1 missing;
M = 43.46, SD = 26.49). One participant was excluded for exposure to
both conditions. In experiment 5, 208 participants (87 female, 2 nonbinary;
M = 43.24, SD = 13.53) were recruited, with 0 participants excluded from
the analysis.

Each session took approximately 6 min, and participants received a median
pay rate of approximately $10 per hour for session 1 and $14 per four for
session 2 (all participants were paid $8.50 per hour before receiving a bonus).
All participants provided informed consent, and the study received approval
from the Washington University in St. Louis Institutional Review Board (IRB).

Experimental Design. At the beginning of the first session of each experiment,
participants were randomly assigned to a condition. For Experiment 1, this was
either the “AI training condition” (n = 110) or the “control condition” (n = 103).
For Experiment 2, this was the “AI training for self” (n = 127), “AI training for
others” (n = 107), or “control condition” (n = 100). For Experiment 3, this was
either the “AI training condition” (n = 117) or “control condition” (n = 101).

PNAS 2024 Vol. 121 No. 33 e2408731121 https://doi.org/10.1073/pnas.2408731121 9 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
W

A
SH

IN
G

T
O

N
 U

N
IV

E
R

SI
T

Y
 S

C
H

O
O

L
 O

F 
M

E
D

IC
IN

E
, B

E
R

N
A

R
D

 B
E

C
K

E
R

 M
E

D
IC

A
L

 L
IB

R
A

R
Y

" 
on

 S
ep

te
m

be
r 

27
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

12
8.

25
2.

48
.1

4.



For Experiment 4, this was either the “AI training for self” (n = 100), “AI training
for others” (n = 129) or “control condition” (n = 116). For Experiment 5,
this was either the “AI training condition” (n = 105) or “control condition”
(n = 103).

Next,participantswereextensively instructedabouttherulesof theultimatum
game and completed two practice trials. Participants in Experiments 1, 2, and
4 were told they would get an opportunity to participate in a follow-up session
within the next few weeks. Next, participants in the AI training conditions were
either informed that their responses would be used to train a separate AI they
would encounter during the follow-up session (Experiment 1 and “AI training
for self” condition in Experiments 2 and 4) or told that they would train an AI
for other participants (Experiment 3, Experiment 5 and “AI training for others”
condition in Experiments 2 and 4). Participants were not told what this training
would encompass.

Next, participants played multiple rounds of the ultimatum game (Fig. 1).
On each round, participants played as the responder and decided whether to
accept or reject a proposer’s offer of how to allocate a $10 sum between both
partners. We manipulated partner type within-subject: Each participant played
against both AI and human participants. To help distinguish between them,
each partner type was associated with a color, either blue or orange, which was
randomly assigned for each participant.

In Experiments 1 to 3, each round started with the display of a fixation cross
(750 ms). Next, a two-second presentation of an icon representing the partner
type (human participant or AI) was displayed. Participants in the AI training
conditions also saw an image of a webcam accompanied by the text “Offer used
to train AI” on this screen. This served as a reminder that an AI would learn
from their responses. Then, participants again saw the opponent icon, but now
accompanied by the offer, which was displayed as a line of text indicating the
proposed split (e.g., “I get $6 and you get $4”). In the AI training condition,
a webcam icon was displayed in the top left corner of the screen as well. After
two seconds, the words “accept” and “reject” appeared on the left and right
sides of the screen, respectively, signaling that participants could make their
choice using the “F” and “J” key on the keyboard. Participants were provided
with unlimited time to make their decision.

For Experiments 4 and 5, participants completed the same task except with
one critical change (Fig. 3). Those in the AI training conditions did not see a
webcam to remind them of AI training. Instead, after participants were informed
of their partner type (with now no reminder of AI training), they saw an additional
screen that said “Offer used to train AI.” They saw this screen for 2 s. Participants
also saw this text when asked to make a decision.

Participants completed 24 rounds of the ultimatum game, playing 12 rounds
with each partner type. The offer amounts ranged from $1 to $6 and were
presented in a random order. They were balanced across partner types for each
participant, ensuring that all participants saw each offer two times for each
partner type. For the AI partner trials, these offer amounts were programmed to
ensure that the offers were the same between conditions. For human partner
trials, we recruited enough participants from various studies to ensure that we
could balance offers between training conditions using the same amounts. Offer
amounts $1 to $3 were considered to be unfair, while offers $4 to $6 were
considered to be fair, consistent with previous literature (38).

For all sessions, each offer amount occurred with equal frequencies, except
for in the second sessions of Experiments 2 and 4. Here, for trials where the
AI was the partner, we used an update rule on this probability distribution
with a learning rate of 0.5 to incorporate the responses of those assigned to
an AI training condition. Specifically, participants in the control group played
against an AI that was trained by those in the AI training others condition, while
participants in both AI training conditions played against an AI that participants
in the AI training self condition trained.

To incentivize choice behavior, participants were informed that one trial would
be randomly selected and resolved at the end of each experiment. Participants
received a bonus of 5% of the amount they earned from the trial selected in
each first session. This bonus was increased to 15% for all second sessions to
encourage them to return.

We used the participants’ responses to pay the proposers who were recruited
from various studies. Specifically, the proposers were informed that either a
human participant or AI would respond to one of their proposals but were not

informed which offer. If a human participant needed to respond to their offer,
we randomly selected one response that corresponded to their offer amount
and paid the proposer accordingly. If the AI needed to respond to their offer, we
calculated the acceptance rates for each offer amount and used these acceptance
rates to determine the participant’s bonus.

For Experiments 1, 2 and 4, after completing session 1, participants were
invited a few days later to complete session 2 (Experiment 1: AI training condition
n = 95, control n = 84; Experiment 2: AI training for others condition n = 88,
AI training for self condition n = 110, control n = 90; Experiment 4: AI training
for others condition n = 112, AI training for self condition n = 92, control
n = 107), and they completed the same task as before with a few modifications.
Participants in the AI training conditions were informed their responses would
no longer train AI. Therefore, they did not see a webcam (Experiments 1 and 2)
or any text to remind them of AI training on each trial and completed the same
task as those in the control group (Fig. 1B). Additionally, we changed the colors
assigned to partner type to yellow and purple to avoid confusion across sessions.
To encourage retention rates, we allotted 5 d to complete the experiment.

After completing the experiment, participants were asked to describe any
strategies they developed and whether they knew what the ultimatum game
was. If participants indicated they knew the ultimatum game, they were asked
to describe the optimal strategy. These questions were not used in the analysis.

Analysis. The goal of our analyses was to determine whether participants’
probability of accepting each offer was dependent on the offer amount, partner
type, and (most crucially) the training condition. We analyzed data for each
session and experiment separately.

For each session, we employed a logistic mixed-effects model to assess the
factors that predict participants’ acceptance of offers, including offer amounts,
partner type, training condition, and their interactions. These models were
estimated in R using lmerTest package,†† and the following Generalized Linear
Model equation:

accept ∼ partner ∗ offer ∗ training condition + (1|participant)

Here, our dependent variable “accept” is binary (1 for acceptance, 0 for
rejection). Independent variables include “partner” (human or AI), “offer”
(integers 1 to 6 centered around 0), and “training condition” (control or AI
training). We employed “participant” as a random intercept to account for
individual variability. We report the unstandardized estimates (b) along with
their SE.

Additionally, for session 1 of five three Experiments, we used R and JASP (86)
to conduct a three-way within-between ANOVA to examine how the fairness of
offers (categorized as fair: $4 to $6, and unfair: $1 to $3), partner type, training
condition, and their interactions influenced the likelihood of accepting offers.
Here, in contrast to the mixed-effects model specified above, we first computed
subject-wise averages for each of the four combinations of fairness and partner
type.Thesemodelsallowedustomorepreciselyexaminehowfairness influenced
offer acceptance. Any significant interactions were interpreted using post hoc t
tests and ANOVAs.

Data, Materials, and Software Availability. Anonymized data have been
deposited in The consequences of AI training on human decision making (https://
osf.io/b7w5c/). Previously published data were used for this work (Session 1
of Experiments 1 and 2 published in the Proceedings of the Eleventh AAAI
Conference on Human Computation and Crowdsourcing on November 3, 2023
https://doi.org/10.1609/hcomp.v11i1.27556).
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††We used the “nlbinwrap” optimizer because it lets all models converge (except for
the exploratory mixed effects models in experiment 4 session 2 since the “nlbinwrap”
optimizer did not converge, so we used the “bobyqa” optimizer.) but the “bobyqa”
optimizer produces qualitatively equal results for all experiments (but does not converge
for Experiment 3).
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