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Abstract
Feature attribution explains machine decisions by
quantifying each feature’s contribution. While
numerous approaches rely on exact gradient mea-
surements, recent work has adopted gradient es-
timation to derive explanatory information under
query-level access, a restrictive yet more practi-
cal accessibility assumption known as the black-
box setting. Following this direction, this pa-
per introduces GEFA (Gradient-estimation-based
Explanation For All), a general feature attribution
framework leveraging proxy gradient estimation.
Unlike the previous attempt that focused on ex-
plaining image classifiers, the proposed explainer
derives feature attributions in a proxy space, mak-
ing it generally applicable to arbitrary black-box
models, regardless of input type. In addition to
its close relationship with Integrated Gradients,
our approach, a path method built upon estimated
gradients, surprisingly produces unbiased esti-
mates of Shapley Values. Compared to traditional
sampling-based Shapley Value estimators, GEFA
avoids potential information waste sourced from
computing marginal contributions, thereby im-
proving explanation quality, as demonstrated in
quantitative evaluations across various settings.

1. Introduction
With the explosive growth of deep learning models, ex-

plainability has become an increasingly important research
topic. While data-driven models excel in performance,
their opaque nature, originating from the implicit learn-
ing processes, raises concerns and risks, particularly when
deployed in critical domains such as medical diagnosis,
finance, and autonomous driving. The demand for trans-
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parency has seen the development of various techniques,
including feature attribution, which is the focus of this work.

Current attempts to determine feature attribution typically
fall into two categories depending on the model accessi-
bility assumption: the white-box and black-box methods.
White-box approaches assume full access to a model, de-
riving explanations by investigating in detail the model’s
internal workings through, for example, analysis of gradi-
ents (Simonyan et al., 2014; Sundararajan et al., 2017) or
supervision of information flow (Samek et al., 2021). Albeit
beneficial to explanation procedures, the full accessibility
assumption limits the applicability of white-box approaches
under practical settings due to safety and security concerns.
Models deployed for public use are usually wrapped by
limited APIs and accessible only via queries. On the other
hand, the black-box explainers, following the assumption
of query-level access, determine feature attributions by an-
alyzing the correlation between input features and model
outcomes (Ribeiro et al., 2016). As a trade-off for the loos-
ened accessibility assumption, black-box explanations tend
to be less precise, especially when explaining models op-
erating in high-dimension feature spaces. This is because
inferring explanatory information indirectly from queries is
computationally expensive, with the cost positively corre-
lated to the dimensionality of the feature space.

Cai & Wunder (2024) sought to combine the strengths of
both categories and proposed GEEX. Focusing on explain-
ing image classifiers, GEEX delivers gradient-like explana-
tions under a black-box setting based on estimated gradients,
achieving a performance that matches white-box explain-
ers. However, the method is limited to models operating
on continuous input features and struggles with discrete
or categorical features, such as text. This limitation arises
from GEEX’s reliance on path integrals, which are not well-
defined in discrete feature spaces. Although applying GEEX
at the embedding layer offers a plausible workaround, it
arguably violates the black-box assumption by accessing
internal model details during the transformation from the
original feature space to an embedding space.

To bridge the gap in applicability to models operating on
discrete data, this paper extends gradient-estimation-based
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explanations and introduces GEFA2 (Gradient-estimation-
based Explanation For All), a general feature attribution
framework built upon carefully designed proxy variables.
These proxy variables facilitate the implementation of gra-
dient estimation and path integral approximation, regard-
less of input formats. The proposed method comes with
strong theoretical guarantees. First, GEFA is an unbiased
calculator of Shapley Values (Shapley, 1953), demonstrated
through rigorous mathematical proof. Compared to previous
attempts in computing Shapley Values, GEFA reduces poten-
tial information waste in sampling-based estimations, which
compute marginal contributions (Mitchell et al., 2022), and
avoids calculations of factorials in the kernel method (Lund-
berg & Lee, 2017) for determining sample weights. Second,
we show that our black-box explainer differs from Inte-
grated Gradients (IG), a white-box approach by (Sundarara-
jan et al., 2017), only in the path choice. It is proved that
the two approaches become equivalent when their paths are
aligned, emphasizing the connection between the gradient-
estimation-based approach and actual gradients. Finally,
we design a simple control variate that is mathematically
proven to improve explanation quality under a simple and
realistic assumption. Its effectiveness is validated through
quantitative experiments across various settings.

2. Related Work
Gradients are widely used to allocate feature attributions
in a white-box setting as they reveal a model’s sensitivity
to changes in feature values. In the early development of
explainability, Simonyan et al. (2014) and Smilkov et al.
(2017) interpreted gradients directly as explanations. Their
methods retrieve explanatory information by tracing partial
derivatives of a decision function with respect to its input
features. Although adopting vanilla gradients is a reasonable
starting point, gradients by themselves reflect local sensitiv-
ity and do not truthfully represent contributions of feature
presence without a proper definition of feature absence.

IG (Sundararajan et al., 2017) addresses the limitation of
vanilla gradients with a baseline point modeling feature
absence. The approach integrates gradients over a straight-
line path connecting the baseline and the explaining target,
thereby capturing the overall impact of feature presence.
Following work by Sturmfels et al. (2020) explored the
impact of baseline choice and suggested adopting a dis-
tribution, rather than a deterministic instance, as the base-
line (Erion et al., 2021). Other extensions of IG include
decomposing noise directions from the path integral (Yang
et al., 2023), refining explanations by filtering out high
frequencies (Muzellec et al., 2024), and investigating fea-
ture interactions through the integration of second-order
derivatives (Janizek et al., 2021). Parallel to these efforts in

2Code is available at: https://github.com/caiy0220/GEFA

improving the explanation procedure, Decker et al. (2024)
demonstrated that a proper linear composition of expla-
nations from various approaches yields provable improve-
ments. The family of propagation-based methods (Mon-
tavon, 2019) represents a significant alternative white-box
solution, which designs layer-wise back-propagation rules
that explicitly utilize model architecture information for the
retrieval of explanatory information. As this paper focuses
primarily on gradient-based and gradient-like explanations,
we refer interested readers to the survey by (Samek et al.,
2021) for further details on relevance propagation.

Unlike white-box methods, which have direct access to
model details, black-box explainers determine feature at-
tributions by collecting and analyzing observations. The
idea was proposed by LIME (Ribeiro et al., 2016), which
generates queries by altering feature values of the origi-
nal input and collects model responses to the perturbed
instances. By solving a linear regression problem with the
observed input-output pairs, LIME derives regressor coef-
ficients as feature attributions. Subsequently, Lundberg &
Lee (2017) proposed KernelSHAP, a kernel method that
approximates Shapley Values using weighted linear regres-
sion. Additionally, Lundberg & Lee (2017) formalized the
relationship between the feature attribution problem and
cooperative game theory, strengthening the importance of
Shapley Values in explainability.

Under the established framework of black-box approaches,
succeeding works have aimed at improving query efficiency
and explanation quality – long-standing challenges for black-
box explainers. For example, Petsiuk et al. (2018) alle-
viated concerns about computational expenses by softly
grouping input features via mask resizing. Dhurandhar
et al. (2022) extended LIME with an adaptive neighborhood
sampling scheme that constrains sampling to locally lin-
ear regions around the explicand. Similarly, Shrotri et al.
(2022) and Dhurandhar et al. (2024) improved sampling
efficiency by narrowing the search space. Parallel to the
refinement of the sampling process, Frye et al. (2020) and
Heskes et al. (2020) enhanced explanation quality by incor-
porating prior causal knowledge into the SHAP framework.
Okhrati & Lipani (2021) leveraged the multilinear exten-
sion method from game theory literature (Owen, 1972) to
develop a sampling-based explainer with reduced variance.

More recently, Cai & Wunder (2024) proposed GEEX, a
black-box method imitating IG by integrating estimated gra-
dients. While GEEX achieves white-box-level performance
with only query-level access, its applicability is limited to
continuous feature spaces due to the design of its search
distribution. This paper extends gradient-estimation-based
explanations into a general-purpose framework that is inde-
pendent of specific input formats, broadening its applicabil-
ity to a wider range of machine learning models.
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3. Preliminary
3.1. Feature Attribution

Given a model function f(·), a target input (the expli-
cand) x = (x1, x2, . . . , xp), and a predefined baseline
x̊ = (̊x1, x̊2, . . . , x̊p), an attribution method seeks a vec-
tor ξ ∈ Rp that decomposes the total contribution to an
inquired decision into feature attributions. Formally, this is
represented as:

Af : (x, x̊) ↪→ (ξ1, ξ2, . . . , ξp)

Throughout the paper, we mark vectors in bold and denote
scalars with plain symbols.

As a result of allocating feature contributions, the attribution
scores ξi quantify the contribution of each feature xi to
the model outcome f(x). These scores should sum to the
difference between the model outcome with all features
present and the outcome with full feature absence, which is
modeled by the baseline:

p∑
i=0

ξi = f(x)− f (̊x) (1)

Approaches complying with (1) are said to satisfy the prop-
erty of Completeness – a fundamental axiom of feature
attribution methods. Together with completeness, further
properties are desired for feature attribution methods, which
uphold their practical utility:

• Sensitivity: A feature should receive non-zero attribu-
tion if the difference between its value in the explicand
and the baseline affects model outcomes.

• Insensitivity: The attribution should be zero for any fea-
ture on which the model is functionally independent.

• Linearity: The explanation for a linear composition of
two functions should equal the weighted sum of the
separate explanations for each function.

• Symmetry: If a function is symmetric in two variables
xi and xj , the attributions to the two features should
be identical when the explicand-baseline pair satisfies
xi = xj and x̊i = x̊j .

3.2. Gradient Estimation under a Black-box Setting

In the context of feature attribution, a black box setting
refers to query-level access, meaning that the model to be
explained can only be accessed via its input and output inter-
faces. Indeed, lacking knowledge about the model’s internal
details prohibits the application of attribution methods that
depend on exact measurements of gradients. However, gra-
dients, which facilitate the derivation of feature attributions,

can still be estimated by evaluating model inputs and out-
puts. Defining a search distribution π(·|x) parameterized
by x, the expected model outcome over π(·|x) is given by:

J(x) := Eπ(z|x)[f(z)] =

∫
f(z)π(z|x) dz (2)

where z indicates samples drawn from the search distribu-
tion. The gradient of the expected model outcome with
respect to x is:

∇xJ(x) = ∇x

∫
f(z)π(z|x) dz (3)

The above formula can be further simplified using the log-
likelihood trick, under the assumption that both f(·) and
π(·|x) are continuously differentiable (Mohamed et al.,
2020):

∇xJ(x) =

∫
[f(z) · ∇x logπ(z|x)]π(z|x) dz

= Eπ(z|x)[f(z) · ∇x logπ(z|x)] (4)

The integral can be empirically approximated using a Monte
Carlo estimator with a set of queries Z = {z|z ∼ π(·|x)},
leading to the typical score-function gradient estimator:

ηx(x) := ∇xJ(x) ≈
1

|Z|
∑
z∈Z

f(z) · ∇x logπ(z|x)

4. Gradient-Estimation-based Explanation
4.1. Gradient Estimation with Proxy Variables

Given the diverse nature of potential input features, sam-
pling instances by perturbing feature values is not always
straightforward. Instead of altering feature values by apply-
ing noises, we define the search distribution through a set of
proxy variables α = (α1, α2, . . . , αp). The proxy vector α
shares the same size as the explicand, where each element
αi configures the presence probability of the corresponding
explicand feature xi. Feature presence and absence are mod-
eled by the feature values of the explicand and the baseline,
respectively. A point x(α) in the continuous proxy space
α ∈ [0, 1]

p describes a distribution, where each sample
z ∼ x(α) is given by:

zi =

{
xi if ϵi = 1

x̊i if ϵi = 0
∀i ∈ {1, 2, . . . , p}

where ϵ = (ϵ1, ϵ2, . . . , ϵp) denotes a binary mask sampled
from a multivariate Bernoulli distribution parameterized by
α, i.e. ϵ ∼ Bernoulli(α). For ease of notation, we denote
the feature selection process with a feature-wise combina-
tion operator ⊕. The operator indicates that a feature zi in
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the sample z takes the value of xi when the corresponding
mask component ϵi = 1, otherwise set to x̊i:

z = ϵ x⊕ ϵ̄ x̊, ϵ ∼ Bernoulli(α)

The vector ϵ̄ = 1p − ϵ is the complement of ϵ, and the oper-
ator indicates the element-wise product. A feature value
is selected if the corresponding mask component equals one;
otherwise, it remains undefined until assigned through the
⊕ operator. Please note that the feature selection operator
is independent of feature types and is generally applicable
as long as the explicand-baseline pair is specified. Given an
explicand-baseline pair, the sampling of a query z depends
fully on the binary mask ϵ, whose probability mass function
is:

π(z|x(α)) = π(ϵ|α) = αϵ · (1p −α)
ϵ̄ (5)

Here, αϵ is a shorthand for (α1
ϵ1 , α2

ϵ2 , . . . , αp
ϵp). Substi-

tuting the distribution given by (5) into the search distribu-
tion π in (4) yields an estimator for the gradient of f(x(α))
w.r.t. the proxy variables α:

ηα(x(α)) = Eπ(z|x(α))[f(z) · ∇α logπ(z|x(α))]

= Eπ(ϵ|α)[f(ϵ x⊕ ϵ̄ x̊) · ∇α logπ(ϵ|α)]

= Eπ(ϵ|α)[f(ϵ x⊕ ϵ̄ x̊) · ( ϵ
α

− ϵ̄

1p −α
)]

(6)

When referring to the logarithm of the probability vector
π, the operation is applied element-wise to each vector
component. Given that α represents the probabilities of
feature presence, the output of ηα(x(α)) can be interpreted
as the sensitivity of model outcomes to changes in feature
presence.

4.2. Derivation of GEFA

In addition to promoting the derivation of the gradient es-
timator, the introduction of proxy variables facilitates the
definition of path integrals for inputs with discrete features
(e.g. text) when deriving feature attribution. Formally, let
α(·) = (α1, . . . , αp) : [0, 1] → [0, 1]

p be a path in the
proxy space, transitioning from the baseline x(α(0)) =
x(0p) = x̊ to the explicand x(α(1)) = x(1p) = x, fea-
ture attributions are computed by integrating proxy gradient
estimators along the path α(γ) for γ ∈ [0, 1]. When tak-
ing the straightline path α(γ) = γ · 1p, which is the only
symmetry-preserving path (Sundararajan et al., 2017), the
GEFA explainer is derived as follows:

ξ :=

∫ 1

0

ηα(x(γ · 1p)) dγ

=

∫ 1

0

Eπ(ϵ|γ·1p)[f(ϵ x⊕ ϵ̄ x̊) · ( ϵ
γ
− ϵ̄

1− γ
)] dγ

(7)

In practice, (7) can be approximated with a Monte-Carlo
estimator, given a budget of n queries:

ξ ≈ 1

n

∑
γ∼U[0,1]

∑
π(ϵ|γ·1)

f(ϵ x⊕ ϵ̄ x̊) · ( ϵ
γ
− ϵ̄

1− γ
) (8)

Theorem 1. GEFA satisfies the properties of Completeness,
Sensitivity, Insensitivity, Linearity, and Symmetry.

Appendix A.2 elaborates on these properties and the cor-
responding proofs, derived from the gradient estimation
perspective following (7). Beyond the proven properties,
we surprisingly find that GEFA, an approach derived from a
proxy gradient estimator, offers an alternative for computing
Shapley Values, as stated in Theorem 2.

Theorem 2. Feature attributions determined by GEFA are
exactly Shapley Values.

The claim in Theorem 2 is mathematically rigorously
proved, please refer to Appendix A.1 for further details.
Being an unbiased calculator of Shapley Values also ex-
plains the many properties held by GEFA.

While also producing an unbiased approximation of Shapley
Values, GEFA differs from other sampling-based attempts
by simplifying the sampling process. Specifically, the com-
putation of (8) does not rely on marginal contributions, thus
avoiding potential information waste during approximation.
Let zS denote a query with S being the set of indices corre-
sponding to the present features. In GEFA, each query zS

contributes to the attribution estimates of every feature xi

for i ∈ {1, 2, . . . , p}, regardless of the existence of paired
samples zS∪{i} (when i /∈ S) or zS\{i} (when i ∈ S) that
are typically required for computing marginal contributions.
Algorithm 1 summarizes the overall explanation scheme
derived from (8).

Algorithm 1 GEFA Explanation Scheme

Input: x: the explicand; x̊: the baseline;
Output: ξ: feature attribution scores;

1: ξ = 0p # Estimator initialization
2: while Query budget available do
3: γ ∼ U[0,1] # Proxy path point sampling
4: ϵ ∼ π(·|γ · 1p) # Mask sampling
5: z = ϵ x⊕ ϵ̄ x̊ # Query construction
6: ξ += 1

n · f(z) · ( ϵγ − ϵ̄
1−γ ) # Observation collection

7: end while
8: return ξ

4.3. Variance Reduction

Deriving the explainer from a score-function gradient es-
timator allows the application of variance reduction tech-
niques in the gradient estimation literature. Specifically,
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we construct a control variate to reduce estimation vari-
ance under the assumption that target model outcomes are
correlated with the number of present features, denoted by
∥ϵ∥1 =

∑p
i=1 ϵi. Assumption 3 formally states the condi-

tion required for the validity of the designed control variate.
Assumption 3. For any explicand-baseline pair that sat-
isfies f(x) ̸= f (̊x), the correlation between the number
of present features and the corresponding model outcomes
must be non-zero.

In practice, we argue that the above assumption generally
holds for any properly trained model that bases its predic-
tions on evidence observed in its inputs. A higher ratio
of presented features increases the likelihood of including
prediction-relevant components, which steers the model’s
predictions from f (̊x) toward f(x). Therefore, a non-zero
correlation is to be expected. Based on Assumption 3, the
control variate is constructed as a function of ∥ϵ∥1:

h(∥ϵ∥1) =

{
0 if ∥ϵ∥1 = 0, p

∥ϵ∥1/p− 0.5 else
(9)

Adding the control variate, weighted by a coefficient β, to
the target function gives:

f̃(ϵ x⊕ ϵ̄ x̊) = f(ϵ x⊕ ϵ̄ x̊)− β · h(∥ϵ∥1) (10)

Replacing f(·) in (7) accordingly with the updated f̃(·)
yields the variant ˜GEFA:

ξ̃ =

∫ 1

0

Eπ(ϵ|γ·1p)[f̃(ϵ x⊕ ϵ̄ x̊)·( ϵ
γ
− ϵ̄

1− γ
)] dγ (11)

Theorem 4. The unbiasedness of ξ̃ remains intact after the
introduction of the control variate h(·).

Appendix A.3 provides the proof of Theorem 4, along with
the derivation and further details of h(·). The variance reduc-
tion effect is optimized when the weighting coefficient is set
to β∗ = Cov(f, h)/Var(h), as shown by Appendix A.3.2.
To compute β∗, the variance of the control variate can be
derived in closed form, and the covariance, though not ex-
plicitly given, can be empirically estimated with existing
observations used for attribution computation (Mohamed
et al., 2020). The optimal weighting coefficient also ensures
that the control variate has no negative effect even in the
worst case where Assumption 3 is violated, as the added
term h(·) will be eliminated by the zeroness of β∗, which
results from the zero correlation Cov(f, h) = 0.

4.4. Relation to Integrated Gradients

Since the proposed method is built upon estimated gradients,
this section further explores its relationship to IG3, which

3By considering IG, we omit the practical difficulty that dis-
crete features are usually not differentiable in their original forms,
thus requiring additional pre-/post-processing steps.

utilizes actual gradients. The equivalence between GEFA
and IG does not hold when both take a straightline path, as
GEFA’s path is constructed in the proxy space, which differs
from the original feature space. However, their relationship
becomes clearer when both explainers follow a monotonic
path along the edges of their respective spaces. Along an
edge path, integration moves step-by-step from one vertex
zS in the feature/proxy space to an adjacent vertex zS∪{i}
that differs in only one feature.

Theorem 5. GEFA and IG are equivalent when taking the
same edge path. Averaging their results over all p! unique
edge paths converges to the outcome of GEFA following the
straightline path in the proxy space.

It can be easily shown that, when following the same per-
mutation order, GEFA and IG both compute the marginal
contribution of a feature xi, namely f(zS) − f(zS∪{i}),
conditioned on a set of present features {xj |j ∈ S}. Given
the fact that GEFA is an unbiased estimator of Shapley Val-
ues, concluding Theorem 5 is not surprising – averaging
marginal contributions is the typical solution for computing
Shapley Values. Please refer to Appendix A.4 for the de-
tailed proof. The close relationship between IG and Shapley
Values is consistent with previous claims by Sundararajan
& Najmi (2020). Furthermore, Theorem 5 motivates the
choice of the straightline path along the diagonal of the
proxy space, converting the problem of averaging estimates
over numerous edge paths to estimating attributions on one
specific path.

5. Experiments
5.1. Experimental Setting

To show GEFA’s applicability and effectiveness across vari-
ous scenarios, we evaluate its performance on representative
tasks involving discrete and continuous features: text and
image classification.

Dataset: Three datasets are adopted for text classification
tasks: Amazon Review Polarity (McAuley & Leskovec,
2013), STS-2, and QNLI (Wang et al., 2019). The image
classification task is set up with ImageNet (Russakovsky
et al., 2015), whose high-dimensional input feature space
poses challenges to black-box explainers that derive feature
attributions through queries.

Classifier: We fine-tune a pretrained version of BERT on
the Amazon dataset and use Llama3.2-3B-Instruct as a zero-
shot learner for STS-2 and QNLI. Llama3.2 is configured as
a classifier through prompt engineering, enabling the focus
on the standard feature attribution setting for classification
tasks. For ImageNet, the pretrained InceptionV3 and Vi-
sion Transformer (ViT) models are adopted without further
fine-tuning. The selected models represent a variety of ar-
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chitectures and scales, demonstrating that the explanation
quality of the proposed method is independent of specific
model choices. Additional details about the tested models,
including the prompts used, can be found in Appendix B.

Evaluation via manipulation: Despite explainability being a
widely studied topic, there is still no consensus for quanti-
tative evaluations of explanation quality due to the lack of
ground truth explanations. Adapting to the practical diffi-
culty, evaluation via deletion (Samek et al., 2016) quantifies
an explainer’s performance indirectly by assessing the ef-
fectiveness of feature removal guided by explanations. Fol-
lowing the intuition that removing relevant features should
induce significant changes in prediction results, the eval-
uation scheme repeatedly removes features in descending
order according to their attribution scores. The area over
the perturbation curve (AOPC), drawn by the sequence of
prediction outcomes after feature removal, quantifies expla-
nation quality. A larger area indicates a more informative
explanation that amplifies the impact of the deletion process.
Formally, let x(k) denote a manipulated version of the ex-
plicand with k features removed, the normalized AOPC is
computed by:

nAOPC =
1

p

p∑
k=1

(1− f(x(k))

f(x)
)

When choosing the deletion-based evaluation scheme, we
acknowledged concerns about its validity, since the recur-
sive deletion process may shift the manipulated explicand
away from the target data manifold, potentially introduc-
ing an additional source of prediction change (Hooker et al.,
2019). To address this issue, Appendix C provides a detailed
discussion on the validity of the adopted evaluation scheme,
supported by empirical results demonstrating its alignment
with the alternative retraining scheme (Hooker et al., 2019)
– a computationally expensive evaluation approach designed
to mitigate the out-of-distribution concern.

Competitors: We consider several feature attribution meth-
ods closely related to the proposed method. The competitors
include two gradient-based approaches assuming white-box
access: VG (Vanilla Gradient) and IG (Integrated Gradient);
and three black-box explainers: KSHAP (KernelSHAP),
PSHAP (PartitionSHAP), and GEEX (Gradient-Estimation-
based Explanation). Appendix B.3 details these competitors
and their implementations. The selected competitors are
evaluated following the aforementioned evaluation scheme
and compared to the two variants of the proposed methods:
GEFA and ˜GEFA, representing the versions without and
with the control variate, respectively. In addition to the
listed explainers, random feature removal (abbreviated as
Random) is included as a baseline competitor. It removes
features randomly, simulating the absence of explanatory
information. Any explainer delivering valid explanations
should achieve a higher nAOPC score than random removal.

5.2. Explaining Text Classifiers

When applying feature attribution methods to text classi-
fiers, black-box approaches like GEFA offer greater flex-
ibility in representing feature absence, as they construct
synthetic instances in the original text space for querying.
Unlike models for other tasks, text classifiers typically ac-
cept variable-length inputs, simplifying the definition of
absence. Therefore, we adopt the empty token as the base-
line for the black-box explainers. As such, feature absence
is explicitly represented by removing the corresponding fea-
ture, rather than replacing its value with some manually
defined baseline value. In contrast, white-box approaches
relying on back-propagation stick to the compromised defi-
nition of feature absence – replacing features with default
values. This limitation arises because exact gradient mea-
surement via back-propagation requires placeholders in the
input for the propagation process. Since text sequences are
non-differentiable, the baseline value must be defined in
the embedding space. Lacking precise knowledge about
the embedding manifold, we empirically choose the zero
embedding vector to represent feature absence for VG and
IG. Embedding-level attributions are aggregated for each
token to produce the final explanations.

Table 1 presents the nAOPC scores of the competitors tested
across various text classification settings. Each row in the
table corresponds to a test case specified by the dataset and
the classifier. For all test cases, the query budget for the
black-box explainers is 500, given the relatively smaller fea-
ture space; the interpolation step for IG is set to 50. Please
note that GEEX is excluded from this part of the evaluation
due to its incompatibility with models operating on discrete
feature space, as previously discussed in Section 1.

Notably, the explanations by VG barely deliver any valid in-
formation as evidenced by its performance, which matches
the level of random removal across all three tested settings.
This observation suggests that directly interpreting gradients
as explanations is inappropriate, since the raw gradient itself
merely reveals a model’s local sensitivity to a feature, which
does not necessarily associate with the feature’s contribu-
tion to a prediction. The qualitative example in Figure 1
showcases the failure of VG to identify relevant features, in
contrast to IG and ˜GEFA. While disagreements in attribu-
tions exist between IG and ˜GEFA, their explanations agree
on the primary evidence supporting a positive prediction.
VG produces a contradictory result by identifying ‘pain’ as a
positively contributing feature and assigning importance to
a stop word ‘that’ as evidence in sentiment analysis, which
appears less reasonable. Among the group of black-box
explainers, ˜GEFA achieves the best performance over other
sampling-based Shapley Value estimators. We attribute the
improvement to the mitigation of information waste during
estimation and the variance reduction through the designed
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Table 1: The nAOPCs reported on text classification tasks, higher is better.

Dataset Model VG IG KSHAP PSHAP GEFA ˜GEFA Random

Amazon BERT 0.1823 0.6677 0.6014 0.6592 0.7120 0.7366 0.1908
SST-2 Llama3.2-3B 0.2518 0.3664 0.5386 0.5122 0.5460 0.5706 0.2472
QNLI Llama3.2-3B 0.2411 0.2985 0.4106 0.4280 0.4472 0.4740 0.2271

∗The overall best performances are in bold and the highest scores among black-box explainers are underlined.

(a) VG (b) IG (c) GEFA

Figure 1: Feature attributions for BERT derived from three selected explainers. The results are visualized by attribution
maps, where blue and red background colors indicate contributions to positive and negative sentiments, respectively, with
color intensity reflecting the magnitude of the attribution scores.

control variate. The comparison between the two GEFA
variants further highlights the effectiveness of the control
variate, whose design follows a simple intuition.

Furthermore, despite guaranteeing limited access, ˜GEFA
outperforms the gradient-based explainers across all set-
tings, with a pronounced edge in the two complicated test
cases established on Llama3.2. While the higher figures
indeed emphasize the effectiveness of the proposed method,
these results do not simply suggest that ˜GEFA is the bet-
ter option for explaining text models, particularly given
the overall advantage of the black-box approaches over the
white-box explainers. Instead, we interpret the performance
difference as a consequence of the distinct absence repre-
sentations. For the gradient-based approaches, selecting a
proper baseline is particularly challenging in the embedding
space, which is high-dimensional and often incomprehen-
sible to humans. These methods are constrained to adopt
the compromised absence definition in the embedding space
due to their inherent explanation mechanisms, whereas the
query-based approaches can conveniently take the natural
absence definition as discussed before. Although not contra-
dicting the effectiveness of white-box solutions, the practical
difficulty of baseline selection reflected by the observations
should be considered a non-trivial factor when deciding
tools for text model explainability.

5.3. Explaining Image Classifiers

We perform the same evaluation with image classifiers to
assess the quality of explanations derived from proxy gra-
dient estimators in continuous feature spaces. The query
budget of the black-box approaches is increased to 5000
due to the considerably larger input feature spaces, which
are 299 × 299 and 224 × 224 for InceptionV3 and ViT,

respectively. KSHAP is excluded from this evaluation be-
cause solving the linear regression requires a query budget at
least matching the dimensionality of the input feature space,
which is impractical for models with high-dimensional in-
puts. Since image classifiers cannot process incomplete
inputs, feature absence in this context is represented by re-
placing features with a baseline value. In accordance with
the suggestion by Sturmfels et al. (2020), we use a blurred
version of the explicand as the baseline.

As shown in Table 2, the performance and relative ranking
of the competitors are consistent with the observations and
analysis from the previous experiment. With the feature
absence definition aligned, IG guides the most effective
deletion process. Closely following the best-performing
white-box approach, ˜GEFA retains competitive performance
in the high-dimensional settings. It is noteworthy that, when
explaining the image classifiers, the control variate yields
larger performance improvements compared to the text set-
tings. This is attributed to the stronger covariances be-
tween the control variate and the decision function (see
Appendix D.3 for more details). In image classification,
each feature (a pixel) contributes minimally to the overall
prediction and typically carries less semantic weight, in con-
trast to features in sentiment analysis. Contextual dependen-
cies on specific tokens (e.g. negation or irony) in sentiment
analysis partially undermine the validity of Assumption 3.
With the variance of the control variate remaining constant,
the increased amplitude of the covariance between f(·) and
h(·) contributes positively to the variance reduction effect,
as detailed in Appendix A.3, thus enhancing the overall
quality of explanations.

Additionally, the comparison between the proposed ap-
proach and GEEX, the other gradient-estimation-based
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Table 2: The nAOPCs reported on InceptionV3 and ViT for ImageNet, higher is better.

Dataset Model VG IG PSHAP GEEX GEFA ˜GEFA Random

ImageNet InceptionV3 0.4570 0.8805 0.7753 0.7952 0.8352 0.8747 0.4003
ImageNet ViT 0.3280 0.8571 0.6579 0.7539 0.7638 0.8096 0.3310

Attribution map for "Dog"

Explicand GEFA GEEX GEFA GEEX

Attribution map for "Cat"

Attribution map for "Rooster"Attribution map for "Hen"

Figure 2: Feature attributions for InceptionV3 illustrating the evidence supporting predictions for specific classes. Red
pixels indicate support for the prediction of the target class, whereas blue pixels oppose it. Color intensity indicates the
magnitude of attributions.

method, is worth mentioning. Binarized feature value sam-
pling by GEFA induces more significant prediction changes
than the small Gaussian noise perturbations used by GEEX,
facilitating more effective gradient estimation. In the ex-
periments, we find that explanations by GEEX are more
sensitive to low-level features that are generally informative,
such as object contours, but they struggle to differentiate
which specific class those features contribute to. Examples
listed in Figure 2 demonstrate that ˜GEFA distinguishes fea-
tures relevant to specific classes, whereas GEEX fails to do
so. In the “dog-cat” example, although there are differences
in GEEX’s explanations between the selected classes, pixels
relevant to “dog” are consistently highlighted, making it
difficult to comprehend their relationship to specific classes.
On the contrary, the explanations by GEFA clearly differ-
entiate the contributions of the same features in different
contexts, as indicated by the pixel coloring. Pixels repre-
senting “dog” and “cat” exhibit conflicting contributions,
reflecting the effect of the softmax layer concatenated before
the final output layer – the probability increase of one class
undermines the other. Similar observations can be obtained
in the “rooster-hen” example, where GEEX concentrates
on one object and overlooks the fact that the model can
distinguish between a rooster and a hen, as demonstrated by
GEFA.

6. Conclusion
In this paper, we propose GEFA, a model-agnostic feature
attribution framework based on proxy gradient estimation.
By structuring the explanation process in the proxy space,
GEFA is generally applicable for explaining arbitrary classi-
fiers, regardless of their input feature types. Backed by rigor-
ous theoretical analysis, the proposed method significantly
improves the quality of black-box explanations and, in cer-
tain circumstances, even surpasses white-box approaches
with a limited query budget. As a general framework, GEFA
holds significant potential for integration with existing tech-
niques to further enhance sampling efficiency (Shrotri et al.,
2022; Dhurandhar et al., 2024) and explanation quality (Frye
et al., 2020; Heskes et al., 2020).

In addition to the primary focus on the typical feature attri-
bution problem, the experiment section explores and demon-
strates the effectiveness of the proposed method in explain-
ing LLMs for simplified test cases, namely deriving feature
attributions for the next predicted token. A promising future
direction is to extend the described framework to explain
the general generative behavior of LLMs. Operating in an
auto-regressive manner, LLMs pose unique challenges to
existing attribution methods due to the delayed observation
of outcomes – gradients of the entire output sequence cannot
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be back-propagated. However, analogous to the application
of gradient estimation in reinforcement learning, GEFA,
built upon proxy gradient estimation, has the potential to
deal with delayed observations, thereby analyzing complex
text sequences in their entirety instead of focusing on indi-
vidual output tokens. With future adjustments to summarize
observed text sequences, GEFA could deliver more holistic
explanations for LLMs’ outcomes.
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A. Mathematical Proofs
A.1. Proof of GEFA’s Equivalence to Shapley Values

We start with proving Theorem 2, as the notations introduced during the proof facilitate the proof of the properties listed
in Theorem 1. To show that the attributions delivered by GEFA are exact Shapley Values, the goal is to demonstrate the
following equivalence:

ξi =
∑

S⊆{1,2,...,p}\{i}

|S|!(p− |S| − 1)!

p!
· (f(zS∪{i})− f(zS)) = Shi

where zS denotes a query with S being the set of indices corresponding to the present features.

Proof of Theorem 2. Let zS be a query, the probability of sampling zS over the integration path is:

p(zS |x) =
∫ 1

0

γ|S| · (1− γ)
(p−|S|)

dγ

For a feature xi, where i /∈ S, the contribution of the query to the computation of the corresponding attribution, noted as
wzS

i , is:

wzS
i =

∫ 1

0

γ|S| · (1− γ)
(p−|S|) · f(zS) · (

0

γ
+

1− 0

1− γ
) dγ

= −
∫ 1

0

γ|S| · (1− γ)
(p−|S|−1) · f(zS) dγ

= −|S|!(p− |S| − 1)!

p!
· f(zS) (Beta-function)

Similarly, the weight of the query zS∪{i} that differs from zS only in the i-th feature is:

w
zS∪{i}
i =

∫ 1

0

γ|S|+1 · (1− γ)
(p−|S|−1) · f(zS∪{i}) · (

1

γ
+

1− 1

1− γ
) dγ

=
|S|!(p− |S| − 1)!

p!
· f(zS∪{i})

Summing over all possible combinations of feature presences (excluding xi), yields ξi:

ξi =
∑

S⊆{1,2,...,p}\{i}

wzS
i + w

zS∪{i}
i

=
∑

S⊆{1,2,...,p}\{i}

|S|!(p− |S| − 1)!

p!
· (f(zS∪{i})− f(zS))

⇔ Shi

A.2. Proofs of Claimed Properties

It is not surprising that GEFA aligns with the properties held by Shapley Values as an unbiased calculator. This section
details the proof of these properties from the gradient estimator perspective as an alternative to the derivation from the
typical computation of Shapley Values in the form of marginal contributions.

A.2.1. COMPLETENESS AND SENSITIVITY

Completeness requires the equivalence between the sum of allocated feature attributions and the difference in prediction
results made by full feature presence as stated in (1).

11



GEFA: A General Framework for Feature Attribution Using Proxy Gradient Estimation

Proof of Completeness. The contribution of a sample zS to attribution estimation in GEFA can be divided into two parts,
the contribution with a positive sign wi∈S to the present features {xi|i ∈ S}, and the contribution with a negative sign wi/∈S

to the absent features. According to (8), the contribution is computed by:

wi∈S := f(zS) ·
1

γ

wi/∈S := −f(zS) ·
1

1− γ

Considering the likelihood of zS being sampled, the total positive contribution w⊕
S can be computed by:

w⊕
S =

∫ 1

0

γ|S| · (1− γ)
(p−|S|) · (

∑
i∈S

wi∈S) dγ

=

∫ 1

0

γ|S| · (1− γ)
(p−|S|) · f(zS) ·

|S|
γ

dγ

=
(|S| − 1)!(p− |S|)!

p!
· f(zS) · |S| (Beta-function)

=
|S|!(p− |S|)!

p!
· f(zS)

Similarly, the total negative contribution is:

w⊖
S = −

∫ 1

0

γ|S| · (1− γ)
(p−|S|) · f(zS) ·

p− |S|
1− γ

dγ

= − (|S|)!(p− |S| − 1)!

p!
· f(zS) · (p− |S|)

= −|S|!(p− |S|)!
p!

· f(zS)

The two parts of contributions cancel out as w⊕
S +w⊖

S = 0, with the only two exceptions when S = ∅ or S = {1, 2, . . . , p},
whose contribution only has the negative/positive part:

w⊕
∅ + w⊖

∅ = 0− f (̊x)

w⊕
{1,2,...,p} + w⊕

{1,2,...,p} = f(x)− 0

Computing the sum of feature attributions by summarizing sample contributions results in:

p∑
i=1

ξ =
∑

S⊆{1,2,...,p}

(w⊕
S + w⊖

S ) = f(x)− f (̊x)

Sensitivity is guaranteed by the satisfaction of completeness.

A.2.2. INSENSITIVITY

Insensitivity is also known as Dummy, which requires the attribution score to be zero for any feature on which the target
model is not functionally dependent. Definition 6 formally describes functional independence.

Definition 6. A function is said to be functionally independent of a feature if the prediction results are always the same for
any sample pair that differs only in that feature.
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Proof of Insensitivity. Let xi be the dummy feature, the proxy gradient estimator of that feature on the straightline path is:

ηαi
(x(γ · 1p)) = Eπ(ϵ|γ·1p)[f(ϵ x⊕ ϵ̄ x̊) · (ϵi

γ
− ϵ̄i

1− γ
)]

Using π(ϵ\i|γ · 1p−1) as a shorthand for the feature value sampling process excluding the i-th feature, the expectation can
be expanded to the following form due to the independent sampling processes of different features:

ηαi
(x(α)) = Eπ(ϵ\i|γ·1p−1)

[
Eπ(ϵi|γ)[f(ϵ x⊕ ϵ̄ x̊) · (ϵi

γ
− ϵ̄i

1− γ
)]
]

The condition of functional independence of xi yields:

ηαi(x(α)) = Eπ(ϵ\i|γ·1p−1)

[
Eπ(ϵi|γ)[f(ϵ x⊕ ϵ̄ x̊)] · Eπ(ϵi|γ)[(

ϵi
γ
− ϵ̄i

1− γ
)]︸ ︷︷ ︸

=0

]
= 0

The explainer integrating over ηαi
(x(α)) also produces zero, namely ξi = 0.

A.2.3. LINEARITY

For any two functions f1(·) and f2(·), Linearity requires the explanation for the linear composition of the two functions
equaling the weighted sum of the separate explanations for them:

ξ(af1+bf2) = a · ξ(f1) + b · ξ(f2)

Proof of Linearity.

ξ(af1+bf2) =

∫ 1

0

Eπ(ϵ|γ·1p)

[
[af1(ϵ x⊕ ϵ̄ x̊) + bf2(ϵ x⊕ ϵ̄ x̊)] · ( ϵ

γ
− ϵ̄

1− γ
)
]
dγ

= a ·
∫ 1

0

Eπ(ϵ|γ·1p)

[
f1(ϵ x⊕ ϵ̄ x̊) · ( ϵ

γ
− ϵ̄

1− γ
)
]
dγ +

b ·
∫ 1

0

Eπ(ϵ|γ·1p)

[
f2(ϵ x⊕ ϵ̄ x̊) · ( ϵ

γ
− ϵ̄

1− γ
)
]
dγ

=a · ξ(f1) + b · ξ(f2)

A.2.4. SYMMETRY

In context of feature attribution, Symmetry states: given a function f(·) that is symmetric in two variables xi and xj , the
attribution scores of the two features satisfies ξi = ξj when the explicand-baseline pair holds xi = xj and x̊i = x̊j .

Proof of Symmetry. Similar to the proof of Insensitivity, the Symmetry of GEFA originates from the proxy gradient estimator.
Let xi and xj denote the two symmetric features, their gradient estimators are:

ηαi
(x(γ · 1p)) = Eπ(ϵi|γ)

[
Eπ(ϵ\i|γ·1p−1)[f(ϵ x⊕ ϵ̄ x̊)] · (ϵi

γ
− ϵ̄i

1− γ
)
]

ηαj (x(γ · 1p)) = Eπ(ϵj |γ)

[
Eπ(ϵ\j |γ·1p−1)[f(ϵ x⊕ ϵ̄ x̊)] · (ϵi

γ
− ϵ̄i

1− γ
)
]

Given the symmetry between xi and xj , the inner expectations satisfy:

Eπ(ϵ\i|γ·1p−1)[f(ϵ x⊕ ϵ̄ x̊)] = Eπ(ϵ\j |γ·1p−1)[f(ϵ x⊕ ϵ̄ x̊)], when ϵi = ϵj
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It is not difficult to show that sampling of the two features following the same distribution given xi = xj and x̊i = x̊j ,
which induces:

ηαi
(x(γ · 1p)) = ηαj

(x(γ · 1p))

Integrating the estimators having the same outputs along the symmetric path concludes the proof by showing:

ξi =

∫ 1

0

ηαi
(x(γ · 1p)) dγ =

∫ 1

0

ηαj
(x(γ · 1p)) dγ = ξj

A.3. Control Variate

A.3.1. UNBIASEDNESS OF CONTROL VARIATE

To prove the unbiasedness of ξ̃, we need to show ξ̃ = ξ. Applying Linearity, we can rewrite ξ̃ as:

ξ̃ = ξ(f) + β · ξ(h) = ξ + β · ξ(h)

Now, the goal of the proof can be transformed to:

ξ̃ = ξ ⇐⇒ ξ(h) = 0p

Proof of Theorem 4. The attribution of the control variate to the i-th feature is:

ξ
(h)
i =

∫ 1

0

Eπ(ϵ|γ·1p)[h(∥ϵ∥1) · (
ϵi
γ
− ϵ̄i

1− γ
)] dγ

=
∑

ϵ∈{0,1}p:ϵi=0

∥ϵ∥1!(p− ∥ϵ∥1 − 1)!

p!
·
(
h(∥ϵ∥1 + 1)− h(∥ϵ∥1)

)
(Theorem 2)

=

p−1∑
∥ϵ∥1=0

(
p− 1

∥ϵ∥1

)
· ∥ϵ∥1!(p− ∥ϵ∥1 − 1)!

p!
·
(
h(∥ϵ∥1 + 1)− h(∥ϵ∥1)

)

=

p−1∑
∥ϵ∥1=0

1

p
·
(
h(∥ϵ∥1 + 1)− h(∥ϵ∥1)

)
=

1

p
·
(
h(p− 1 + 1)− h(0)

)
(Telescoping series)

= 0

The zeroness of feature attribution ξ
(h)
i concludes the proof:

ξ
(h)
i = 0, ∀i ∈ {1, 2, . . . , p} =⇒ ξ(h) = 0p

While constructing the control variate for GEFA, we first initialize it as h(∥ϵ∥1) = ∥ϵ∥1/p based on Assumption 3. To
strictly follow the property of unbiasedness, the above analysis derives an additional requirement for the control variate,
namely:

h(p) = h(0)

Integrating the constraint into the control variate delivers the function stated in (9). In addition to the selected control
variate, Theorem 3 applies to the broader group of functions, which depends solely on ∥ϵ∥1 and at the same time satisfies
h(p) = h(0). When there are further assumptions to make on the target function, the shape of h(·) can be fine-tuned for a
stronger covariance in relation to f(·).
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A.3.2. OPTIMALITY OF CONTROL VARIATE COEFFICIENT

Next, we show the variance reduction effect of the control variate is optimized when:

β∗ = Cov(f, h)/Var(h)

where the optimal choice of the weighting term is denoted as β∗.

Proof of Optimality of β∗. Denoting the variance of a gradient estimator for a feature xi as Var(ξi), the variance of the
estimator after the introduction of a control variate is:

Var(ξ̃i) = Var(ξi) + β2Var(ξ
(h)
i )− 2β · Cov(ξi, ξ(h)i )

The optimal variance reduction effect for ξi is achieved when:

β = Cov(ξi, ξ
(h)
i )/Var(ξ

(h)
i ) (12)

Alternative to a feature-specific optimal value, we are also interested in a single value for β that maximizes the overall
variance reduction effect. To acquire the overall optimum, we first expand the covariance in (12):

Cov(ξi, ξ
(h)
i ) = E[ξi · ξ(h)i ]− E[ξi] · E[ξ(h)i ]

= Eαi

[
Eϵi [f(z) · h(∥ϵ∥1) · (∇xi log π(ϵi|αi))

2
]
]
− E[ξi] · 0 (Unbiasedness of ξ(h))

Please note that we omit the distribution that αi and ϵi should follow as it does not affect the result of the derivation. For
high-dimensional input, the functions f(·) and h(·) have trivial dependencies on a specific feature xi:

Cov(ξi, ξ
(h)
i ) ≈ Eαi

[
Eϵi [f(z) · h(∥ϵ∥1)]

]
· Eαi

[
Eϵi [(∇xi log π(ϵi|αi))

2
]
]

Similarly, the variance of the control variate estimator can be written as:

Var(ξ
(h)
i ) ≈ Eαi

[
Eϵi [h(∥ϵ∥1)

2
]
]
· Eαi

[
Eϵi [(∇xi log π(ϵi|αi))

2
]
]

Putting together yields the overall optimal value β∗:

β∗ =
Eαi

[
Eϵi [f(z) · h(∥ϵ∥1)]

]
· Eαi

[
Eϵi [(∇xi log π(ϵi|αi))

2
]
]

Eαi

[
Eϵi [h(∥ϵ∥1)

2
]
]
· Eαi

[
Eϵi [(∇xi log π(ϵi|αi))

2
]
]

=
Eαi

[
Eϵi [f(z) · h(∥ϵ∥1)]

]
− 0

Eαi

[
Eϵi [h(∥ϵ∥1)

2
]
]
− 0

=
Eαi

[
Eϵi [f(z) · h(∥ϵ∥1)]

]
− Eαi

[
Eϵi [f(z)]

]
·

=0︷ ︸︸ ︷
Eαi

[
Eϵi [h(∥ϵ∥1)]

]
Eαi

[
Eϵi [h(∥ϵ∥1)

2
]
]
− 0

= Cov(f, h)/Var(h)

Taking the optimal β∗, the variance reduction effect depends on the square of the covariance between f(·) and h(·), which
motivates Assumption 3:

Var(ξi)−Var(ξ̃i) = Cov(f, h)
2
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A.4. Equivalence to IG

Proof of Theorem 5. To complete the proof, we first show that both GEFA and IG produce marginal contributions along
edge paths.

Recalling that an edge path always moves from one vertex zS to an adjacent vertex that differs zS∪{i} in only the i-th
feature along edges, the goal is simplified to prove that they are calculators of the marginal contribution conditioned on
the presence of features {xj |j ∈ S} for each segment of a path. For the i-th segment on an edge path with S denoting the
preceding vertices, IG produces:

ξIGi =

∫ zS∪{i}

zS

∂f(x)

∂xi
dx

= f(zS∪{i})− f(zS)

As the path for GEFA is created in the proxy space, we denote the two proxy vertices on the i-th segment by x(αS) and
x(αS∪{i}) for preciseness. The notation αS is analogous to zS , which represents:

αi =

{
1 ifi ∈ S

0 ifi /∈ S

When following the same permutation order, GEFA produces the same marginal contribution as IG for the i-th segment:

ξGEFA
i =

∫ αS∪{i}

αS

Eπ(ϵi|αi)[f(z) · (
ϵi
αi

− ϵ̄i
1− αi

)] dα

= f(zS∪{i})− f(zS)

⇔ ξIGi

Please note that, for GEFA, the only feature value in z that may vary during the sampling on the i-th segment is zi. The
remaining features are deterministic as their corresponding proxy variables are either 0 or 1 depending on whether they
have been visited in the preceding vertices S, namely to take either the baseline or explicand value with a hundred percent
probability.

As both explainers deliver marginal contributions along edge paths, the claim in Theorem 5 becomes obvious as it describes
the typical computation of Shapley Values.

B. Detailed Experimental Setting
B.1. Experimental Environment

The competitors, including the proposed method, were implemented using Python 3.11.2 with standard packages. The
primary packages were Numpy 1.26.4, PyTorch of version 2.5.0, and Torchvision 0.20.0. The CUDA version was 12.2 for
GPU support. All experiments were conducted on a machine operated by Debian 11 with the following specifications:

• Processor: Intel i9-10980XE, 18 cores

• Memory: 32GB DDR4

• GPU: NVIDIA RTX A5500, 24GB

B.2. Tested Models

The experiment section used four models for the evaluation of the attribution methods, namely BERT, Llama3, Incep-
tionV3, and Vision Transformer. These models are open-source with publicly available pretrained versions, ensuring the
reproducibility of our experimental results. The specific versions of the pretrained models are listed below:

• BERT: bert-base-uncased released on Hugging Face4

• Llama3: Llama3.2-3B-Instruct released on Hugging Face5

4https://huggingface.co/google-bert/bert-base-uncased
5https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
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Table 3: Model performance on corresponding dataset

Dataset Amazon STS-2 QNLI ImagetNet ImageNet
Model BERT Llama3.2-3B Llama3.2-3B InceptionV3 ViT

Acc. (%) 96.63 92.55 80.26 77.29∗ 81.07∗

∗Top-1 accuracy reported by the model provider.

• InceptionV3: inception v3 with the pretrained weights IMAGENET1K V1 released on PyTorch6

• Vision Transformer: vit-b-16 with the pretrained weights IMAGENET1K V1 released on PyTorch7

While most models are specified for classification tasks, Llama3 is a general-purpose LLM. To facilitate the focus on the
standard feature attribution problem, we configure the behavior of Llama3 through prompt engineering and use it as a
zero-shot learner for STS-2 and QNLI.

STS-2 Prompt
You are a sentiment classifier trained on movie reviews. Your task is to identify the

sentiment of the given input. If the sentiment of the text is negative, output 0.
If the sentiment is positive, output 1.

Input: {Input};
Output:

QNLI Prompt
You are a highly accurate classifier for question-sentence pairing. Your task is to

determine whether the provided sentence answers the given question. If the sentence
answers the question, output 1. If the sentence does not answer the question,

output 0.
Input:
Question: {Input Part 1}
Sentence: {Input Part 2};
Output:

The placeholders in the task-specific prompts are later filled with content tokens from the concrete inputs. The above
task-specific prompts guide the language model to put its answer as either “0” or “1” in the next predicted token. This setting
circumvents the analysis of auto-regressive text generation and reduces the total number of output nodes from the vocabulary
size of 128, 000 to 2. Based on this setup, the task of the explainers is specified as determining model attributions to the
content tokens. The template tokens receive zero attributions because the template prompts remain unchanged during the
explanation process, with the template tokens assigned identical values for both the explicand and the baseline.

The accuracies of the models are presented in Table 3. The performances of InceptionV3 and ViT are sourced from the
PyTorch website, as no additional fine-tuning steps were conducted on the two pretrained models.

B.3. Competitors and Implementation Details

B.3.1. WHITE-BOX EXPLAINERS

The two white-box approaches derive explanations based on exact gradient measurements. Specifically, VG interprets
raw gradients directly as explanations, and IG integrates gradients along a straightline path between the explicand and
the baseline. These approaches are closely connected to the proposed method due to the shared concept of utilizing
gradients. While implementing gradient-based solutions is straightforward with existing tools, special care has been taken
for explaining text classifiers. When processing textual inputs, gradients for an explicand are not directly available due to
the non-differentiable nature of discrete features. As a workaround, we follow the common practice of first computing
attribution scores for the embeddings, which represent the discrete input features in the continuous embedding space, and
then aggregating these scores into token-level attributions. Formally, let x be a textual explicand with p tokens and e ∈ Rp×q

6https://pytorch.org/vision/main/models/inception.html
7https://pytorch.org/vision/main/models/vision transformer.html
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represent the corresponding representation in the embedding space of size q. The attribution of each embedding element
ξeij is derived following the standard back-propagation process for continuous variables. The token-level attribution ξxi is
then determined as the sum of attributions over the corresponding embedding vector:

ξxi =

q∑
j=1

ξeij

Summing embedding attributions appears intuitive, but it can be easily proved that this approach preserves the promising
properties of IG.

B.3.2. BLACK-BOX EXPLAINERS

The black-box competitors are SHAP and GEEX. The former is connected to the proposed method through Shapley Values,
and the latter is a recent attempt at applying gradient estimation in feature attribution, which inspired this work. There are
two variants of SHAP considered in the experiment section. KSHAP is a Shapley Value estimator based on weighted linear
regression, and PSHAP is a sampling-based estimator that computes Shapley Values recursively through a hierarchy of
features (Chen et al., 2023). To avoid reinventing the wheel, the official implementations8 were used for evaluating the two
SHAP variants, and the code open-sourced by Cai & Wunder (2024) was used for GEEX.

B.3.3. IMPLEMENTATION DETAILS OF GEFA

In addition to the control variate, we employed mask smoothing (Cai & Wunder, 2024) and antithetic sampling for variance
reduction during the implementation of GEFA. The two techniques proposed in previous work were adapted to fit into the
context of proxy gradient estimation.

Masking smoothing is a post-processing technique for mask generation, typically applied when explaining image classifiers.
Following the intuition that adjacent pixels form low-level patterns, mask smoothing processes masks with a low-pass filter,
softly grouping spatially close pixels and consequently reducing the feature space. By applying similar changes to adjacent
pixels, mask smoothing enhances the possibility of masking out local patterns, thereby exposing model sensitivities to the
absence of certain features. The sampling process of GEFA incorporates mask smoothing when explaining InceptionV3 and
ViT. For each position indicator γ on the proxy path, masks are initialized with a uniform distribution ε ∼ U[0,1]. After the
initialization of uniform noises, the number of present features is determined by the threshold γ, denoted as k = ∥ε > γ∥1.
Subsequently, the smoothed masks ε̇ are generated by applying a low-pass filter w to the uniform random masks, softly
grouping nearby pixels for better coverage of low-level patterns. It is important to note that the smoothed mask values
no longer follow the uniform distribution; therefore, the relative ranking of mask values is considered during binarization
instead of their numerical values. Specifically, the smoothed mask is binarized by setting the top-k units to positive, thereby
delivering the target binary mask ϵ9 for GEFA. Algorithm 2 provides an overview of the sampling process.

Algorithm 2 Smoothing Enhanced Mask Sampling

Input: γ: path position indicator; w: low-pass filter
Output: ϵ: binary mask;

1: ε ∼ Up
[0,1], ϵ = 0p # Mask initialization

2: k = ∥ε > γ∥1 # Number of present features
3: ε̇ = ε ∗w # Mask smoothing
4: ρ = argsort(ε̇) # Indices of sorted values
5: for i in ρ[: k] do
6: ϵi = 1 # Set top-k features as present
7: end for
8: return ϵ

For each mask ε ∈ Rp in a continuous space, antithetic sampling takes its antithesis −ε for the estimation, namely creating
an antithetic query pair {x + ε,x − ε}. However, the binary nature of masks ϵ ∈ [0, 1]

p in proxy gradient estimation
prohibits the direct application of this sampling strategy. To address this, we first define the antithesis of a binary mask

8https://shap.readthedocs.io/en/latest/#
9Please note that the different formats, ε and ϵ, are used to distinguish between continuous and binary masks.
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Uniform Noise
Binarization 

without Smoothing Mask Smoothing Antithetic SamplingRanking-based 
Binarization

Figure 3: Visualization of masks at different phases of the sampling process. Binary masks ϵ and ϵ̄ derived from the
smoothed noise are used to generate queries.

Explanation Quality

Explicand

Noisy Smooth

Smoothing FactorWeak Strong

Target Class: Linnet

Figure 4: Visualization of mask smoothing impacts on explanation quality

as ϵ̄, which flips the presence/absence states represented in the mask. Second, the antithesis of ϵ ∼ π(·|γ · 1) follows a
distribution π(·|(1− γ) · 1), which must be recorded for the correct estimation of ξ. Finally, an antithetic query pair in the
context of GEFA is defined by:

{
(ϵ x⊕ ϵ̄ x̊, γ), (ϵ̄ x⊕ ϵ x̊, 1− γ)

}

B.3.4. TIME COMPLEXITY

The computational expenses of white-box and black-box approaches arise from different sources due to their distinct
accessibility assumptions. Let O(M) denote the model complexity, the time cost of gradient-based approaches is O(s ·λM),
where λM indicates the cost for gradient measurement and s is the number of measurements required for deriving the final
explanation. For example, s corresponds to the number of interpolation steps in IG. On the other hand, the computational
cost of black-box approaches is composed of two primary factors: query generation and model inference.

This section mainly focuses on the complexity of GEFA and its comparison to other black-box explainers functioning
on a query basis. Given a total budget of n queries in a p-dimensional feature space, the cost of query generation for
GEFA is O(np). The overall complexity of GEFA combines the generation cost and model complexity, expressed as
O(np+ nM), which is equivalent to the complexity of GEEX. Between the two factors, the total time cost in practice is
dominated by O(nM), as GEFA completes mask construction upon initialization. The pre-constructed masks accelerate
the query generation process, thereby reducing the relevant cost. For PSHAP and KSHAP, the complexity increases to
O((n+ τ) · p+ nM), where the additional cost τ arises from explicand-specific feature space partition (PSHAP) and linear
regression (KSHAP). The impact of the additional cost becomes non-trivial when the dimensionality p increases. Table 4
reports the explanation time costs of the competitors. For the group of black-box explainers, when given the same query
budget, the computational expenses align with the above analysis.
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Table 4: Time cost (s) per explicand

Model VG IG KSHAP PSHAP GEEX GEFA

BERT 0.04 0.20 1.33 0.75 - 0.82
Llama3 0.19 1.40 5.53 5.09 - 5.42

InceptionV3 0.06 1.53 - 15.63 4.57 4.91
ViT 0.04 1.11 - 23.54 16.17 16.97

C. Discussion on Evaluation Scheme
C.1. Validity of Evaluation via Deletion

This work adopts evaluation via deletion to assess explanation quality, allowing quantitative comparison among the
competitors. For simplicity, the adopted evaluation strategy is referred to as the deletion scheme in the rest of the discussion.
The employment of the deletion scheme spans from the early stages of explainability research (Samek et al., 2016; Montavon
et al., 2018) to the most recent studies (Cai & Wunder, 2024; Muzellec et al., 2024). It offers static environments for efficient
explanation quality assessment.

One major concern about the validity of the deletion scheme is the issue of distribution shift. During the evaluation process,
input features are recursively removed from an explicand, resulting in manipulated copies that deviate from the original
data manifold. These copies with artifacts introduce distribution shift as another potential source of model performance
degradation, in addition to the intended effect of feature absence. To alleviate the concern, we intentionally include random
removal as a reference for the effectiveness of explanation-guided deletion. By excluding explanatory information from the
manipulation process, the figures obtained through random removal reflect the extent of degradation by distribution shift
alone. The experimental results in Table 1 and Table 2 demonstrate that most of the explainers significantly outperform
random removal across various settings, highlighting the effectiveness of the derived explanations. Moreover, the random-
level performance of VG matches the analysis of its limitation in previous work (Sundararajan et al., 2017). The alignment
between the empirical results and theoretical analysis further emphasizes the validity of the adopted evaluation scheme.
While the experimental results, by themselves, mitigate concerns about the validity of the deletion scheme, we provide
additional results in Appendix C.3 to demonstrate its consistency with the retraining scheme. The retraining scheme (Hooker
et al., 2019), an evaluation scheme designed to overcome the out-of-distribution issue, is elaborated on in the following
section.

C.2. Distortion in the Retraining Scheme

Hooker et al. (2019) highlighted the issue of distribution shift in explanation evaluation, expressing concerns about
unexpected model behaviors triggered by artifacts. As an alternative to the traditional deletion scheme, they proposed a
retraining scheme known as remove and retraining (ROAR). This approach involves removing a proportion of features with
the highest attribution scores for each instance in the dataset, followed by retraining the model on the manipulated dataset.
The performance of the retrained model is then used as an indicator of the explainer’s effectiveness. The described scheme
poses the question:

Q1: “Does the tested explanation method identify all task-relevant features?”

Following the idea of retraining, ROAR’s assessments reported that many popular attribution methods “are not better than
a random designation of feature importance”. This observation directly raises concerns about the validity of the deletion
scheme. However, this conclusion drawn from ROAR’s assessments conflicts with the theoretical guarantees and the widely
approved effectiveness of many test approaches, which prompted our further investigation. Upon reproducing ROAR’s
assessments, we identified the root cause of the misalignment between evaluations from different perspectives to be residual
information, which distorts the results of the retraining scheme. With a justified adjustment to the retraining scheme, we
found that the two evaluation strategies yield consistent results.
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Explicand

Removed:

Deletion by descending attribution order

10% 30% 50% 70% 90%

Figure 5: Residual information in the retraining scheme: An example of feature deletion by attribution order. Negatively
attributed features retained after manipulation cause information leakage, distorting evaluation results. The red dashed line
highlights residual information in the manipulated copy with 90% of features removed.

THE RESIDUAL INFORMATION

The sign issue is a major source of residual information, referring to information leakage caused by negatively attributed
features retained in the retraining scheme. In the context of feature attribution, a positive attribution score indicates a positive
contribution to the prediction result, whereas a negative score represents, rather than irrelevance, a negative association with
the decision. The origin of negative attributions is complex, influenced by multiple factors such as the baseline choice and
the associations between features and the prediction function. When features are removed in descending order of attribution
scores, negatively attributed features inevitably remain in the manipulated dataset for retraining. The failure to remove
these “negative” features preserves task-relevant information, which the model can reorganize during retraining to improve
accuracy.

A qualitative example of the residual “negative” information in the retraining scheme is illustrated in Figure 5. The sign
issue also explains the effective manipulation of SG-SQ and VarGrad, as reported by Hooker et al. (2019). Rather than a
miracle of explainer ensembling, the two variants of gradient-based explanation provide unsigned attributions, ensuring a
more comprehensive removal of informative features. It is noteworthy that, unlike the retraining scheme, the traditional
deletion scheme is insensitive to residual information. Without retraining, the negative associations of the retained features
are fixed and will not be updated in the consistent environment offered by the traditional deletion scheme.

In addition to the sign issue, feature redundancy poses another challenge to the implicit assumption made by ROAR. The
removal of task-relevant features, as required by Q1, depends on both the model and the explainer. By expecting significant
performance degradation after retraining, ROAR assumes that the to-be-explained model has learned all task-relevant
features and interprets them in a way that truthfully reflects their relevance. However, this assumption is an over-qualified
requirement for machine learning models. Previous research (Lapuschkin et al., 2019; Geirhos et al., 2020) has shown that
the inference of a trained model can be dominated by a subset of features, leaving many relevant features under-attributed.
Without any guarantee of comprehensive feature capturing, redundancy can lead to the leakage of task-relevant information
after dataset manipulation, thereby introducing distortion into the evaluation results.

C.3. Corrected Retraining Scheme

Given the various sources of residual information, a direct cleaning of the manipulated dataset is unfeasible, as it is extremely
difficult – if not impossible – to distinguish between model-sourced feature omissions and explainer-sourced. To efficiently
address the assessment distortion in ROAR, we propose that, instead of removing features, the top-ranked features should be
retained for retraining. The “keep and retrain” (KEAR) approach reframes the evaluation question as:

Q2: “Does the tested explanation method effectively identify relevant features?”

An effective explanation method should capture the relevant information learned by the target model, resulting in less
performance degradation of the retrained model with the same portion of retained information. To verify the above discussion,
we conducted experiments following the retraining scheme in both text and image settings:

• The pretrained BERT is fine-tuned on the Amazon dataset for text classification
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Table 5: Evaluation schemes comparison on BERT

Competitor In Acc. (%) nAOPC
ROAR KEAR

VG 77.92 79.69 18.23
IG 96.51 96.47 66.77

KSHAP 92.57 95.93 60.14
PSHAP 93.78 96.28 65.92
GEFA 94.86 96.56 73.66

Random 66.48 19.08
: lower is better; : higher is better

Table 6: Evaluation schemes comparison on EfficientNet

Competitor In Acc. (%) nAOPC
ROAR KEAR

VG 75.75 73.35 38.87
IG 77.20 89.60 40.82

PSHAP 79.25 84.30 39.56
GEEX 71.05 78.60 38.39
GEFA 82.35 89.95 40.79

Random 71.30 35.07

• The pretrained EfficientNet-B010 is fine-tuned on the Cats vs. Dogs dataset (Elson et al., 2007)

For both settings, copies of the corresponding datasets were created with explanation-guided manipulation and then used
for retraining the target model to assess explanation quality. Without losing generality, we adopted a lightweight model
for image classification and downsampled the dataset into 2000/400/400 partitions for training, validation, and test sets
to ensure feasibility and efficiency. EfficientNet-B0 achieved an accuracy of 99.40% on the downsampled dataset after
fine-tuning. Details about the fine-tuned BERT model are given in Appendix B.2. Based on the fine-tuned models, we
derived explanations for all datasets with the competitors selected in Section 5, namely, VG, IG, PSHAP, KSHAP, GEEX,
and GEFA. Features for each instance were ranked in descending order according to their attribution scores. Similar to the
deletion scheme, we adopted random removal as a reference to highlight the effectiveness of the competitors.

In the retraining tests, the top 90% of features were removed for ROAR to create the manipulated datasets, whereas the top
10% of features were retained for KEAR. To minimize the potential impact of randomness during the training process, we
independently retrained five models on each manipulated dataset and reported the averaged accuracies. It is noteworthy that
lower retraining accuracies indicate better explanation quality in the removal tests, whereas higher accuracies reflect superior
explainer performance in KEAR. Results from different evaluation schemes are presented in Table 6. For random removal,
the same figures are reported for both retraining settings because of the identical proportion of remaining features, i.e. 10%.

According to ROAR, all explanation methods exhibit minor manipulation impacts due to the previously discussed residual
information, failing to excel random removal. This observation closely aligns with the finding in the original ROAR
paper (Hooker et al., 2019). In contrast, by addressing the distortion caused by residual information, KEAR offers a more
faithful assessment of explanation quality. The success of the explainers in identifying the most informative features results
in relatively high classification accuracy, even with only 10% of features retained. In addition to the retraining tests, the last
column of Table 6 presents the nAOPC scores obtained following the deletion scheme. While the metrics employed by the
two schemes differ in scale, leading to difficulties in direct numerical comparisons, the consistency in relative rankings
within each test highlights nAOPC as a valid metric. The KEAR results, alongside nAOPC scores, demonstrate that the
retraining scheme and the deletion scheme are parallel evaluation options rather than conflicting approaches.

D. Additional Experimental Results
D.1. Sensitivity to Query Budget

Section 5 quantitatively compared the performances of SOTA feature attribution methods with an empirically selected query
budget. To better understand the sensitivity of the proposed method to the query budget n and its convergence behavior
as an estimator, we performed a grid search evaluation over n to assess its impact on explanation quality. The solid blue
lines in Figures 6a and 6b show the nAOPC scores of GEFA on BERT-Amazon and InceptionV3-ImageNet, respectively,
under various query budgets. The query budget scale is indicated by the x-axis scales at the top of each diagram. Since
the search space of proxy gradient estimation depends on feature space dimensionality, the scale of query budgets varies
between the two cases, ranging from 100 to 5k for BERT (left) and from 1k to 50k for InceptionV3 (right). As the query
budget increases, the convergence behavior of GEFA is consistent in both cases. The increase in explanation quality shows

10https://pytorch.org/vision/main/models/efficientnet.html
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(a) Performance reported on BERT-Amazon (b) Performance reported on InceptionV3-ImageNet

Figure 6: Sensitivity analysis of the query budget n and the control variate coefficient β. Explanation quality (measured by
nAOPC, y-axis) is shown against n (blue line, top x-axis scale) and β (red line, bottom x-axis scale). The shaded red region
highlights the performance gain achieved with a properly weighted control variate.

an accelerated pattern with a low query budget, and tends to plateau toward the higher end of the query budget.

D.2. Sensitivity to Control Variate Coefficient

The grid search evaluation was also performed to analyze the optimality of the control variate coefficient β∗. Different from
the query budget, which is constant during each test, the value of β∗ is explicand-specific. The computation of β∗ depends
on the local behavior of f(·) specified by the explicand-baseline pair (x, x̊), which varies across different explicands. Taking
the variability into account, β was set by, instead of absolute values, relative values to β∗ during the evaluation. Specifically,
for both settings, we tested the performance of GEFA with β ranging from [β∗ − 1, β∗ + 1], shown by the x-axis scales
at the bottom of the diagrams. The query budget was fixed at 500 and 5k for BERT-Amazon and InceptionV3-ImageNet,
respectively.

The solid red lines in Figures 6a and 6b illustrate GEFA’s performance with varying values of β. Generally, explanation
performance peaks at β∗ and degrades toward both positive and negative deviations from the estimated optimum. Although
slight discrepancies are observed between the best explanation quality and the estimated β∗, the overall performance trend
aligns with the theoretical analysis and supports the optimality of β∗. The bias in the estimated optimum originates from
compromises with the limited query budget. To avoid imposing additional query burdens, the coefficient estimation reuses
observations from the explanation derivation process, which can introduce small biases in the estimated optimum (Mohamed
et al., 2020). Practically, this bias diminishes quickly as the number of observations increases, explaining the relatively
smaller divergence in the image classifier case due to the larger query budget. Despite the minor biases, the application of
the control variate induces considerable performance gains almost free of charge, especially without increasing the query
expense. Therefore, applying the control variate with the estimated coefficient β∗ should be considered a valuable practical
tool to enhance explanation quality.

Another important observation is the larger performance gain region in Figure 6b, where the control variate exhibits a more
significant impact on improving explanation quality. This observation is consistent with the greater performance gains
observed in explaining image classifiers compared to text classifiers, as reported in Tables 1 and 2. The difference in the
effectiveness of the control variate is further studied in the following section, which identifies the larger covariance between
f(·) and h(·) as the origin of the enhanced impact.

D.3. Control Variate Impact and Function Correlation

The analysis in Appendix A.3 concludes that the variance reduction effect brought by the control variate is determined by its
covariance with the target function:

Var(ξi)−Var(ξ̃i) = Cov(f, h)
2 (13)

The conclusion offers a reasonable explanation for the larger performance improvements of GEFA when explaining
InceptionV3 and ViT.

To verify this point, we collected and summarized model prediction confidences at different ratios of present features.
Figure 7a illustrates the correlations between model outcomes and the ratios of present features across various test settings.
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(a) Relationship between model outcome and ratio of present feature (b) Performance improvements and covariances

Figure 7: Explanation quality improvement and Covariance between f(·) and h(·) and

The solid lines represent the average target function behavior, while the shaded regions indicate the variance. According to
the figure, model prediction outcomes in all tested settings exhibit a positively correlation with the ratios of present features,
supporting our argument for the validity of Assumption 3. Among them, the two image classifiers yield more pronounced
performance sensitivity to ∥ϵ∥1.

Figure 7b visually compares the performance gains with the covariances Cov(f, h), estimated based on the averaged
behaviors demonstrated in Figure 7a. Consistent with the analysis of the variance reduction effect as concluded by (13), the
covariances between the target function and the control variate are more significant in the two image settings, leading to
greater improvements in explanation quality. Additionally, according to Appendix A.3.2, the effective range of β is given by:

β ∈ (0,
2Cov(f, h)

Var(h)
)

With the variance of the designed control variate expressed in closed form as Var(h) = 1
12 , the magnitude of the covariance

dominates the width of the effective range. Therefore, the larger covariances observed in the InceptionV3-ImageNet setting
also explains the broader effective region demonstrated in Figure 6b.

D.4. Additional Qualitative Examples

Due to space constraints, additional sample explanations could not be included in Section 5. To better illustrate the
explanations derived from the proposed framework and visually compare them to the best-performing competitors, we
provide supplementary qualitative examples in the following pages. These sample explanations cover all tested cases and
are organized according to the corresponding test setting. Please note the different color schemes used in the text and image
examples. In text examples, blue and red indicate contributions to positive and negative answers for better comprehensibility
in binary classification tasks. For images, which set up a multi-class classification problem, blue pixels represent supportive
evidence for the target prediction, whereas red pixels oppose it.
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Prediction: 0

Prediction: 1

Prediction: 1

Prediction: 0

Prediction: 1

Prediction: 0

Figure 8: Sample explanations derived from BERT-Amazon. Each block presents explanations for an entry derived by IG,
PSHAP, and GEFA, respectively.
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Prediction: 1

Prediction: 1

Prediction: 0

Prediction: 1

Prediction: 0

Prediction: 0

Prediction: 1

Prediction: 0

Prediction: 1

Prediction: 1

Prediction: 1

Figure 9: Sample explanations derived from Llama3.2. Each block presents explanations for an entry derived by IG, PSHAP,
and GEFA, respectively. The first five examples are instances from SST-2 dataset, while the following six originate from
QNLI. A shortened version of the template prompt is shown in gray text. Please note that the QNLI examples differ slighly
in template prompts, as the question may vary.
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Figure 10: Sample explanations derived from InceptionV3-ImageNet. With explicands placed in the first column, each row
presents explanations for an entry derived by IG, PSHAP, GEEX, and GEFA, respectively. The target class is shown by the
class name to the left of the corresponding explicand.
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Figure 11: Sample explanations derived from ViT-ImageNet. With explicands placed in the first column, each row presents
explanations for an entry derived by IG, PSHAP, GEEX, and GEFA, respectively. The target class is shown by the class
name to the left of the corresponding explicand.
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