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ABSTRACT

Generative models, particularly diffusion and flow-matching approaches, have
achieved remarkable success in various domains including image synthesis and
robotic planning. However, a fundamental challenge remains: ensuring generated
samples strictly satisfy problem-specific constraints—a crucial requirement for
safety-critical applications and watermark embedding. Existing approaches, such
as mirror maps and reflection methods, either support limited constraint sets or
introduce significant computational overhead. In this paper, we develop gauge
flow matching (GFM), a simple yet efficient framework for constrained generative
modeling that introduces a bijective gauge mapping to transform generation over
arbitrary compact convex sets into an equivalent process over the unit ball. Our
GFM framework guarantees strict constraint satisfaction with low computational
complexity and bounded distribution approximation errors. Extensive numerical
experiments show that GFM outperforms existing methods in generation speed and
quality across multiple benchmarks.

1 INTRODUCTION

Generative models have emerged as powerful tools for synthesizing complex data distributions,
achieving remarkable success in diverse applications ranging from image generation to scientific
simulation. Recent advances, particularly in diffusion models and flow-matching approaches, have
further pushed the boundaries of what’s possible in areas such as photorealistic image synthesis,
molecular design, and robotic trajectory planning.

However, many real-world applications necessitate generation under specific constraints. Image
generation might require watermark placement or physical consistency, inverse problems often involve
physical constraints, and robotic manipulation must respect joint limits and obstacle avoidance. These
constraints are fundamental to the problem domain and must be strictly satisfied for the generated
samples to be meaningful and useful.

Existing approaches to constrained generative modeling face significant limitations. While some
methods effectively handle specific constraint types, such as linear or simplex constraints, they lack
generality across different constraint classes. Other approaches employ penalty-based methods that
provide only approximate feasibility without guaranteed constraint satisfaction. A general, efficient
framework for constrained generation over arbitrary compact convex sets remains an open challenge.

This work proposes Gauge Flow Matching, addressing these challenges with following contributions:

▷ We develop a novel gauge mapping that transforms generative modeling over arbitrary compact
convex sets into an equivalent but simpler problem over the unit ball, where existing approaches such
as reflection or projection can be efficiently applied.

▷ We provide comprehensive theoretical analysis and extensive empirical validation demonstrating
our framework’s effectiveness in terms of feasibility, approximation capability, and computational
efficiency compared to state-of-the-art methods in constrained generative modeling.

∗Equal contribution.
†Corresponding author (minghua.chen@cityu.edu.hk).
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Table 1: Existing study on constrained diffusion/flow-matching models over continuous domain.

Methods Constraint Feasibility Approximation Training Inference
setting guarantee bound complexity complexity

RDMa (FKDB+23) Convex ✓ ✗ +++ +++
RDMb (LE23) Cube/Simplex ✓ ✗ ++ +++
RSB (DCY+24) Smooth + Bounded ✓ ✓ +++ +++
RFM (XZY+24) Convex ✓ ✓ + +++
Metropolis sampling (FKM+24) Manifold ✗ ✓ + ++

MDM (LCTT24) Ball/Simplex ✓ ✗ + +
NAMM (FBB24) (Non)-Convex ✗ ✗ +++ +

Projection-based (SKZ+23; CBF24) Convex ✓ ✓ + +++
Barrier methods (FKDB+23) Convex ✓ ✗ + +
Penalty-based (LDDB24; KDR24) General ✗ ✗ + +

Gauge Flow Matching Convex ✓ ✓ + +

1 Training/inference complexity is compared with the unconstrained versions of those generative models.

2 RELATED WORK

We review existing feasibility enforcement approaches for conventional end-to-end neural networks
(Appendix A.1) and recent diffusion/flow-based generative models (Appendix A.2).

For constrained generative modeling, feasibility strategies differ fundamentally between conven-
tional and modern generative models. While traditional VAEs and GANs can directly incorporate
regular neural network feasibility methods from Appendix A.1, diffusion and flow-based models
present unique challenges despite superior distribution approximation capabilities. These challenges
arise from their generation mechanism, which relies on forward integration with neural network-
approximated score functions or vector fields, rather than direct outputs. Table 1 summarizes
specialized approaches addressing these challenges, with detailed discussions in Appendix A.2.

In summary, existing works either lack performance guarantees or have limited applicable scenarios.
In this work, we propose a novel gauge mapping-based approach for constrained generative modeling.
While sharing conceptual similarities with mirror map-based methods, our approach distinguishes
itself through its broader applicability, theoretical analysis, and enhanced computational efficiency.

3 PROBLEM STATEMENT

We consider flow matching1-based generative modeling for a data distribution pdata over a general
compact convex 2 set C ⊂ Rn. The vanilla flow-matching model (LCBH+22; LGL22) is trained by
matching the designed conditional flow (e.g., linear flow) as:

min L(vθ) =
∫ 1

0

Ex0,x1,t

[
∥vθ(xt, t)− (x1 − x0)∥2

]
(1)

where xt = (1 − t)x0 + tx1 where x0 ∼ p0, x1 ∼ p1, and t ∼ U((0, 1)). The minimizer of the
flow matching loss in (1) yields a vector field that transforms a simple initial distribution (typically
Gaussian p0 = N (0, I)) into the target data distribution p1 = pdata. In practice, the vector field
is parameterized by a neural network vθ and optimized using samples from the target distribution
according to (1). Sample generation is achieved through forward integration x1 = x0+

∫ 1

0
vθ(xt, t)dt,

initializing from a Gaussian sample x0 and following the learned vector field vθ.

However, the generated samples often deviate from the constraint set C due to two sources of error:
neural network approximation error and numerical integration discretization error. While existing
approaches address this challenge (see Table 1), they suffer from either limited applicability or high
computational complexity. To address these limitations, we propose Gauge Flow Matching (GFM)
for efficient constrained generative modeling over general compact convex sets in the next section.

1While we consider the flow-based generative models in this work, the proposed methodology can also be
applied for diffusion-based models as discussed in Appendix B.

2Compact convex set includes linear-equality and convex-inequality constraints. In this work, we consider
the convex-inequality in the formulation without loss of generality. For linear-equality, it can be embedded in
an unconstrained subspace by selecting independent variables and reconstructing the dependent variables via
closed-from equality solving (THH23; DRK20; LCL23; DWDS23), see Appendix C for details. For unbounded
constraints, we may add additional box constraints to enforce physically meaningful limits.
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4 GAUGE FLOW MATCHING (GFM)

Figure 1: Gauge flow matching framework.

We introduce our GFM framework. It employs
gauge mapping—an explicit bijective mapping
between two convex sets—to transform com-
plex constrained generative modeling into mod-
eling over a simple unit ball. The framework (i)
builds the flow-matching model for transformed
data distribution over a unit ball through inverse
gauge mapping; and (ii) generates samples over
a unit ball and transforms them back to the orig-
inal space through forward gauge mapping.

Gauge Mapping between Convex Sets: We first introduce a bijective mapping between two compact
convex sets, termed gauge mapping:
Definition 4.1 (Gauge mapping (TZ22b)). Let γC(x, x◦) = inf{λ ≥ 0 | x ∈ λ(C − x◦)} be the
gauge function (BM08) given an interior point x◦ ∈ C. The gauge mapping Φ : B → C can be
defined between a unit p-norm ball and a compact convex set:

Φ(z) =
∥z∥p

γC(z, x◦)
z + x◦, ∀z ∈ B, Φ−1(x) =

γC(x− x◦, x◦)

∥x− x◦∥p
(x− x◦), ∀x ∈ C, (2)

As shown in Figure 1, gauge mapping Φ(·) establishes a bijective correspondence between any
compact convex set and a unit p-norm ball: C = Φ(B) and B = Φ−1(C). The gauge function
γC(x, x

◦) has closed-form expressions for common convex sets and can be efficiently computed via
bisection methods for general convex constraints. Details are provided in Appendix C.

Training Phase of GFM: Given the gauge mapping Φ between the convex set C and a unit ball B,
the flow matching model is trained on a transformed space as:

min L(vθ) =
∫ 1

0

Ez0,z1,t

[
∥vθ(zt, t)− (z1 − z0)∥2

]
, (3)

where the initial samples z0 are selected as a simple distribution within the unit ball (e.g., uniform),
the terminal samples are transformed from the data sample from the target distribution z1 = Φ−1(x1),
and the conditional flow is linear as zt = (1− t)z0+ tz1. We then leverage the regular flow matching
training approach to train a neural network vector field vθ following (3).
Remark 1. Mirror map-based generative models also employ a bijective mapping to transform con-
strained distributions to the unconstrained dual space (LCTT24). However, it is only computationally
tractable for simple convex sets (ball and simplex), and it maps near-boundary samples to infinity
in the dual spaces, challenging the transformed generative modeling. In contrast, gauge mapping is
computationally efficient for any compact convex set and maintains bounded Lipschitz constants for
both sides (see Appendix D for details), crucial for NN training and bounding approximation errors.

Inference Phase of GFM: After training, we generate the samples within the unit ball following the
NN-based vector field with an additional reflection term (XZY+24):

z1 = z0 +

∫ 1

0

(vθ(zt, t) + L(zt))dt, (4)

where z0 is uniformly sampled from a unit ball, and L(zt) is the reflection term when zt hits the
constraint boundary, which has a closed-form expression for a simple ball or cube. Finally, we recover
the sample to the original space following the forward gauge mapping as x1 = Φ(z1).
Remark 2. The existing reflection-based generative models also utilize an additional reflection term
to keep the generation trajectory within the constraint set (LE23; XZY+24). However, they are
computationally expensive beyond simple sets (e.g., ball and simplex), thus limiting their potential for
more complex sets. In contrast, after transforming the generative modeling over a unit ball through
gauge mapping, we can easily implement a closed-form reflection term with O(n) complexity, thus
ensuring efficient sample generation within the ball and strict sample feasibility by gauge mapping.

Performance Analysis: In Appendix D, we provide comprehensive performance analysis for GFM
regarding its distribution approximation error, feasibility guarantee, and run-time complexity over
general convex sets, and discuss the impacts of key designs in GFM on those metrics. We also discuss
its limitations and extensions for more general constraints in Appendix B.
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Table 2: Performance comparison on low-dim. convex-constrained generation task.
Constraint Metrics Vanilla FM Reflected FM Projected FM GFM

Polytope
(n = 2)

MMD (↓) 0.06209 0.06155 0.06165 0.04154
Feasibility Rate (%) 95.69 100 100 100
Inference Time (s) 3.412 5.616 4.776 3.746

Quadratic set
(n = 3)

MMD (↓) 0.06311 0.06313 - 0.05866
Feasibility Rate (%) 89.98 100 - 100
Inference Time (s) 3.679 10.22 >3600 3.675

1 Solving projection onto quadratic constraint set (i.e., convex QCQP) by (DB16) incurs significant computational costs.

Figure 2: The visualization over 2-dim generative task

Figure 3: Time of computing an interior point offline (Left); Time of computing gauge mapping
during online generation for different constraint dimensions (Center); Time of computing gauge
mapping during online generation for different numbers of samples (Right).

5 EMPIRICAL STUDY
We conduct extensive simulations to demonstrate the effectiveness of the GFM framework. Baselines:
we consider the following constrained generative models: (i) vanilla flow matching (LCBH+22);
(ii) reflected flow matching (XZY+24); (iii) projected generation (CBF24); and (iv) the proposed
gauge flow matching. Metrics: we evaluate those baselines based on (i) constraint satisfaction, (ii)
distribution approximation quality, and (iii) run-time complexity. Detailed experimental settings are
provided in Appendix E. Code is available via Github.

Low-dim. Toy Example: We first evaluate GFM’s efficiency in low-dimensional convex-constrained
domains. As shown in Table 2 and Figure 2, for simple polytope constraints, GFM achieves 100%
feasibility rate and comparable MMD scores to baselines while reducing computational costs. For
more complex quadratic inequality constraints where conventional reflection and projection-based
models fail due to lack of closed-form solutions, GFM maintains both computational efficiency and
MMD performance comparable to vanilla FM.

High-dim. Scalability Tests: We then evaluate GFM’s scalability in high-dimensional convex-
constrained spaces by measuring the forward computational time of gauge mapping when transform-
ing the generated samples from a unit ball to the target constraint set, including linear inequality,
quadratic inequality, and linear matrix inequality (LMI) (THH23). As shown in Figure 3, it remains
efficient for various convex constraints up to 103 dimensions while generating 106 batched samples,
demonstrating its potential for high-dimensional generative tasks.

Constrained Generation for Robotic Control: We apply GFM to constrained generative modeling
for robotic control, focusing on manipulability analysis. A robot’s manipulability is represented by a
symmetric positive-definite (SPD) matrix M ∈ Sd++ with trace constraints tr(M) ≤ C. Using the
planar robotic arms benchmark for letter drawing (JRCC21), Figure 5 demonstrates the generated
velocity manipulation ellipses M ∈ S2

++ and their corresponding trajectories x ∈ R2. GFM
successfully models this joint distribution while maintaining zero constraint violations.

Ablation Study: In Appendix E.3, we present a comprehensive ablation study examining key
components of GFM, including (i) the effect of norm choice for the unit ball; (ii) the impact of interior
point x◦ selection; and (iii) alternative strategies for unit ball sampling beyond reflection.
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A RELATED WORK

A.1 CONVENTIONAL NEURAL NETWORK FEASIBILITY

Research on ensuring neural network feasibility can be categorized into several approaches:

Basic Constraint Handling: Specialized activation functions (Sigmoid/Softmax) address basic constraints
such as box or simplex (PCZL22; DRK20). Penalty of output constraint violations can be incorporated into loss
functions to improve NN feasibility (COMB19; PZCZ20; NC21).

Strict Satisfaction Methods: For exact equality constraint satisfaction, prediction-then-reconstruct or com-
pletion techniques can be applies (DRK20; PCZL22; LCL23) For more general constraint enforcement, or-
thogonal/L2 projection is often employed. However, solving the projection problem either by iterative solver
or equivalent optimization layers (AK17; AAB+19; CDB+21; WZG+23) is computationally intensive in
real-time. More efficient homeomorphic projection can also be applied at the cost of minor optimality loss
(LCL23; LCL24).

Sampling Approach: To guarantee feasibility, an inner approximation of the original constraint set can be
constructed. For linear constraints, vertex networks employ a convex combination of sampled vertexes and
rays to ensure policy feasibility (FNC20; ZSRZ21). For general compact but fixed constraint sets, probabilistic
transformer utilizes feasible samples to ensure feasibility (KZLD21). However, scalability remains a challenge
due to the exponential growth in required samples with increasing problem dimensionality.

Preventive learning. a Preventive Learning framework is proposed for ensuring linear constraint feasibility in
(ZPC+20; ZPCL23). It first adjusts inequality constraints to account for NN prediction errors. Subsequently, it
trains the NN using mixed-integer programming techniques to limit the worst-case prediction error. However, it
lacks an optimality guarantee. Additionally, other NN verification techniques can also be applied to assess the
worst-case performance (VQLC20; uAYKJ22; LAL+21).

Gauge function. These works utilize gauge functions (BM08) to constrain the NN. A closed-form bijection,
known as gauge mapping, between a hypercube and a polytope is used to bound the NN output within the
polytope (TZ22a; TZ22b; LKM23). For fixed convex constraints, RAYEN and several works apply analytic
expressions for gauge functions to find feasible boundary solutions (THH23; KU23; LM23; TVH24). However,
these approaches only work for convex sets.

A.2 CONSTRAINED GENERATIVE MODELING

Recent advances in diffusion/flow-matching based constrained generative modeling have several directions:

Reflected Process: These approaches leverage reflection mechanisms to constrain generation trajectories within
feasible regions. Different methods have been proposed for training score functions with reflection terms: RDMa

employs implicit score matching (FKDB+23), RDMb develops an approximated denoising score matching
approach (LE23), and RSB utilizes iterative proportional fitting (DCY+24). RFM extends this framework to
flow-based generation over convex sets by incorporating reflected directions into ODEs (XZY+24). While
effective, these reflection-based methods incur significant computational overhead during forward integration,
requiring complex boundary localization and reflection calculations. A recent Metropolis sampling approach
addresses the computational burden of reflection calculations (FKM+24), proving convergence to reflected
Brownian motion as the step size approaches zero, though it lacks strict feasibility guarantees.

Bijective Map: These approaches utilize bijective mappings to transform constrained domains. RDM maps
simplexes to unit cubes, enabling scalable denoising score matching (LE23). MDM employs mirror maps
to transform constrained data into unconstrained dual space (LCTT24), though its applicability is limited
to simple convex sets like balls and simplexes. NAMM generalizes this approach using neural networks
to approximate mirror maps for arbitrary sets (FBB24), but lacks theoretical guarantees for feasibility and
distribution accuracy. This bijective mapping framework has also found applications in continuous embedding
of discrete data (DKP+24).

Guided Generation: These methods incorporate auxiliary terms to guide the generation process toward
constraint satisfaction. Ω-Bridge leverages Doob’s h-transform to construct diffusion bridges over constrained
domains, incorporating time-dependent force terms (LW23). Log-barrier diffusion models maintain feasibility
through logarithmic barrier functions (FKDB+23). PDM enforces constraints via iterative projection (CBF24),
a technique that has been successfully adapted for manifold constraints (CSRY22; SDCS23).

Penalty Training/Fine-tuning: Constraint violation penalties can be directly incorporated into diffusion model
training objectives (LDDB24). Recent work has introduced Lagrangian-based training with dual variable updates
for handling KL-constraints (KDR24). Post-training fine-tuning with custom loss functions, including constraint
penalties, offers another pathway for improving constraint satisfaction (FL23; UZB+24).

9
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B LIMITATIONS AND FUTURE DIRECTIONS

While our GFM framework demonstrates promising results, several important limitations and future research
directions warrant discussion:

Our work primarily focuses on flow-matching-based generative modeling, though we note that the gauge
mapping can also enable diffusion-based generative modeling over a unit ball, which can then be transformed
back to the constraint set to enforce feasibility. In the inference phase, while we generate samples within a ball
through a reflection-based scheme, we note that projection-based generation could also be applied to enforce
feasibility within a ball with low computational complexity. Theoretical characterization of these design choices
remains an important direction for future work.

The current GFM framework primarily addresses compact convex constraint sets, encompassing linear equality
constraints and convex inequality constraints. Extending the current framework to more general constraint
sets presents interesting future directions. For manifold constraints, one could extend the gauge mapping for
convex constraints over manifolds to handle more general generative modeling over manifolds. For non-convex
inequality constraints, we can extend the gauge mapping to star-shaped non-convex sets by identifying proper
interior points. More general non-convex sets may require developing more sophisticated bijective mappings.

Given the current trend toward distillation and consistency training for one-step generation, incorporating
constraints during these processes could lead to better feasibility performance. A theoretical understanding of
the trade-off between generation speed and sample fidelity, particularly regarding feasibility and optimality,
warrants further investigation.

The current framework assumes fixed constraints during training and inference. However, many practical
applications require handling dynamic, input-dependent constraints or guided generation scenarios. Extending
GFM to a conditional version for dynamic constraints remains an open challenge. This could involve developing
architectures that jointly learn condition-dependent bijective mappings and generative modeling to handle
input-dependent constraint sets.

These limitations present exciting opportunities for future research in constrained generative modeling. Ad-
dressing them would significantly expand the practical applicability of gauge flow matching to more complex
real-world scenarios.

C GAUGE MAPPING OVER GENERAL CONVEX SETS

A general compact convex set encompasses both linear equality and convex inequality constraints.

C = {x ∈ Rn | Ax = b, g1(x) ≤ 0, · · · , gm(x) ≤ 0}, (5)

where A ∈ Rr×n, b ∈ Rr , and g1(x), . . . , gm(x) are convex functions.

This section presents a systematic approach to handling such sets by first eliminating linear equality constraints,
followed by computing gauge mappings for the remaining inequality constraints.

C.1 HANDLING LINEAR EQUALITY CONSTRAINTS

Without loss of generality, assuming rank(A) = r, we partition the decision variable x into x1 ∈ Rn−r and
x2 ∈ Rr . Accordingly, we partition matrix A into A = [A1, A2], where A1 ∈ Rr×(n−r) and A2 ∈ Rr×r . The
equality constraint Ax = b can then be written as:

A1x1 +A2x2 = b (6)

By choosing the partition such that A2 has full rank r, we can express x2 explicitly in terms of x1:

x2 = ϕ(x1) = A−1
2 (b−A1x1) (7)

This transformation reduces the original set to one with only inequality constraints:

Cs = {x1 ∈ Rn−r | g([x1, ϕ(x1)]) ≤ 0} (8)

Therefore, we only consider the inequality constraints in the main body of this work.

C.2 GAUGE MAPPING FOR INEQUALITY CONSTRAINTS

Definition C.1 (Gauge/Minkowski function (BM08)). Let C ⊂ Rn be a compact convex set with a non-empty
interior. The Gauge/Minkowski function γC : Rn × int(C) → R+ is defined as

γC(x, x
◦) = inf{λ ≥ 0 | x ∈ λ(C − x◦)}, (9)

where x◦ ∈ int(C) is an interior point of C.
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The Gauge function generalizes the concept of a norm. For a set C that is symmetric about the origin, the gauge
function γC(x, 0) defines a norm. In particular, when C = Bp = {x ∈ Rn | |x|p ≤ 1} is the unit ball of the
p-norm, we have γBp(x, 0) = ∥x∥p.

Building upon this foundation, we define the gauge mapping between two compact convex sets:

Definition C.2 (Gauge Mapping (TZ22a)). Let Z,X ⊂ Rn be compact convex sets with interior points
z◦ ∈ int(Z) and x◦ ∈ int(X ), respectively.

The gauge mapping Φ : Z → X is defined as:

Φ(z) =
γZ(z − z◦, z◦)

γX (z − z◦, x◦)
(z − z◦) + x◦, z ∈ Z (10)

The inverse mapping Φ−1 : X → Z is given by:

Φ−1(x) =
γX (x− x◦, x◦)

γZ(x− x◦, z◦)
(x− x◦) + z◦, x ∈ X (11)

• In essence, the gauge mapping scales the boundary of a convex set from an interior point to another
convex set and with translation to its interior point.

• When Z is a unit p-norm ball, the gauge mapping is simplified in Def. 4.1 as:

Φ(z) =
∥z∥p

γC(z, x◦)
z + x◦, ∀z ∈ B, Φ−1(x) =

γC(x− x◦, x◦)

∥x− x◦∥p
(x− x◦), ∀x ∈ C, (12)

Definition C.3 (Point-to-boundary distance and its inverse (THH23)). Let C ⊂ Rn be a compact convex set
and x◦ ∈ int(C) an interior point. For any unit vector v ∈ Sn−1 = {u ∈ Rn | ∥u∥ = 1}, we define the
interior-point-to-boundary distance function dC : int(C)× Sn−1 → R+ along direction v as

dC(x
◦, v) = sup{λ ≥ 0 | x◦ + λv ∈ C}. (13)

The inverse distance function κC : int(C)× Sn−1 → R+ is defined as κC(x
◦, v) := 1/dC(x

◦, v).

• This distance function relates to the gauge function as:

γC(x, x
◦) = κC(x

◦, x/∥x∥) · ∥x∥ =
∥x∥

dC(x◦, x/∥x∥) (14)

• The gauge mapping between B2 and C can be simplified as:

Φ(z) = dC(x
◦, z/∥z∥) · z + x◦, ∀z ∈ B (15)

Φ−1(x) =
x− x◦

dC(x◦, x− x◦/∥x− x◦∥) , ∀x ∈ C (16)

Table 3 provides closed-form expressions for the inverse distance function across various constraint types. Most
matrix calculations can be computed and stored offline before being applied online given v. When the inverse
distance function lacks an explicit expression, we employ an efficient bisection algorithm detailed in Alg. 1. This
algorithm supports batch processing, enabling efficient parallel computation for multiple inputs simultaneously.

D THEORICAL RESULTS

Assumption 1. We made the following assumptions for the error analysis.

▷ The NN-based velocity model vθ is Lθ-Lipschitz in x uniformly on t

▷ The approximation error of the NN-based velocity model is bounded as: ϵ2θ =
∫ 1

0
Ept(x)∥vθ(x, t)−vt(x)∥2 dt

We remark that those assumptions are common for error analysis for the flow/diffusion-based generative models
(KFL22; BDD23; XZY+24).

Lemma 1 (Error Bound for Flow Matching (BDD23)). For vanilla flow matching model: x1 = x0 +∫ 1

0
vθ(x, t) dt, with induced probability distribution pθ at t = 1. The squared Wasserstein-2 distance be-

tween the data distribution pdata(x) and the approximated distribution pθ(x) is bounded by

W 2
2 (pdata(x), pθ(x)) ≤ e2Lθ ϵ2θ (17)
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Table 3: Closed-form Expressions for Inverse Distance Functions (THH23)
Constraints Formulation Inverse Distance Function

Intersections {g1(x) ≤ 0, · · · , gm(x) ≤ 0} κg(x
◦, v) = max

1≤i≤m
{κgi(x

◦, v)}

Linear gL(x) = a⊤x− b ≤ 0 κgL(x
◦, v) = { a⊤v

b−a⊤x◦ }+

Quadratic gQ(x) = x⊤Qx+ a⊤x− b ≤ 0 κgQ(x◦, v) = {1/root(AQ, BQ, CQ)}+
Second Order Cone gS(x) = ∥A⊤x+ p∥2 − (a⊤x+ b) ≤ 0 κgS (x

◦, v) = {1/root(AS , BS , CS)}+
Linear Matrix Inequality gM (x) =

∑n
i=1 xi · Fi + F0 ⪰ 0 κgM (x◦, v) = {eig(L⊤(−S)L)}+

1 Notation: x, a ∈ Rn, b ∈ R, Q ∈ Sn
+, A ∈ Rn×m, p ∈ Rm, F0, · · · , Fn ∈ Rm×m, X ∈ Rn×n

2 (·)+ = max(·, 0)
3 root(x1, x2, x3) =

−x2±
√

x2
2−4x1x3

2x1
denotes the quadratic equation solution

4 eig(X) = λ1, · · · , λn denotes the eigenvalues satisfying det(X − λI) = 0
5 AQ = v⊤Qv, BQ = 2x◦⊤Qv + a⊤v, CQ = x◦⊤Qx◦ + a⊤x◦ − b
6 AS = (A⊤v)⊤(A⊤v)− (a⊤v)2, BS = 2(A⊤x◦ + p)⊤(A⊤v)− 2(a⊤x◦ + b)(a⊤v), CS = (A⊤x◦ +
p)⊤(A⊤x◦ + p)− (a⊤x◦ + b)2

7 H = F0 +
∑n

i=1 x
◦
iFi , H

−1 = L⊤L , S =
∑n

i=1 viFi

Algorithm 1 Bisection Algorithm for Point-to-Boundary Distance
Input: A compact convex set C, an interior point x◦ ∈ int(C), and a unit vector v.

1: Initialize: αl = 0 and αu = 1
2: while |αl − αu| ≥ ϵ do
3: if x◦ + αu · v ∈ C then
4: increase lower bound: αl ← αu

5: double upper bound: αu ← 2 · αm

6: else
7: bisection: αm = (αl + αu)/2
8: if x◦ + αm · v ∈ C then
9: increase lower bound: αl ← αm

10: else
11: decrease upper bound: αu ← αm

12: end if
13: end if
14: end while
Output: dC(x◦, v) ≈ αm

Lemma 2 (Error Bound for Reflected Flow Matching (XZY+24)). For reflected flow matching model: x1 =

x0 +
∫ 1

0
vθ(x, t) + L(xt) dt, with induced probability distribution prθ at t = 1. The squared Wassserstein-2

distance between the data distribution pdata(x) and the approximated distribution prθ(x) is bounded by

W 2
2 (pdata(x), p

r
θ(x)) ≤ e1+2Lθ ϵ2θ (18)

Proposition D.1 (Error Bound for Gauge Flow Matching). Consider the gauge flow matching with a gauge
mapping Φ and transformed data distribution as qdata = Φ−1

# pdata, where # is the push-forward operator.

▷ For GFM model with reflected generation: x1 = Φ(z0 +
∫ 1

0
vθ(z, t) + L(zt) dt), with induced probability

distribution pgrθ at t = 1. The squared Wassserstein-2 distance between the data distribution pdata(x) and the
approximated distribution pgrθ (x) is bounded by

W2
2 (pdata, p

gr
θ ) ≤ L2

Φe
1+2Lθ ϵ2θ (19)

where Lϕ is the Lipschitz of the gauge mapping over B.

Proof.

W2
2 (pdata, p

gr
θ ) = inf

γ=Π(pdata,p
gr
θ

)
{
∫

∥x1 − x2∥2)dγ} (20)
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= inf
γ=Π(qdata,q

gr
θ

)
{
∫

∥Φ(z1)− Φ(z2)∥2)dγ} (21)

= L2
Φ inf

γ=Π(qdata,q
gr
θ

)
{
∫

∥z1 − z2∥2)dγ} (22)

≤ L2
ΦW2

2 (qdata, q
r
θ) (23)

≤ L2
Φe

1+2Lθ ϵ2θ (24)

Proposition D.2 (Lipschitz of Gauge Mapping). Let a scaling function defined as: s(x◦, z) = dC(x
◦, z

∥z∥ )
∥z∥p
∥z∥2

,
where dC(x

◦, z
∥z∥ ) is the distance function from an interior point x◦ ∈ C along a direction z

∥z∥ for a compact
convex set C. The Lipschitz of the gauge mapping between a p-norm Bp and a compact convex set can be
bounded as:

LΦ ≤ sup
z∈B

{s(x◦, z)}︸ ︷︷ ︸
maximum scaling ratio

+ sup
z∈B

{∥∂s(x
◦, z)

∂z
∥}︸ ︷︷ ︸

maximum variation of scaling ratio

(25)

Proof. Consider the gauge mapping between p-norm ball Bp and a compact convex set C:

Φ(z) = dC(x
◦,

z

∥z∥ )
∥z∥p
∥z∥2︸ ︷︷ ︸

scaling function: s(x◦, z)

·z + x◦, ∀z ∈ B (26)

First, the distance function is sub-differentiable for a convex set defined by a set of differentiable convex
inequality. To calculate the Lipschitz of the gauge mapping, we consider the Jacobian of Φ

JΦ(z) = s(x◦, z) · I +
∂s(x◦, z)

∂z
z⊤ (27)

The Lipschitz of a mapping can be expressed as the maximum singular value of its Jacobian over B:

LΦ = sup
z∈B

{σmax(JΦ(z))} (28)

≤ sup
z∈B

{σmax(s(x
◦, z) · I) + σmax(

∂s(x◦, z)

∂z
z⊤)} (29)

≤ sup
z∈B

{s(x◦, z)}︸ ︷︷ ︸
maximum scaling ratio

+ sup
z∈B

{∥∂s(x
◦, z)

∂z
∥}︸ ︷︷ ︸

maximum variation of scaling ratio

(30)

The Lipschitz constant of gauge mappings between compact sets remains inherently. This property stands in
stark contrast to mirror mapping-based generative models (LCTT24), which map open convex sets to Rn. In
the latter case, the Lipschitz constant can grow unbounded as points near the boundary are mapped to infinity,
significantly complicating approximation error analysis. Our Gauge Flow Matching circumvents this limitation,
providing theoretical guarantees on the Wasserstein-2 distance between the learned and data distributions.

To optimize the model’s performance, we minimize the Lipschitz constant of the gauge mapping by identifying
an interior point x◦ that serves as the “center” of the constraint set. Ideally, this point should maintain uniform
distances to all boundaries of the constraint set. Consider a unit ball C as an illustrative example: when x◦ is
positioned at its geometric center, the Jacobian matrix reduces to the identity matrix since the distance from x◦

to any boundary point equals 1, yielding zero directional derivatives.

In practice, we seek such a “central” interior point by solving the following residual minimization problem
through convex optimization in the offline phase (THH23):

min
x◦

η (31)

s.t. gi(x
◦) ≤ η i = 1, · · · ,m (32)

We note that solving this convex optimization problem with a linear objective incurs only polynomial time
complexity. As this computation is performed offline prior to model training, it adds negligible overhead to the
overall computational cost.

For the online inference complexity, we establish the following proposition:

13
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Proposition D.3 (Inference Complexity for Gauge Flow Matching). Consider a compact convex set C ⊂ Rn

defined by constraints gi(x) ≤ 0, for i = 1, 2, . . . ,m. The computational overhead for GFM infer-
ence—specifically, forward integration and the gauge mapping calculation—is O(NFE · n2 +mC), where
C = max1≤i≤m{Ci} and Ci denotes the complexity of computing the point-to-boundary distance λ for a unit
vector v such that gi(x◦ + λv) = 0. The complexity Ci varies by constraint type:

1. For linear constraints gi(x) = a⊤x− b ≤ 0, Ci ∼ O(n).

2. For quadratic constraints gi(x) = x⊤Qx+ a⊤x− b ≤ 0, Ci ∼ O(n2);

3. For second-order cone constraints gS(x) = ∥A⊤x+ p∥2 − (a⊤x+ b) ≤ 0, Ci ∼ O(n2);

4. For general convex constraints gi, Ci ∼ O(ci log
1
ϵ
) (using bisection), where ci is the complexity of

evaluating gi given a point.

The forward integration complexity of our model aligns with standard flow matching approaches, requiring NFE
(Number of Function Evaluations) multiplied by the forward computation complexity of the neural network vθ .
The additional reflection or projection operations onto the ball or cube incur negligible overhead with their O(n)
complexity compared to the NN forward calculation. For gauge mapping computation, given that the interior
point is pre-computed offline, the bisection algorithm achieves linear convergence with minimal per-iteration
complexity, merely requiring constraint satisfaction verification.

In conclusion, GFM offers three key advantages: (1) it handles general compact convex sets, extending beyond
simple set constraints; (2) it maintains bounded Lipschitz constants for bijective gauge mappings between
compact sets, with theoretical guarantees on distribution distances; (3) it achieves efficient computation through
polynomial-time preprocessing and linear-time online inference for common constraints, with minimal additional
cost for general constraints

E EXPERIMENTAL SETTINGS AND RESULTS

In the following subsections, we describe the experimental settings to generate the results reported in section 5.
The proposed model is implemented in pytorch (PGM+19), and all models are trained using Adam (KB14) with
parameters β1 = 0.99, β2 = 0.999 and learning rate 10−3. The vanilla interpolating trajectories are solved by
(CRBD18) and we utilized (XZY+24) to solve the reflected ODE Equation 4.

E.1 GENERATION UNDER COMMON CONVEX CONSTRAINTS

Baselines: We consider the following baselines:

1. Vanilla flow matching: it implements standard flow matching procedures for both training and
generation (LGL22; LCBH+22), without any specialized constraint handling mechanisms.

2. Reflected flow matching: it extends the basic flow matching framework with reflected generation
(XZY+24), leveraging reflection terms for constraint boundaries.

3. Projected flow matching: it incorporates projected generation (CBF24), applying orthogonal projec-
tions whenever forward trajectories violate the specified constraints.

4. Gauge flow matching (vanilla): It transforms the data distribution through inverse gauge mapping
while maintaining standard integration procedures during generation, without additional constraint
processing.

5. Gauge flow matching (reflected): It combines gauge transformation with reflection terms to ensure
trajectories remain within the unit ball through systematic reflection operations, which is the approach
adopted in the main body of this work.

6. Gauge flow matching (projected): It integrates gauge transformation with projection operations to
maintain sample trajectories within the unit ball constraint.

7. Gauge flow matching (mirror): it employs closed-form mirror mapping (LCTT24) during generation
to naturally constrain all forward samples within the unit ball.

Problem settings: We test different generative models on some common convex-constrained sets: (1) polytopes
Gx ≤ h of different dimensions, and (2) quadratic constraints 1

2
xTQx+ pTx+ d ≤ 0. All constrained sets are

randomly generated and validated to have a non-empty interior. We also select the interior point for the gauge
mapping by solving Equation 32 in Appendix D. Data are sampled from mixed Gaussian distribution, whose
location parameter is generated randomly, and covariance is set to 0.3Id.
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Model settings: We model the velocity field by two hidden layers with exponential linear unit (ELU) activation
functions. The hidden layers contain 64 units for 2-dimensional and 3-dimensional tasks, 96 units for 6-
dimensional tasks, and 128 units for 10-dimensional tasks. We train the models for 10 000 epochs with a batch
size of 256 and the optimizer of Adam with a learning rate of 5e-3 and decaying by 0.99 every 100 epochs. The
prior distribution is the uniform distribution over the constrained domain. Samples are generated by the Euler
algorithm in 100 steps, and for the reflected/projected methods, additional reflection/projection is performed
after each integration step.

Figure 4: Generated samples by different methods in one 2-dimensional polytope-constrained
generation task. From left to right (Data distribution, Vanilla FM, Reflected-GFM, Projected-GFM,
and Mirror-GFM.)

Table 4: Performance comparison on polytope-constrained generation task.
Vanilla Reflected Projected Vanilla-GFM Reflected-GFM Projected-GFM

d = 2
Inference Time (s) 3.412 5.616 4.776 3.217 3.746 2.890

Feasibility Rate (%) 95.69 100 100 93.93 100 100
MMD (×10−2 ↓) 6.209 6.155 6.165 4.282 4.154 4.163

d = 6
Inference Time (s) 5.019 10.85 7.571 5.198 6.981 5.749

Feasibility Rate (%) 88.49 100 100 88.66 100 100
MMD (×10−2 ↓) 2.150 2.140 2.142 3.701 3.638 3.644

d = 10
Inference Time (s) 5.706 13.82 7.666 5.600 7.058 6.337

Feasibility Rate (%) 76.21 100 100 90.62 100 100
MMD (×10−3 ↓) 5.944 5.903 5.918 7.488 7.526 7.524

1 The performance metrics are averaged over 10 runs.
2 Percentages in the brackets are the relative difference of inference time compared to the vanilla models.

E.2 SPD MATRIX GENERATION

Problem settings: We follow the procedure reported by (JRCC21) to learn the trajectories of manipulability
ellipse. In planar letter drawing problems, the manipulability ellipse are modeled by SPD matrices M ∈ S2

++,
i.e.,

M = x1

(
1 0
0 0

)
+ x2

(
0 1
1 0

)
+ x3

(
0 0
0 1

)
⪰ 0, (33)

trM = x1 + x3 ≤ C. (34)
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Data GFM

Figure 5: Joint distribution over SPD matrices (demonstrated as manipulation ellipse) and their
position for letter L.

In the original settings, the trajectories are learned by an independent model, which parameterize the trajectory
as p(t) : [0, 1] → R2. Therefore, we parameterize our models as {M ∈ S2 | M ⪰ 0, trM ≤ C} × [0, 1].

Model settings: We model the time-variant velocity field by 2 hidden layers with 128 unit each and ELU
activation functions. We train the models for 10 000 epochs with batch size of 64, and prior distribution as the
uniform distribution over the constrained domain. Samples are generated in 10 steps.

E.3 ABLATION STUDY

We consider the following ablation study to examine key components of GFM, including

1. Choice of norm for unit ball constraint: ℓ2-norm ball and ℓ∞-norm cube

2. Selection of interior point x◦: Central interior point and near-boundary interior point

Model settings: We model the velocity field by 2 hidden layers with 64 units each and ELU activation
functions. We train the models for 10 000 epochs with a batch size of 32 and prior distribution as the uniform
distribution over the constrained domain. Samples are generated by the Euler algorithm in 100 steps, and for the
reflected/projected methods, additional reflection/projection is performed after each step.

Data distribution: For the 2-dimensional example reported in section 5, we set the constrained domain to be
Ax ≤ b,

∥x− c∥2 ≤ 2.5,

xTQx+ pTx+ d ≤ 0,

(35)

where

A =

 1 0
0 1
−1 0
0 −1

 , b =

 2
1.5
0
0

 , c =

(
0.3
0.5

)
,

Q =

(
0.5467 −0.5600
−0.5600 1.3867

)
, p =

(
−0.0427
−0.6880

)
, d = −0.8345.

Training data are generated from a mixed Gaussian distribution

p0 ∼ 0.4N (µ1,Σ1) + 0.3N (µ2,Σ2) + 0.4N (µ3,Σ3), (36)

where

µ1 =

(
0
0

)
, µ2 =

(
1.0
1.2

)
, µ3 =

(
2.0
0.6

)
,

Σ1 =

(
0.32 0
0 0.08

)
, Σ2 =

(
0.15 0.30
0.30 0.90

)
, Σ3 =

(
0.68 −0.17
−0.17 1.19

)
.
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We set a “central” interior point for the Gauge map as

x0 =

(
1.0
0.5

)
. (37)

Table 5: Performance comparison on 2-dimensional constrained generation task.
Vanilla-GFM Reflected-GFM Projected-GFM Mirror-GFM

Central Inference Time (s) 3.472 3.865 4.116 3.343
+ KL Divergence (↓) 0.1310 0.1307 0.1327 0.8342

L∞ norm MMD (↓) 0.02932 0.02936 0.02934 0.09477

Near border Inference Time (s) 3.694 3.135 4.367 3.594
+ KL Divergence (↓) 0.1849 0.1826 0.1982 1.808

L∞ norm MMD (↓) 0.02471 0.02502 0.02496 0.1182

Central Inference Time (s) 3.754 3.556 2.911 3.465
+ KL Divergence (↓) 0.1310 0.1300 0.1351 1.808

L2 norm MMD (↓) 0.02932 0.02942 0.02939 0.1182

Figure 6: Generated samples by different methods on a 2-dimensional constrained generation task.
From left to right (Data distribution, Vanilla-GFM, Reflected-GFM, Projected-GFM, and Mirror-
GFM.)
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