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Abstract001

Large language models (LLMs) face growing002
challenges in efficient generative inference due003
to the increasing memory demands of Key-004
Value (KV) caches, especially for long se-005
quences. Existing eviction methods typically006
retain KV pairs with high attention weights but007
overlook the impact of attention redistribution008
caused by token removal, as well as the spatial-009
temporal dynamics in KV selection. In this010
paper, we propose ReST-KV, a robust KV evic-011
tion method that combines layer-wise output012
Reconstruction and Spatial-Temporal smooth-013
ing to provide a more comprehensive perspec-014
tive for the KV cache eviction task. Specifi-015
cally, ReST-KV formulates KV cache eviction016
as an optimization problem that minimizes out-017
put discrepancies through efficient layer-wise018
reconstruction. By directly modeling how each019
token’s removal affects the model output, our020
method naturally captures attention redistribu-021
tion effects, going beyond simplistic reliance022
on raw attention weights. To further enhance023
robustness, we design exponential moving av-024
erage smoothing to handle temporal variations025
and an adaptive window-based mechanism to026
capture spatial patterns. Experiments show that027
ReST-KV improves average accuracy by up to028
2.58% over state-of-the-art baselines on Long-029
Bench, consistently outperforms existing meth-030
ods on RULER, Needle-in-a-Haystack, and In-031
finiteBench, and achieves a 10× reduction in032
decoding latency at 128k context length. Code033
is included in the supplementary material and034
will be released soon.035

1 Introduction036

Large language models (LLMs)(Achiam et al.,037

2023; Anthropic, 2023; Dubey et al., 2024; Mis-038

tralAI, 2023) have significantly advanced natural039

language processing (NLP). These models have en-040

abled breakthroughs in various tasks, such as doc-041

ument summarization(Zhang et al., 2024a), multi-042

turn dialogues (Du et al., 2021), retrieval aug-043

Figure 1: Comparison between ReST-KV and existing
methods. Unlike prior approaches that overlook atten-
tion redistribution, ReST-KV considers its impact to
improve KV retention under limited cache.

mentation (Yao et al., 2022), and code genera- 044

tion (Roziere et al., 2023). Recent models like GPT- 045

4 (Achiam et al., 2023), Claude 3.5 (Anthropic, 046

2023), and Llama-3.1 (Dubey et al., 2024) have ex- 047

tended their context lengths beyond 128K tokens, 048

allowing for long-context applications. However, 049

as context length increases, the memory required 050

to store KV cache grows rapidly, potentially reach- 051

ing hundreds of gigabytes when handling longer 052

sequences. Thus, optimizing KV cache during in- 053

ference, without retraining, is crucial for improving 054

both efficiency and scalability. 055

KV cache eviction, which identifies and removes 056

less important KV pairs, is a promising approach to 057

reduce memory consumption and enhance compu- 058

tational efficiency (Li et al., 2024a). Current meth- 059

ods typically rely on fixed attention patterns (Han 060

et al., 2024; Ge et al., 2023) or use statistical infor- 061

mation from attention weights (Zhang et al., 2023; 062

Li et al., 2024b; Cai et al., 2024) to estimate the 063

importance of KV pairs. However, as shown in Fig- 064

ure 1, these approaches focus solely on retaining 065

query-key pairs with high similarity scores, while 066

ignoring the attention redistribution effects caused 067

by removing certain pairs. This redistribution can 068

alter the overall attention landscape, leading to sub- 069

optimal retention decisions and degraded perfor- 070

mance, especially under tight cache constraints. 071

In this paper, we propose ReST-KV, a robust 072

KV cache eviction method that accounts for the 073
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effects of attention redistribution and the spatial-074

temporal dynamics in KV selection. We revisit the075

KV cache eviction problem and reformulate it as076

preserving the attention output at each layer under077

fixed memory constraints. Specifically, we mea-078

sure the reconstruction loss caused by removing079

each individual KV pair, and use it as an eviction080

indicator: the larger the loss, the more important081

the KV pair. This loss implicitly captures the im-082

pact of attention redistribution caused by the re-083

moval. Moreover, our empirical observations show084

that KV importance varies significantly across both085

time and space. To further improve robustness,086

we introduce two smoothing mechanisms: (1) an087

exponential moving average to model temporal dy-088

namics by emphasizing more recent KV pairs, and089

(2) an adaptive window-based spatial smoothing090

method, which adjusts for varying window sizes091

and offsets by estimating the spatial dynamics.092

By evaluating on a wide range of downstream093

tasks including LongBench, RULER, Needle-in-a-094

Haystack, and InfiniteBench, we demonstrate that095

ReST-KV consistently outperforms state-of-the-art096

baselines, especially under low cache budgets and097

demonstrates more robustness in multi-turn dia-098

logue scenarios. In addition, it reduces decoding099

latency by up to 10× at a 128k context length with100

FlashAttention-2. Notably, it remains fully compat-101

ible with existing layer-wise and head-wise budget102

strategies, enabling seamless integration into cur-103

rent KV cache eviction systems. In summary, we104

make the following contributions:105

• A novel formulation of KV eviction treating as106

layer-wise output reconstruction, enabling a new107

importance indicator that captures attention redis-108

tribution effects.109

• A spatial-temporal smoothing mechanism com-110

bining exponential moving average and adaptive111

windowing, significantly enhancing robustness in112

KV selection.113

• Extensive experiments show that ReST-KV out-114

performs state-of-the-art baselines under low115

cache budgets and reduces decoding latency by116

up to 10× at a 128k context length.117

2 Related Work118

2.1 KV Cache Eviction119

KV cache eviction, a prominent method for op-120

timizing KV cache during inference without re-121

training, alleviates memory and latency issues122

in long-context LLMs. Early eviction meth- 123

ods focused on specific attention patterns, such 124

as StreamingLLM (Xiao et al., 2023) and LM- 125

Infinite (Han et al., 2024), retain only the initial 126

and local tokens. While more flexible approaches 127

like FastGen (Ge et al., 2023) and RazorAtten- 128

tion (Tang et al., 2024) were developed, they still 129

rely on predefined patterns and risk ignoring impor- 130

tant tokens. Subsequent studies introduced eviction 131

indicators to assess the importance of KV cache 132

entries, often using attention weights. For instance, 133

H2O (Zhang et al., 2023) uses cumulative attention 134

weights, TOVA (Oren et al., 2024) uses the atten- 135

tion weight of the last token, and SnapKV (Li et al., 136

2024b) pools the average attention weight over 137

the last window. In addition to indicator improve- 138

ments, some research has explored non-uniform 139

layer-wise and head-wise budget allocation strate- 140

gies. PyramidKV (Cai et al., 2024) and PyramidIn- 141

fer (Yang et al., 2024) allocate budget in a pyramid 142

fashion, while DynamicKV (Zhou et al., 2024) and 143

D2O (Wan et al., 2024) adaptively allocate budget 144

based on layer-specific information. AdaKV (Feng 145

et al., 2024) adjusts the budget per head based on 146

output ℓ1 loss bounds. Our work focuses on the 147

limitations of existing eviction indicators, which 148

primarily rely on attention weights derived from 149

query-key interactions and overlook the combined 150

impact of value vectors and spatial-temporal dy- 151

namics. Furthermore, our approach is fully compat- 152

ible with existing layer-wise and head-wise budget 153

allocation strategies. 154

2.2 Attention Dynamics 155

While attention is central to the success of Trans- 156

formers, it also poses scalability challenges in long- 157

context settings due to its quadratic complexity. 158

Recent work has therefore investigated attention dy- 159

namics—specifically, the spatiotemporal patterns 160

and redistribution of attention weights—as a means 161

to enable more efficient inference. 162

Several studies reveal structured attention behav- 163

iors. MInference (Jiang et al., 2024) discovers a 164

"vertical-slash" pattern, where attention gradually 165

shifts across tokens over time, indicating evolving 166

token importance. FlexPrefill (Lai et al., 2025) 167

similarly identifies consistent attention trajectories 168

during prefill. Keyformer (Adnan et al., 2024) ex- 169

amines how KV eviction distorts attention distribu- 170

tions and proposes normalization to mitigate such 171

shifts. 172

Distinct from the above methods, we reformulate 173

2



(b) Spatial-Temporal Smoothing

EMA

*

AWS

Multi-head
Attention

Multi-head
Attention

(a) Layer-wise Output Reconstruction Indicator

··· ··· ··· ······ ···

—

2

× h × h

Figure 2: Overview of ReST-KV. (a) Layer-wise output reconstruction quantifies each KV pair’s impact on output
error as its eviction indicator. (b) Two smoothing mechanisms enhance robustness: exponential moving average for
temporal smoothing and an adaptive window-based approach for spatial smoothing.

KV cache eviction by explicitly modeling attention174

redistribution and spatiotemporal dynamics. Rather175

than relying solely on static attention weights, our176

approach captures temporal evolution and layer-177

wise shifts in attention, enabling more robust im-178

portance estimation and significantly improving179

performance under memory constraints.180

3 Methodology181

3.1 Preliminary182

LLMs typically decode text in an auto-regressive183

manner, which allows them to generate high-184

quality, contextually coherent text. However, this185

decoding process is computationally expensive, as186

it involves a high degree of repetitive calculations,187

making it challenging to apply in real-time or large-188

scale scenarios.189

KV cache, a widely recognized and bench-190

marked technique, reduces redundant computation191

by storing previously computed keys and values. In192

this section, we describe the attention computation193

under the KV cache framework, laying the foun-194

dation for our discussion on KV cache eviction.195

For clarity, we focus on a single attention head196

and layer, omitting footnotes. At each decoding197

step t, the KV cache stores previously computed198

keys and values ⟨K1:t−1,V1:t−1⟩ for X[1 : t− 1],199

enabling reuse in future steps. For convenience,200

we denote K1:t−1 as KT−1 and V1:t−1 as VT−1.201

Consequently, the model requires only the current202

token xt to generate xt+1, rather than the full se-203

quence X = [x1, . . . ,xt]. Formally, at step t, the204

query qt, key kt, and value vt are computed as:205

qt = xtWQ, kt = xtWK , vt = xtWV , (1)206

where WQ,WK ,WV are the components of the207

Q,K,V weight matrices corresponding to a single208

attention head. The currently computed kt and vt 209

will be concatenated with the previously cached 210

keys and values, and used in the attention computa- 211

tion for decoding step t: 212

KT = Concat (KT−1,kt) ,VT = Concat (VT−1,vt) ,
(2) 213

where KT and VT are the entire sequences of keys 214

and values at decoding step t. The attention output 215

zt for the token xt at step t is calculated as: 216

zt = softmax

(
qtK

⊤
T√

dk

)
VT = AtVT , (3) 217

where At represents the attention weights for the to- 218

ken xt and is used by existing methods to compute 219

eviction indicators. dk represents the dimension of 220

the key vectors in the attention mechanism. 221

Finally, the output of a single head in the multi- 222

head attention can be expressed as: 223

MHA(xt, ⟨KT ,VT ⟩) = ztWO, (4) 224

where WO is the weight matrix of output projec- 225

tion corresponding to a single attention head. 226

3.2 Layer-wise Reconstruction Indicator 227

We reformulate KV cache eviction as preserving 228

the attention output distribution at each layer under 229

fixed memory constraints, naturally capturing the 230

effects of attention redistribution. We formalize 231

this paradigm as layer-wise reconstruction, a mod- 232

ular framework that aligns with the transformer’s 233

inherent layer-wise computation flow. Specifically, 234

for a single layer, the subproblem is expressed as: 235

Definition 3.1. Given a cache budget B for a single 236

layer, the task is to select a series of important 237

KV cache entries ⟨K̂T , V̂T ⟩ containing up to B 238

elements from the total cache entries ⟨KT ,VT ⟩ at 239
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the step t, with the goal of maximizing the retention240

of the orignial MHA output. We use ℓ2 distance to241

calculate reconstruction error, the objective for a242

single attention head can be defined as:243

argmin
⟨K̂T ,V̂T ⟩

∥∥∥MHA(xt, ⟨KT ,VT ⟩)−MHA
(
xt, ⟨K̂T , V̂T ⟩

)∥∥∥
2

s.t.
∣∣∣⟨K̂T , V̂T ⟩

∣∣∣ ≤ B,

(5)244

where
∣∣∣⟨K̂T , V̂T ⟩

∣∣∣ is the number of selected KV245

pairs.246

To efficiently compute Eq.(5), we adopt a greedy247

selection strategy that retains the top-B KV pairs248

estimated to have the greatest impact on the atten-249

tion output. Specifically, for the n-th KV pair, its250

importance is measured by the increase in recon-251

struction error when it is removed, which based on252

the local linearity assumptions (Molchanov et al.,253

2016). The eviction indicator is defined as:254

It[n] =
∥∥MHA(xt, ⟨KT ,VT ⟩)255

−MHA(xt, ⟨KT,\n,VT,\n⟩)
∥∥
2
, (6)256

where ⟨KT,\n,VT,\n⟩ represents the set of cache257

with the n-th KV pair removed.258

By introducing Eq. (3) and Eq. (4) for derivation,259

Eq. (6) can be simplified as follows:260

It[n] =
At[n]

1−At[n]
∥MHA(xt, ⟨KT ,VT ⟩)− vnWO∥2 ,

(7)261
where At[n] represents the attention weights of262

the query qt with respect to the key kn, and vn263

represents the n-th value in the value cache VT .264

Traditional eviction indicators only considered265

At[n], neglecting the effects of attention redistribu-266

tion. Eq. (7) demonstrates that the importance of a267

KV pair depends on two mechanisms:268

• Nonlinear Attention Reweighting: The first term269
At[n]

1−At[n]
acts as a monotonic nonlinear amplifier270

in (0, 1). While preserving the conventional prin-271

ciple that higher attention weights At[n] indicate272

stronger retention priority, this transformation in-273

troduces curvature to better discriminate between274

high-competition KV pairs compared to linear275

scaling in prior methods.276

• Redistribution Sensitivity: The second term277

∥MHA(·)− vnWO∥2 captures the redistribution278

of attention after removing the n-th KV pair. It279

reflects how much the remaining KV pairs fail to280

compensate for the excluded value in reconstruct-281

ing the MHA output. A smaller discrepancy indi-282

cates that attention can be effectively redistributed283

to preserve the output, thus signaling lower impor-284

tance of the removed KV pair.285
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Figure 3: Visualization analysis of the spatial-temporal
dynamics of the output reconstruction indicator. The
left plot shows dynamic temporal variations in KV pair
importance over steps, with the zoomed-in view high-
lighting a KV pair’s gradual decline in importance. The
right plot reveals spatial shifts, where similar impor-
tance patterns emerge at shifted positions.

The addational analysis and the derivation of 286

Eq. (7) can be found in Appendix A and Eq. (21). 287

3.3 Spatial-Temporal Smoothing 288

To enhance the robustness of KV pair selection 289

during the prefill stage, we analyze the spatial- 290

temporal dynamics of the KV pairs’ reconstruc- 291

tion error (Eq. (7)). From Figure 3, we observe 292

two key characteristics: (1) The importance of KV 293

pairs exhibits dynamic temporal variations (i.e., the 294

fluctuating patterns of I1[n], I2[n], . . . , It[n] along 295

the temporal dimension, and (2) simultaneously 296

demonstrates dynamic spatial shifts where similar 297

importance distributions emerge across shifted po- 298

sitions (e.g., It−k[n−kN ], . . . , It−1[n−N ], It[n] 299

exhibit analogous patterns). 300

Leveraging these observations, we introduce two 301

novel smoothing mechanisms to enhance the ro- 302

bustness of KV pair selection, as illustrated in Fig- 303

ure 2(b). These mechanisms address temporal vari- 304

ations and spatial shifts in KV pair importance, 305

ensuring a more stable and reliable selection pro- 306

cess. By applying these techniques, we aim to 307

reduce short-term fluctuations and capture long- 308

term trends, ultimately improving the performance 309

of the KV cache eviction. 310

Exponential Moving Average Temporal Smooth- 311

ing. Inspired by SnapKV (Li et al., 2024b), we 312

use a recent query window Sw to assess the im- 313

portance of KV pairs. To model temporal dynam- 314

ics, we apply exponential moving average (EMA) 315

smoothing to the importance of KV pairs, which as- 316

signs higher weights to recent queries while damp- 317

ening earlier fluctuations. To apply this smoothing 318

over a limited window of recent queries, we define 319

the temporal smoothing as: 320

Ît[n] =

{
EMA(It−Sw :t[n]), if n < t− Sw,

Ω, otherwise,
(8) 321
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Figure 4: Average score across 16 datasets of LongBench under various cache budgets. ReST-KV outperforms the
baseline across different models and settings.

where Ît[n] represents the eviction indicator with322

temporal smoothing. EMA(·) captures the tempo-323

ral variation in importance. We assign an arbitrarily324

large value Ω to the most recent Sw tokens to en-325

sure their preservation.326

The exponential moving average EMA(·) is de-327

fined as:328

EMA(It1:t2 [n]) =


αIt2 [n] + (1− α) EMA(It1:t2−1[n]),

if t1 < t2,

It1 [n], elif t1 = t2,

(9)329

where EMA(It1:t2 [n]) represents the exponen-330

tial moving average of the reconstruction errors331

It1 [n], . . . , It2 [n] computed over the steps from t1332

to t2. α is the smoothing factor that controls the333

weight of the current reconstruction error It2 [n]334

relative to the previous error EMA(It1:t2−1[n]) in335

the update process.336

Adaptive Window-Based Spatial Smoothing.337

To capture spatial shifts in KV importance over338

time, we split the observation window into two339

halves: Sfront
w and Srear

w . For each half, we compute340

the average index of the top-B important KV pairs:341

Dfront =
2

B · Sw

∑
t∈Sfront

w

∑
B

argmax
B

(It) , (10)342

where 2
B·Sw

is a normalization factor. Sfront
w denotes343

the first half of queries within the input window Sw.344

Drear is computed similarly for the second half of345

the queries. The difference ∆D = Drear −Dfront346

reflects how KV importance shifts across positions.347

We use this signal to adaptively adjust both the348

window size and shift:349

Ws = 2 ·
⌊
|Drear −Dfront|

β

⌋
+ 1, (11)350

351

γshift =

{
⌊Dfront−Drear

β
⌋, if Dfront −Drear > 0,

⌊Dfront−Drear
β

⌋+ 1, if Dfront −Drear ≤ 0,
(12)352

where Ws is the window size and γshift is the shift353

of the sliding window. β is a scaling factor that354

determines the granularity of the sliding window’s 355

movement, controlling the size of the steps taken 356

when calculating the window shift and size. ⌊·⌋ rep- 357

resents the floor function, which rounds a number 358

down to the nearest integer. 359

In summary, the final eviction indicator, which 360

incorporates both layer-wise output reconstruction 361

and spatial-temporal smoothing, is as follows: 362

It[n] =
∑⌊Ws/2⌋+γshift

k=−⌊Ws/2⌋+γshift
Ît[k]

Ws
. (13) 363

The selected ⟨K̂T , V̂T ⟩ is the subset of the orig- 364

inal KV pairs, defined as: 365

K̂T = KT [Dt, :], V̂T = VT [Dt, :], Dt = argmax
B

(It) ,

(14) 366

where Dt denotes the indices of the top B KV 367

pairs based on the eviction indicator It. The same 368

operation is applied to each head and layer, and 369

different KV pairs can be selected for different 370

heads in each layer. 371

4 Experiments 372

4.1 Experimental Settings 373

Backbone LLMs. We evaluate ReST-KV on five 374

open-source LLMs spanning two mainstream at- 375

tention architectures: (1) Multi-head attention, 376

Llama2-Chat (Touvron et al., 2023) and Gemma- 377

Instruct (Team et al., 2024); (2) Grouped-query 378

attention, Llama3-Instruct (Dubey et al., 2024), 379

Mistral-Instruct-v0.3 (Jiang et al., 2023), and 380

Qwen2.5-Instruct (Team, 2024). 381

Baseline Methods. We compare ReST-KV with 382

four baselines: (1) Fixed Attention Patterns: 383

StreamingLLM (Xiao et al., 2023); (2) Eviction 384

Indicator: H2O (Zhang et al., 2023), TOVA (Oren 385

et al., 2024), SnapKV (Li et al., 2024b). We also 386

incorporate adaptive budget strategies from Pyra- 387

midKV (Cai et al., 2024) and AdaKV (Feng et al., 388

2024) into our method to show compatibility. 389
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Table 1: Performance comparison across 16 datasets of LongBench. The best result is highlighted in bold, and the
second-best is underlined. ReST-KV achieves the best performance in most cases.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Llama-3.1-8B-Instruct, Btotal = 64L

StreamingLLM 7.65 5.08 14.14 10.93 12.64 6.86 16.57 18.93 16.30 38.50 83.13 34.65 9.78 96.28 54.16 48.21 29.61
H2O 12.23 5.12 15.12 11.51 10.14 6.23 17.23 19.51 16.79 39.15 81.51 36.12 8.12 95.12 51.25 47.12 29.52
TOVA 18.52 6.12 17.32 12.15 12.51 7.35 16.24 20.41 16.34 38.41 82.61 36.16 8.14 95.23 55.21 47.35 30.63
SnapKV 19.90 5.78 18.38 13.51 14.42 8.52 17.35 20.44 17.33 41.00 85.37 37.63 8.93 91.08 55.09 48.88 31.48
ReST-KV 22.43 7.19 19.25 14.11 15.04 7.97 20.56 21.10 19.15 53.50 88.23 40.21 8.46 93.90 56.74 48.77 33.54

Llama-3.1-8B-Instruct, Btotal = 512L

StreamingLLM 19.15 6.47 15.02 10.94 12.58 6.23 23.66 20.05 23.31 57.50 87.70 41.86 10.25 90.74 62.39 53.61 33.84
H2O 26.23 7.34 20.51 11.52 13.52 7.34 23.23 21.24 23.14 58.50 86.12 40.15 7.25 91.02 61.23 54.12 34.53
TOVA 27.34 8.34 22.45 12.25 14.51 8.42 24.23 22.13 22.25 58.50 89.31 40.51 8.24 93.14 62.23 55.61 35.59
SnapKV 28.02 9.83 24.84 13.77 15.40 10.21 25.13 22.73 24.25 65.00 92.34 41.69 8.42 96.31 64.30 57.28 37.47
ReST-KV 32.01 10.73 25.23 15.91 15.85 10.25 26.47 23.23 24.79 69.00 91.62 42.59 8.40 97.66 63.48 56.03 38.33
Full 32.02 13.12 27.52 16.60 16.41 11.41 34.59 23.41 26.89 73.00 91.65 43.80 7.18 97.73 65.12 58.89 39.96

Mistral-7B-Instruct-v0.3, Btotal = 64L

StreamingLLM 20.37 20.56 24.62 38.87 32.47 17.68 15.48 19.84 15.81 39.50 82.77 36.72 5.50 80.00 49.77 47.90 34.24
H2O 20.51 21.52 25.12 40.12 33.12 18.34 16.23 19.12 16.24 38.50 83.12 37.23 6.00 85.50 50.12 48.12 34.93
TOVA 22.51 22.24 37.23 41.12 34.10 19.52 17.21 19.23 16.27 38.50 85.12 38.51 6.50 86.50 51.04 48.42 36.50
SnapKV 19.39 23.62 38.66 43.26 34.72 21.33 17.59 20.93 17.06 38.50 86.96 39.61 7.00 90.50 51.63 49.73 37.53
ReST-KV 25.65 26.58 42.71 46.11 36.43 24.34 19.80 21.65 18.90 51.50 87.88 41.54 4.00 90.50 52.39 50.75 40.05

Mistral-7B-Instruct-v0.3, Btotal = 512L

StreamingLLM 24.19 25.97 30.14 40.75 31.90 17.35 22.18 20.30 23.22 65.50 86.95 43.75 6.00 81.00 59.35 56.36 39.68
H2O 25.23 30.41 40.32 42.52 35.23 18.23 24.23 21.24 23.21 66.50 86.71 43.15 5.00 82.52 60.13 58.15 41.42
TOVA 25.23 32.52 46.24 45.23 36.23 20.32 24.53 22.53 23.64 66.50 87.24 44.21 6.00 85.62 59.35 60.24 42.85
SnapKV 26.84 35.51 53.12 49.56 37.72 26.54 25.06 24.03 24.76 67.50 89.36 44.82 5.50 98.50 60.44 61.22 45.66
ReST-KV 28.60 35.86 53.37 49.13 38.70 27.94 26.05 24.37 25.09 73.50 89.66 46.27 5.50 98.50 60.13 60.84 46.47
Full 29.07 41.54 52.88 49.37 39.01 28.58 35.07 25.71 27.73 76.00 88.59 47.51 6.00 98.50 61.48 62.68 48.11

Evaluating Tasks. We evaluate ReST-KV on390

three prominent benchmarks: (1) LongBench (Bai391

et al., 2023), which tests long-context understand-392

ing across 16 datasets spanning six categories; and393

(2) RULER (Hsieh et al., 2024), a challenging long-394

context benchmark consisting of 4 categories and395

13 complex tasks; (3) Needle-in-a-Haystack (Liu396

et al., 2024a), designed to assess the ability of mod-397

els to retrieve key information from long sequences;398

(4) InfiniteBench (Zhang et al., 2024b), includes399

10 tasks designed to test various aspects of long-400

context processing. Detailed results are reported in401

Appendix J.402

Implementation Details. We evaluate ReST-KV403

and all baselines under varying cache budgets404

(Btotal = nL, with n ∈ [64, 1024]), where n de-405

notes the number of KV pairs per layer across L406

layers. To ensure fairness, token eviction is per-407

formed only once during the prefilling phase. All408

methods, except TOVA, are implemented based on409

the codebase from (Cai, 2023). Experiments are410

run on NVIDIA A800 80GB GPUs. Further details411

are provided in Appendix B.412

4.2 Evaluations on LongBench Dataset413

We evaluate ReST-KV on 16 datasets from Long-414

Bench. As shown in Figure 4, ReST-KV consis-415

tently outperforms all baselines across different416

cache budget settings, with especially strong gains 417

under tight memory constraints. Unlike prior meth- 418

ods that rely solely on the rank of query-key similar- 419

ities, our approach accounts the impact of attention 420

redistribution, ensuring that the most critical infor- 421

mation is retained. Moreover, we verify the com- 422

patibility of ReST-KV with non-uniform budget 423

strategies such as PyramidKV and AdaKV, with re- 424

sults presented in Appendix C. Compatibility with 425

KV cache quantization techniques is also evaluated, 426

as shown in Appendix I. 427

Table 1 provides a detailed comparison un- 428

der two cache budgets: low (Btotal = 64L) and 429

high (Btotal = 512L), with full results in Ap- 430

pendix D.1. ReST-KV consistently ranks among 431

the top performers across tasks, achieving up to 432

a 2.58% improvement under low budgets with 433

the Mistral model. These results highlight the ef- 434

fectiveness of our eviction indicator and spatio- 435

temporal smoothing in enhancing KV selection 436

robustness. Additional evaluations across different 437

models and sizes further confirm this conclusion 438

(Appendix D.2, D.3). 439

4.3 Evaluations on RULER Benchmark 440

We evaluate ReST-KV on 11 tasks from the 441

RULER benchmark using the Llama3.1-8B- 442

Instruct model, with a fixed cache budget of 443
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(a) FullKV
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(b) StreamingLLM
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(c) SnapKV
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(d) ReST-KV

Figure 5: Performance comparison on the Needle in a Haystack Test using Mistral-7B-Instruct-v0.3 with Btotal =
1024L. Even with a strict cache budget, ReST-KV retains 98% of the model’s performance, outperforming other
methods in retrieving critical information.

Btotal = 1024L applied across all methods. Ta-444

ble 2 summarizes the average accuracy across445

varying context lengths, from 4k to 128k context446

length. Existing KV cache eviction methods suf-447

fer from substantial performance degradation as448

the context length increases, highlighting their lim-449

ited robustness in long-context and complex re-450

trieval scenarios. In contrast, ReST-KV consis-451

tently achieves strong results across all lengths,452

with an average accuracy improvement of 15.3%453

over prior methods. Notably, even at the 128k con-454

text length—where less than 1% of the original455

cache is retained—ReST-KV maintains effective456

retrieval capabilities. Detailed results for individual457

tasks are provided in Appendix E.458

Table 2: Performance comparison on RULER bench-
mark across different context lengths. ReST-KV demon-
strates robust performance across all lengths.

Method 4K 8K 16K 32K 64K 128K Avg.

Streaming 39.81 18.42 12.10 10.57 9.91 8.18 16.50
SnapKV 83.60 75.54 71.12 66.95 57.47 47.99 67.11
PyramidKV 81.35 73.66 70.23 69.83 57.84 48.93 66.97
ReST-KV 94.01 86.66 84.12 81.87 78.65 68.28 82.27
Full 99.34 98.83 98.55 94.89 89.85 79.32 93.46

4.4 Visualization on NIAH Test459

The needle-in-a-haystack test (Liu et al., 2024a)460

involves inserting key information at random posi-461

tions within long contexts and serves as a bench-462

mark to assess the ability of LLMs to accurately463

retrieve critical information. To further demon-464

strate the effectiveness and adaptability of our465

method, we conducted experiments on the Mistral- 466

7B-Instruct-v0.3 model with a cache budget set to 467

Btotal = 1024L. As shown in Figure 5, even un- 468

der such a strict cache budget, ReST-KV maintains 469

98% of the model’s performance, significantly out- 470

performing other methods. This underscores ReST- 471

KV’s ability to efficiently prioritize and retain the 472

most relevant KV pairs. Additional visualization 473

graphs can be found in Appendix F. 474

4.5 Ablation Studies 475

We conduct ablation studies on LongBench to eval- 476

uate the contribution of each component in our KV 477

cache management strategy: layer-wise output re- 478

construction (LOR) indicator, exponential moving 479

average (EMA) temporal smoothing, and adaptive 480

window-based spatial smoothing (AWS). We adopt 481

the Llama3.1-8B-Instruct model with a cache bud- 482

get of Btotal = 128L as the default configuration. 483

Table 3: Ablation results of ReST-KV. LOR means
layer-wise output reconstruction indicator. EMA means
exponential moving average temporal smoothing. AWS
means adaptive window-based spatial smoothing.

Method Avg. Acc

Vanilla Attention weight Top-k 32.98

ReST-KV 35.86
ReST-KV w/o LOR 33.95 (-1.91)
ReST-KV w/o EMA 34.02 (-1.84)
ReST-KV w/o AWS 33.50 (-2.36)

Table 3 systematically presents the results. The 484

baseline using vanilla attention-weight-based top- 485
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Figure 6: Peak memory usage and decoding latency on NVIDIA A800 80GB GPU. ReST-KV reduces peak memory
by 36.0% and achieves up to a 10× speedup at 128k context length compared to full cache.

k selection yields only 32.98 accuracy, as it ig-486

nores attention redistribution and fails to capture487

the spatial-temporal dynamics of KV pairs. In con-488

trast, our ReST-KV framework achieves 35.86 ac-489

curacy, representing a significant improvement.490

To further understand the effectiveness of each491

module, we ablate them individually:492

• Without the LOR indicator, the model misses at-493

tention redistribution effects, making it harder to494

identify truly critical KV pairs. This is especially495

harmful under tight budgets like Btotal = 128L,496

causing a 1.91% drop in accuracy.497

• Without EMA temporal smoothing: The model498

lacks awareness of temporal changes in impor-499

tance, making it less capable of retaining KV pairs500

crucial for future queries. This results in a 1.84%501

performance degradation.502

• Without AWS spatial smoothing: Without cap-503

turing spatial offset patterns (e.g., vertical-slash504

structures), the model tends to retain suboptimal505

KV pairs, causing a 2.36% accuracy drop.506

Detailed ablation of each module and sensitivity507

analysis can be found in Appendix G.508

4.6 Evaluation of Memory and Throughput509

To evaluate the effectiveness and efficiency of our510

method in reducing memory consumption and en-511

hancing LLM inference, we analyze peak memory512

usage and decoding latency on the Llama-3.1-8B-513

Instruct model implemented with FlashAttention-514

2 (Dao, 2023).515

Peak Memory Usage. As shown in Figure 6(a),516

ReST-KV significantly reduces peak memory us-517

age, performing comparably to other KV cache518

eviction methods. Compared to full cache, ReST-519

KV achieves approximately 36.0% reduction in520

peak memory usage at a context length of 128k.521

Throughput Analysis. As shown in Figure 6(b),522

as the input length increases, the decoding latency523

rises significantly due to the growing computa- 524

tional demands and I/O latency bottlenecks. Even 525

with FlashAttention-2 acceleration, the decoding 526

latency of the full cache method continues to in- 527

crease rapidly with longer input lengths. In con- 528

trast, ReST-KV effectively reduces the number of 529

KV pairs required by maintaining a fixed cache 530

budget, alleviating the decoding latency for long 531

inputs. Notably, when processing sequences with 532

a context length of 128K, ReST-KV achieves a 533

speedup of approximately 10× compared to the 534

full cache method, significantly improving infer- 535

ence efficiency. 536

Moreover, ReST-KV is compatible with prefill 537

sparse attention approaches, enabling substantial 538

reduction in time-to-first-token (TTFT); see Ap- 539

pendix H for details. 540

5 Conclusion 541

In this paper, we propose ReST-KV, a novel KV 542

cache eviction method that reformulates eviction 543

as a layer-wise output reconstruction task, effec- 544

tively capturing attention redistribution effects be- 545

yond conventional attention-weight heuristics. To 546

enhance robustness, ReST-KV integrates a spatial- 547

temporal smoothing mechanism using exponential 548

moving averages for temporal stability and adap- 549

tive windowing for spatial awareness. Extensive 550

evaluations on LongBench, Needle-in-a-Haystack, 551

and RULER demonstrate that ReST-KV consis- 552

tently surpasses state-of-the-art methods under low 553

memory budgets and significantly reduces decod- 554

ing latency—achieving up to 10× speedups at 128k 555

context lengths. Our method is model-agnostic and 556

compatible with existing budget strategies, offer- 557

ing a practical and principled solution for efficient 558

long-context generative inference. Future work 559

will explore tighter integration with adaptive allo- 560

cation strategies and extensions to multi-modal or 561

structured memory scenarios. 562
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6 Limitations563

While our proposed ReST-KV demonstrates strong564

performance across standard long-context bench-565

marks, several limitations warrant discussion.566

First, our experiments are primarily conducted567

on English-language datasets and LLMs. The gen-568

eralizability of our method to multilingual scenar-569

ios or models trained on diverse linguistic corpora570

remains to be validated. Additionally, although571

ReST-KV is designed to be model-agnostic, its ef-572

fectiveness in non-text modalities—such as vision-573

language or structured memory settings—has not574

yet been explored.575

Second, our evaluation focuses on long-context576

modeling and retrieval tasks using benchmarks577

such as LongBench, RULER, and Needle-in-a-578

Haystack. These tasks assess the model’s ability to579

retain and access relevant information under con-580

strained memory budgets. However, more cogni-581

tively complex tasks—such as multi-step reasoning,582

long-form tool use, or multi-turn chain-of-thought583

generation—may exhibit different sensitivity to KV584

cache eviction strategies. The impact of ReST-KV585

on such advanced reasoning capabilities is still un-586

clear and should be explored in future work.587

Third, while ReST-KV introduces only minor588

computational overhead compared to prior methods589

like SnapKV and PyramidKV, this comes at the590

cost of increased reconstruction steps per eviction591

decision. Although our method preserves the same592

asymptotic complexity, further optimization may593

be needed for deployment in real-time or latency-594

sensitive systems.595

Finally, despite achieving a 15.3% accuracy im-596

provement on average over prior SOTA on the597

RULER benchmark, the performance gap between598

our method and full-cache baselines remains no-599

table, especially in multi-turn dialogue settings600

such as MK-NIAH-3. This highlights potential601

areas for improvement in modeling long-range de-602

pendencies in conversational memory.603
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A Derivation and Analysis of the Output Reconstruction Indicator781

We define the eviction indicator It[n] as the reconstruction error of the MHA output caused by removing782

the n-th KV pair. Specifically, the eviction indicator is given by:783

It[n] =
∥∥MHA(xt, ⟨KT ,VT ⟩)−MHA

(
xt, ⟨KT,\n,VT,\n⟩

)∥∥
2
, (15)784

where Kt,\n and Vt,\n represent the set of cache keys and values with the n-th KV pair removed.785

Using Eq. (3) and Eq. (4), we can expand Eq. (15) as follows:786

It[n] =
∥∥AtVTWO −At,\nVT,\nWO

∥∥
2

(16)787

where At,\n represents the attention weights with the n-th KV pair removed, and VT,\n represents the788

values corresponding to the remaining cache sets after the removal of the n-th KV pair.789

Further, we expand the matrix computation into a weighted sum form as:790

It[n] =

∥∥∥∥∥∥
∑
m

At[m]vmWO −
∑
m̸=n

At,\n[m]vmWO

∥∥∥∥∥∥
2

(17)791

where At[m] and At,\n[m] represent the attention weights for the m-th query in the presence and792

absence of the n-th KV pair, respectively.793

Compared to At[m], At,\n[m] is missing the component related to kn in the denominator. Therefore,794

the relationship between the two is given by:795

At,\n[m] =
At[m]

1−At[n]
(18)796

Substituting Eq. (18) into Eq. (17) and performing step-by-step simplifications, we get:797

It[n] =

∥∥∥∥∥∥
∑
m

At[m]vmWO −
∑
m ̸=n

At[m]

1−At[n]
vmWO

∥∥∥∥∥∥
2

, (19)798

=

∥∥∥∥∥∑
m

At[m]vmWO −

(∑
m

At[m]

1−At[n]
vmWO − At[n]

1−At[n]
vnWO

)∥∥∥∥∥
2

, (20)799

=

∥∥∥∥∥∥∥∥∥∥
At[n]

1−At[n]
vnWO︸ ︷︷ ︸

the n-th KV pair removed’s loss

−
∑
m

At[n]

1−At[n]
·At[m]vmWO︸ ︷︷ ︸

the increase of other components after removing the n-th KV pair

∥∥∥∥∥∥∥∥∥∥
2

, (21)800

=
At[n]

1−At[n]
·

∥∥∥∥∥vnWO −
∑
m

At[m]vmWO

∥∥∥∥∥
2

, (22)801

=
At[n]

1−At[n]
· ∥MHA(xt, ⟨KT ,VT ⟩)− vnWO∥2 , (23)802

From Eq. (21), we can see that the layer-wise output reconstruction indicator can be divided into two803

parts. One part is the loss due to the removal of the n-th KV pair, and the other part is the increase in the804

contribution of the other components after removing the n-th KV pair. Together, these two parts determine805

the importance of a KV pair.806
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B More Implementation Details 807

In this section, we provide additional details regarding the implementation of ReST-KV. Our method 808

operates in two main phases: prompt prefilling and token decoding. During the prompt prefilling stage, we 809

employ Eq. (13) from Section 3.3 as the eviction indicator. This formula integrates both the layer-wise 810

output reconstruction indicator and spatial-temporal smoothing. According to Eq. (14), we select a 811

set of KV pairs based on the cache budget from the prompt. Specifically, for the Exponential Moving 812

Average (EMA) Temporal Smoothing, the smoothing factor α is set to 0.3. In the case of the Adaptive 813

Window-Based Spatial Smoothing, the scaling factor β is set to 2000. Following SnapKV (Li et al., 814

2024b), we adopt a fixed observation window of size Sw = 32 and kernel size k = 5 for SnapKV, 815

PyramidKV, and our proposed ReST-KV. To better capture important information, we set the kernel size 816

to 21 on the RULER and InfiniteBench datasets. The StreamingLLM method retains the first 4 tokens as 817

an attention sink, ensuring efficient processing within the token flow. In the token decoding phase, we 818

utilize the KV cache compressed during the prefilling stage, along with a newly updated KV cache, to 819

perform decoding. Notably, no further compression is applied during this phase. 820

C Compatibility with Budget Allocation Strategies 821

In this section, we evaluate the compatibility of our method with existing budget allocation strategies. 822

Specifically, we choose PyramidKV (Cai et al., 2024) as a representative of layer-wise budget allocation 823

strategies and AdaKV (Feng et al., 2024) as a representative of head-wise budget allocation strategies. 824

We compared the average accuracy results of the Llama2-7B-Chat model on the LongBench datasets 825

under varying total cache budgets (ranging from 64L to 1024L). Our experiments demonstrate that, when 826

combined with these strategies, our method achieves similar or slightly improved performance compared 827

to SnapKV combined with the same strategies. 828

Table 4: Performance comparison of SnapKV and our method with Pyramid layer-wise budget allocation strategies
across varying cache budgets.

Method Cache Budget Btotal Avg. Acc
64L 128L 256L 512L 1024L

SnapKV 22.96 28.31 30.90 32.18 32.99 29.47
PyramidKV 24.67 29.58 31.04 32.32 32.95 30.11 (↑ 0.64%)
ReST-KV 25.54 29.99 31.51 32.38 32.97 30.48
ReST-KV w. Pyramid 26.88 30.47 31.74 32.48 33.05 30.93 (↑ 0.45%)

Table 4 illustrates the results of applying Pyramid layer-wise budget allocation strategies to both 829

SnapKV and our method, comparing the performance differences before and after the addition of the 830

strategy. As shown, the accuracy improvements are modest but consistent across different cache budget 831

sizes. For instance, our method combined with layer-wise budget allocation strategies achieves a 0.45% 832

increase in average accuracy across different cache budgets. 833

Table 5: Performance comparison of SnapKV and our method with Ada head-wise budget allocation strategies
across varying cache budgets.

Method Cache Budget Btotal Avg. Acc
64L 128L 256L 512L 1024L

SnapKV 22.96 28.31 30.90 32.18 32.99 29.47
Ada-SnapKV 24.89 29.93 31.21 32.28 33.01 30.26 (↑ 0.79%)
ReST-KV 25.54 29.99 31.51 32.38 32.97 30.48
Ada-ReST-KV 27.35 31.27 31.84 32.51 33.02 31.20 (↑ 0.72%)

Table 5 presents the results of applying head-wise budget allocation strategies to both SnapKV and our 834

method, comparing the performance differences before and after the addition of the strategy. The results 835

show that our method combined with AdaKV achieves a 0.72% increase in average accuracy across all 836
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Table 6: Performance comparison across 16 datasets of LongBench on Llama3.1-8B-Instruct for cache budgets
from 64L to 1024L. The best result is highlighted in bold, and the second-best is underlined.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Llama3.1-8B-Instruct, Btotal = Full

Full 32.02 13.12 27.52 16.60 16.41 11.41 34.59 23.41 26.89 73.00 91.65 43.80 7.18 97.73 65.12 58.89 39.96

Llama3.1-8B-Instruct, Btotal = 64L

StreamingLLM 7.65 5.08 14.14 10.93 12.64 6.86 16.57 18.93 16.30 38.50 83.13 34.65 9.78 96.28 54.16 48.21 29.61
H2O 12.23 5.12 15.12 11.51 10.14 6.23 17.23 19.51 16.79 39.15 81.51 36.12 8.12 95.12 51.25 47.12 29.52
TOVA 18.52 6.12 17.32 12.15 12.51 7.35 16.24 20.41 16.34 38.41 82.61 36.16 8.14 95.23 55.21 47.35 30.63
SnapKV 19.90 5.78 18.38 13.51 14.42 8.52 17.35 20.44 17.33 41.00 85.37 37.63 8.93 91.08 55.09 48.88 31.48
ReST-KV 22.43 7.19 19.25 14.11 15.04 7.97 20.56 21.10 19.15 53.50 88.23 40.21 8.46 93.90 56.74 48.77 33.54

Llama3.1-8B-Instruct, Btotal = 128L

StreamingLLM 16.07 5.34 14.82 11.01 12.38 6.61 17.99 19.06 18.69 40.50 85.57 38.24 9.20 94.11 58.97 49.70 31.14
H2O 14.00 5.45 16.62 12.83 10.87 6.94 17.29 20.88 16.96 40.27 82.15 37.61 9.12 96.13 52.13 48.16 30.46
TOVA 21.63 8.11 18.70 14.31 14.44 9.46 19.22 22.97 17.60 40.76 84.40 39.21 11.24 96.67 58.25 48.91 32.87
SnapKV 25.20 7.23 20.89 13.60 14.61 8.49 20.95 21.42 21.28 48.00 89.38 40.08 7.29 93.78 59.31 52.12 33.98
ReST-KV 27.88 8.29 22.22 14.65 14.70 9.32 22.26 22.95 22.16 65.00 91.03 41.26 8.20 93.59 58.78 51.50 35.86

Llama3.1-8B-Instruct, Btotal = 256L

StreamingLLM 16.03 5.50 14.96 10.38 12.25 7.01 20.38 19.48 20.63 46.00 87.49 41.02 9.57 90.53 61.13 51.44 32.11
H2O 13.99 6.48 17.76 13.41 11.10 7.38 17.64 21.74 18.21 40.29 82.22 38.11 8.90 96.89 51.53 49.14 30.92
TOVA 24.05 11.17 21.30 17.61 17.50 12.84 21.93 26.16 20.58 43.69 87.29 42.52 14.21 99.26 60.92 51.65 35.79
SnapKV 27.83 9.12 22.21 13.68 14.52 10.20 23.02 23.14 22.51 56.50 90.63 40.79 7.89 97.56 62.05 55.47 36.07
ReST-KV 29.14 9.54 23.61 14.27 14.61 9.31 24.32 23.59 23.47 67.00 92.13 42.04 8.09 94.51 61.56 53.62 36.93

Llama3.1-8B-Instruct, Btotal = 512L

StreamingLLM 19.15 6.47 15.02 10.94 12.58 6.23 23.66 20.05 23.31 57.50 87.70 41.86 10.25 90.74 62.39 53.61 33.84
H2O 26.23 7.34 20.51 11.52 13.52 7.34 23.23 21.24 23.14 58.50 86.12 40.15 7.25 91.02 61.23 54.12 34.53
TOVA 27.34 8.34 22.45 12.25 14.51 8.42 24.23 22.13 22.25 58.50 89.31 40.51 8.24 93.14 62.23 55.61 35.59
SnapKV 28.02 9.83 24.84 13.77 15.40 10.21 25.13 22.73 24.25 65.00 92.34 41.69 8.42 96.31 64.30 57.28 37.47
ReST-KV 32.01 10.73 25.23 15.91 15.85 10.25 26.47 23.23 24.79 69.00 91.62 42.59 8.40 97.66 63.48 56.03 38.33

Llama3.1-8B-Instruct, Btotal = 1024L

StreamingLLM 20.50 8.08 15.72 11.61 12.39 6.71 25.76 20.18 25.44 63.50 88.84 42.61 10.03 92.10 63.15 55.88 35.16
H2O 27.63 8.84 21.98 12.99 15.91 8.23 23.96 23.77 24.20 59.79 86.97 41.52 9.07 93.01 63.59 56.08 36.10
TOVA 29.82 9.73 25.10 14.92 17.53 10.20 27.06 23.20 24.78 59.89 92.21 43.49 10.38 95.86 64.08 57.47 37.86
SnapKV 31.95 11.26 25.56 15.13 16.18 10.79 26.97 23.06 25.89 67.50 91.90 42.88 7.67 98.16 64.53 58.30 38.61
ReST-KV 31.83 11.61 26.51 15.85 15.48 10.83 28.20 24.00 26.18 70.50 91.73 42.70 8.02 97.79 64.24 57.56 38.94

cache budgets. These results highlight that our method is compatible with existing budget allocation837

strategies.838

D Additional Experiments on LongBench839

In this section, we provide comprehensive experimental results on LongBench (Bai et al., 2023), a840

benchmark focused on long-context understanding, with input lengths ranging from 1235 to 18409 tokens.841

We perform detailed performance evaluations for three base models with cache budgets ranging from842

64L to 1024L: Llama2-7B-Chat (Touvron et al., 2023), Llama3.1-8B-Instruct (Dubey et al., 2024),843

and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) (Appendix D.1). To demonstrate the generality of844

ReST-KV, we also conduct experiments across different models and sizes. In Appendix D.2, we report845

additional experiments on the Qwen2.5-7B-Instruct (Team, 2024) and Gemma-7B-Instruct (Team et al.,846

2024) model architectures, and in Appendix D.3, we present experiments on the Llama2-13B-Chat and847

Llama3-70B-Instruct model sizes.848

D.1 Detailed Performance Across Cache Budgets849

Tables 6, 7, and 8 present the detailed LongBench results of ReST-KV and comparative methods applied850

to Llama3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, and Llama2-7B-Chat, respectively. Overall, the results851

demonstrate that, compared to other methods, ReST-KV consistently outperforms all baselines across all852

tasks in LongBench when applied to the test models with cache budgets ranging from 64L to 1024L. This853

proves the effectiveness and wide applicability of ReST-KV in efficient long-context processing using KV854

caches in open-source LLMs across domains.855
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Table 7: Performance comparison across 16 datasets of LongBench on Mistral-7B-Instruct-v0.3 for cache budgets
from 64L to 1024L. The best result is highlighted in bold, and the second-best is underlined.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Mistral-7B-Instruct-v0.3, Btotal = Full

Full 29.07 41.54 52.88 49.37 39.01 28.58 35.07 25.71 27.73 76.00 88.59 47.51 6.00 98.50 61.48 62.68 48.11

Mistral-7B-Instruct-v0.3, Btotal = 64L

StreamingLLM 20.37 20.56 24.62 38.87 32.47 17.68 15.48 19.84 15.81 39.50 82.77 36.72 5.50 80.00 49.77 47.90 34.24
H2O 20.51 21.52 25.12 40.12 33.12 18.34 16.23 19.12 16.24 38.50 83.12 37.23 6.00 85.50 50.12 48.12 34.93
TOVA 22.51 22.24 37.23 41.12 34.10 19.52 17.21 19.23 16.27 38.50 85.12 38.51 6.50 86.50 51.04 48.42 36.50
SnapKV 19.39 23.62 38.66 43.26 34.72 21.33 17.59 20.93 17.06 38.50 86.96 39.61 7.00 90.50 51.63 49.73 37.53
ReST-KV 25.65 26.58 42.71 46.11 36.43 24.34 19.80 21.65 18.90 51.50 87.88 41.54 4.00 90.50 52.39 50.75 40.05

Mistral-7B-Instruct-v0.3, Btotal = 128L

StreamingLLM 21.39 22.05 26.73 37.25 32.81 17.61 16.76 19.69 17.98 45.50 85.64 40.49 5.50 80.00 55.01 52.12 36.03
H2O 22.39 22.98 26.92 42.51 33.19 19.20 16.90 20.70 16.82 41.12 87.10 39.76 8.58 86.19 50.81 53.01 36.76
TOVA 22.48 28.78 48.71 47.58 34.26 21.96 21.67 21.75 21.68 42.23 87.04 42.10 2.08 94.58 56.97 54.76 40.54
SnapKV 25.04 28.42 47.88 46.23 36.47 24.60 21.22 22.74 21.15 45.00 88.74 43.07 4.00 95.00 56.81 55.75 41.38
ReST-KV 26.58 29.60 49.23 47.46 37.18 25.16 22.44 22.43 21.77 69.00 88.18 43.84 5.50 96.50 56.29 55.13 43.52

Mistral-7B-Instruct-v0.3, Btotal = 256L

StreamingLLM 22.46 23.32 29.63 39.62 32.01 16.71 19.13 19.30 20.14 54.50 85.12 43.21 5.50 80.00 57.72 55.03 37.71
H2O 24.31 23.78 27.97 43.90 33.95 19.87 17.42 23.36 17.32 43.74 91.10 40.17 11.88 86.92 51.54 54.24 38.22
TOVA 28.17 29.93 51.01 46.26 36.55 26.65 22.76 22.31 21.24 54.34 88.00 42.45 2.16 94.49 57.39 58.04 42.61
SnapKV 26.88 31.72 51.40 48.89 36.80 27.33 22.85 23.66 23.15 57.00 89.01 43.60 5.00 96.50 58.64 58.21 43.79
ReST-KV 27.43 34.24 52.11 48.81 38.25 27.20 24.31 23.33 23.24 72.50 88.59 44.61 5.50 96.50 58.41 59.21 45.27

Mistral-7B-Instruct-v0.3, Btotal = 512L

StreamingLLM 24.19 25.97 30.14 40.75 31.90 17.35 22.18 20.30 23.22 65.50 86.95 43.75 6.00 81.00 59.35 56.36 39.68
H2O 25.23 30.41 40.32 42.52 35.23 18.23 24.23 21.24 23.21 66.50 86.71 43.15 5.00 82.52 60.13 58.15 41.42
TOVA 25.23 32.52 46.24 45.23 36.23 20.32 24.53 22.53 23.64 66.50 87.24 44.21 6.00 85.62 59.35 60.24 42.85
SnapKV 26.84 35.51 53.12 49.56 37.72 26.54 25.06 24.03 24.76 67.50 89.36 44.82 5.50 98.50 60.44 61.22 45.66
ReST-KV 28.60 35.86 53.37 49.13 38.70 27.94 26.05 24.37 25.09 73.50 89.66 46.27 5.50 98.50 60.13 60.84 46.47

Mistral-7B-Instruct-v0.3, Btotal = 1024L

StreamingLLM 24.81 27.98 31.09 42.93 32.65 18.03 24.57 20.74 25.42 68.50 88.71 45.37 5.50 82.50 61.07 59.21 41.19
H2O 28.23 32.61 42.96 45.03 38.39 20.56 26.50 24.01 25.10 69.37 88.49 45.60 8.11 83.81 62.79 59.90 43.84
TOVA 29.10 36.82 53.78 49.25 38.39 28.33 27.17 23.75 25.53 70.39 88.28 45.24 4.85 100.47 60.40 62.25 46.50
SnapKV 29.31 37.25 53.55 49.25 38.54 28.28 26.90 24.49 26.27 72.50 89.11 46.08 5.50 99.00 61.45 61.76 46.83
ReST-KV 29.20 37.72 52.56 50.50 38.89 28.69 28.03 24.71 26.76 74.00 89.41 47.08 5.50 99.00 61.10 61.66 47.18

D.2 Additional Experiments on More Model Architectures 856

To further validate the versatility of ReST-KV across different model architectures, we performed ad- 857

ditional experiments on the Qwen2.5-7B-Instruct and Gemma-7B-Instruct models. The experiments 858

were conducted in two distinct memory configurations: a low-memory setting (Btotal = 64L) and a 859

high-memory setting (Btotal = 512L). As shown in Table 9, ReST-KV consistently outperforms baseline 860

methods in both the low and high memory settings for the Qwen and Gemma architectures, similar to the 861

results observed with the Llama and Mistral models. These findings further confirm the adaptability of 862

ReST-KV across various model architectures, demonstrating its robust performance advantage regardless 863

of the underlying design of the models. 864

D.3 Additional Experiments on Larger-scale Models 865

To assess the scalability of ReST-KV on larger models, we conducted additional experiments on Llama2- 866

13B-Chat and Llama3-70B-Instruct. These experiments were performed under two different memory 867

configurations: a low-memory setting (Btotal = 64L) and a high-memory setting (Btotal = 512L). As 868

shown in Table 10, ReST-KV consistently outperforms baseline methods in both low and high memory 869

settings for the Llama2-13B-Chat and Llama3-70B-Instruct models. These results further demonstrate the 870

scalability and effectiveness of ReST-KV when applied to larger-scale models, highlighting its continued 871

performance advantage regardless of the model size. 872
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Table 8: Performance comparison across 16 datasets of LongBench on Llama2-7B-Chat for cache budgets from
64L to 1024. The best result is highlighted in bold, and the second-best is underlined.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Llama2-7B-Chat, Btotal = Full

Full 18.39 20.11 35.67 31.25 25.50 10.14 25.68 20.93 26.27 64.00 83.38 40.99 5.50 10.00 60.81 55.27 33.37

Llama2-7B-Chat, Btotal = 64L

StreamingLLM 5.61 15.51 6.42 14.14 16.77 1.36 12.09 16.46 12.83 17.25 15.12 10.93 4.50 3.00 22.00 15.24 11.83
H2O 4.46 12.14 8.85 12.11 13.34 2.36 13.06 16.63 16.89 19.50 20.69 10.45 2.70 3.00 26.50 16.06 12.42
TOVA 8.26 14.34 12.64 13.52 13.25 3.53 11.64 16.67 13.35 36.00 72.64 32.72 2.00 4.00 36.15 32.53 20.20
SnapKV 10.83 16.38 17.53 22.81 23.24 5.06 13.12 18.38 14.17 34.50 69.45 33.43 5.50 7.00 39.99 36.04 22.96
ReST-KV 12.72 17.17 24.09 24.71 23.80 5.55 15.18 19.71 17.45 43.50 76.17 33.42 5.50 4.00 45.00 40.61 25.54

Llama2-7B-Chat, Btotal = 128L

StreamingLLM 8.45 14.87 12.68 19.98 22.14 5.17 13.99 19.74 16.02 28.50 60.96 30.61 5.00 5.00 44.44 39.53 21.69
H2O 7.60 9.53 9.92 18.35 15.64 3.30 17.75 14.71 21.45 28.00 39.61 13.85 4.17 3.56 29.92 25.53 16.43
TOVA 12.26 14.66 25.72 26.08 24.21 6.90 15.28 18.30 17.61 42.44 80.12 35.25 5.05 6.93 52.48 49.17 27.03
SnapKV 13.32 16.28 27.23 27.23 24.37 7.17 16.97 19.65 19.38 44.00 81.88 36.82 6.00 8.00 54.02 50.66 28.31
ReST-KV 15.55 17.78 27.24 27.72 24.62 8.93 17.88 20.13 20.92 60.00 82.48 37.35 6.00 9.50 53.45 50.24 29.99

Llama2-7B-Chat, Btotal = 256L

StreamingLLM 13.81 15.51 17.63 25.81 24.48 7.70 16.16 19.33 18.78 44.00 78.87 37.63 5.50 5.00 54.57 49.68 27.15
H2O 8.82 11.73 10.11 15.54 13.70 3.78 19.29 19.13 23.36 34.00 35.61 20.26 4.75 3.57 23.74 23.75 16.95
TOVA 14.12 16.82 29.15 27.69 24.82 6.89 18.04 18.67 21.79 57.01 83.48 37.74 5.06 8.71 56.51 52.99 29.97
SnapKV 15.45 17.57 29.44 29.53 24.94 8.69 18.78 20.48 22.15 57.50 83.76 38.25 6.00 10.50 57.75 53.59 30.90
ReST-KV 15.23 18.57 30.46 31.53 25.85 9.09 19.13 20.83 22.28 63.00 82.57 39.05 6.00 11.50 57.16 51.91 31.51

Llama2-7B-Chat, Btotal = 512L

StreamingLLM 15.30 15.53 20.16 26.59 25.05 5.65 18.30 19.28 21.84 54.50 82.23 38.07 5.50 5.00 56.80 51.95 28.86
H2O 9.68 8.67 6.86 10.85 8.71 1.31 20.04 18.72 24.91 18.00 17.09 18.99 3.75 2.30 20.87 14.87 12.85
TOVA 13.53 15.46 26.44 26.12 31.02 7.12 18.25 18.64 22.34 62.50 83.10 40.61 3.00 8.00 56.14 51.53 30.24
SnapKV 16.22 19.57 32.32 31.87 24.97 9.66 20.19 20.77 23.85 62.00 82.24 39.18 6.00 10.50 59.49 56.06 32.18
ReST-KV 17.15 19.88 32.71 31.94 25.62 9.97 20.52 20.68 23.59 63.50 83.30 39.29 6.00 11.50 58.65 53.81 32.38

Llama2-7B-Chat, Btotal = 1024L

StreamingLLM 15.12 17.35 22.21 26.76 24.43 6.52 21.15 19.16 24.67 61.00 82.16 39.69 6.00 1.50 57.73 53.24 29.92
H2O 6.55 11.17 8.96 13.56 9.57 1.80 22.43 19.74 26.07 18.50 15.59 36.61 4.43 1.08 29.96 15.24 15.08
TOVA 16.84 19.32 34.90 31.07 25.24 9.51 20.36 20.34 23.42 62.38 81.31 39.68 4.03 10.05 58.13 54.73 31.96
SnapKV 17.41 19.74 35.92 31.82 26.00 10.09 22.06 20.43 24.88 63.50 82.77 40.52 6.00 10.50 60.10 56.05 32.99
ReST-KV 17.39 20.01 35.33 31.71 25.33 9.60 22.30 20.85 24.91 63.50 83.73 40.76 6.00 10.50 60.57 54.95 32.97

E Additional Experiments on RULER Benchmark873

In this section, we present a detailed evaluation of ReST-KV on the various subtasks of the RULER874

benchmark (Hsieh et al., 2024). RULER is specifically designed to assess the core capabilities of LLMs875

in long-context scenarios through a diverse suite of tasks.876

The retrieval suite includes four variants of the needle-in-a-haystack (NIAH) test—Single-Needle877

(S-NIAH), Multi-Key (MK-NIAH), Multi-Query (MQ-NIAH), and Multi-Value (MV-NIAH)—to evaluate878

recall accuracy under diverse distractor settings and query formulations. Beyond retrieval, the Variable879

Tracking (VT) task measures multi-hop reasoning by requiring models to resolve transitive variable880

references scattered throughout the input. Lastly, aggregation tasks such as Common Word Extraction881

(CWE) and Frequent Word Extraction (FWE) test a model’s ability to compress and synthesize high-882

density signal distributed across long contexts.These tasks collectively pose distinct challenges for context883

retention, salience estimation, and compositional reasoning, providing a holistic benchmark for evaluating884

memory management strategies like ReST-KV.885

We evaluate ReST-KV using the LLaMA-3.1-8B-Instruct model with a maximum context window of886

B = 1024L, across input lengths ranging from 4k to 128k tokens. The evaluation compares ReST-KV887

with several representative KV cache eviction baselines: Full KV cache (oracle), StreamingLLM (Xiao888

et al., 2023), SnapKV (Li et al., 2024b), and PyramidKV (Cai et al., 2024).889

As reported in Table 11, ReST-KV consistently achieves higher average accuracy than all alternative890

eviction strategies across all context lengths. For instance, at 4k tokens, ReST-KV achieves an average891

accuracy of 94.01%, substantially outperforming SnapKV (83.60%) and PyramidKV (85.21%). While all892
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Table 9: Performance comparison across 16 datasets of LongBench on Qwen2.5-7B-Instruct and Gemma-7B-
Instruct. The best result is highlighted in bold, and the second-best is underlined.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Qwen2.5-7B-Instruct, Btotal = Full

Full 3.82 10.75 24.24 10.23 9.30 6.97 32.54 17.84 22.46 71.50 89.32 46.16 4.35 98.83 61.93 68.2 36.15

Qwen2.5-7B-Instruct, Btotal = 64L

StreamingLLM 2.74 5.53 13.16 7.62 7.70 4.35 14.98 12.70 11.96 38.50 77.44 37.51 6.29 26.29 44.14 44.40 22.21
H2O 1.09 3.46 17.22 6.57 6.33 4.23 14.50 11.67 10.29 37.38 76.86 37.81 7.76 83.84 46.11 49.59 25.92
TOVA 2.19 3.58 17.34 8.23 8.14 5.96 16.48 13.38 11.36 37.94 78.75 39.12 7.79 85.47 47.93 50.24 27.12
SnapKV 2.86 5.58 18.71 8.59 8.41 6.01 16.96 13.67 13.21 39.50 79.09 40.39 7.92 87.02 48.10 51.52 27.97
ReST-KV 3.27 6.69 18.95 9.57 8.79 6.03 18.77 14.99 15.19 50.50 79.07 41.28 4.73 93.00 48.47 50.03 29.33

Qwen2.5-7B-Instruct, Btotal = 512L

StreamingLLM 2.98 6.70 15.29 8.28 8.27 4.15 22.54 13.15 18.90 56.00 85.96 43.43 6.84 36.21 54.08 53.69 27.28
H2O 1.16 6.46 21.50 8.05 8.50 6.00 23.09 15.25 17.63 63.65 81.84 43.52 2.03 93.33 57.68 61.67 31.96
TOVA 2.70 7.99 21.77 8.61 8.57 6.61 23.44 16.34 19.42 64.28 82.98 44.41 2.35 94.70 59.23 63.58 32.94
SnapKV 3.57 8.90 22.88 10.34 9.57 6.74 24.73 17.58 19.56 64.50 83.49 45.08 4.32 96.67 59.93 64.54 33.90
ReST-KV 3.53 9.46 23.66 10.91 9.76 7.24 25.65 17.76 20.23 67.50 86.73 44.93 3.83 98.08 60.14 63.56 34.56

Gemma-7B-Instruct, Btotal = Full

Full 14.28 33.12 41.08 30.75 26.11 15.47 23.95 19.31 23.86 69.50 81.28 36.22 4.00 35.92 48.47 48.79 34.51

Gemma-7B-Instruct, Btotal = 64L

StreamingLLM 11.31 16.54 22.96 21.87 23.25 10.18 12.47 16.80 12.74 38.50 70.94 29.79 2.50 20.50 44.67 48.75 25.24
H2O 10.37 15.93 33.33 26.09 23.65 12.52 12.49 16.94 12.99 39.15 80.42 32.23 3.20 24.41 46.00 49.03 27.42
TOVA 10.53 16.58 33.81 27.05 24.56 12.66 13.26 17.19 13.76 39.68 80.69 32.67 3.68 25.29 46.01 49.94 27.96
SnapKV 11.05 17.06 34.22 27.41 25.32 13.52 13.98 17.35 14.03 40.50 81.42 32.90 3.83 26.00 46.34 49.95 28.43
ReST-KV 13.10 22.90 36.78 28.36 25.90 15.13 15.39 18.09 15.68 44.50 82.55 32.77 3.33 36.25 47.92 48.70 30.46

Gemma-7B-Instruct, Btotal = 512L

StreamingLLM 11.58 20.76 26.09 24.06 23.36 10.62 17.49 17.01 20.12 60.50 78.20 37.45 1.83 25.17 49.88 52.64 29.80
H2O 12.70 29.01 38.66 28.71 25.10 14.19 17.53 17.70 20.09 60.94 80.75 35.24 3.15 34.02 47.44 49.01 32.14
TOVA 13.23 29.30 39.32 29.63 25.57 14.55 18.12 18.32 21.01 61.13 81.49 35.78 3.61 34.46 48.39 50.00 32.74
SnapKV 13.36 29.43 39.80 30.24 26.01 14.82 18.30 18.86 21.23 62.00 81.51 36.04 4.33 35.08 49.16 50.73 33.18
ReST-KV 13.70 30.33 42.08 30.13 26.06 14.37 18.82 18.60 22.38 69.00 81.72 37.55 4.33 35.21 48.67 49.48 33.90

methods exhibit declining performance as the context length increases, ReST-KV maintains a clear and 893

consistent margin over the baselines, demonstrating its robustness in extended-context scenarios. 894

A breakdown by task category reveals that ReST-KV performs particularly well on retrieval tasks (S- 895

NIAH, MQ-NIAH, MV-NIAH) and multi-hop reasoning (VT), often approaching the accuracy levels of the 896

full KV cache. These results indicate that ReST-KV is effective at preserving semantically salient tokens 897

under constrained memory. More challenging tasks, such as MK-NIAH-3 and the CWE aggregation task 898

with uniform word distributions, remain difficult across all methods. Nonetheless, ReST-KV continues to 899

outperform other eviction baselines in these settings, suggesting stronger resilience to task complexity 900

and noise. 901

F Additional Experiments on Needle-in-a-Haystack Test 902

In this section, we present additional experiments to further evaluate the effectiveness of our method on 903

the Needle-in-a-Haystack test. This benchmark assesses a model’s ability to retrieve critical information 904

embedded within long contexts. While Section 4.4 already provides results for Mistral-7B-Instruct-v0.3 905

with a cache budget of B = 1024L, we extend our analysis by considering additional settings: (1) 906

Mistral-7B-Instruct-v0.3 with a reduced cache budget of B = 128L, (2) Llama3.1-8B-Instruct under both 907

B = 128L and B = 1024L. 908

Figures 7, 8 and 9 illustrate the performance comparison under these settings. We observe the following 909

key insights: 910
• Mistral-7B-Instruct-v0.3 (B = 128L) retains 76% of the original accuracy, outperforming SnapKV 911

by 14%. This demonstrates that our method maintains strong retrieval capability even under severe 912

cache constraints. 913

• Llama3.1-8B-Instruct (B = 128L) achieves 74% accuracy, surpassing SnapKV by 6%, indicating 914

its robustness in preserving key-value pairs under limited cache budgets. 915
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Table 10: Performance comparison across 16 datasets of LongBench on Llama models from 13B to 70B. The best
result is highlighted in bold, and the second-best is underlined.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Llama2-13B-Chat, Btotal = Full

Full 19.19 25.86 37.04 36.65 33.22 14.02 25.92 20.24 26.02 65.00 87.70 35.60 3.60 11.00 51.26 53.15 34.09

Llama2-13B-Chat, Btotal = 64L

StreamingLLM 6.95 15.50 16.08 24.30 26.66 7.49 0.98 17.89 2.17 29.50 55.63 16.70 3.00 5.50 34.05 29.27 18.23
H2O 14.00 18.17 21.78 30.62 28.77 9.93 14.88 19.17 17.97 35.00 80.11 28.97 3.87 6.50 37.50 30.11 24.83
TOVA 15.10 17.12 24.22 34.11 28.32 10.69 14.60 18.89 16.83 33.57 86.42 29.99 3.13 9.79 40.48 38.05 26.33
SnapKV 16.05 17.20 24.85 34.51 28.72 11.52 15.39 19.34 16.89 34.50 86.87 30.94 3.54 10.00 40.65 38.22 26.82
ReST-KV 14.97 20.02 32.61 35.27 29.15 10.71 17.21 19.12 18.39 42.00 85.35 30.57 3.54 12.00 40.01 41.41 28.27

Llama2-13B-Chat, Btotal = 512L

StreamingLLM 14.80 19.01 21.58 33.08 28.92 12.43 20.27 18.27 19.82 56.50 85.98 33.02 4.05 7.50 49.21 47.83 29.52
H2O 17.28 20.94 27.81 32.98 29.39 10.66 21.57 19.50 24.49 61.50 82.61 34.51 4.34 9.50 47.58 45.41 30.63
TOVA 16.95 21.97 33.18 35.51 31.11 13.94 20.33 19.74 22.94 62.33 85.54 35.06 2.94 10.57 49.60 49.80 31.97
SnapKV 17.46 22.46 33.79 36.39 31.37 14.46 20.51 19.81 23.76 62.50 85.98 35.88 3.55 11.50 50.12 50.08 32.48
ReST-KV 18.00 23.72 34.49 36.21 32.55 15.43 20.67 20.20 24.24 66.50 87.37 35.01 4.04 11.50 49.90 50.89 33.17

Llama3-70B-Instruct, Btotal = Full

Full 27.75 46.48 49.68 52.04 54.90 30.44 32.37 22.20 27.62 73.50 92.46 45.72 12.00 72.50 41.70 69.06 46.90

Llama3-70B-Instruct, Btotal = 64L

StreamingLLM 24.11 27.63 25.53 41.00 48.39 23.77 16.92 20.14 17.07 40.00 77.20 37.10 12.00 72.50 44.82 58.88 36.69
H2O 24.07 31.33 27.49 44.83 49.09 25.14 22.31 20.59 24.30 49.50 91.45 40.29 12.00 72.50 44.97 60.63 40.03
TOVA 24.53 30.43 27.56 45.29 49.64 25.93 22.30 20.08 23.46 48.66 91.18 40.23 11.85 72.50 44.31 60.65 39.91
SnapKV 23.97 32.92 34.96 46.35 52.90 26.05 18.33 21.55 19.98 43.00 88.83 41.18 12.00 72.50 44.42 61.63 40.04
ReST-KV 26.32 36.38 38.44 49.51 53.18 26.20 20.02 21.81 21.48 59.75 88.51 40.51 12.05 71.50 45.22 61.22 42.01

Llama3-70B-Instruct, Btotal = 512L

StreamingLLM 24.62 31.89 31.23 44.91 47.51 25.91 23.08 19.76 24.15 62.50 88.14 43.36 12.00 72.50 48.71 66.04 41.64
H2O 27.56 42.91 36.19 50.40 49.87 25.98 28.82 21.67 27.06 72.00 91.88 44.57 12.00 72.00 42.65 67.87 44.59
TOVA 27.51 42.49 35.71 51.02 50.42 25.12 27.88 21.60 27.28 72.04 92.04 45.13 12.89 71.18 43.51 68.53 44.65
SnapKV 27.67 44.58 48.00 51.66 53.73 30.61 24.80 22.82 25.89 70.00 92.63 45.14 12.00 72.50 44.59 69.20 45.99
ReST-KV 27.85 45.21 50.06 51.55 54.45 29.83 25.77 22.54 25.83 72.50 92.63 46.59 12.00 72.50 43.44 68.95 46.36
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(b) StreamingLLM
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(c) SnapKV
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(d) ReST-KV

Figure 7: Performance comparison on the Needle in a Haystack Test using Mistral-7B-Instruct-v0.3 with Btotal =
128L.

• Llama3.1-8B-Instruct (B = 1024L) attains 100% accuracy, meaning it can match full KV cache916

performance while storing only 1/32 of the original tokens. This highlights the efficiency of our917

approach in long-context retrieval with minimal memory usage.918
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Table 11: Performance comparison of ReST-KV and baseline eviction strategies on the RULER benchmark across
multiple context lengths (4k to 128k tokens). Results are reported as average accuracy (%) over subtasks. ReST-KV
consistently outperforms other methods, particularly on retrieval and multi-hop reasoning tasks. The best result is
highlighted in bold, and the second-best is underlined.

Method
S-NIAH-1

S-NIAH-2

S-NIAH-3

MK-NIAH-1

MK-NIAH-2

MK-NIAH-3

MQ-NIAH

MV-NIAH
CWE

FWE VT Avg. Acc

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=4k

Full 100.0 100.0 99.60 100.0 100.0 99.60 99.90 96.25 99.78 97.67 99.96 99.34
StreamingLLM 27.8 30.6 31.40 34.2 26.2 29.6 28.7 30.05 73.2 96.13 30.0 39.81
SnapKV 100.00 99.0 20.6 99.6 93.0 31.00 99.2 90.45 91.46 95.33 99.96 83.60
PyramidKV 100.00 99.80 9.6 100.00 96.80 26.2 99.70 93.60 74.88 94.33 99.92 81.35
ReST-KV 100.00 100.00 99.60 100.00 100.00 49.80 99.95 97.00 91.78 96.07 99.92 94.01

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=8k

Full 100.0 100.0 100.0 100.0 99.80 98.80 100.0 95.75 97.62 95.27 99.92 98.83
StreamingLLM 11.0 12.0 13.00 14.2 11.0 11.80 12.35 12.45 4.36 86.93 13.56 18.42
SnapKV 100.00 98.4 12.0 98.0 85.6 7.6 97.8 87.45 56.06 88.27 99.76 75.54
PyramidKV 100.00 99.80 3.0 99.20 87.80 5.2 98.05 88.25 40.24 89.00 99.68 73.66
ReST-KV 100.00 100.00 95.60 100.00 99.80 19.60 100.00 95.80 51.16 91.53 99.76 86.66

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=16k

Full 100.0 100.0 100.0 99.60 100.0 99.00 99.85 98.25 90.90 96.67 99.80 98.55
StreamingLLM 5.6 6.4 5.80 7.2 6.0 5.00 5.2 6.7 0.18 78.53 6.52 12.1
SnapKV 100.00 97.0 4.0 97.8 74.0 3.8 97.25 88.95 27.36 92.6 99.6 71.12
PyramidKV 100.00 97.40 1.2 98.00 75.20 3.4 97.0 86.5 18.98 95.07 99.80 70.23
ReST-KV 100.00 100.00 93.00 99.60 99.80 17.00 100.00 96.10 22.86 97.13 99.80 84.12

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=32k

Full 100.0 100.0 100.0 100.0 100.0 99.60 99.90 98.95 48.60 97.07 99.68 94.89
StreamingLLM 3.6 1.8 2.4 3.0 3.8 2.00 2.5 2.45 0.12 91.13 3.52 10.57
SnapKV 100.00 97.20 6.20 99.40 61.00 2.0 96.5 87.25 16.96 71.27 98.64 66.95
PyramidKV 100.00 97.2 2.8 99.2 59.2 1.8 96.55 85.2 10.52 75.2 98.60 66.02
ReST-KV 100.00 100.00 98.20 99.60 99.00 15.20 99.95 97.60 9.36 83.53 98.16 81.87

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=64k

Full 100.0 100.0 99.80 99.80 99.20 94.00 99.75 98.95 7.96 90.60 98.32 89.85
StreamingLLM 2.0 1.6 2.4 2.6 2.0 0.80 2.05 2.8 0.14 90.87 1.76 9.91
SnapKV 100.00 96.4 3.20 99.00 32.2 0.2 91.7 58.45 2.86 54.53 93.60 57.47
PyramidKV 100.00 96.80 1.0 99.0 36.80 0.2 92.10 58.25 1.66 55.87 94.56 57.84
ReST-KV 100.00 100.00 90.80 100.00 96.80 15.60 98.95 97.30 1.3 71.67 92.68 78.65

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=128k

Full 97.40 97.80 95.20 96.20 87.00 63.20 95.85 94.95 0.06 64.73 80.08 79.32
StreamingLLM 0.4 2.0 3.00 2.4 0.6 0.80 1.95 2.35 1.26 74.73 0.52 8.18
SnapKV 97.40 96.80 1.4 93.8 25.6 0.0 80.6 27.0 0.08 30.47 74.76 47.99
PyramidKV 97.40 96.8 0.2 94.20 30.80 0.4 80.95 29.20 0.14 32.07 76.08 48.93
ReST-KV 97.40 98.00 75.80 95.40 74.00 3.60 92.15 93.70 0.16 47.73 73.12 68.28

These results further validate the robustness and efficiency of our method in selecting the most relevant 919

KV pairs while minimizing memory overhead. Notably, even with a significantly reduced cache budget, 920

our approach consistently outperforms prior methods, ensuring reliable long-context retrieval across 921

different models and settings. 922

G Additional Experiments on Ablation Study 923

In this section, we conduct additional ablation experiments to rigorously analyze the effectiveness of core 924

components in ReST-KV and assess its sensitivity to key hyper-parameters. 925

G.1 Efficacy of the Proposed Output Reconstruction Indicator 926

To evaluate the proposed eviction indicator, we compare it with different types of eviction indicators 927

under the same baseline, including random selection, attention weights, attention weights weighted 928

by the values’s norm (At[n] · ∥vn∥2), similar to the VATP method (Guo et al., 2024), and our output 929

reconstruction. As shown in Table 12, directly weighting attention weights by the values’s norm does 930

not effectively incorporate the values information. Our method significantly outperforms all baselines, 931

indicating that the layer-wise output reconstruction perspective better assesses the importance of KV 932

cache. 933
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(b) StreamingLLM
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(c) SnapKV
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(d) ReST-KV

Figure 8: Performance comparison on the Needle in a Haystack Test using Llama3.1-8B-Instruct with Btotal = 128L.
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(a) FullKV
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(b) StreamingLLM
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(c) SnapKV
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Figure 9: Performance comparison on the Needle in a Haystack Test using Llama3.1-8B-Instruct with Btotal =
1024L.

Table 12: Ablation study on different types of information considered by the eviction indicator. Using output
reconstruction as the eviction criterion achieves the best performance, surpassing methods based on attention
weights or their combinations.

Information Considered by Eviction Indicator Avg.

Random 6.83 ± 0.20
Attention weights (SnapKV) 33.95
Attention weights and values (VATP) 33.88
Output reconstruction (Eq. (7)) 35.86

20



G.2 Efficacy of the Proposed Spatial-Temporal Smoothing 934

To assess the effectiveness of the spatial-temporal smoothing mechanism, we perform an ablation study 935

to examine the impact of different smoothing methods. As shown in the left part of Table 13, various 936

temporal smoothing techniques, including Mean, Inv-EMA, and EMA, are tested. Notably, EMA 937

smoothing achieves the best performance, surpassing other baselines, which demonstrates its effectiveness 938

in capturing temporal variations by giving higher weights to more recent KV pairs. 939

Table 13: Ablation study on the effect of different temporal and spatial smoothing methods in the eviction indicator.
EMA refers to our proposed exponential moving average temporal smoothing, while AWS represents our adaptive
window-based spatial smoothing.

Temporal Smoothing Avg. Spatial Smoothing Avg.

None 35.22 None 33.50
Mean 34.02 Avgpool 35.69
Inv-EMA 31.25 Maxpool 35.59
EMA (Ours) 35.86 AWS (Ours) 35.86

In addition, we evaluate the spatial smoothing methods, as detailed in the right part of Table 13. 940

Methods such as Avgpool, Maxpool, and our adaptive window-based smoothing (AWS) are compared, 941

with AWS achieving the highest average performance. This suggests that the adaptive window-based 942

approach, significantly enhances the eviction indicator’s ability to adjust for varying window sizes and 943

offsets, thereby improving the assessment of the importance of KV pairs in the spatial-temporal context. 944

G.3 Hyper-parameter Sensitivity Analysis 945

To assess the robustness of ReST-KV, we examine its sensitivity to two primary hyper-parameters: the 946

temporal smoothing factor α and the spatial smoothing scaling factor β. 947
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Figure 10: Sensitivity analysis of the smoothing factor α (left) and scaling factor β (right). The performance remains
relatively stable across different settings of both hyperparameters, mostly outperforming the baseline.

Figure 10 illustrates the performance variation with respect to α (left panel) and β (right panel). The 948

observed stability in accuracy across the tested ranges for both parameters indicates that ReST-KV exhibits 949

low sensitivity to their specific values. This robustness offers considerable flexibility in hyper-parameter 950

configuration without substantial performance degradation. 951

H Additional Experiments on Efficiency 952

In this section, we investigate the integration of ReST-KV with prefill optimization tech- 953

niques—exemplified by Minference (Jiang et al., 2024) and FlexPrefill to assess potential improvements 954

in Time To First Token (TTFT). To this end, we conduct additional experiments on the RULER 128k 955
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benchmark using the LLaMA3.1-8B-Instruct model, focusing on the efficiency of our proposed KV956

cache eviction method, particularly its impact on TTFT and decoding latency. Results are summarized in957

Table 14.958

Table 14: Efficiency analysis on RULER 128k. All results are normalized to the Full KV caching baseline.

Method 128k Avg. Acc. TTFT Decoding Latency

Full 79.32 1× 1×
ReST-KV 68.28 0.97× 10.61×
ReST-KV+MInference 53.71 2.99× 10.41×
ReST-KV+FlexPrefill(γ = 0.9) 67.16 3.42× 10.46×
ReST-KV+FlexPrefill(γ = 0.95) 68.12 2.37× 10.54×

Our method is a KV cache eviction strategy that achieves a substantial improvement in decoding959

latency—over 10× speedup—while maintaining a comparable TTFT (0.97×) to full KV caching. Impor-960

tantly, it maintains a high level of accuracy (68.28%), demonstrating that our eviction strategy preserves961

model performance effectively even under long context scenarios.962

Furthermore, our method is orthogonal and compatible with sparse prefilling techniques such as963

MInference (Jiang et al., 2024) and FlexPrefill (Lai et al., 2025). When combined with these methods,964

we observe additional gains in TTFT. For example, integrating FlexPrefill with γ = 0.95 achieves a965

2.37× TTFT speedup while retaining high decoding efficiency (10.54× latency speedup) and competitive966

accuracy (68.12%). This shows that our approach not only accelerates decoding but also enables efficient967

and flexible integration with other prefill optimization techniques.968

I Integration with KV Cache Quantization969

In this section, we further investigate the interplay between ReST-KV and established KV cache quantiza-970

tion techniques, specifically KIVI (Liu et al., 2024b) and KVQuant (Hooper et al., 2024). Our goal is to971

evaluate whether combining ReST-KV—a KV eviction method that accounts for the effects of attention972

redistribution and the spatial-temporal dynamics in KV selection can synergize with quantization or973

even outperform aggressive quantization applied to a full, non-evicted KV cache under similar overall974

compression ratios.975

To this end, we compare ReST-KV, both in isolation and combined with KIVI and KVQuant, against a976

baseline using full KV cache with various bit-width quantizations. Figure 11 visually summarizes the977

results.978

In particular, even with a stringent total compression ratio of 6.25%, achieved by combining ReST-KV979

with moderate 4-bit quantization, ReST-KV retains high average accuracy. In contrast, applying more980

aggressive 2-bit KIVI or KVQuant directly to the full KV cache results in significantly lower accuracy.981

These results suggest that eviction strategies which explicitly account for attention redistribution and982

spatial-temporal token redundancy can provide a more effective pathway to KV cache compression than983

quantization-only approaches. The combination of ReST-KV and lightweight quantization thus offers a984

practical and robust solution for efficient inference under tight memory constraints.985

J Additional Experiments on InfiniteBench986

In this section, we evaluate ReST-KV on the InfiniteBench benchmark (Zhang et al., 2024b) to further987

assess its long-context capabilities. InfiniteBench tests LLM performance on extremely long sequences988

through a diverse set of tasks. These tasks include realistic scenarios such as novel-based reasoning989

(summarization, QA, multiple-choice, using novels with key entity replacement), dialogue understanding,990

and code debugging. Additionally, synthetic tests probe specific long-context abilities like retrieval, state991

preservation, and sequential processing.992

Experiments are conducted on the Llama3.1 model. We compare ReST-KV against SnapKV (Li et al.,993

2024b), as both are post-prefill KV eviction strategies. To ensure a direct comparison of their eviction994
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Figure 11: Comparison of ReST-KV, KV cache quantization methods (KIVI and KVQuant), and their combination
on Llama3.1-8B-Instruct using LongBench dataset.

effectiveness, both methods retain a fixed KV cache budget of 1024 tokens post-eviction, regardless of the 995

initial input context length. 996

Table 15 details the average performance across InfiniteBench subtasks. ReST-KV achieves a notably 997

higher overall average accuracy than SnapKV (e.g., 38.8% vs. 36.8%). This performance advantage is 998

particularly evident in retrieval-focused tasks (Retrieve.PassKey, Retrieve.Number, Retrieve.KV), where 999

SnapKV can exhibit critical failures on some subtasks. ReST-KV also generally demonstrates stronger 1000

results in question answering (En.QA, Zh.QA) and Math.Find. While SnapKV may be competitive on 1001

select tasks like En.Sum, the consistent and superior performance of ReST-KV across a wider range of 1002

demanding retrieval and reasoning tasks contributes to its substantially higher overall average. These 1003

findings underscore the efficacy of ReST-KV’s reconstruction-aware eviction strategy when applied to the 1004

challenging long-context scenarios presented by InfiniteBench. 1005

Table 15: Performance of different methods on InfiniteBench.

Methods Retr.PassKey Retr.Num Retr.KV En.Dia En.Sum En.MC En.QA Zh.QA Math.Find Debug Avg.

ReST-KV 100.0 93.7 11.4 10.5 22.9 67.2 13.2 13.1 34.0 22.3 38.8
SnapKV 100.0 87.1 0.0 10.0 23.7 67.7 11.3 12.2 34.0 22.3 36.8
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