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Abstract

We study the overfitting behavior of fully connected deep Neural Networks (NNs)
with binary weights fitted to perfectly classify a noisy training set. We consider
interpolation using both the smallest NN (having the minimal number of weights)
and a random interpolating NN. For both learning rules, we prove overfitting is
tempered. Our analysis rests on a new bound on the size of a threshold circuit
consistent with a partial function. To the best of our knowledge, ours are the first
theoretical results on benign or tempered overfitting that: (1) apply to deep NNs,
and (2) do not require a very high or very low input dimension.

1 Introduction

Neural networks (NNs) famously exhibit strong generalization capabilities, seemingly in defiance
of traditional generalization theory. Specifically, NNs often generalize well empirically even when
trained to interpolate the training data perfectly [97]. This motivated an extensive line of work
attempting to explain the overfitting behavior of NNs, and particularly their generalization capabilities
when trained to perfectly fit a training set with corrupted labels (e.g., [5, 28, 57, 48]).

In an attempt to better understand the aforementioned generalization capabilities of NNs, Mallinar
et al. [57] proposed a taxonomy of benign, tempered, and catastrophic overfitting. An algorithm that
perfectly interpolates a training set with corrupted labels, i.e., an interpolator, is said to have tempered
overfitting if its generalization error is neither benign nor catastrophic — not optimal but much better
than trivial. However, the characterization of overfitting in NNs is still incomplete, especially in deep
NNs when the input dimension is neither very high nor very low. In this paper, we aim to understand
the overfitting behavior of deep NNs in this regime.

We start by analyzing tempered overfitting in “min-size” NN interpolators, i.e., whose neural layer
widths are selected to minimize the total number of weights. The number of parameters in a model is
a natural complexity measure in learning theory and practice. For instance, it is theoretically well
understood that L1 regularization in a sparse linear regression setting yields a sparse regressor. Prac-
tically, finding small-sized deep models is a common objective used in pruning (e.g., [33]) and neural
architecture search (e.g., [54]). Recently, Manoj and Srebro [58] proved that the shortest program
(Turing machine) that perfectly interpolates noisy datasets exhibits tempered overfitting, illustrating
how a powerful model can avoid catastrophic overfitting by returning a min-size interpolator.

Furthermore, we study tempered overfitting in random (“typical”) interpolators — NNs sampled
uniformly from the set of parameters that perfectly fit the training set. Given a narrow teacher model
and no label noise, Buzaglo et al. [13] recently proved that such typical interpolators, which may be
highly overparameterized, generalize well. This is remarkable since these interpolators do not rely on
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explicit regularization or the implicit bias of any gradient algorithm. An immediate question arises —
what kind of generalization behavior do typical interpolators exhibit in the presence of label noise?
This is especially interesting in light of theoretical and empirical findings that typical NNs implement
low-frequency functions [70, 83], while interpolating noisy training sets may require high frequencies.

For both the min-size and typical NN interpolators, we study the generalization behavior under
an underlying noisy teacher model. We focus on deep NNs with binary weights and activations
(similar NNs are used in resource-constrained environments; e.g., [42]). Our analysis reveals that
these models exhibit a tempered overfitting behavior that depends on the statistical properties of the
label noise. For independent noise, in addition to an upper bound we also find a lower bound on the
expected generalization error. Our results are illustrated in Figure 1 below, in which the yellow line
in the right panel is similar to empirically observed linear behavior [e.g., 57, Figures 2, 3, and 6].
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Figure 1: Types of overfitting behaviors. Consider a binary classification problem of learning
a realizable distribution D0. Let D be the distribution induced by adding an ε⋆-probability for
a data point’s label to be flipped relative to D0. Suppose a model is trained with data from D.
Then, assuming the classes are balanced, the trivial generalization performance is 0.5 (in gray; e.g.,
with a constant predictor). Left. Evaluating the model on D, a Bayes-optimal hypothesis (in red)
obtains a generalization error of ε⋆. For large enough training sets, our results (Section 4) dictate
a tempered overfitting behavior illustrated above. For arbitrary noise, the error is approximately
bounded by 1−ε⋆ε

⋆

(1− ε⋆)
1−ε⋆ (blue). For independent noise, the error is concentrated around

the tighter 2ε⋆ (1− ε⋆) (yellow). A similar figure was previously shown in Manoj and Srebro
[58] for shortest-program interpolators. Right. Assuming independent noise, the left figure can
be transformed into the error of the model on D0 (see Lemma A.9). The linear behavior in the
independent setting (yellow) is similar to the behavior observed empirically in Mallinar et al. [57,
Figures 2, 3, and 6].

The contributions of this paper are:

• Returning a min-size NN interpolator is a natural learning rule that follows the Occam’s-razor
principle. We show that this learning rule exhibits tempered overfitting (Section 4.1).

• We prove that overparameterized random NN interpolators typically exhibit tempered overfitting
with generalization close to a min-size NN interpolator (Section 4.2).

• To the best of our knowledge, ours are the first theoretical results on benign or tempered overfitting
that: (1) apply to deep NNs, and (2) do not require a very high or very low input dimension.

• The above results rely on a key technical result — datasets generated by a constant-size teacher
model with label noise can be interpolated1 using a NN of constant depth with threshold activations,
binary weights, a width sublinear in N , and roughly H(ε⋆) · N weights, where H(ε⋆) is the
binary entropy function of the fraction of corrupted labels (Section 3).

1As long as it has no repeated data points with opposite labels. See our Def. 2.5 of consistent datasets.
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2 Setting

Notation. We reserve bold lowercase characters for vectors, bold uppercase characters for matrices,
and regular uppercase characters for random elements. We use log to denote the base 2 logarithm, and
ln to denote the natural logarithm. For a pair of vectors d = (d1, . . . , dL) , d

′ = (d′1, . . . , d
′
L) ∈ NL

we denote d ≤ d′ if for all l ∈ [L], dl ≤ d′l. We use ⊕ to denote the XOR between two binary {0, 1}
values, and ⊙ to denote the Hadamard (elementwise) product between two vectors. We use H (D) to
denote the entropy of some distribution D. Finally, we use Ber (ε) for the Bernoulli distribution with
parameter ε, and H (ε) for its entropy, which is the binary entropy function.

2.1 Model: Fully connected threshold NNs with binary weights

Similarly to Buzaglo et al. [13], we define the following model.
Definition 2.1 (Binary threshold networks). For a depth L, widths d = (d1, . . . , dL), input dimension
d0, a scaled-neuron fully connected binary threshold NN, or binary threshold network, is a mapping
θ 7→ hθ such that hθ : {0, 1}d0 → {0, 1}dL , parameterized by

θ =
{
W(l),b(l),γ(l)

}L

l=1
,

where for every layer l ∈ [L],

W(l)∈ QW
l ={0, 1}dl×dl−1 , γ(l)∈ Qγ

l ={−1, 0, 1}dl , b(l)∈ Qb
l ={−dl−1 + 1, . . . , dl−1}dl .

This mapping is defined recursively as hθ (x) = h(L) (x) where

h(0) (x) = x ,

∀l ∈ [L] h(l) (x) = I
{(

γ(l) ⊙
(
W(l)h(l−1) (x)

)
+ b(l)

)
> 0

}
.

We denote the number of weights by w(d) =
∑L

l=1 dldl−1, and the total number of neurons
by n (d) =

∑L
l=1 dl. The total number of parameters in such a NN is M (d) = w (d) + 2n (d).

We denote the set of functions representable as binary networks of widths d by HBTN
d and their

corresponding parameter space by ΘBTN (d).
Remark 2.2. Our generalization results are for the above formulation of neuron scalars γ, i.e., ternary
scaling before the activation. However, we could have derived similar results if, instead, we changed
the scale γ to appear after the activation and also adjusted the range of the biases (see Appendix G).
Although we chose the former for simplicity, the latter is similar to the ubiquitous phenomenon in
neuroscience known as “Dale’s Law” [82]. This law, in a simplified form, means that all outgoing
synapses of a neuron have the same effect, e.g., are all excitatory (positive) or all inhibitory (negative).
Remark 2.3 (Simple counting argument). Let dmax ≜ max {d1, . . . , dL−1} be the maximal hidden-
layer width. Then, combinatorially, it holds that

log
∣∣HBTN

d

∣∣︸ ︷︷ ︸
# hypotheses

≤ log
∣∣ΘBTN (d)

∣∣︸ ︷︷ ︸
# parameter
assignments

≤ w (d)︸ ︷︷ ︸
# weights

+ n (d)︸︷︷︸
# neurons

(
log(3) + log (2dmax︸ ︷︷ ︸

maximal
quantization

)
)
.

This implies, using classical PAC bounds [75], that the sample complexity of learning with the finite
hypothesis class HBTN

d is O (w (d) + n (d) log dmax) (a more refined bound on
∣∣HBTN

d

∣∣ is given in
Lemma F.1). In Section 4 we show how this generalization bound can be improved in our setting.

2.2 Data model: A teacher network and label-flip noise

Data distribution. Let X = {0, 1}d0 and let D be some joint distribution over a finite sample
space X × {0, 1} of features and labels.

Assumption 2.4 (Teacher assumption). We assume a “teacher NN” h⋆ generating the labels. A label
flipping noise is then added with a noise level of ε⋆ = P(X,Y )∼D (Y ̸= h⋆(X)), or equivalently

Y ⊕ h⋆ (X) ∼ Ber (ε⋆) .

The label noise is independent when Y ⊕ h⋆ (X) is independent of the features X (in Section 4 it
leads to stronger generalization results compared to ones for arbitrary noise).
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2.3 Learning problem: Classification with interpolators

We consider the problem of binary classification over a training set S = {(xi, yi)}Ni=1 with N
data points, sampled from the noisy joint distribution D described above. We always assume
that S is sampled i.i.d., and therefore, with some abuse of notation, we use D (S) = DN (S) =∏N

i=1 D (xi, yi). For a hypothesis h : X → {0, 1}, we define the risk, i.e., the generalization error
w.r.t. D, as

LD (h) ≜ P(X,Y )∼D (h(X) ̸= Y ) .

We also define the empirical risk, i.e., the training error,

LS (h) ≜
1

N

N∑
n=1

I {h(xn) ̸= yn} .

We say a hypothesis is an interpolator if LS (h) = 0.

In this paper, we are specifically interested in consistent datasets that can be perfectly fit. This is
formalized in the following definition.

Definition 2.5 (Consistent datasets). A dataset S = {(xi, yi)}Ni=1 is consistent if

∀i, j ∈ [N ] xi = xj =⇒ yi = yj .

Motivated by modern NNs which are often extremely overparameterized, we are interested in
the generalization behavior of interpolators, i.e., models that fit a consistent training set perfectly.
Specifically, we consider Framework 1. While this framework is general enough to fit any minimal
training error models, we shall be interested in the generalization of A (S) in cases where the training
set is most likely consistent (Def. 2.5).

Framework 1 Learning interpolators

Input: A training set S.
Algorithm:

if S is consistent:
return an interpolator A (S) = h (such that LS (h) = 0)

else:
return an arbitrary hypothesis A (S) = h (e.g., h(x) = 0,∀x)

In Section 4, we analyze the generalization of two learning rules that fall under this framework: (1)
learning min-size NN interpolators and (2) sampling random NN interpolators. Our analysis reveals
a tempered overfitting behavior in both cases.

3 Interpolating a noisy training set

Our main generalization results rely on a key technical result, which shows how to memorize any
consistent training set generated according to our noisy teacher model. We prove that the memorizing
“student” NN can be small enough to yield meaningful generalization bounds in the next sections.

We begin by noticing that under a teacher model h⋆ (Assumption 2.4), the labels of a consistent
dataset S (Def. 2.5) can be decomposed as

∀i ∈ [N ] yi = h⋆ (xi)⊕ f (xi) , (1)

where f : {0, 1}d0 → {0, 1} indicates a label flip in the ith example, and can be defined arbitrarily
for x /∈ S. Motivated by this observation, we now show an upper bound for the dimensions of a
network interpolating S, by bounding the dimensions of an NN implementing an arbitrary “partial”
function f defined on N points.
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Theorem 3.1 (Memorizing the label flips). Let f : {0, 1}d0 → {0, 1, ⋆} be any function.2
Let N = |f−1({0, 1})| and N1 = |f−1(1)|. There exists a depth-14 binary threshold network
h̃ : {0, 1}d0 → {0, 1}, with widths d̃, satisfying the following.

1. h̃ is consistent with f , i.e., for every x ∈ {0, 1}d0 , if f(x) ∈ {0, 1}, then h̃(x) = f(x).

2. The total number of weights in h̃ is at most (1 + o(1)) · log
(
N
N1

)
+ poly(d0). More precisely,

w
(
d̃
)
= log

(
N

N1

)
+

(
log

(
N

N1

))3/4

· polylogN +O(d20 · logN) .

3. Every layer of h̃ has width at most (log
(
N
N1

)
)3/4 · poly(d0). More precisely,

d̃max =

(
log

(
N

N1

))3/4

· polylogN +O(d0 · logN) .

The main takeaway from Theorem 3.1 is that label flips can be memorized with networks with a
number of parameters that is optimal in the leading order N · LS (h⋆), i.e., not far from the minimal
information-theoretical value. The proofs for this section are given in Appendix D.

Proof idea. Denote S = f−1 ({0, 1}). We employ established techniques from the pseudorandom-
ness literature to construct an efficient hitting set generator (HSG)3 for the class of all conjunctions
of literals. The HSG definition implies that there exists a seed on which the generator outputs a truth
table that agrees with f on S. The network h̃ computes any requested bit of that truth table.
Remark 3.2 (Dependence on d0). In Appendix E we show that the O

(
d20 · logN

)
term is nearly

tight, yet it can be relaxed when using some closely related NN architectures. For example, with
a single additional layer of width Ω

(√
d0 · logN

)
with ternary weights in the first layer, i.e.,

QW
1 ={−1, 0, 1} instead of {0, 1}, the O

(
d20 · logN

)
term of Theorem 3.1 can be improved to

O
(
d
3/2
0 · logN + d0 · log3 N

)
.

Next, with the bound on the dimensions of a NN implementing f , we can bound the dimensions of a
min-size interpolating NN by bounding the dimensions of a NN implementing the XOR of h̃ and h⋆.
Lemma 3.3 (XOR of two NNs). Let h1, h2 be two binary NNs with depths L1 ≤ L2 and widths
d(1), d(2), respectively. Then, there exists a NN h with depth LXOR ≜ L2 + 2 and widths

dXOR ≜
(
d
(1)
1 + d

(2)
1 , . . . , d

(1)
L1

+ d
(2)
L1

, d
(2)
L1+1 + 1, . . . , d

(2)
L2

+ 1, 2, 1
)
,

such that for all inputs x ∈ {0, 1}d0 , h (x) = h1 (x)⊕ h2 (x).

Combining Theorem 3.1 and Lemma 3.3 results in the following corollary.
Corollary 3.4 (Memorizing a consistent dataset). For any teacher h⋆ of depth L⋆ and dimensions
d⋆ and any consistent training set S generated from it, there exists an interpolating NN h (i.e.,
LS (h) = 0) of depth L = max {L⋆, 14}+ 2 and dimensions d, such that the number of weights is

w (d) ≤ w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4H (LS (h⋆))
3/4

polylogN

+O (d0 (d0 + n (d⋆)) · logN)

and the maximal width is

dmax ≤ d⋆max +N3/4 ·H (LS (h⋆))
3/4 · polylog (N) +O (d0 · log (N)) .

Proof idea. We explicitly construct a NN with the desired properties. We can choose a subset of
neurons to implement the teacher NN and another subset to implement the NN memorizing the label
flips. Furthermore, we zero the weights between the two subsets. Two additional layers compute the
XOR of the outputs, thus yielding the labels as in (1). This is illustrated in Figure 2.

2When f(x) = ⋆, the interpretation is that f is “undefined” on x, i.e., f is a “partial” function.
3A variant of the pseudorandom generator (PRG) concept.
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𝑑0 𝑑1
⋆ 𝑑2

⋆ 𝑑3
⋆

(a) A teacher model h⋆.

𝑑0 ሚ𝑑1 ሚ𝑑2 ሚ𝑑3

(b) A NN h̃S memorizing
the label flips w.r.t h⋆ in S.

𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

XOR

(c) A wider student NN can interpolate the
training set S, e.g., using an XOR construc-
tion.

Figure 2: Interpolating a dataset. To memorize the training set, we use a subset of the parameters
to match those of the teacher and another subset to memorize the noise (label flips). Then, we “merge”
these subsets to interpolate the noisy training set. In our figure, (1) blue edges represent weights
identical to the teacher’s; (2) yellow edges memorize the noise; (3) red edges are set to 0; and two
additional layers implement the XOR between outputs, thus memorizing the training set.

4 Tempered overfitting of min-size and random interpolators

In this section, we provide our main results on the overfitting behavior of interpolating NNs. We
consider min-size NN interpolators and random NN interpolators. For both learning rules, we prove
tempered overfitting. Namely, we show that the test performance of the learned interpolators is not
much worse than the Bayes optimal error.

First, for the sake of readability, let us define the marginal peak probability of the distribution.

Definition 4.1 (Peak marginal probability). Dmax ≜ maxx∈X P(X,Y )∼D (X = x).

Our results in this section focus on cases where the number of training samples is N = ω
(
d20 log d0

)
and N = o

(
1/
√
Dmax

)
. In such regimes, the data consistency probability is high4 and our bounds are

meaningful. Note that given the binarization of the data, N = o
(
1/
√
Dmax

)
implies an exponential

upper bound of N = o
(
2d0/2

)
, achieved by the uniform distribution, i.e., when Dmax = 2−d0 . Due

to the exponential growth of the sample space w.r.t. the input dimension, we find this assumption to
be reasonable. Also, N = ω

(
d20 log d0

)
implies that the input dimension cannot be arbitrarily large,

but may still be non trivially small (see comparison to previous work in Section 5).

4.1 Min-size interpolators

We consider min-size NN interpolators of a fixed depth, i.e., networks with the smallest number of
weights for a certain depth that interpolate a given training set. In realizable settings, achieving good
generalization performance by restricting the number of parameters in the learned interpolating model
is a natural and well-understood approach. Indeed, in such cases, generalization follows directly
from standard VC-dimension bounds [4, 75]. However, when interpolating noisy data, the size of the
returned model increases with the number of samples (in order to memorize the noise; see e.g., Vardi
et al. [88]), making it challenging to guarantee generalization. In what follows, we prove that even
when interpolating noisy data, min-size NNs exhibit good generalization performance.

Learning rule: Min-size NN interpolator. Given a consistent dataset S and a fixed depth L, a
min-size NN interpolator, or min-#weights interpolator, is a binary threshold network h (see Def. 2.1)
that achieves LS (h) = 0 using a minimal number of weights. Recall that w(d) =

∑L
l=1 dldl−1 and

define the minimal number of weights required to implement a given hypothesis h,

wL (h) ≜ mind∈NL w (d) s.t. h ∈ HBTN
d .

The learning rule is then defined as

AL (S) ∈ argminhwL (h) s.t. LS (h) = 0 .

4N = o
(
1/

√
Dmax

)
implies a rough bound on the consistency probability via the union bound. For example,

when the marginal of X under D is uniform (Dmax = 1/|X |), and the inconsistency probability corresponds to
the well-known birthday problem.
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Theorem 4.2 (Tempered overfitting of min-size NN interpolators). Let D be a distribution induced by
a noisy teacher of depth L⋆, widths d⋆, n(d⋆) neurons, and a noise level of ε⋆ < 1/2 (Assumption 2.4).
There exists c > 0 such that the following holds. Let S ∼ DN be a training set such that
N = ω

(
n (d⋆)

4
H (ε⋆)

3
log (n (d⋆))

c
+ d20 log d0

)
and N = o(

√
1/Dmax). Then, for any fixed

depth L ≥ max {L⋆, 14}+ 2, the generalization error of the min-size depth-L NN interpolator
satisfies the following.

• Under arbitrary label noise, ES [LD (AL (S))] ≤ 1− 2−H(ε⋆) + o (1).

• Under independent label noise, |ES [LD (AL (S))]− 2ε⋆ (1−ε⋆)| = o (1).

Here, o (1) indicates terms that become insignificant when the number of samples N is large. We
illustrate these behaviors in Figure 1. Moreover, we discuss these results and the proof idea in
Section 4.3 after presenting the corresponding results for posterior sampling. The complete proof
with detailed characterization of the o(1) terms is given in Appendix F.1.

4.2 Random NN interpolators (posterior sampling)

Recent empirical [87, 20] and theoretical [13] works have shown that, somewhat surprisingly,
randomly sampled deep NNs that interpolate a training set often generalize well. We now turn to
analyzing such random interpolators under our teacher assumption and noisy labels (Assumption 2.4).
As with min-size NN interpolators, our analysis here reveals a tempered overfitting behavior.

Prior distribution. A distribution over parameters induces a prior distribution over hypotheses by

P (h) = Pθ (hθ = h) .

We focus on the prior induced by the uniform prior over the parameters of binary threshold networks.
Specifically, for a fixed depth L and dimensions d, we consider θ ∼ Uniform

(
ΘBTN (d)

)
. In other

words, to generate h ∼ P , each weight, bias, and neuron scalar in the NN is sampled independently
and uniformly from its respective domain.

Learning rule: Posterior sampling. For any training set S, denote the probability to sample an
interpolating NN by pS ≜ P (LS (h) = 0). When pS > 0, define the posterior distribution PS as

PS (h) ≜ P (h | LS (h) = 0) =
P(h)

pS
I {LS (h) = 0} . (2)

When pS=0, use an arbitrary PS . Finally, the posterior sampling rule is Ad (S) ∼ PS .

Remark 4.3 (Hypothesis expressivity). The following result requires that the student NN is large
enough to interpolate any consistent S (see Corollary 3.4), thus, pS > 0 and PS is defined as in (2).

Theorem 4.4 (Tempered overfitting of random NN interpolators). Let D be a distribution induced by
a noisy teacher of depth L⋆, widths d⋆, n(d⋆) neurons, and a noise level of ε⋆ < 1/2 (Assumption 2.4).
There exists a constant c > 0 such that the following holds. Let S ∼ DN be a training set such that
N = ω

(
n (d⋆)

4
log (n (d⋆))

c
+ d20 log d0

)
and N = o(

√
1/Dmax). Then, for any student network

of depth L ≥ max {L⋆, 14}+ 2 and widths d ∈ NL holding

∀l = 1, . . . , L⋆−1 dl ≥ d⋆l +N3/4 · (logN)
c
+ c · d0 · log (N) , (3)

the generalization error of posterior sampling satisfies the following.

• Under arbitrary label noise,

ES,Ad(S)

[
LD
(
Ad (S)

)]
≤ 1− 2−H(ε⋆) +O

(
n (d) · log (dmax + d0)

N

)
.

• Under independent label noise,∣∣ES,Ad(S)

[
LD
(
Ad (S)

)]
− 2ε⋆ (1−ε⋆)

∣∣ ≤ O

(√
n (d) · log (dmax + d0)

N

)
.
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The proof and a detailed description of the error terms are given in Appendix F.2.

Remarkably, note that the interpolating NN in the theorem might be highly overparameterized, and
that for such NNs good generalization is not guaranteed by standard generalization bounds [4, 75].
This theorem complements a similar result by Buzaglo et al. [13] for the realizable setting.

4.3 Discussion

The overfitting behaviors described in this section are illustrated in Figure 1.

Proof idea. We extend the information-theoretical generalization bounds from [58] to this paper’s
setting in which label collisions in the datasets have a non-zero probability. In particular, we bound the
interpolator’s complexity from below by the mutual information between the model and the training
set. Since the model is interpolating, we can further bound the mutual information by a quantity
dependent on the population error. From the other direction, we bound the model’s complexity from
above by (1) its size in the min-size setting of Section 4.1, and (2) by the negative log interpolation
probability for the posterior sampling of Section 4.2. Together with Corollary 3.4 we obtain the
bounds above on the expected generalization error.

In Figure 2 we illustrated the construction of a memorizing network used to bound the complexity of
the min-size interpolator. In the following Figure 3 we illustrate how the interpolation probability pS
can be bounded to induce a meaningful generalization bound.

Figure 3: Interpolating a dataset with an overparam-
eterized student. We build on the construction from
Figure 2 that memorizes a dataset using a subset of the
parameters (blue, yellow, and red edges). Then, redun-
dant neurons (gray) can be effectively ignored by setting
their neuron scaling parameters (γ) to 0, leaving the re-
dundant weights (gray edges) unconstrained. Thus, the
interpolation probability pS can be bounded by a quantity
exponentially decaying in the number of neurons n (d)
rather than in the number of weights w (d) = ω (N).

𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

Following Remark 3.2, the assumption N = ω
(
d20 log d0

)
can be relaxed in some related architec-

tures. For example, with a single additional layer of width O
(√

d0 · logN
)

and ternary weights in
the first layer QW

1 = {−1, 0, 1}, the requirement can be relaxed to N = ω
(
d
3/2
0 log d0

)
.

Remark 4.5 (Higher weight quantization). The bounds in the arbitrary noise setting can easily be
extended to NNs with higher quantization levels. For example, letting QW

l such that
∣∣QW

l

∣∣ = Q and
{0, 1} ⊆ QW

l , under the appropriate assumptions, we get that

E(S,A(S)) [LD (A (S))] ⪅ 1−Q−H(ε⋆) ,

which is a meaningful bound for noise levels ε⋆ ≤ ε (Q) for some ε (Q) < 1/2.5 Tighter results would
require utilizing the additional quantization levels to achieve smaller dimensions of the interpolating
network, and are left to future work.

5 Related work

Benign and tempered overfitting. The benign overfitting phenomenon has been extensively
studied in recent years. Previous works analyzed the conditions in which benign overfitting occurs
in linear regression [34, 11, 5, 65, 67, 21, 47, 93, 86, 98, 44, 90, 19, 3, 76, 31], kernel regression
[51, 61, 53, 57, 72, 10, 60, 8, 50, 99, 6], and linear classification [18, 91, 14, 66, 64, 76, 52, 85,
92, 25]. Moreover, several works proved benign overfitting in classification using nonlinear NNs
[28, 29, 15, 49, 94, 95, 62, 48, 30, 46]. All the aforementioned benign overfitting results require
high-dimensional settings, namely, the input dimension is larger than the number of training samples.

5Specifically, ε (Q) such that 1−Q−H(ε(Q)) ≤ 1/2.
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Mallinar et al. [57] suggested the taxonomy of benign, tempered, and catastrophic overfitting, which
we use in this work. They demonstrated empirically that nonlinear NNs in classification tasks exhibit
tempered overfitting. As mentioned in the introduction, our theoretical results for the independent
noise case closely resemble these empirical findings (see Figure 1). Tempered overfitting in kernel
ridge regression was theoretically studied in Mallinar et al. [57], Zhou et al. [99], Barzilai and Shamir
[6]. In univariate ReLU NNs (namely, for input dimension 1), tempered overfitting was obtained for
both classification [48] and regression [43]. Manoj and Srebro [58] proved tempered overfitting for a
learning rule returning short programs in some programming language. Finally, tempered overfitting
is well understood for the 1-nearest-neighbor learning rule, where the asymptotic risk is roughly
twice the Bayes risk [23].

Circuit complexity. Theorem 3.1 (our NN for memorizing label flips) is in a similar spirit as several
prior theorems in the area of circuit complexity. For example, Lupanov famously proved that every
function f : {0, 1}d0 → {0, 1} can be computed by a circuit consisting of (1 + o(1)) · 2d0/d0 many
AND/OR/NOT gates, where the AND/OR gates have fan-in two [55]. Lupanov’s bound, which is
tight [77], is analogous to Theorem 3.1, because a NN can be considered a type of circuit.

Even more relevant is a line of work that analyzes the circuit complexity of an arbitrary partial
function f : {0, 1}d0 → {0, 1, ⋆} with a given domain size N and a given number of 1-inputs N1,
similar to the setup of Theorem 3.1. See Jukna’s textbook for an overview [45, Section 1.4.2]. We
highlight the work of Chashkin, who showed that every such function can be computed by a circuit

(of unbounded depth and bounded fan-in) with (1 + o(1)) ·
log ( N

N1
)

log log ( N
N1
)
+O(d0) gates [17].

To the best of our knowledge, prior to our work, nothing analogous to Chashkin’s theorem [17] was
known regarding constant-depth threshold networks. It is conceivable that one could adapt Chashkin’s
construction [17] to the binary threshold network setting as a method of proving Theorem 3.1, but
our proof of Theorem 3.1 uses a different approach. Our proof relies on shallow threshold networks
computing k-wise independent generators [36] and an error-reduction technique that was developed
in the context of space-bounded derandomization [38], among other ingredients.

Memorization. Our construction shows how noisy data can be interpolated using a small threshold
NN with binary weights. It essentially requires memorizing the noisy examples. The task of
memorization, namely, finding a smallest NN that allows for interpolation of arbitrary data points, has
been extensively studied in recent decades. Memorization of N arbitrary points in general position in
Rd with a two-layer NN can be achieved using O

(
⌈N

d ⌉
)

hidden neurons [7, 81, 12]. Memorizing
arbitrary N points, even if they are not in general position, can be done using two-layer networks with
O(N) neurons [41, 74, 40, 97]. With three-layer networks, O(

√
N) neurons suffice, but the number

of parameters is still linear in N [39, 96, 89, 71]. Using deeper networks allows for memorization
with a sublinear number of parameters [68, 88]. For example, memorization with networks of depth√
N requires only Õ(

√
N) parameters [88]. However, we note that in the aforementioned results,

the number of quantization levels is not constant, namely, the number of bits in the representation of
each weight depends on N .6 Moreover, even in the sublinear constructions of [68, 88], the number
of bits required to represent the network is ω(N). As a result, in this work we cannot rely on these
constructions to obtain meaningful bounds.

Posterior sampling and guess and check. The generalization of random interpolating neural
networks has previously been studied, both empirically and theoretically [87, 63, 84, 20, 13].
Theisen et al. [84] studied the generalization of interpolating random linear and random features
classifiers. Valle-Perez et al. [87], Mingard et al. [63] considered the Gaussian process approx-
imation to random NNs which typically requires networks with infinite width. Buzaglo et al.
[13] provided a method to obtain generalization results for quantized random NNs of general
architectures — possibly deep and with finite width, under the assumption of a narrow teacher model.
A variant of this approach was used to prove our generalization results of posterior sampling, with
the XOR network (Lemma 3.3) used in the role of the teacher.

6We note that in most papers, the required number of quantization levels is implicit in the constructions, and
is not discussed explicitly.

9



6 Extensions, limitations, and future work

In this work, we focused on binary (fully connected) threshold networks of depth L ≥ 16 (Section 2.1)
with binary input features (Section 2.2), for which we were able to derive nontrivial generalization
bounds.

Our results can be extended with simple modifications to derive bounds in other settings. For instance,
to NNs with higher weight quantization (see Remark 4.5), or to ReLU networks (since any threshold
network with binary weights can be computed by a not-much-larger ReLU network with a constant
quantization level). Unfortunately, without more sophisticated arguments these extensions result
in looser generalization bounds. The “bottleneck” of our approach is the reliance on (nearly) tight
bounds on the widths of interpolating NNs.

Extending the results to other architectures (e.g., CNNs or fully connected without neuron scaling)
and other quantization schemes (e.g., floating point representations) will mainly require utilizing
their specific structure to derive tighter bounds on the complexity (e.g., number of weights or number
of bits) needed to interpolate consistent datasets. Furthermore, our bounds require the depth of the
networks to be at least 16, and the width to be ω

(
N 3/4

)
, which might be deemed impractical for real

datasets.7 The key to alleviating these requirements is, again, obtaining tighter complexity results.

Our paper focused on consistent training sets (Def. 2.5), in order to allow perfect interpolation.
Realistically, models do not always perfectly interpolate the training set, and therefore it is interesting
to find generalization bounds for non-interpolating models, depending on the training error. In
addition, it is interesting to relate the generalization to the training loss, and not just to the training
accuracy. Such extensions will require either broadening our generalization results or deriving new
ones.
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A Preliminaries and Auxiliary Results

A.1 Preliminaries

Before moving to the proofs of the main results, we recall and introduce some notation that will be
used throughout the supplementary material.

Notation. We denote a (possibly random) learning algorithm by A (S), and assume that it takes
values in some hypothesis class H. We use D to denote the joint distribution over a finite sample
space X × {0, 1} of the features and labels, ν to denote the marginal distribution of the algorithm,
and p to denote the joint distribution of a training set S ∼ DN and the algorithm A (S). Specifically,
the training set is a random element

S = {(X1, Y1) , . . . , (XN , YN )} ∼ DN

where (Xi, Yi) is reserved for the i-th example in S. That is (Xi, Yi) is always a sample in S,
whereas (X,Y ) is used to denote a data point which is independent of S. We use dD (x, y), dν (h)
and dp (s, h) = dp ({(x1, y1) , . . . , (xN , yN )} , h) to denote the corresponding probability mass
functions. With some abuse of notation, we use dD (x) for the probability mass function of the
marginal of D over X

dD (x) = P(X,Y )∼D (X = x) ,

and dp ((x1, y1) , h) for the marginal of the joint probability of a single point from S and the output
of the algorithm, i.e.,

dp ((x1, y1) , h) = P(S,A(S))∼p (X1 = x1, Y1 = y1, A (S) = h) .

Similarly, we use dp (x1, h), dp (y1 | x1, h), etc., for the probability mass functions of the appropriate
marginal and conditional distributions.

Interpolating algorithm. In order to simplify the analysis, we introduce a framework of interpolation
learning related to the one introduced in Framework 1.

Let Ã (S) be a learning rule satisfying Framework 1, and let ⋆ be some arbitrary token distinct from
any hypothesis the algorithm may produce. We define a modified learning rule A (S)8 such that

• If S is inconsistent then A (S) = ⋆.

• Otherwise, if S is consistent then A (S) = Ã (S), so in particular LS (A (S)) = 0.

Notice that since the A (S) = Ã (S) when S is consistent

E [LD (A (S)) | consistent S] = E
[
LD

(
Ã (S)

)
| consistent S

]
and therefore we can find bounds for the generalization error of Ã (S) by analyzing A (S). In
addition, when it can be inferred from context we use A (S) to denote the min-size and posterior
sampling interpolators (instead of AL(S) or Ad(S), respectively).

For ease of exposition, throughout the appendix, we rephrase the assumptions made in Section 4,
namely, that N = ω

(
d20 log d0

)
and N = o

(
1/
√
Dmax

)
, as follows.

Assumption A.1 (Bounded input dimension). d0 = o
(√

N/ logN
)

.

Assumption A.2 (Data distribution flatness). Dmax = o
(
1/N2

)
.

8As most of the appendix deals with the modified learning rule, we use Ã (S) for the original one and A (S)
for the modified one.
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A.2 Auxiliary results

We start by citing several standard results from information theory and lemmas from Manoj and
Srebro [58] which will be useful throughout our supplementary materials.

Lemma A.3 (Chain rule of mutual information). For any random variables A1, A2 and B

I ((A1, A2) ;B) = I (A2;B | A1) + I (A1;B) .

Lemma A.4. Let A and B be any two random variables with associated marginal distributions pA,
pB , and joint pA,B . Let qA|B be any conditional distribution (i.e. such that for any b, qA|B (·, b) is a
normalized non-negative measure). Then:

I (A;B) ≥ EA,B∼pA,B

[
log

(
dqA|B (A|B)

dpA (A)

)]
.

Lemma A.5. Let A1, A2, B be random variables where A1 and A2 are independent. Then

I ((A1, A2) ;B) ≥ I (A1;B) + I (A2;B) .

Lemma A.6 (Lemma A.4 from Manoj and Srebro [58]). For C ≥ 0 and 0 ≤ α ≤ 1 it holds that

1− 2−H(α)−C ≤ 1− 2−H(α) + C .

Lemma A.7. Let ε ∈
(
0, 1

2

)
and

ϕ (t) ≜ ϕε (t) =
εt

εt + (1− ε)
t =

1

1 +
(
1
ε − 1

)t .
Then, ϕ is monotonically decreasing as a function of t, and convex in (0,∞).

Proof. Denote α ≜ 1
ε − 1 then

ϕ (t) =
1

1 + αt

ϕ′ (t) =
− ln (α)αt

(1 + αt)
2 = − ln (α) · αt

1 + 2αt + α2t

ϕ′′ (t) = − ln (α) · ln (α)α
t (1 + αt)

2 − αt · 2 (1 + αt) · ln (α)αt

(1 + αt)
4

= − ln (α)
2 · αt · (1 + αt)− 2αt

(1 + αt)
3 = ln (α)

2 · αt · αt − 1

(1 + αt)
3 .

Notice that for any ε ∈
(
0, 1

2

)
, α = 1

ε − 1 > 1 so for all t > 0

αt − 1 > 0

and ϕ′′ (t) > 0 so the function is indeed convex, and − ln (α) < 0 so ϕ is decreasing.
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Corollary A.8. For all t > 0 it holds that

ϕ (t) ≥ ϕ (1) + ϕ′ (1) (t− 1) = ε+ ln 2 (ε log (ε) + εH (ε)) (t− 1) .

Proof. Substituting t = 1,

ϕ (1) =
ε

ε+ (1− ε)
= ε

ϕ′ (1) = − ln (α) · α

(1 + α)
2 = − ln

(
1

ε
− 1

)
·

1
ε − 1(

1 +
(
1
ε − 1

))2 = − ln

(
1− ε

ε

)
·

1
ε − 1(
1
ε

)2
= − (ln (1− ε)− ln (ε)) ·

(
ε− ε2

)
= ε (1− ε) ln (ε)− ε (1− ε) ln (1− ε)

= ε ln (ε)− ε (ε ln (ε) + (1− ε) ln (1− ε))

= ε ln 2 (log (ε)− (ε log (ε) + (1− ε) log (1− ε)))

= ε ln 2 (log (ε) +H (ε)) = ln 2 (ε log (ε) + εH (ε)) .

The inequality then holds due to convexity.

Finally, for completeness, we derive the relationship between the generalization error with respect
to the noisy distribution LD (h), and the generalization error with respect to the clean distribution
LD0 (h).
Lemma A.9. Let D be a distribution as in Section 2.2, with independent noise with label flipping
probability ε⋆ ∈

(
0, 1

2

)
. Let D0 be the clean distribution, i.e., the distribution with label flipping

probability 0. If

LD (h) = P(X,Y )∼D (h (X) ̸= Y )

and

LD0 (h) = P(X,Y )∼D0
(h (X) ̸= Y ) = P(X)∼D (h (X) ̸= h⋆ (X))

then

LD0
(h) =

LD (h)− ε⋆

1− 2ε⋆
.

Proof. By definition,

LD (h) = P(X,Y )∼D (h (X) ̸= Y )

= P(X,Y )∼D (h (X) ̸= Y | h⋆ (X)⊕ Y = 0)P(X,Y )∼D (h⋆ (X)⊕ Y = 0)

+ P(X,Y )∼D (h (X) ̸= Y | h⋆ (X)⊕ Y = 1)P(X,Y )∼D (h⋆ (X)⊕ Y = 1) .

Since we assume that the noise is independent,

LD (h) = (1− ε⋆)P(X,Y )∼D (h (X) ̸= Y | h⋆ (X)⊕ Y = 0)

+ ε⋆P(X,Y )∼D (h (X) ̸= Y | h⋆ (X)⊕ Y = 1)

= (1− ε⋆)P(X,Y )∼D (h (X) ̸= h⋆ (X)) + ε⋆P(X,Y )∼D (h (X) = h⋆ (X))

= (1− ε⋆)LD0
(h) + ε⋆ (1− LD0

(h))

= ε⋆ + (1− 2ε⋆)LD0
(h) ,

or equivalently,

LD0
(h) =

LD (h)− ε⋆

1− 2ε⋆
.

Remark A.10. In particular, under the assumptions of the lemma, LD (h) = 2ε⋆ (1− ε⋆) is equivalent
to LD0

(h) = ε⋆.
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B Data consistency

Before moving on to generalization, we address some key properties of the training set’s consistency.
Lemma B.1. For any distribution over the data D, P (inconsistent S) ≤ 1

2N
2Dmax .

Proof. Using the union bound,
P (inconsistent S) = P (∃i ̸= j ∈ [N ] : Xi = Xj , Yi ̸= Yj)

≤ P (∃i ̸= j ∈ [N ] : Xi = Xj)

≤
∑
i̸=j

P (Xi = Xj) =

(
N

2

)
P (X1=X2) =

(
N

2

)∑
x∈X

P (X1 = x)P (X2 = x)

≤
(
N

2

)∑
x∈X

DmaxP (X = x) =

(
N

2

)
Dmax ≤ 1

2
N2Dmax .

Hence, under Assumption A.2 we have P (inconsistent S) = o (1), i.e., the inconsistency probability
is asymptotically small.

B.1 Independent label noise

We now focus on the case of independent label noise, i.e., Y ⊕ h⋆ (X) | {X = x} ∼ Ber (ε⋆) for
any x ∈ X . Recall the noise level

ε⋆ = P(X,Y )∼D (Y ̸= h⋆ (X)) = PS (Y1 ̸= h⋆ (X1))

and we define the “effective” noise level in a consistent training set

ε̂tr ≜ PS (Y1 ̸= h⋆ (X1) | consistent S) . (4)
We relate ε̂tr to ε⋆ in the following lemma.
Lemma B.2. In the independent noise setting, it holds that

|ε̂tr − ε⋆| ≤ |ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆))| · (N − 1)
Dmax

P (consistentS)
,

and moreover, ε̂tr ≤ ε⋆.

Proof. Conditioning on S being consistent (having no label “collisions”), all occurrences of x in S
must have the same label so

PS (Y1 ̸= h⋆ (X1) |(X1, Y1) appears k times in S, consistent S) =
ε⋆k

ε⋆k + (1− ε⋆)
k

Therefore,
ε̂tr = PS (Y1 ̸= h⋆ (X1) | consistent S)

=

N∑
k=1

PS (Y1 ̸= h⋆ (X1) |(X1, Y1) appears k times in S, consistent S)

· P ((X1, Y1) appears k times in S | consistent S)

=

N∑
k=1

ε⋆k

ε⋆k + (1− ε⋆)
k
· P ((X1, Y1) appears k times in S | consistent S)

≤
N∑

k=1

ε⋆1

ε⋆1 + (1− ε⋆)
1 · P ((X1, Y1) appears k times in S | consistent S)

= ε⋆
N∑

k=1

·P ((X1, Y1) appears k times in S | consistent S)︸ ︷︷ ︸
sums to 1

= ε⋆ .

(5)
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On the other hand, define

K (S) ≜ |{i ∈ [N ] | Xi = X1}| =
N∑
i=1

I {Xi = X1}

then

ES [K (S) | consistent S] = 1 +

N∑
i=2

ES [I {Xi = X1} | consistent S]

= 1 + (N − 1)PS (X2 = X1 | consistent S) .

Next,

P (X2 = X1 | consistentS) = P (X2 = X1, consistentS)

P (consistentS)
≤ P (X1 = X2)

P (consistentS)
.

Since dD (x) ≤ Dmax for all x ∈ X , as in the proof of Lemma B.1

ES [K (S) | consistent S] ≤ 1 + (N − 1)
P (X1 = X2)

P (consistentS)
≤ 1 + (N − 1)

Dmax

P (consistentS)
.

Then, using Lemma A.7 we get,

ε̂tr =

N∑
k=1

ε⋆k

ε⋆k + (1− ε⋆)
k
· P (X1 appears k times in S | consistent S)

=

N∑
k=1

ϕε⋆ (k) · P (X1 appears k times in S | consistent S)

= ES

ϕε⋆ (K (S))︸ ︷︷ ︸
convex in k

| consistent S


[Jensen] ≥ ϕε⋆ (ES [K (S) | consistent S])

[decreasing] ≥ ϕε⋆

(
1 + (N − 1) · Dmax

P (consistentS)

)
.

Corollary A.8 implies that

ε̂tr ≥ ϕε⋆

(
1 + (N − 1) · Dmax

P (consistentS)

)
≥ ε⋆ + ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆)) · (N − 1)

Dmax

P (consistentS)
.

Combining the bounds we get

|ε̂tr − ε⋆| ≤ |ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆))| · (N − 1)
Dmax

P (consistentS)
.
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C Generalization bounds

We present two generalization bounds for the population error of an interpolating algorithm in terms
of the mutual information of it with the training set.
Remark C.1 (High consistency probability). Throughout the appendix we assume that the consistency
satisfies PS (consistent S) ≥ 1

2 . While this assumption is not without loss of generality, it is a weaker
version of Assumption A.2 and implied by it (asymptotically). As Assumption A.2 is assumed in all
“downstream results” that this appendix aims to support, we find it is reasonable to assume here.

C.1 Arbitrary label noise

In this subsection, we provide a generalization bound for interpolating algorithms without any
assumptions on the distribution of the noise Y ⊕ h⋆ (X) | {X = x}, other than LD (h⋆) = ε⋆.
Lemma C.2. For any interpolating learning algorithm A (S),

− log
(
1− ES,A(S) [LD (A (S)) | consistentS]

)
≤ I (S;A (S))

N · PS (consistentS)
.

Proof. We rely on Lemma A.4. Specifically, we shall use the following suggested conditional
distribution. For h ̸= ⋆ let

dq (s|h) = 1

Zh
I {Ls (h) = 0} dDN (s)

where

Zh =
∑
s

I {Ls (h) = 0} dDN (s)

= ESI {LS (h) = 0}
= PS (LS (h) = 0)

= (1− LD (h))
N

.

For h = ⋆ let

dq (s|⋆) = I {inconsistent s} dDN (s)∑
s′ I {inconsistent s′} dDN (s′)

= I {inconsistent s} dDN (s)

PS (inconsistent S)
.

Clearly, if h ̸= ⋆ and dq (s|h) = 0 then either dDN (s) = 0 so dp (s, h) = 0 as well, or Ls (h) ̸= 0.
So, since h ̸= ⋆, s can be interpolated and dp (s | h) = 0. That is, the proposed conditional
distribution is absolutely continuous w.r.t. the true conditional distribution. When h = ⋆, q is the
true conditional distribution given that h = ⋆ so it is also absolutely continuous w.r.t. it. That is, the
proposed distribution is

dq (s | h) = I {inconsistent s}
PS (inconsistent S)

I {h = ⋆} dDN (s) +
I {Ls (h) = 0}
(1− LD (h))

N
I {h ̸= ⋆} dDN (s) .

From Lemma A.4

I (S;A (S)) ≥ ES,A(S)

[
log

(
dq (S|A (S))

dDN (S)

)]
= ES,A(S)

[
log
(

I{inconsistent S}
PS′ (inconsistent S′) I {A (S) = ⋆}+ I{LS(A(S))=0}

(1−LD(A(S)))N
I {A (S) ̸= ⋆}

)]
.

I {A (S) = ⋆} and I {A (S) ̸= ⋆} are mutually exclusive so

I (S;A (S))

≥ ES,A(S)

[
log
(

I{inconsistent S}
PS′ (inconsistent S′)

)
I {A (S) = ⋆}+ log

(
I{LS(A(S))=0}
(1−LD(A(S)))N

)
I {A (S) ̸= ⋆}

]
.

The first term is 0 when A (S) ̸= ⋆ and positive when A (S) = ⋆ (and so always non-negative).
Furthermore, whenever dp (S,A (S)) > 0 and I {A (S) ̸= ⋆} = 1 hold together, they imply that
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I {LS (A (S)) = 0} = 1 so we have

I (S;A (S)) ≥ ES,A(S)

[
log

(
1

(1− LD (A (S)))
N

)
I {A (S) ̸= ⋆}

]
= −ES,A(S) [N log (1− LD (A (S))) I {A (S) ̸= ⋆}] .

Using Jensen’s inequality,

−ES,A(S) [N log (1− LD (A (S))) I {A (S) ̸= ⋆}]
= −NES,A(S) [log (1− LD (A (S))) | I {A (S) ̸= ⋆}]PS,A(S) (A (S) ̸= ⋆)

≥ −N log
(
1− ES,A(S) [LD (A (S)) | I {A (S) ̸= ⋆}]

)
PS,A(S) (A (S) ̸= ⋆)

= −N log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
PS (consistent S)

so

I (S;A (S)) ≥−N log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
PS (consistent S) .

Rearranging the inequality

− log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
≤ I (S;A (S))

N · PS (consistent S)
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C.2 Independent Noise

Lemma C.3. Assuming independent noise, the generalization error of interpolating learning rules
satisfies the following.∣∣ES,A(S) [LD (A (S)) | consistentS]− 2ε⋆ (1− ε⋆)

∣∣
≤ (1− 2ε⋆)

√
C (N) +

(N − 1)Dmax

3
,

where C (N) ≜ I(S;A(S))−N ·(H(ε⋆)−P(inconsistentS))
N(1−P(inconsistentS)) .

Proof. As in the proof of Lemma 4.2 in Manoj and Srebro [58], since S is sampled i.i.d., we have

I (S;A (S))
A.5
≥

N∑
i=1

I ((Xi, Yi) ;A (S)) = N · I ((X1, Y1) ;A (S))

A.3
= N · I (X1;A (S)) +N · I (Y1;A (S) | X1) . (6)

Using properties of conditional mutual information,

I (Y1;A (S) | X1) = H (Y1 | X1)−H (Y1 | A (S) , X1) . (7)

For the first term in (7), we employ the fact that for any x ∈ X , either Y1 | X1 = x ∼ Ber (ε⋆) or
Y1 | X1 = x ∼ Ber (1− ε⋆) to get

H (Y1 | X1) = E(X,Y )∼D [H (Y1 | X1 = X)] = E(X,Y )∼D [H (ε⋆)] = H (ε⋆) .

For the second term in (7), we again employ the definition of conditional entropy,

H (Y1 | A (S) , X1) = −
∑
x1∈X

∑
h∈H∪{⋆}

[
dp ((x1, 0) , h) log

(
dp ((x1, 0) , h)

dp (x1, h)

)

+ dp ((x1, 1) , h) log

(
dp ((x1, 1) , h)

dp (x1, h)

)]
.

When h ̸= ⋆, the marginal distribution of a training data point and a hypothesis is

dp ((x, y) , h) = dp (y | x, h) dp (x, h) = I {y = h (x)} dp (x, h) ,
and the inner sum becomes a sum over expressions of the form:

dp ((x1, h (x1)) , h) log

(
dp ((x1, h (x1)) , h)

dp (x1, h)

)
= dp (x1, h) log

(
dp (x1, h)

dp (x1, h)

)
︸ ︷︷ ︸

=0

= 0 .

Therefore, we have that,

H (Y1 | A (S) , X1)

= −
∑
x1∈X

[
dp ((x1, 0) , ⋆) log

(
dp ((x1, 0) , ⋆)

dp (x1, ⋆)

)
+ dp ((x1, 1) , ⋆) log

(
dp ((x1, 1) , ⋆)

dp (x1, ⋆)

)]
Employing conditional probabilities (notice that dp((x1,0),⋆)

dp(x1,⋆)
= dp(0|x1,⋆)dp(x1,⋆)

dp(x1,⋆)
= dp (0 | x1, ⋆)),

we get,

H (Y1 | A (S) , X1)

= −
∑
x1∈X

dp (x1, ⋆) [dp (0 | x1, ⋆) log (dp (0 | x1, ⋆)) + dp (1 | x1, ⋆) log (dp (1 | x1, ⋆))]

=
∑
x1∈X

dp (x1, ⋆)H (dp (0 | x1, ⋆)) = dp (⋆)
∑
x1∈X

dp (x1 | ⋆)H (dp (0 | x1, ⋆))

= P (A (S) = ⋆)E(S,A(S))∼p

[
H (dp (0 | X1, ⋆))︸ ︷︷ ︸

≤1

| inconsistent S
]
≤ PS (inconsistent S) .
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Overall, the right term in (6) is lower bounded by,

I (Y1;A (S) | X1) = H (Y1 | X1)−H (Y1 | A (S) , X1) ≥ H (ε⋆)− P (inconsistent S) .

For the left term, i.e., I (X1;A (S)), we use the variational bound Lemma A.4 with the following
suggested conditional distribution.

• For h = ⋆, choose dq (x1 | ⋆) = dp (x1) (notice that
∑

x1∈X dq (x1 | ⋆) =
∑

x1
dp (x1) = 1.

• Otherwise, if h ̸= ⋆, denote qε = Ber (ε), and

ε̂tr = PS (Y1 ̸= h⋆ (X1) | consistent S)
ε̂gen = E(S,A(S))∼p [PX∼D (A (S) (X) ̸= h⋆ (X)) | A (S) ̸= ⋆] .

Note that ε̂tr may differ from ε⋆. We choose the following conditional distribution

dq (x1 | h) = 1

Zh
· dqε̂tr (h (x1)⊕ h⋆ (x1))

dqε̂gen (h (x1)⊕ h⋆ (x1))
dp (x1) .

In total, we choose,

dq (x1 | h) = 1

Zh
· dqε̂tr (h (x1)⊕ h⋆ (x1))

dqε̂gen (h (x1)⊕ h⋆ (x1))
· I {h ̸= ⋆} dp (x1) + I {h = ⋆} dp (x1) ,

where Zh is the corresponding partition function.

Then, we use (A.4) and properties of logarithms and indicators to show that,

I (X1;A (S)) ≥ ES,A(S)

[
log

(
dq (X1|A (S))

dp (X1)

)]

= ES,A(S)

log
 1

ZA(S)

dqε̂tr (h(X1)⊕h⋆(X1))

dqε̂gen (h(X1)⊕h⋆(X1))
dp (X1) I {A (S) ̸= ⋆}+ dp (X1) I {A (S) = ⋆}

dp (X1)


= ES,A(S)

[
log

(
1

ZA(S)

dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))
I {A (S) ̸= ⋆}+ I {A (S) = ⋆}

)]
= ES,A(S)

[
log

(
1

ZA(S)

dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

)
I {A (S) ̸= ⋆}

]
+

ES,A(S)

[
log (1) I {A (S) = ⋆}︸ ︷︷ ︸

=0

]
= ES,A(S)

[
log

(
1

ZA(S)

dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

)
I {A (S) ̸= ⋆}

]
.

Using the law of total expectation, the above becomes,

= P (A (S) ̸= ⋆)ES,A(S)

[
log

(
1

ZA(S)
· dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

) ∣∣∣∣ A (S) ̸= ⋆

]
,

where we also use Jensen’s inequality to show,

ES,A(S)

[
log

(
1

ZA(S)
· dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

) ∣∣∣∣ A (S) ̸= ⋆

]
= ES,A(S)

[
log

(
dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

) ∣∣∣∣ A (S) ̸=⋆

]
− ES,A(S)

[
log
(
ZA(S)

) ∣∣ A (S) ̸=⋆
]

≥ ES,A(S)

[
log

(
dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

) ∣∣∣∣ A (S) ̸=⋆

]
− log

(
ES,A(S)

[
ZA(S)

∣∣ A (S) ̸=⋆
])

.
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The partition function satisfies for all h ̸= ⋆,

Zh =
∑
x1∈X

dqε̂tr (h (x1)⊕ h⋆ (x1))

dqε̂gen (h (x1)⊕ h⋆ (x1))
dp (x1) = EX∼D

[
dqε̂tr (h (X)⊕ h⋆ (X))

dqε̂gen (h (X)⊕ h⋆ (X))

]
= PX∼D (h (X) = h⋆ (X)) · 1− ε̂tr

1− ε̂gen
+ PX∼D (h (X) ̸= h⋆ (X)) · ε̂tr

ε̂gen
.

Taking the expectation w.r.t. (S,A (S)) ∼ p, we get

E(S,A(S))∼p

[
ZA(S) | A (S) ̸= ⋆

]
=

1− ε̂tr

1− ε̂gen
· ES,A(S) [P (A (S) (X) = h⋆ (X)) | A (S) ̸= ⋆]︸ ︷︷ ︸

=1−ε̂gen

+

+
ε̂tr

ε̂gen
· ES,A(S) [P (A (S) (X) ̸= h⋆ (X)) | A (S) ̸= ⋆]︸ ︷︷ ︸

=ε̂gen

= 1 .

Combining the above, we have that,

I (X1;A (S)) ≥ P (A (S) ̸= ⋆)ES,A(S)

[
log

(
dqε̂tr (A (S) (X1)⊕ h⋆ (X1))

dqε̂gen (A (S) (X1)⊕ h⋆ (X1))

)
| A (S) ̸= ⋆

]
.

Notice that

(A (S) (X1)⊕ h⋆ (X1) | {A (S) ̸= ⋆}) = (Y1 ⊕ h⋆ (X1) | {consistent S}) ,
so A (S) (X1)⊕ h⋆ (X1) | {A (S) ̸= ⋆} ∼ Ber (ε̂tr), and thus

I (X1;A (S)) ≥ P (A (S) ̸= ⋆)DKL

(
qε̂tr ||qε̂gen

)
=
(
1− P (inconsistent S)

)
DKL

(
qε̂tr ||qε̂gen

)
.

Putting this all together, (6) is lower bounded by,

I (S;A (S)) ≥ N
(
1− P (inconsistent S)

)
DKL

(
qε̂tr ||qε̂gen

)
+N

(
H (ε⋆)− P (inconsistent S)

)
.

Rearranging the inequality

DKL

(
qε̂tr ||qε̂gen

)
≤ I (S;A (S))−N · (H (ε⋆)− P (inconsistent S))

N (1− P (inconsistent S))
≜ C (N) .

Using Pinsker’s inequality, we have,

|ε̂tr − ε̂gen| ≤
√

1

2
DKL

(
qε̂tr ||qε̂gen

)
≤
√
C (N) .

We proceed to bound ES,A(S) [LD (A (S)) | consistent S] in terms of |ε̂tr − ε̂gen|. Notice that

ES,A(S) [LD (A (S)) | consistent S]

= ES,A(S)

[
P(X,Y )∼D (A (S) (X) ̸= Y ) | consistent S

]
= ES,A(S)

[
P (A (S) (X) ̸= Y | Y = h⋆ (X))P (Y = h⋆ (X))︸ ︷︷ ︸

no label flip

∣∣∣ consistent S
]
+

+ ES,A(S)

[
P (A (S) (X) ̸= Y | Y ̸= h⋆ (X))P (Y ̸= h⋆ (X))︸ ︷︷ ︸

label flip

∣∣∣ consistent S
]

= ES,A(S)

[
P (A (S) (X) ̸= h⋆ (X)) (1− ε⋆) + P (A (S) (X) = h⋆ (X)) ε⋆

∣∣∣ consistent S
]

= (1− ε⋆)ES,A(S) [P (A (S) (X) ̸= h⋆ (X)) | consistent S] +

+ ε⋆ES,A(S) [P (A (S) (X) = h⋆ (X)) | consistent S]

= (1− ε⋆) ε̂gen + ε⋆ (1− ε̂gen) .
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Then, using the triangle inequality,∣∣ES,A(S) [LD (A (S)) | consistent S]− 2ε⋆ (1− ε⋆)
∣∣

= |(1− ε⋆) ε̂gen + ε⋆ (1− ε̂gen)− 2ε⋆ (1− ε⋆)| =
∣∣ε̂gen − ε̂genε

⋆ + ε⋆ − ε̂genε
⋆ − 2ε⋆ + 2ε⋆2

∣∣
=
∣∣ε̂gen − 2ε̂genε

⋆ − ε⋆ + 2ε⋆2
∣∣ = |ε̂gen (1− 2ε⋆)− ε⋆ (1− 2ε⋆)| = (1− 2ε⋆) |ε̂gen − ε⋆|

≤ (1− 2ε⋆) (|ε̂gen − ε̂tr|+ |ε̂tr − ε⋆|) .

Combining with the result from Lemma B.2 and Remark C.1

|ε̂tr − ε⋆| ≤ |ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆))| · (N − 1)
Dmax

P (consistentS)

≤ |ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆))| · 2 (N − 1)Dmax .

we conclude that∣∣ES,A(S) [LD (A (S)) | consistent S]− 2ε⋆ (1− ε⋆)
∣∣

≤ (1− 2ε⋆)
(√

C (N) + ln 2 |(ε⋆ log (ε⋆) + ε⋆H (ε⋆))| · 2 (N − 1)Dmax

)
.

Finally, we can use the algebraic property that (1− 2ε⋆) |ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆))| ≤ 1
6 ,

to get ∣∣ES,A(S) [LD (A (S)) | consistent S]− 2ε⋆ (1− ε⋆)
∣∣

≤ (1− 2ε⋆)
√

C (N) +
(N − 1)Dmax

3
.

We can now bound the expected generalization error without conditioning on the consistency of the
training set.
Lemma C.4. It holds that,∣∣ES,A(S) [LD (A (S))]− 2ε⋆ (1− ε⋆)

∣∣
≤
∣∣ES,A(S) [LD (A (S)) | consistentS]− 2ε⋆ (1− ε⋆)

∣∣+ PS (inconsistentS) .

Proof. Let X be an arbitrary RV in [0, 1] and Y be a binary RV. Then,

E [X] = P (Y )E [X|Y ] + P (¬Y )E [X|¬Y ]

E [X]− E [X|Y ] = P (Y )E [X|Y ]− E [X | Y ] + P (¬Y )E [X|¬Y ]

= E [X|Y ] (P (Y )− 1) + P (¬Y )E [X|¬Y ]

= −E [X|Y ]P (¬Y ) + P (¬Y )E [X|¬Y ] = P (¬Y ) (E [X|¬Y ]− E [X|Y ])

|E [X]− E [X|Y ]| = P (¬Y ) |E [X|¬Y ]− E [X|Y ]|︸ ︷︷ ︸
≤1

≤ P (¬Y ) .

As a result∣∣ES,A(S) [LD (A (S))]− ES,A(S) [LD (A (S)) | consistent S]
∣∣ ≤ PS(inconsistent S) .

Then, the required inequality is obtained by simply using the triangle inequality on∣∣ES,A(S) [LD (A (S))]− 2ε⋆ (1− ε⋆)
∣∣ .
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D Memorizing the label flips (proofs for Section 3)

In this section, we prove Theorem 3.1. We begin with an informal outline of the proof idea.
Inspired by Manoj and Srebro’s analysis [58], our proof of Theorem 3.1 is based on the concept of a
pseudorandom generator, defined below.
Definition D.1 (Pseudorandom generator). Let G : {0, 1}r → {0, 1}R be a function, let V be a class
of functions V : {0, 1}R → {0, 1}, let D be a distribution over {0, 1}R, and let ϵ > 0. We say that G
is an ϵ-pseudorandom generator (ϵ-PRG) for V with respect to D if for every V ∈ V , we have∣∣Py∼D(V (y) = 1)− Pu∈{0,1}r (V (G(u)) = 1)

∣∣ ≤ ϵ,

where u is sampled uniformly at random from {0, 1}r.

To connect Definition D.1 to Theorem 3.1, let R = 2d0 . Let V be the class of all conjunctions of
literals, such as V (y) = y1 ∧ ȳ2 ∧ y4. Let X̂ = f−1({0, 1}). There is a function Vf ∈ V such
that given the entire truth table of a NN h̃, the function Vf verifies that h̃ agrees with f on X̂ . This
function Vf is a conjunction of N1 many variables and (N −N1) many negated variables.

Let α = N1/N , and let D = Ber(α)R. Suppose G is an ϵ-PRG for V with respect to D, where
ϵ < Py∼D(Vf (y) = 1). Then Pu∈{0,1}r (Vf (G(u)) = 1) ̸= 0, i.e., there exists some u⋆ ∈ {0, 1}r

such that Vf (G(u⋆)) = 1. Therefore, if we let h̃ be a NN that computes the function

h̃(x) = G(u⋆)x, (8)

then h̃ agrees with f on X̂ . In the equation above, G(u⋆)x denotes the x-th bit of G(u⋆), thinking of
x as a number from 0 to R− 1 represented by its binary expansion.

There is a large body of well-established techniques for constructing PRGs. (See, for example,
Hatami and Hoza’s recent survey [35].) Therefore, constructing a suitable PRG might seem like a
promising approach to proving Theorem 3.1. However, this approach is flawed. The issue concerns
the seed length (r). According to the plan outlined above, the seed u⋆ is effectively hard-coded into
the neural network h̃, which means that, realistically, the number of weights in h̃ will be at least r.
Meanwhile, for the plan above to make sense, our PRG’s error parameter (ϵ) must satisfy

ϵ < Py∼D(Vf (y) = 1) = 2−H(α)·N ≈ 2−(
N
N1
). (9)

Comparing (9) to Theorem 3.1, we see that we would need a PRG with seed length

r = (1 + o(1)) · log(1/ϵ).
But this is too much to ask. There is no real reason to expect such a PRG to exist, even if we ignore
explicitness considerations. Indeed, in some cases, it is provably impossible to achieve a seed length
smaller than (2− o(1)) · log(1/ϵ) [2].

To circumvent this issue, we will work with a more flexible variant of the PRG concept called a
hitting set generator (HSG).
Definition D.2 (Hitting set generator). Let G : {0, 1}r → {0, 1}R be a function, let V be a class
of functions V : {0, 1}R → {0, 1}, let D be a distribution over {0, 1}R, and let ϵ > 0. We say
that G is an ϵ-hitting set generator (ϵ-HSG) for V with respect to D if for every V ∈ V such that
Py∼D(V (y) = 1) > ϵ, there exists u⋆ ∈ {0, 1}r such that V (G(u⋆)) = 1.

Definition D.2 is weaker than Definition D.1, but an HSG is sufficient for our purposes. Crucially,
one can show nonconstructively that for every V , D, and ϵ, there exists an HSG with seed length

1 · log(1/ϵ) + log log |V|+O(1),

whereas the nonconstructive PRG seed length is 2 · log(1/ϵ) + · · · . To prove Theorem 3.1, we will
construct an explicit HSG for conjunctions of literals with respect to Ber(α)R with a seed length
of (1 + o(1)) · log(1/ϵ) + polylogR. We will ensure that our HSG is “explicit enough” to enable
computing the function h̃ defined by (8) using a constant-depth NN with approximately r many
weights.

Our HSG construction uses established techniques from the pseudorandomness literature. In brief,
we use k-wise independence to construct an initial HSG with a poor dependence on ϵ, and then we
apply an error reduction technique due to Hoza and Zuckerman [38]. Details follow.
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D.1 Preprocessing the input to reduce the dimension

Before applying an HSG as outlined above, the first step of the proof of Theorem 3.1 is actually a
preprocessing step that reduces the dimension to approximately 2 logN . This step is not completely
essential, but it helps to improve the dependence on d0 in Theorem 3.1. The preprocessing step is
based on a standard trick, namely, we treat the input as a vector in Fd0

2 and apply a random matrix,
where F2 denotes the field with two elements. That is:

Definition D.3 (F2-linear and F2-affine functions). A function C : {0, 1}d → {0, 1}d′
is F2-linear if

it has the form
C(x) = Wx,

where W ∈ {0, 1}d′×d and the arithmetic is mod 2. More generally, we say that C is F2-affine if it
has the form

C(x) = Wx+ b,

where W ∈ {0, 1}d′×d, b ∈ {0, 1}d′
, and the arithmetic is mod 2.

The following fact is standard; we include the proof only for completeness.

Lemma D.4 (Preprocessing to reduce the dimension). Let d0 ∈ N, let X̂ ⊆ {0, 1}d0 , and let
N = |X̂ |. There exists an F2-linear function C0 : {0, 1}d0 → {0, 1}2⌈logN⌉ that is injective on X̂ .

Proof. Pick W ∈ {0, 1}2⌈logN⌉×d0 uniformly at random and let C0(x) = Wx. For each pair of
distinct points x,x′ ∈ X̂ , we have

P(Wx = Wx′) = P(W(x− x′) = 0) = 2−2⌈logN⌉ < 1/N2.

Therefore, by the union bound over all pairs x,x′, there is a nonzero chance that C0 is injective on X̂ .
Therefore, there is some fixing of W such that C0 is injective on X̂ .

We will choose C0 to be injective on the domain of f . That way, after applying C0 to the input, our
remaining task is to compute some other partial function f ′ : {0, 1}2⌈logN⌉ → {0, 1, ⋆}, namely, the
function f ′ such that f ′ ◦ C0 = f . This function f ′ has the same domain size (N ), and it takes the
value 1 on the same number of points (N1), so the net effect is that we have decreased the dimension
from d0 down to 2⌈logN⌉. This same technique appears in the circuit complexity literature, along
with more sophisticated variants. For example, see Jukna’s textbook [45, Section 1.4.2].

To apply Lemma D.4 in our setting, we rely on the well-known fact that F2-linear functions, and
more generally F2-affine functions, can be computed by depth-two binary threshold networks. More
precisely, we have the following.

Lemma D.5 (Binary threshold networks computing F2-linear functions). If C : {0, 1}d → {0, 1}
is the parity function or its negation, then there exists a depth-one binary threshold network
C0 : {0, 1}d → {0, 1}(d+2) and a number b ∈ R such that for every x ∈ {0, 1}d, we have

C(x) = 1TC0(x) + b,

where 1 denotes the all-ones vector. Moreover, every affine function C : {0, 1}d → {0, 1}d′
can be

computed by a depth-two binary threshold network with d′ · (d+ 2) nodes in the hidden layer.

Proof. First, suppose C is the parity function. For each i ∈ [d], let ϕ≤i : {0, 1}d → {0, 1} be the
function

ϕ≤i(x) = 1 ⇐⇒
d∑

j=1

xj ≤ i,

and similarly define ϕ≥i : {0, 1}d → {0, 1} by

ϕ≥i(x) = 1 ⇐⇒
d∑

j=1

xj ≥ i.
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Then

ϕ≤1(x) + ϕ≥1(x) + ϕ≤3(x) + ϕ≥3(x) + · · · =
{
⌈d/2⌉+ 1 if PARITY(x) = 1

⌈d/2⌉ if PARITY(x) = 0,

so we can take b = −⌈d/2⌉. Now, suppose C is the negation of the parity function. This reduces to
the case of the parity function because 1− PARITY(x) = PARITY(x, 1). Finally, the “moreover”
statement follows because if C is F2-affine, then every output bit of C is either the parity function or
the negated parity function applied to some subset of the inputs.

Lemma D.5 can be generalized to the case of any symmetric function instead of PARITY. This
technique is well-known in the circuit complexity literature; for example, see the work of Hajnal,
Maass, Pudlák, Szegedy, and Turán [32].

D.2 Threshold networks computing k-wise independent generators

One of the ingredients of our HSG will be a family of pairwise independent hash functions. We will
use the following family, notable for its low computational complexity.

Lemma D.6 (Affine pairwise independent hash functions). For every a, r ∈ N, there is a family H of
hash functions hash: {0, 1}a → {0, 1}r with the following properties.

• |H| ≤ 2O(a+r).

• H is pairwise independent. That is, for every two distinct w,w′ ∈ {0, 1}a, if we pick hash ∈ H
uniformly at random, then hash(w) and hash(w′) are independent and uniformly distributed
over {0, 1}r.

• Each function hash ∈ H is F2-affine.

Proof. See the work of Mansour, Nisan, and Tiwari [59, Claim 2.2].

Remark D.7 (Alternative hash families). By Lemma D.5, each function hash ∈ H can be computed
by a depth-two binary threshold network with O(r2a+ ra2) wires (weights). There exist alternative
pairwise independent hash function families with lower wire complexity. In particular, one could use
hash functions based on integer arithmetic [24], which can be implemented with wire complexity
(a+ r)1+γ for any arbitrarily small constant γ > 0 [73]. This would lead to slightly better width and
wire complexity bounds in Theorem 3.1: each occurrence of 3/4 could be replaced with 2/3 + γ.
However, the downside of this approach is that the depth of the network would increase to a very
large constant depending on γ.

Another ingredient of our HSG will be a threshold network computing a “k-wise uniform generator,”
defined below.

Definition D.8 (k-wise uniform generator). A k-wise uniform generator is a function G : {0, 1}r →
{0, 1}R such that if we sample u ∈ {0, 1}r uniformly at random, then every k of the output
coordinates of G(u) are independent and uniform. In other words, G is a 0-PRG for V with respect
to the uniform distribution, where V consists of all Boolean functions that only depend on k bits.

Prior work has shown that k-wise uniform generators can be implemented by constant-depth threshold
networks [36]. We will need to re-analyze the construction to get sufficiently fine-grained bounds. In
the remainder of this subsection, we will prove the following.
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Lemma D.9 (Constant-depth k-wise uniform generator). Let k,R ∈ N where R is a power of two.
There exists a k-wise uniform generator G : {0, 1}r → {0, 1}R, where r = O(k · logR), such that
for every F2-affine function hash: {0, 1}a → {0, 1}r, there exists a depth-5 binary threshold network
C : {0, 1}a+logR → {0, 1}k·polylogR with widths d satisfying the following.

1. For every w ∈ {0, 1}a and every z ∈ {0, 1}logR, we have

G(hash(w))z = PARITY(C(w, z)),

thinking of z as a number in {0, 1, . . . , R− 1}.

2. The maximum width dmax is at most ak · polylogR.

3. The total number of weights w (d) is at most (a+ k) · ak · polylogR.

Remark D.10 (The role of the parity functions). One can combine Lemma D.9 with Lemma D.5
to obtain threshold networks computing the function (u, z) 7→ G(u)z. In Lemma D.9, instead of
describing a network that computes the function (u, z) 7→ G(u)z, we describe a network C satisfying
G(hash(w))z = PARITY(C(w, z)). The only reason for this more complicated statement is that it
leads to a slightly better depth complexity in Theorem 3.1.

We reiterate that the proof of Lemma D.9 heavily relies on prior work. For the most part, this prior
work studies a Boolean circuit model that is closely related to, but distinct from, the “binary threshold
network” model in which we are interested. We introduce the circuit model next.

Definition D.11 (L̂TL circuits). An L̂TL circuit is defined just like a depth-L binary threshold
network (Definition 2.1), except that we allow arbitrary integer weights (W(l) ∈ Zdl×dl−1 ); we allow
arbitrary integer thresholds (b(l) ∈ Zdl); and we do not allow any scaling (γ(l) = 1dl). The size of
the circuit is the sum of the absolute values of the weights, i.e.,

L∑
l=1

dl∑
i=1

dl−1∑
j=1

|W(l)
ij |.

Remark D.12 (Parallel wires). In the context of circuit complexity, it is perhaps more natural to
stipulate that the weights are always {±1}; there can be any number of parallel wires between two
nodes, including zero; and the size of the circuit is the total number of wires. This is completely
equivalent to Definition D.11.

The proof of Lemma D.9 relies on circuits performing arithmetic. A long line of research investigated
the depth complexity of (iterated) integer multiplication [16, 9, 69, 78, 37, 73, 32, 80, 79], culminating
in the following result by Siu and Roychowdhury [79].

Theorem D.13 (Iterated multiplication in depth four [79]). For every n ∈ N, there exists an L̂T4

circuit of size poly(n) that computes the product of n given n-bit integers.

By a standard trick [26], Theorem D.13 implies circuits of the same complexity that compute the
iterated product of polynomials over F2. We include a proof sketch for completeness.

Corollary D.14 (Iterated multiplication of polynomials over F2). For every n ∈ N, there exists an
L̂T4 circuit of size poly(n) that computes the product of n given polynomials in F2[x], each of which
has degree less than n and is represented by an n-bit vector of coefficients.

Proof sketch. Think of the given polynomials as polynomials over Z, say q1(x), . . . , qn(x). If we
evaluate one of these polynomials on a power of two, say qi(2

s), and then write the output in binary,
the resulting string consists of the coefficients of qi, with s− 1 zeroes inserted between every two
bits. Therefore, by using the poly(ns)-size circuit of Theorem D.13 (with some of its inputs fixed
to zeroes), we can compute the product q1(2s) · q2(2s) · · · qn(2s) = q(2s), where q = q1 · q2 · · · qn.
Every coefficient of q is a nonnegative integer bounded by nn, so if we choose s = ⌈n log n⌉, then
the binary expansion of q(2s) is the concatenation of all of the binary expansions of the coefficients of
q. To reduce mod 2, we simply discard all but the lowest-order bit of each of those coefficients.
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At this point, we are ready to construct a circuit that computes a k-wise uniform generator. The
construction is based on the work of Healy and Viola [36].

Lemma D.15 (A k-wise uniform generator in the L̂TL model). Let k,R ∈ N where R is a power
of two. There exists a k-wise uniform generator G : {0, 1}r → {0, 1}R, an F2-linear function
C0 : {0, 1}logR → {0, 1}O(logR·log k), and an L̂T4 circuit C1 : {0, 1}O(k·logR) → {0, 1}O(k·logR)

with the following properties.

• The seed length is r = O(k · logR).

• For every seed u ∈ {0, 1}r and every z ∈ {0, 1}logR, we have

G(u)z = PARITY(C1(u, C0(z))),

thinking of z as a number in {0, 1, . . . , R− 1}.

• The circuit C1 has size k · polylogR.

Proof. If k ≥ R, the lemma is trivial, so assume k < R. We use the following standard example of a
k-wise independent generator [22, 1]. Let n = logR, let E(x) ∈ F2[x] be an irreducible polynomial
of degree n, and let F2n be the finite field consisting of all polynomials in F2[x] modulo E(x). The
seed of the generator is interpreted as a list of field elements: u = (p0, p1, . . . , pk−1) ∈ Fk

2n . Each
index z ∈ {0, 1, . . . , R−1} can be interpreted as a field element z ∈ F2n . The output of the generator
is given by

G(u)z = the lowest order bit of p0 · z0 + p1 · z1 + · · ·+ pk−1 · zk−1,

where the arithmetic takes place in F2n .

To study the circuit complexity of this generator, let us first focus on a single term pi · zi. Since we
are thinking of z as a field element z ∈ F2n , we can also think of it as a polynomial z(x) ∈ F2[x] of
degree less than n. Write z(x) =

∑n−1
j=0 zj · xj . We compute the power zi by a “repeated squaring”

approach. Write i =
∑

m∈M 2m, where M ⊆ {0, 1, . . . , ⌊log i⌋}. Then

pi(x) · z(x)i = pi(x) ·
∏

m∈M

n−1∑
j=0

zj · xj

2m

= pi(x) ·
∏

m∈M

n−1∑
j=0

zj · xj·2i ,

since we are working in characteristic two. For each m ∈ M and each j < n, let em,j(x) =

xj·2m mod E(x), a polynomial of degree less than n. That way,

pi(x) · z(x)i ≡ pi(x) ·
∏

m∈M

n−1∑
j=0

zj · em,j(x) (mod E(x)). (10)

The function C0(z) computes
∑n−1

j=0 zj · em,j for every m ∈ {0, 1, . . . , ⌊log k⌋}. This function is
F2-linear, because for each m ∈ {0, 1, . . . , ⌊log k⌋} and each s < n, the s-th bit of

∑n−1
j=0 zj · em,j

is given by ⊕
j:em,j,s=1

zj ,

where em,j,s denotes the s-th coefficient of the polynomial em,j .

Next, the circuit C1 applies k copies of the iterated multiplication circuit from Corollary D.14, in
parallel, to compute the polynomial on the right-hand side of (10) for each 0 ≤ i < k. Each iterated
multiplication circuit has size polylogR, so altogether, C1 has size k · polylogR.

At this point, we have computed polynomials r0, r1, . . . , rk−1 ∈ F2[x], each of degree O(n log k),
such that ri(x) ≡ pi(x) · z(x)i (mod E(x)). Next, we need to sum these terms up, reduce mod
E(x), and output the lowest-order bit. For each j ≤ O(n log k), let rij be the xj coefficient of ri.
Our circuit needs to output the lowest-order bit of

k−1∑
i=0

ri mod E(x) =

k−1∑
i=0

O(n log k)∑
j=0

rij · e0,j .
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Now, we are working over characteristic two, so
∑

means bitwise XOR. In other words, the output
is given by ⊕

j:e0,j,0=1

k−1⊕
i=0

rij ,

i.e., it is the parity function applied to some subset of the output bits of C1. To complete the proof,
modify C1 by deleting the unused output gates.

We have almost completed the proof of Lemma D.9. The last step is to bridge the gap between L̂TL

circuits and binary threshold networks. We do so via the following lemma.

Lemma D.16 (Simulating L̂TL circuits using binary threshold networks). Let L ≥ 1 be a constant.
Let C0 : {0, 1}d0 → {0, 1}d1 be an F2-affine function, and let C1 : {0, 1}d1 → {0, 1}d2 be an L̂TL

circuit of size S. Then the composition C1 ◦C0 can be computed by a depth-(L+1) binary threshold
network with widths d satisfying the following.

1. The maximum width dmax is at most S · (d0 + 2).

2. The total number of weights w (d) is at most O(S2d0 + Sd20).

Proof. Let us define the cost of a layer in an L̂TL circuit to be the sum of the absolute values of
the weights in that layer, so the size of the circuit is the sum of the costs. Lemma D.5 implies that
C1 ◦ C0 = C ′

1 ◦ C ′
0, where C ′

0 is a depth-one binary threshold network and C ′
1 is an L̂TL circuit in

which the first layer has cost at most S · (d0 + 2) and all subsequent layers have cost at most S.

To complete the proof, let us show by induction on L that in general, if C ′
0 is a depth-one binary

threshold network and C ′
1 is an L̂TL circuit in which the layers have costs S1, S2, . . . , SL, then

C ′
1 ◦ C ′

0 can be computed by a depth-(L + 1) binary threshold network in which the layers after
the input layer have widths S1, S2, . . . , SL. Let us write C ′

1 as C3 ◦ C2, where C3 is the last layer
of C ′

1. By induction, C2 ◦ C ′
0 can be computed by a depth-L binary threshold network C in which

the layers after the input layer have widths S1, S2, . . . , SL−1. Now let us modify C3 and C so that
every wire in C3 has weight either 0 or 1. If a wire in C3 has an integer weight w /∈ {0, 1}, then we
make |w| many copies of the appropriate output gate of C, negate them if w < 0, and then split the
wire into |w| many wires, each with weight +1. This process has no effect on the cost of C3. The
process could potentially increase the width of the output layer of C, but its width will not exceed SL,
the cost of C3. After this modification, we can simply think of C3 as one more layer in our binary
threshold network.

Lemma D.9 follows immediately from Lemmas D.15 and D.16.

33



D.3 A hitting set generator with a non-optimal dependence on ϵ

In this subsection, we will use the k-wise independent generators that we developed in the previous
subsection to construct our first HSG:
Lemma D.17 (Non-optimal HSG for conjunctions of literals). Let R be a power of two and let
α, ϵ ∈ (0, 1). Assume that 1/R ≤ α ≤ 1−1/R. Let V be the class of functions V : {0, 1}R → {0, 1}
that can be expressed as a conjunction of literals. There exists a generator G : {0, 1}r → {0, 1}R
satisfying the following.

1. For every V ∈ V , if Py∼Ber(α)R(V (y) = 1) ≥ 2ϵ, then Pu∈{0,1}r (V (G(u)) = 1) ≥ ϵ.

2. The seed length is r = O(log(1/ϵ) · log2 R).

3. For every F2-affine function hash: {0, 1}a → {0, 1}r, the function C(w, z) = G(hash(w))z
can be computed by a depth-8 binary threshold network with widths d such that the maximum
width dmax at most a · log(1/ϵ) · polylogR and the total number of weights w (d) is at most
(log(1/ϵ) · a2 + log2(1/ϵ) · a) · polylogR.

Remark D.18. The parameters of Lemma D.17 are not yet sufficient to prove Theorem 3.1. Remember,
we need the number of weights to be only (1+ o(1)) · log(1/ϵ). On the other hand, Item 1 is stronger
than what the HSG definition requires. This will enable us to improve the seed length of the generator
later.

The proof of Lemma D.17 is based on the work of Even, Goldreich, Luby, Nisan, and Velic̆ković [27].
In particular, we use the following lemma from their work.
Lemma D.19 (Implications of k-wise independence [27]). Let X1, . . . , XR be independent {0, 1}-
valued random variables. Let X̃1, . . . , X̃R be k-wise independent {0, 1}-valued random variables
such that X̃i is distributed identically to Xi for every i. Then

|P(X1 = X2 = · · · = XR = 1)− P(X̃1 = X̃2 = · · · = X̃R = 1)| ≤ 2−Ω(k).

Proof of Lemma D.17. Let Q be the smallest positive integer such that Q ≥ 4R2 and log logQ is an
integer. Let ϕ : {0, 1, . . . , Q− 1} → {0, 1} be the function

ϕ(x) = 1 ⇐⇒ x ≤ α ·Q.

We think of ϕ as a function ϕ : {0, 1}logQ → {0, 1} by representing x in binary.

Let ϕ⃗ : {0, 1}R logQ → {0, 1}R be R copies of ϕ applied to R disjoint input blocks. Let
G0 : {0, 1}r → {0, 1}R logQ be a k-wise independent generator for a suitable value k = O(log(1/ϵ) ·
logR). Our generator G is the composition ϕ⃗ ◦G0.

Now let us prove that G has the claimed properties. The seed length bound is clear. Now let us
analyze the computational complexity of G. To compute G(hash(w))z, we begin by computing
C1(w, z logQ + i) for every i ∈ {0, 1, . . . , logQ − 1}, all in parallel, where C1 is the depth-5
network from Lemma D.9. Since logQ is a power of two, the binary expansions of the numbers
z logQ, z logQ + 1, z logQ + 2, . . . , z logQ + logQ − 1 simply consist of z followed by all
possible bitstrings of length log logQ. The maximum width of one of these layers is bounded by
ak · polylogR = a · log(1/ϵ) · polylogR, and the total number of weights among these layers is at
most (a+ k) · ak · polylogR = (a+ log(1/ϵ)) · a · log(1/ϵ) · polylogR. Furthermore, the number
of output bits is log(1/ϵ) · polylogR.

Next, recall that to compute a single bit of the output of G0, we need to apply the parity function
to the outputs of C1. Therefore, to compute an output bit of our generator G, we need to apply an
F2-linear function followed by ϕ. Observe that ϕ can be computed by a depth-two “AC0 circuit,” i.e.,
a circuit consisting of unbounded-fan-in AND and OR gates applied to literals, in which the total
number of gates is O(logQ) = O(logR). This can be viewed as a special case of an L̂T2 circuit of
size O(log2 R). Therefore, by Lemma D.16, the F2-linear function followed by ϕ can be computed
by a depth-3 binary threshold network in which every layer has width at most log(1/ϵ) · polylogR
and the total number of weights is at most log2(1/ϵ) · polylogR. This completes the analysis of the
computational complexity of G.
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Next, let us prove the correctness of G, i.e., let us prove Item 1 of Lemma D.17. Let V ∈ V
and assume Py∼Ber(α)R(V (y) = 1) ≥ 2ϵ. Since V is a conjunction of literals, we can write
V (y) = V1(y1) · V2(y2) · · ·VR(yR) for some functions V1, V2, . . . , VR : {0, 1} → {0, 1}.

We will analyze Pu∈{0,1}r (V (G(u)) = 1) in two stages. First, we compare V (ϕ⃗(G0(u))) to
V (ϕ⃗(ȳ)), where ȳ ∈ {0, 1}R logQ is uniform random. Then, in the second stage, we will compare
V (ϕ⃗(ȳ)) to V (y), where y ∼ Ber(α)R.

For the first stage, we are in the situation of Lemma D.19, because the R many (logQ)-bit blocks of
G0(u) are (k/ logQ)-wise independent. Therefore,∣∣∣Pu∈{0,1}r (V (G(u)) = 1)− Pȳ∈{0,1}R log Q(V (ϕ⃗(ȳ)) = 1)

∣∣∣ ≤ exp

(
−Ω

(
k

logQ

))
≤ 0.5ϵ,

provided we choose a suitable value k = O(log(1/ϵ) · logR).

Now, for the second stage, observe that if we sample ȳ ∈ {0, 1}logQ uniformly at random, then
|P(ϕ(ȳ) = 1)− α| ≤ 1

Q ≤ 1
4R2 . For each i, since 1/R ≤ α ≤ 1− 1/R, we have

Pȳ∈{0,1}log Q(Vi(ϕ(ȳ)) = 1) ≥ Py∼Ber(α)(Vi(y) = 1)− 1

4R2

≥
(
1− 1

4R

)
· Py∼Ber(α)(Vi(y) = 1).

Therefore,

Pȳ∈{0,1}R log Q(V (ϕ⃗(ȳ)) = 1) ≥
(
1− 1

4R

)R

· Py∼Ber(α)R(V (y) = 1)

≥ 1.5ϵ

by Bernoulli’s inequality. Combining the bounds from the two stages completes the proof.

D.4 Networks for computing functions that are constant on certain intervals

At this point, we have constructed an HSG for conjunctions of literals with a non-optimal dependence
on the threshold parameter ϵ (Lemma D.17). To improve the dependence on ϵ, we will use a technique
introduced by Hoza and Zuckerman [38]. They introduced this “error-reduction” technique in
the context of derandomizing general space-bounded algorithms, but it is simpler in our context
(conjunctions of literals).

The basic idea is as follows. Let V be a conjunction of literals with a low acceptance probability:
Py∼Ber(α)R(V (y) = 1) = ϵ. We will split V up as a product,

V (y) = V (0)(y(0)) · V (1)(y(1)) · · ·V (T−1)(y(T−1)),

where each V (i) is a conjunction of literals with a considerably higher acceptance probability:

Py(i)∼Ber(α)Ri (V
(i)(y(i)) = 1) ≈ ϵ0 ≫ ϵ.

We choose V (0) to be the conjunction of the first few literals in V ; V (1) is the conjunction of the next
few literals; etc. To hit a single V (i), we can use our initial HSG with a relatively high threshold
parameter (ϵ0). Then, we use pairwise independent hash functions to “recycle” the seed of our initial
HSG from one V (i) to the next.

To implement this technique, one of the ingredients we need is a network that figures out which
block V (i) contains a particular given index z ∈ {0, 1, . . . , R− 1}. In this subsection, we describe
networks that handle that key ingredient. The constructions are elementary and straightforward.

First, we review standard circuits for integer comparisons.
Lemma D.20 (DNFs for comparing integers). Let R be a power of two, let I ⊆ [0, R) be an interval,
and let gI : {0, 1}logR → {0, 1} be the indicator function for I ∩ {0, 1, . . . , R − 1} (identifying
numbers with their binary expansions). Then gI can be expressed as a DNF formula consisting of
O(log2 R) terms.
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Proof. First, consider the case that I = [0, r) for some r ∈ {1, 2, . . . , R}. If r = R, then the lemma
is trivial, so assume r < R. Let S be the set of indices at which the binary expansion of r has a one.
For each i ∈ S, we introduce a term that asserts that the input z agrees with the binary expansion
of r prior to position i, and then z has a zero in position i. The disjunction of these |S| many terms
computes gI .

The case I = [ℓ, R) for some ℓ ∈ {0, 1, . . . , R − 1} is symmetric. Finally, in the general case, we
can assume that I is an intersection of an interval of the form [ℓ, R) with an interval of the form [0, r).
Therefore, gI can be expressed in the form AND2 ◦ORlogR ◦ANDlogR, where ANDk / ORk denotes
an AND / OR gate with fan-in k. To complete the proof, observe that every ANDa ◦ ORb formula
can be re-expressed as an ORba ◦ ANDa formula.

Lemma D.21 (Computing a function that is constant on intervals). Let T and R be powers of two.
Suppose the interval [0, R) has been partitioned into T subintervals, say [0, R) = I0∪I1∪· · ·∪IT−1.
Let g : {0, 1, . . . , R− 1} → {0, 1}a be a function that is constant on each subinterval Ij . Then for
every F2-affine function C0 : {0, 1}d0 → {0, 1}logR, there is a depth-6 binary threshold network
C : {0, 1}d0 → {0, 1}a+logR with widths d satisfying the following.

1. For every x ∈ {0, 1}d0 , we have

C(x) = (g(C0(x)), C0(x)).

2. The maximum width dmax is at most O(T · log3 R+ a+ d0 · logR).

3. The total number of weights w (d) is at most

aT +O(T · log4 R+ d20 · logR+ d0 · log2 R+ a · logR).

We emphasize that the leading term in the weights bound is aT , with a coefficient of 1. This is crucial.
It is also important that the weights bound has only a linear dependence on T , the number of intervals.

Proof. We begin by computing C0(x) and the negations of all of those bits. By Lemma D.5, we can
compute these bits using a depth-two network where the hidden layer has width O(d0 · logR) and
the output layer has width O(logR).

Let z = C0(x) ∈ {0, 1}logR, and think of z as a number z ∈ {0, 1, . . . , R − 1}. Our next goal is
to compute the (log T )-bit binary expansion of the unique j∗ ∈ {0, 1, . . . , T − 1} such that z ∈ Ij∗ .
To do so, for each position i ∈ {0, 1, . . . , log T − 1}, let Si be the set of j ∈ {0, 1, . . . , T − 1}
such that j has a 1 in position i of its binary expansion. We have a disjunction, over all j ∈ Si,
of the DNF computing gIj from Lemma D.20. We also compute all the negations of the bits of
j∗, and we also copy z. Altogether, this is a depth-two network where the hidden layer has width
O(T · log T · log2 R) = O(T · log3 R) and the output layer has width O(logR).

Our final goal is to compute g(z), which can be written in the form g′(j∗) since g is constant on each
subinterval. We use a “brute-force DNF” to compute g′. First, for every j ∈ {0, 1, . . . , T − 1}, we
have an AND gate that checks whether j∗ = j. Then each output bit of g′ is a disjunction of some of
those AND gates. We also copy z. Altogether, this is a depth-two network where the hidden layer
has width T + logR and the output layer has width a+ logR.
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D.5 Error reduction

In this subsection, we improve our HSG’s dependence on ϵ, as described in the previous subsection.
The following theorem should be compared to Lemma D.17. As discussed previously, the proof is
based on a technique due to Hoza and Zuckerman [38].
Theorem D.22 (HSG with near-optimal dependence on ϵ). Let R be a power of two and let α, ϵ ∈
(0, 1). Assume that 1/R ≤ α ≤ 1 − 1/R. Let V be the class of functions V : {0, 1}R that can be
expressed as a conjunction of literals. There exists a generator G : {0, 1}r → {0, 1}R satisfying the
following.

1. G is an ϵ-HSG for V with respect to Ber(α)R. That is, if Py∼Ber(α)R(V (y) = 1) > ϵ for every
V ∈ V , then there exists a seed σ ∈ {0, 1}r such that V (G(σ)) = 1.

2. The seed length is r = log(1/ϵ) + log3/4(1/ϵ) · polylogR.

3. For every F2-affine function C0 : {0, 1}d0 → {0, 1}logR and every fixed seed σ ∈ {0, 1}r, the
function h̃(x) = G(σ)C0(x) can be computed by a depth-14 binary threshold network with
widths d such that the maximum width dmax is at most

log3/4(1/ϵ) · polylogR+O(d0 · logR),

and the total number of weights w (d) is at most

log(1/ϵ) + log3/4(1/ϵ) · polylogR+O(d20 · logR+ d0 · log2 R).

Proof. First we will describe the construction of G; then we will verify its seed length and computa-
tional complexity; and finally we will verify its correctness.

Construction. Let T be the smallest power of two such that T ≥ log3/4(1/ϵ). Let

ϵ0 =
ϵ1/T

2R
,

and note that log(1/ϵ0) = Θ(log1/4(1/ϵ) + logR). Let G0 : {0, 1}r0 → {0, 1}R be the generator of
Lemma D.17 with error parameter ϵ0, i.e., for every V ∈ V , if Py∼Ber(α)R(V (y) = 1) ≥ 2ϵ0, then
Pu∈{0,1}r0 (V (G0(u)) = 1) ≥ ϵ0. Let a be the smallest positive integer such that 2a > R/ϵ0. Let H
be the family of F2-affine hash functions hash: {0, 1}a → {0, 1}r0 from Lemma D.6.

A seed for our generator G consists of a function hash ∈ H, inputs w0, . . . ,wT−1 ∈ {0, 1}a,
and nonnegative integers 0 = ℓ0 ≤ ℓ1 ≤ · · · ≤ ℓT = R. Given this data σ =
(hash,w0, . . . ,wT−1, ℓ0, . . . , ℓT ), the output of the generator is given by

G(σ) = G0(hash(w
0))0···ℓ1−1 &G0(hash(w

1))ℓ1···ℓ2−1 & · · ·&G0(hash(w
T−1))ℓT−1···ℓT−1.

In the equation above, ya···b denotes the substring of y consisting of the bits at positions a, a+1, a+
2, . . . , b, and & denotes concatenation.

Seed length and computational complexity. Since |H| ≤ 2O(a+r0), the description length of
hash is O(a + r0). The description length of w0, . . . ,wT−1 is aT , and the description length of
ℓ0, . . . , ℓT is O(T logR). By our choices of a and ϵ0, we have

a ≤ log(1/ϵ0) +O(logR) =
log(1/ϵ)

T
+O(logR).

Furthermore, by Lemma D.17, we have

r0 = O(log(1/ϵ0) · log2 R).

Therefore, the overall seed length of our generator is

aT +O(r0 + T logR+ a) ≤ log(1/ϵ) + log3/4(1/ϵ) · polylogR.

To analyze the computational complexity, fix an arbitrary seed

σ = (hash,w0, . . . ,wT−1, ℓ0, . . . , ℓT ).
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The numbers ℓ0, . . . , ℓT partition the interval [0, R) into subintervals, namely [0, R) = [ℓ0, ℓ1) ∪
[ℓ1, ℓ2) ∪ · · · ∪ [ℓT−1, ℓT ). Define g : {0, 1, . . . , R− 1} → {0, 1}a by the rule

g(z) = wj where j is such that z ∈ [ℓj , ℓj+1).

Then g is constant on each subinterval [ℓj , ℓj+1), so we may apply Lemma D.21 to obtain a
depth-6 binary threshold network C1 : {0, 1}d0 → {0, 1}a+logR computing the function C(x) =
(g(C0(x)), C0(x)). In this network, every layer has width at most

O(T · log3 R+ a+ d0 · logR) = log3/4(1/ϵ) · polylogR+O(d0 · logR),

and the total number of weights is at most
aT +O(T · log4 R+ d20 · logR+ d0 · log2 R+ a · logR)

≤ log(1/ϵ) + log3/4(1/ϵ) · polylogR+O(d20 · logR+ d0 · log2 R).

Let z = C0(x), and let w = g(z). Our remaining goal is to compute G(σ)z, which is equal to
G0(hash(w))z. To do so, we use the network guaranteed to exist by Lemma D.17. This network,
which we call C2, has depth 8. Every layer in this network has width at most

a · log(1/ϵ0) · polylogR =
√

log(1/ϵ) · polylogR.

The total number of weights in this network is at most

(log(1/ϵ0) · a2 + log2(1/ϵ0) · a) · polylogR = log3/4(1/ϵ) · polylogR.

Composing C2 with C1 completes the analysis of the computational complexity of our HSG.

Correctness. Finally, let us prove the correctness of our HSG. For convenience, for any n ∈ N and
any function V : {0, 1}n → {0, 1}, we write E(V ) to denote the quantity Py∼Ber(α)n(V (y) = 1).

Fix any V ∈ V such that E(V ) > ϵ. Since V is a conjunction of literals, we can write V in the form
V (y) = V0(y0) · V1(y1) · · ·VR−1(yR−1)

for some functions V0, V1, . . . , VR−1 : {0, 1} → {0, 1}. For each 0 ≤ a ≤ b ≤ R− 1, define
Va···b = Va · Va+1 · · ·Vb.

We inductively define numbers 0 = ℓ0 ≤ ℓ1 ≤ · · · ≤ ℓT as follows. Assume that we have already
defined ℓ0, . . . , ℓi. Let ℓi+1 be the smallest integer in {ℓi + 1, . . . , R− 1} such that

E(Vℓi···ℓi+1−1) ≤ ϵ1/T ,

or let ℓi+1 = R if no such ℓi+1 exists. Define V (i) = Vℓi···ℓi+1−1. Observe that ℓT = R, because
otherwise we would have

ϵ < E(V ) ≤
T−1∏
i=0

E(Vi) ≤ (ϵ1/T )T = ϵ,

a contradiction. Furthermore, E(Vi) > ϵ1/T /R = 2ϵ0, because each literal in V is satisfied with
probability at least min{α, 1− α} ≥ 1/R. Therefore, if we define

Si = {u ∈ {0, 1}r0 : Vi(G0(u)ℓi···ℓi+1−1) = 1}
and ρi = |Si|/2r0 , then the correctness of G0 ensures that ρi ≥ ϵ0.

Next, we will show that there exist hash,w0, . . . ,wT−1 such that for every i, we have hash(wi) ∈
Si. To prove it, pick hash ∈ H at random. For each i ∈ {0, 1, . . . , T − 1} and each w ∈ {0, 1}a,
let Xi,w be the indicator random variable for the “good” event hash(w) ∈ Si. Define Xi =∑

w∈{0,1}a Xi,w. Then for every i, by pairwise independence, we have

E(Xi) = 2a · ρi
and Var(Xi) = 2a · ρi · (1− ρi) ≤ 2a · ρi.

Therefore, by Chebyshev’s inequality,

P(Xi = 0) ≤ 1

2a · ρi
≤ 1

2a · ϵ0
<

1

R
.

Consequently, by the union bound over all i, there is a nonzero chance that X0 = X1 = · · · =
XT−1 = 0, in which case there exist w0, . . . ,wT−1 such that hash(wi) ∈ Si for every i.

At this point, we have constructed our seed σ = (hash,w0, . . . ,wT−1, ℓ0, . . . , ℓT ). By the construc-
tion of G, we have V (G(σ)) = 1.
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Theorem 3.1 readily follows from Theorem D.22, as we now explain.

Recall Theorem 3.1. Let f : {0, 1}d0 → {0, 1, ⋆} be any function.9 Let N = |f−1({0, 1})| and
N1 = |f−1(1)|. There exists a depth-14 binary threshold network h̃ : {0, 1}d0 → {0, 1}, with widths
d̃, satisfying the following.

1. h̃ is consistent with f , i.e., for every x ∈ {0, 1}d0 , if f(x) ∈ {0, 1}, then h̃(x) = f(x).

2. The total number of weights in h̃ is at most (1 + o(1)) · log
(
N
N1

)
+ poly(d0). More precisely,

w
(
d̃
)
= log

(
N

N1

)
+

(
log

(
N

N1

))3/4

· polylogN +O(d20 · logN) .

3. Every layer of h̃ has width at most (log
(
N
N1

)
)3/4 · poly(d0). More precisely,

d̃max =

(
log

(
N

N1

))3/4

· polylogN +O(d0 · logN) .

Proof. Let R = 22⌈logN⌉. Let C0 : {0, 1}d0 → {0, 1}logR be an F2-affine function that is injective
on X ; such a function is guaranteed to exist by Lemma D.4. Define V : {0, 1}R → {0, 1} by the rule

V (y) = 1 ⇐⇒ ∀x ∈ X , yC0(x) = f(x).

This function V is a conjunction of N1 variables and N −N1 negated variables.

If N1 ∈ {0, N}, then the theorem is trivial, because we can take h̃ to be a constant function.
Assume, therefore, that 0 < N1 < N . Let α = N1/N , and note that 1/R ≤ α ≤ 1 − 1/R. Let
ϵ = 1

2α
N1 · (1− α)N−N1 = 2−H(α)·N−1, and note that

Py∼Ber(α)R(V (y) = 1) = 2ϵ.

Let G : {0, 1}r → {0, 1}R be the HSG from Theorem D.22. There exists a seed σ ∈ {0, 1}r such
that V (G(σ)) = 1. Our network h̃ computes the function h̃(x) = G(σ)C0(x). Since V (G(σ)) = 1,
we must have h̃(x) = f(x) for every x ∈ X .

To bound the computational complexity, observe that log(1/ϵ) = H(α) · N + 1 ≤ log
(
N
N1

)
+

O(logN). Therefore, every layer of h̃ has width at most(
log

(
N

N1

))3/4

· polylogN +O(d0 · logN),

and the total number of weights in h̃ is at most

log

(
N

N1

)
+

(
log

(
N

N1

))3/4

· polylogN +O(d20 · logN + d0 · log2 N).

Finally, we have N ≤ 2d0 , so the last term above can be simplified to O(d20 · logN).

Remark D.23. In Theorem 3.1, the weights bound has an O(d20 · logN) term. This term is close to
optimal; see Appendix E for further details.

9When f(x) = ⋆, the interpretation is that f is “undefined” on x, i.e., f is a “partial” function.
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D.6 XOR networks

In what follows, we denote the activation function σ (x) = I {x > 0}.
Lemma D.24 (XOR NN). The XOR function can be implemented with a single-hidden-layer fully
connected binary threshold network with input dimension 2 and cXOR parameters by

hXOR

(
x1

x2

)
= σ

(
1⊙ ( 1 1 ) · σ

((
1
−1

)
⊙
(

1 1
1 1

)(
x1

x2

)
+

(
0
2

))
− 1

)
.

Proof. We can simplify hXOR as

hXOR

(
x1

x2

)
= σ

(
( 1 1 ) · σ

((
1
−1

)
⊙
(

1 1
1 1

)(
x1

x2

)
+

(
0
2

))
− 1

)
= σ

(
( 1 1 ) · σ

((
x1 + x2

−x1 − x2 + 2

))
− 1

)
= σ (σ (x1 + x2) + σ (2− x1 − x2)− 1)

= I {I {x1 + x2 > 0}+ I {x1 + x2 < 2} > 1}

= I
{
I
{(

x1

x2

)
̸=
(

0
0

)}
+ I
{(

x1

x2

)
̸=
(

1
1

)}
> 1

}
= I

{(
x1

x2

)
̸=
(

0
0

)
and

(
x1

x2

)
̸=
(

1
1

)}
= XOR(x1, x2) .

Remark D.25. Notice that the function Id : {0, 1} → {0, 1} defined as Id (0) = 0 and Id (1) = 1
can be implemented using any depth L network with a single input dimension and cId · L parameters.

Following this remark, for simplicity we shall assume that h1 and h2 in the following Lemma are of
the same depth, as they can be elongated with O (L) additional parameters, which are negligible in
the subsequent analysis.
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Recall Lemma 3.3. Let h1, h2 be two binary networks with depths L1 ≤ L2 and widths d(1), d(2),
respectively. Then, there exists a network h with depth LXOR ≜ L2 + 2 and widths

dXOR ≜
(
d
(1)
1 + d

(2)
1 , . . . , d

(1)
L1

+ d
(2)
L1

, d
(2)
L1+1 + 1, . . . , d

(2)
L2

+ 1, 2, 1
)
,

such that for all inputs x ∈ {0, 1}d0 , h (x) = h1 (x)⊕ h2 (x).

The lemma above is given immediately by the lemma we state and prove next.

Lemma D.26 (XOR of Two NNs). Let h1, h2 : X → {0, 1} be quantized fully connected binary
threshold networks with depths L′ and widths d(1), d(2), respectively. Let L ≥ 2 +L′ and d ≥ dXOR.
Let ΘBTN (d;h1, h2) be the subset of ΘBTN (d) such that for all θ ∈ ΘBTN (d;h1, h2), θ has the
following form:

• For l = 1:

W1 =

 W
(1)
1

W
(2)
1

W̃1

 , b1 =

 b
(1)
1

b
(2)
1

b̃1

 , γ1 =

 1
d
(1)
l

1
d
(2)
l

0
dl−d

(1)
l −d

(2)
l


with arbitrary W̃1, b̃1.

• For l = 2, . . . , L′:

Wl =


W

(1)
l 0

d
(1)
l ×d

(2)
l−1

W̃1
l

0
d
(2)
l ×d

(1)
l−1

W
(2)
l W̃2

l

W̃3
l W̃4

l W̃5
l

 ∈ {0, 1}dl×dl−1 ,

bl =

 b
(1)
l

b
(2)
l

b̃l

 ∈ {−dl−1, . . . ,−1, 0, 1, . . . , dl−1 − 1}dl ,

γl =

 1
d
(1)
l

1
d
(2)
l

0
dl−d

(1)
l −d

(2)
l

 ∈ {0, 1}dl ,

with arbitrary W̃1
l ,W̃

2
l ,W̃

3
l ,W̃

4
l ,W̃

5
l , b̃l.

• For l = L′ + k, k = 1, 2:

Wl =

(
WXOR

k W̃1
l

W̃2
l W̃3

l

)
∈ {0, 1}dl×dl−1 ,

bl =

(
bXOR
k

b̃l

)
∈ {−dl−1, . . . ,−1, 0, 1, . . . , dl−1 − 1}dl , γl =

(
γXOR
k
0

)
∈ {0,±1}dl .

• And for l > L′ + 2:

Wl =

(
WId W̃1

l

W̃2
l W̃3

l

)
∈ {0, 1}dl×dl−1 ,

bl =

(
bId

b̃l

)
∈ {−dl−1, . . . ,−1, 0, 1, . . . , dl−1 − 1}dl , γl =

(
γId

0

)
∈ {0,±1}dl .

Then for all θ ∈ ΘBTN (d;h1, h2) hθ = h1 ⊕ h2.

An illustration of this construction is given in Figure 3.
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Proof. We prove the claim by induction. For l = 1 we have d0 = d
(1)
0 = d

(2)
0 and

h
(1)
θ (x) = γ1 ⊙ σ

(
W1h

(0)
θ (x) + b1

)
=

 1d⋆
1

1df
1

0d1−d⋆
1−df

1

⊙ σ


 W

(1)
1

W
(2)
1

W̃1
1

x+

 b
(1)
1

b
(2)
1

b̃1




=


σ
(
W

(1)
1 x+ b

(1)
1

)
σ
(
W

(2)
1 x+ b

(2)
1

)
0
d1−d

(1)
1 −d

(2)
1

 =

 h
(1)
1 (x)

h
(1)
2 (x)

0d1−d⋆
1−df

1

 .

Assume that for some l ≤ L′ we have

h
(l−1)
θ (x) =

 h
(l−1)
1 (x)

h
(l−1)
2 (x)

0dl−d⋆
l −df

l

 .

Then,

h
(l)
θ (x) = γl ⊙ σ

(
Wlh

(l−1)
θ (x) + bl

)

=

 1
d
(1)
l

1
d
(2)
l

0
dl−d

(1)
l

−d
(2)
l

⊙σ




W
(1)
l 0

d
(1)
l ×d

(2)
l−1

W̃1
l

0
d
(2)
l ×d

(1)
l−1

W
(2)
l W̃2

l

W̃3
l W̃4

l W̃5
l


 h

(l−1)
1 (x)

h
(l−1)
2 (x)

0
dl−d

(1)
l −d

(2)
l

+

 b
(1)
l

b
(2)
l

b̃l




=


σ
(
W

(1)
l h

(l−1)
1 (x) + b

(1)
l

)
σ
(
W

(2)
l h

(l−1)
2 (x) + b

(2)
l

)
0
dl−d

(1)
l −d

(2)
l

 =

 h
(l)
1 (x)

h
(l)
2 (x)

0
dl−d

(1)
l −d

(2)
l

 .

It is left to show that the claim holds for l > L′. By the previous steps, h(
L′)

θ (x) =

(
h1 (x)
h2 (x)
0dL′−2

)
.

Under the assumptions on WL′+k,bL′+k and γL′+k, k = 1, 2 it holds that

h
(L′+2)
θ (x) =

(
h1 (x)⊕ h2 (x)

0dL′−1

)
.

Under the assumptions on layers l > L′ + 2,

h
(l)
θ (x) =

(
h1 (x)⊕ h2 (x)

0dl−1

)
.

In particular, assuming that dL = 1, hθ (x) = h1 (x)⊕ h2 (x).
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Corollary D.27. Let h1, h2 be networks with depths L1, L2 and widths d(1), d(2). Then h1 ⊕ h2 can
be implemented with a network h of depth L = max {L1, L2}+ 2 and widths d such that

w (d) ≤ w
(
d(1)

)
+ w

(
d(2)

)
+ 2d(2)max · n

(
d(1)

)
+O(1)

and

dmax ≤ d(1)max + d(2)max .

Proof. Following D.25 we assume shall assume that L1 = L2 = L. We know from D.26 that there
exists a network h with dimensions d =

(
d(1) + d(2), 2, 1

)
such that h = h1 ⊕ h2. Therefore

w (d) =
(
d
(1)
1 + d

(2)
1

)
d0 +

L∑
l=2

(
d
(1)
l + d

(2)
l

)(
d
(1)
l−1 + d

(2)
l−1

)
+O(1)

= d
(1)
1 d0 +

L∑
l=2

d
(1)
l d

(1)
l−1 + d

(2)
1 d0 +

L∑
l=2

d
(2)
l d

(2)
l−1 +

L∑
l=2

[
d
(1)
l d

(2)
l−1 + d

(2)
l d

(1)
l−1

]
+O(1)

= w
(
d(1)

)
+ w

(
d(2)

)
+

L∑
l=2

[
d
(1)
l d

(2)
l−1 + d

(2)
l d

(1)
l−1

]
+O(1)

≤ w
(
d(1)

)
+ w

(
d(2)

)
+

L∑
l=2

[
d
(1)
l d(2)max + d(2)maxd

(1)
l−1

]
+O(1)

= w
(
d(1)

)
+ w

(
d(2)

)
+ d(2)max

L∑
l=2

[
d
(1)
l + d

(1)
l−1

]
+O(1)

≤ w
(
d(1)

)
+ w

(
d(2)

)
+ 2d(2)max · n

(
d(1)

)
+O(1) .

In addition, dmax ≤ d(1)max + d(2)max and n (d) = n
(
d(1)

)
+ n

(
d(2)

)
.

Recall Corollary 3.4. For any teacher h⋆ of depth L⋆ and dimensions d⋆ and any consistent
training set S generated from it, there exists an interpolating network h (i.e., LS (h) = 0) of depth
L = max {L⋆, 14}+ 2 and dimensions d, such that the number of edges is

w (d) ≤ w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4H (LS (h⋆))
3/4

polylogN

+O (d0 (d0 + n (d⋆)) · logN)

and the dimensions are

dmax ≤ d⋆max +N3/4 ·H (LS (h⋆))
3/4 · polylog (N) +O (d0 · log (N)) .

Proof. We use Corollary D.27 with h1 = h⋆ and h2 = h̃S , the noise memorizing network from
Theorem 3.1, to get

w (d) ≤ w (d⋆) + w
(
d̃S

)
+ 2d̃S,max · n (d⋆) +O(1)

≤ w (d⋆) + log

(
N

N1

)
+

(
log

(
N

N1

))3/4

· polylogN +O(d20 · logN)

+ 2n (d⋆)

((
log

(
N

N1

))3/4

· polylogN +O(d0 · logN)

)
+O(1) .

Using Stirling’s approximation

log

(
N

N1

)
= N ·H

(
N1

N

)
+O (log (N)) = N ·H (LS (h⋆)) +O (log (N)) .
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Therefore

w (d) ≤ w (d⋆) +N ·H (LS (h⋆)) +O (log (N)) +N3/4 ·H (LS (h⋆))
3/4 · polylogN

+O
(
d20 · logN

)
+ 2n (d⋆)

(
N3/4 · polylogN +O (d0 · logN)

)
= w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4H (LS (h⋆))

3/4
polylogN

+O (d0 (d0 + n (d⋆)) · logN) .

The bound of dmax is derived similarly.
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E The label-flip-memorization network’s dependence on the dimension

In Theorem 3.1, the wire bound has an O(d20 · logN) term. (Recall that d0 is the input dimension
and N is the domain size.) In this section, we discuss (a) approaches for improving this term and (b)
a lower bound showing that it cannot be significantly improved.

E.1 Improving the O(d20 · logN) Term

The O(d20 · logN) term in Theorem 3.1 can be improved by using the following fact.

Lemma E.1 (Using a sign matrix for preprocessing). Let d0 ∈ N, let X̂ ⊆ {0, 1}d0 , and let N = |X̂ |.
There exists d1 = O(

√
d0 · logN) and there exists a matrix W ∈ {±1}d1×d0 such that the function

C0 : {0, 1}d0 → {0, 1}d1 defined by C0(x) = I {Wx > 0} is injective on X̂ .

Proof. Pick W ∈ {±1}d1×d0 uniformly at random. We will show that there is a nonzero chance that
C0 is injective on X̂ .

Let x,x′ be any two distinct points in X̂ . Consider a single row Wi of W. Let E be the good event
that

Wi · (x⊙ x′) ∈ {0, 1}.

Then Pr[E] ≥ Ω(1/
√
d0), because we are taking a simple one-dimensional random walk of length

at most d0. Conditioned on E, there is an Ω(1) chance that I {Wi · x > 0} ̸= I {Wi · x′ > 0},
because we are taking two independent one-dimensional random walks starting from either 0 or 1,
at least one of which has nonzero length, and asking whether they land on the same side of 1/2.
Therefore, unconditionally, Pr[I {Wi · x > 0} ̸= I {Wi · x′ > 0}] ≥ Ω(1/

√
d0). Consequently, by

independence,

Pr[C0(x) = C0(x
′)] ≤ (1− Ω(1/

√
d0))

d1 < 1/N2,

provided we choose a suitable value d1 = O(
√
d0 · logN). By the union bound over all pairs x,x′,

it follows that there is a nonzero chance that C0 is injective on X̂ .

There are two approaches to using Lemma E.1 for the sake of improving the O(d20 · logN) term in
Theorem 3.1.

• One approach would be to start with a trivial layer that copies the input x ∈ {0, 1}d0 as well
as computing all the negations of the bits of x; then we have a layer that applies the function
C0 from Lemma E.1 (using negated variables to implement −1 weights); and then we continue
with the network of Theorem 3.1. The net effect is that the depth has increased by two (so the
network now has depth 16 instead of 14), and in the weights bound, the O(d20 · logN) term has
been slightly improved to O(d20 + d

3/2
0 · logN + d0 · log3 N).

• A second approach would be to change the model. If we permit ternary edge weights (i.e., weights
in the set {−1, 0, 1}), then the function C0 of Lemma E.1 can be implemented as the very first
layer of our network, and then we can continue with the network of Theorem 3.1. Note that
we need ternary edge weights only in the first layer; the edge weights in all subsequent layers
are binary. The benefit of this approach is in the weights bound, the O(d20 · logN) term of
Theorem 3.1 would be improved to O(d

3/2
0 · logN + d0 · log3 N).
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E.2 A d20 Lower Bound on the Number of Weights

We now show that the O(d20 · logN) term in Theorem 3.1 cannot be improved to something better
than d20, if we insist on using the “binary threshold network” model. The argument is elementary.
Proposition E.2 (d20 wire lower bound). For every d0 ∈ N, there exists a partial Boolean function
f : {0, 1}d0 → {0, 1, ⋆}, defined on a domain X̂ of size d0 + 1, such that for every binary threshold
network h̃, if h̃ agrees with f everywhere in its domain and d is the widths of h̃, then w (d) ≥ d20.

Proof. For each i ∈ {0, 1, . . . , d0}, let x(i) be the vector consisting of i zeroes followed by d0 − i

ones. Let X̂ = {x(i) : 0 ≤ i ≤ d0}, and let

f(x) =

{
PARITY(x) if x ∈ X̂
⋆ otherwise.

For the analysis, let h̃ be a fully connected binary threshold network that agrees with f on all points
in X̂ . Consider the layer immediately following the input layer. Each node g in this layer computes
either a monotone Boolean function or an anti-monotone Boolean function of the input variables.
Therefore, there is at most one value i ∈ {1, 2, . . . , d0} such that g(x(i−1)) ̸= g(x(i)). On the other
hand, for every i ∈ {1, 2, . . . , d0}, we have h̃(x(i−1)) ̸= h̃(x(i)), and hence there must be at least
one node g in this layer such that g(x(i−1)) ̸= g(x(i)). Therefore, there are at least d0 many nodes g.

Thus, the first two layers of h̃ both have widths of at least d0, demonstrating that h̃ has at least d20
many weights.
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F Generalization results (Proofs for Section 4)

Denote by HBTN
d the set of functions representable as binary threshold networks with dimensions

d (given a fixed depth L). We start by bounding the cardinality
∣∣∣HBTN

d

∣∣∣ in terms of the number of
edges w (d).

Lemma F.1. Let d be the dimensions of a binary threshold network with w ≜ w (d) edges. Then
there are 2w+O(

√
w log(w)) functions representable as networks with dimensions d.

Proof. We bound the number of function representable as binary threshold networks with dimensions
d having w edges by suggesting a way to encode them, and then bounding the number of bits in the
encoding. First, permute each layer so the neurons are sorted by the bias and neuron scaling terms
(bli, γli). As NNs are invariant to permutations, this does not change the function. Now, at each layer
we encode the bias term based on one of two encodings.

• If dl < dl−1, then list each of the bias terms as a number with O (log (dl−1)) bits plus 2 bits
for the scaling term for a total of O (dl (log (dl−1) + 2)) ≤ O

(√
dldl−1 log (dl−1)

)
, where the

inequality is due to dl < dl−1.

• If dl ≥ dl−1, then we encode the bias and scaling terms by listing the number of times each pair
(bli, γli) ∈ {−dl−1, . . . , dl−1 − 1}×{−1, 0, 1} appears in (bl,γl) (recall that the neurons are or-
dered according to these pairs). Each pair can appear at most dl times and so requires O (log (dl))

bits to encode for a total of O (6dl−1 log (dl)) = O (dl−1 log (dl)) ≤ O
(√

dldl−1 log (dldl−1)
)
.

By encoding each weight with a single bit, this means that for all layers, we can encode the weights,
biases and scaling terms using dldl−1 +O

(√
dldl−1 log (dldl−1)

)
bits for a total of

L∑
l=1

dldl−1 +O
(√

dldl−1 log (dldl−1)
)
= w +O

(
L∑

l=1

√
dldl−1 log (dldl−1)

)

≤ w +O

(
L∑

l=1

√
dldl−1 log

(
L∑

l=1

dldl−1

))

≤ w +O

(
L∑

l=1

√
dldl−1 log (w)

)
= w +O

(
log (w) · L

L∑
l=1

1

L

√
dldl−1

)

[Jensen] ≤ w +O

log (w) · L

√√√√ L∑
l=1

1

L
dldl−1

 = w +O

log (w) ·
√
L

√√√√ L∑
l=1

dldl−1


= w +O

(
log (w) ·

√
L
√
w
)

= w +O
(
log (w) ·

√
w
)
.

Corollary F.2. Assuming that the depth L is fixed and known, a binary threshold network of depth L
with unknown number of weights w, can be encoded with w +O (

√
w log (w)) bits.

Proof. After specifying the architecture d, from Lemma F.1 we require w + O (
√
w log (w)) bits.

Therefore it remains to bound the length of the encoding of d. We first use O (log (w)) bits to encode
the number of weights, then, since d ∈ [w]

L, we only need O
(
log
(
wL
))

= O (log (w)) additional
bits for a total of w +O (

√
w log (w)) +O (log (w)) = w +O (

√
w log (w)).
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F.1 Derivation of the min-size generalization bounds (Proofs for Section 4.1)

Throughout this subsection, we use A (S) to denote the min-size interpolating NN of depth L,
AL (S).
Lemma F.3. Let L ≥ 16 be fixed. Then

I (S;A (S)) ≤ w (d⋆) +N ·H (ε⋆) +O (δ (N, d0, d
⋆))

where

δ (N, d0, d
⋆) = n (d⋆)·N3/4H (ε⋆)

3/4 · polylog (N + n (d⋆) + d0)

+ d20 · logN + d0n (d⋆) log (n (d⋆) +N + d0)
3/2

.

Proof. Using Shannon’s source coding theorem:

I (S;A (S)) ≤ H (A (S)) ≤ E |A (S)| ,

where |A (S)| denotes the number of bits in the encoding of A (S). Following Corollary 3.4, for a
consistent S, A (S) is a network with fixed depth and at most

w ≜ w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4H (LS (h⋆))
3/4

polylogN

+O (d0 (d0 + n (d⋆)) · logN)

weights and therefore, using the result from Corollary F.2 and
√

w (d⋆) ≤ d0 + n (d⋆),

|A (S)| ≤ w +O
(√

w log (w)
)

= w (d⋆) +N ·H (LS (h⋆)) +O
(
n (d⋆)·N3/4H (LS (h⋆))

3/4 ·polylog (N+n(d⋆)+d0)
)

+O
(
d20 ·logN+d0n (d⋆) log (n (d⋆)+N+d0)

3/2
)

= w (d⋆) +N ·H (LS (h⋆)) +O
(
δ̃ (N, d0, d

⋆)
)

where we grouped all lower order terms in δ̃. In case S is inconsistent, A (S) = ⋆ so |A (S)| = O (1).
Taking the expected value and using Jensen’s inequality gives

E |A (S)| = E [|A (S)| · I {inconsistentS}] + E [|A (S)| · I {consistentS}]

≤ O(1) + E
[
I {consistentS}︸ ︷︷ ︸

≤1

(
w (d⋆) +N ·H (LS (h⋆)) +O

(
δ̃ (N, d0, d

⋆)
))

︸ ︷︷ ︸
≥0

]
≤ O(1) + E

[
w (d⋆) +N ·H (LS (h⋆)) +O

(
δ̃ (N, d0, d

⋆)
)]

[Jensen] ≤ w (d⋆) +N ·H (E [LS (h⋆)]) +O (δ (N, d0, d
⋆))

= w (d⋆) +N ·H (ε⋆) +O (δ (N, d0, d
⋆)) .
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With this result, we are ready to derive the generalization results.

Recall Theorem 4.2. Consider a distribution D induced by a noisy teacher model of depth L⋆ and
widths d⋆ (Assumption 2.4) with a noise level of ε⋆ < 1/2. Let S ∼ DN be a training set such that
N = o(

√
1/Dmax). Then, for any fixed depth L ≥ max {L⋆, 14}+ 2, the generalization error of

the min-size depth-L NN interpolator satisfies the following.

• Under arbitrary label noise,

ES [LD (A (S))] ≤ 1− 2−H(ε⋆)/PS(consistentS) + P (inconsistentS) +O (Cmin (N, d0, d
⋆)) .

• Under independent label noise,

|ES [LD (A (S))]− 2ε⋆ (1−ε⋆)|

≤ (1− 2ε⋆)
√

O(Cmin(N,d0,d
⋆))+P(inconsistent S)

P(consistent S) +
(N − 1)Dmax

3
+ P (inconsistentS) ,

where

Cmin (N, d0, d
⋆) =

w (d⋆) + δ (N, d0, d
⋆)

N

with δ (N, d0, d
⋆) as defined in Lemma F.3.

Remark F.4. The bound shown in Section 4.1 is found by bounding P(inconsistent S) ≤ 1
2N

2Dmax

as in Lemma B.1. Then using the Taylor approximation with small N2Dmax

1− 2−
H(ε⋆)

P(consistentS) ≤ 1− 2
− H(ε⋆)

1− 1
2
N2Dmax

= 1− 2−H(ε⋆)(1+O(N2Dmax))

= 1− 2−H(ε⋆)
(
1 +O

(
N2Dmax

))
= 1− 2−H(ε⋆) +O

(
N2Dmax

)
.

Lemma B.1 is used similarly to bound the error in the independent noise case. Assuming that
N = ω

(
n (d⋆)

4
H (ε⋆)

3
polylog (n (d⋆)) + d20 log d0

)
when ε⋆ > 0 we can deduce that N =

ω (w (d⋆)) as well since

w (d⋆) ≤ (n (d⋆) + d0)
2 ≤ 4 (max {n (d⋆) , d0})2 .

Together with N = o
(√

1/Dmax

)
we get the desired form of the bounds. Finally, note that when

ε⋆ = 0, the convergence rate of Õ (1/N) instead of Õ
(
1/ 4

√
N
)

, where Õ hides logarithmic terms
arising as artifacts of our analysis, and dependence on other parameters such as the input dimension
d0.

Proof. Starting with the bound in the arbitrary noise setting, we combine C.2 with F.3

− log (1− ES [LD (A (S)) | consistent S]) ≤ I (S;A (S))

N · PS (consistent S)

≤ w (d⋆) +N ·H (ε⋆) +O (δ (N, d0, d
⋆))

N · PS (consistent S)

=
1

PS (consistent S)
· (H (ε⋆) +O (Cmin (N, d0, d

⋆))) .

Rearranging the above inequality and recalling Remark C.1, we have,

ES [LD (A (S)) | consistent S] ≤ 1− 2
− H(ε⋆)

PS(consistentS)
−O(Cmin(N,d0,d

⋆))
.
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Then, using Lemma A.6, we get,

ES [LD (A (S)) | consistent S] ≤ 1− 2
− H(ε⋆)

PS(consistentS) +O (Cmin (N, d0, d
⋆)) .

The bound is derived using the following observation. Since for a RV X in [0, 1] and a binary RV Y
we have

E[X] = E[X | Y ]P(Y )︸ ︷︷ ︸
≤1

+E[X | ¬Y ]︸ ︷︷ ︸
≤1

P(¬Y ) ≤ E[X | Y ] + P[¬Y ] ,

we conclude the proof as

ES [LD (A (S))] ≤ ES [LD (A (S)) | consistent S] + P (inconsistent S) .

For the independent noise setting, we combine Lemma C.3 and Lemma F.3 to get

|ES [LD (A (S)) | consistent S]− 2ε⋆ (1− ε⋆)|

≤ (1− 2ε⋆)O
(√

C (N)
)
+

(N − 1)Dmax

3
,

where

C (N) =
I (S;A (S))−N · (H (ε⋆)− P (inconsistent S))

N (1− P (inconsistent S))

≤ w(d⋆)+N ·H(ε⋆)+O(δ(N,d0,d
⋆))−N ·(H(ε⋆)−P(inconsistent S))

N(1−P(inconsistent S))

=
O
(

w(d⋆)+δ(N,d0,d
⋆)

N

)
+ P (inconsistent S)

P (consistent S)

=
O (Cmin (N, d0, d

⋆)) + P (inconsistent S)
P (consistent S)

Finally, using the inequality from Lemma C.4, we have,∣∣ES,A(S) [LD (A (S))]− 2ε⋆ (1− ε⋆)
∣∣

≤
∣∣ES,A(S) [LD (A (S)) | consistent S]− 2ε⋆ (1− ε⋆)

∣∣+ P(inconsistent S)
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F.2 Derivation of the posterior sampling generalization bounds (Section 4.2)

Lemma F.5. For the posterior sampling algorithm

I (S;A (S)) ≤ ES

[
log

(
1

pS

)∣∣∣∣consistentS]PS (consistentS) +
2

e ln 2
.

Proof. Recall the definition of the marginal distribution of the algorithm’s output (a hypothesis h) is

dν (h) =
∑
s

dp (s, h) ,

where s are all possible realizations of a (training) sample of size N .

For h = ⋆, we have dν (⋆) = PS (inconsistent S).

For h ̸= ⋆, since Ls (h) = 0 implies that s is consistent, we have

dν (h) ≜
∑
s

dp (s, h) =
∑
s

I {Ls (h) = 0}
ps

dP (h) dDN (s)

=
∑

s:ps>0

I {Ls (h) = 0}
ps

dP (h) dDN (s)

= dP (h)
∑

s:ps>0

I {Ls (h) = 0}
ps

dDN (s)

= dP (h)ES∼DN

[
I {pS > 0}

pS
I {LS (h) = 0}

]
.

where, for ease of notation, we use the convention that I{ps>0}
ps

= 0 when ps = 0. Denoting

π (h) ≜ ES∼DN

[
I {pS > 0}

pS
I {LS (h) = 0}

]
,

we get
dν (h) = dP (h)π (h) .

Notice that if there exists some s ∈ supp
(
DN
)

such that Ls (h) = 0 then π (h) > 0. Using the
definition of the mutual information:

I (S;A (S)) =
∑
s

∑
h∈H∪{⋆}

dp (s, h) log

(
dp (s, h)

dν (h) dD (s)

)

=
∑

s:ps=0

dp (s, ⋆) log

(
dp (s, ⋆)

dν (⋆) dD (s)

)
+
∑

s:ps>0

∑
h∈H

dp (s, h) log

(
dp (s, h)

dν (h) dD (s)

)
=
∑

s:ps=0

dD (s) log

(
dD (s)

PS (inconsistent S) dD (s)

)
+

∑
s:ps>0

∑
h:Ls(h)=0

1

ps
dP (h) dD (s) log

(
1
ps
dP (h) dD (s)

dP (h)π (h) dD (s)

)

=
∑

s:ps=0

dD (s) log
(

1
PS(inconsistent S)

)
+
∑

s:ps>0

∑
h:Ls(h)=0

1

ps
dP (h) dD (s) log

(
1

psπ (h)

)
.

Simplifying each term separately, the first sum immediately simplifies to

−PS (inconsistent S) log (PS (inconsistent S)) ≤ 1

e ln 2
,
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and∑
s:ps>0

∑
h:Ls(h)=0

1

ps
dP (h) dD (s) log

(
1

psπ (h)

)
= −

∑
s:ps>0

∑
h:Ls(h)=0

1

ps
dP (h) dD (s) log (ps)−

∑
s:ps>0

∑
h:Ls(h)=0

1

ps
dP (h) dD (s) log (π (h))

= −
∑

s:ps>0

1

ps
log (ps) dD (s)

∑
h:Ls(h)=0

dP (h)

︸ ︷︷ ︸
=ps

−
∑

s:ps>0

∑
h:π(h)>0

I {Ls (h) = 0}
ps

dP (h) dD (s) log (π (h))

= −
∑

s:ps>0

1

ps
log (ps) dD (s) ps −

∑
h:π(h)>0

log (π (h)) dP (h)
∑

s:ps>0

I {Ls (h) = 0}
ps

dD (s)︸ ︷︷ ︸
=π(h)

= −
∑

s:ps>0

log (ps) dD (s)−
∑

h:π(h)>0

π (h) log (π (h)) dP (h)

= −ES [log (pS) I {pS > 0}]− Eh∼P [I {π (h) > 0}π (h) log (π (h))]

= ES

[
log

(
1

pS

)
| pS > 0

]
PS (pS > 0) + Eh∼P [−π (h) log (π (h)) I {π (h) > 0}]︸ ︷︷ ︸

≤1/e ln 2

≤ ES

[
log

(
1

pS

)
| consistent S

]
PS (consistent S) +

1

e ln 2
.

Putting all of this together,

I (S;A (S)) ≤ ES

[
log

(
1

pS

)∣∣∣∣consistent S
]
PS (consistent S) +

2

e ln 2
.
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Corollary F.6. The generalization of posterior sampling satisfies

− log
(
1− ES,A(S) [LD (A (S)) | consistentS]

)
≤

ES

[
log
(

1
pS

)∣∣∣consistentS]+ 3

N
.

Proof. Combining Lemma C.2 and Lemma F.5 we get

I (S;A (S)) ≥ −N log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
PS (consistent S)

and

I (S;A (S)) ≤ ES

[
log

(
1

pS

)∣∣∣∣consistent S
]
PS (consistent S) +

2

e ln 2

so

−N log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
PS (consistent S)

≤ ES

[
log

(
1

pS

)∣∣∣∣consistent S
]
PS (consistent S) +

2

e ln 2

and finally, using 2/e ln 2 ≤ 1.5 and recalling C.1 we get

− log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
≤

ES

[
log
(

1
pS

)∣∣∣consistent S
]
+ 3

N
.
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Let h̄ be a network with depth L, dimensions d̄, and parameters θ̄ =
{
W̄l, b̄l, γ̄l

}
∈ ΘBTN

(
d̄
)
.

Let d ≥ d̄. Similar to ΘBTN (d;h1, h2) introduced in Lemma D.26, let ΘBTN
(
d; h̄
)
⊂ ΘBTN (d) be

the set of parameters θ that implement h̄ by setting a subset of the parameters to be equal to θ̄, and
zero the effect of redundant neurons by setting their bias and neuron scaling terms to be 0. This is
illustrated in Figure 4. In particular, in our notation, ΘBTN (d;h1, h2) = ΘBTN (d;h1 ⊕ h2).

𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

Figure 4: Implementing a narrow network with a wider network. Blue edges represent parameters
set to equal the parameters of h̄, gray nodes represent zero neuron scaling, and gray edges represent
unconstrained parameters.

Lemma F.7. Let h be a network with depth L and dimensions d̄. Let d ≥ d̄. Then

− log

(∣∣ΘBTN
(
d; h̄
)∣∣

|ΘBTN (d)|

)
≤ w

(
d̄
)
+O (n (d) · log (dmax + d0)) .

Proof. We prove this by counting the number of constrained parameters in ΘBTN
(
d; h̄
)
. The number

of constrained weights is

d̄1d0 +

L∑
l=2

d̄ld̄l−1 ,

which is exactly w
(
d̄
)
. In addition, there are n (d) constrained bias terms, and n (d) constrained

scaling terms. In total, after accounting for the quantization of each parameter, this means that∣∣ΘBTN
(
d; h̄
)∣∣

|ΘBTN (d)|
≥

2w(d̄)︸ ︷︷ ︸
weights

· 3n(d)︸ ︷︷ ︸
scaling terms

·
L∏

l=1

(2dl−1)
dl

−1

so

− log

(∣∣ΘBTN
(
d; h̄
)∣∣

|ΘBTN (d)|

)

≤ w
(
d̄
)
+ n

(
d
)
· log 3 +

L∑
l=1

d̄l · log (2dl−1)

≤ w
(
d̄
)
+ n

(
d
)
· log 3 + n (d) · log (2dmax + 2d0)

= w
(
d̄
)
+O (n (d) · log (dmax + d0)) .
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Combining Lemma F.7 with Assumption 2.4, and Corollary 3.4 gives the following lemma.

Lemma F.8. Consider a distribution D induced by a noisy teacher model of depth L⋆ and widths d⋆

(Assumption 2.4) with a noise level of ε⋆ < 1/2. Let S ∼ DN be a training set with effective training
set label noise ε̂tr as defined in (4). Then there exist constants c1, c2 > 0 such that for any student
network of depth L ≥ max {L⋆, 14}+ 2 and widths d ∈ NL satisfying

∀l = 1, . . . , L⋆−1 dl ≥ d⋆l +N3/4 · (logN)
c1 + c2 · d0 · log (N) ,

it holds for posterior sampling with a uniform prior over parameters that

ES

[
log

(
1

pS

)
| consistent S

]
≤ w (d⋆) +N ·H (ε̂tr) + 2n (d⋆)N3/4polylogN

+O (d0 (d0 + n (d⋆)) · log (N) + n (d) · log (dmax + d0)) .

Remark F.9. Unlike the bounds for min-size interpolators, there is no H (ε̂tr)
3/4 term multiplying

the N3/4 term. This is because the architecture of random interpolators is fixed, so in our setting we
must assume that it is wide enough in order to guarantee interpolation of any noisy training set.

Proof. Notice that for posterior sampling with uniform distribution over parameters, the interpolation
probability pS can be lower bounded as

pS ≥

∣∣∣ΘBTN
(
d;h⋆ ⊕ h̃S

)∣∣∣
|ΘBTN (d)|

and therefore

log

(
1

pS

)
≤ − log


∣∣∣ΘBTN

(
d;h⋆ ⊕ h̃S

)∣∣∣
|ΘBTN (d)|

 .

Then, using the bounds from Lemma F.7 with the one from Corollary 3.4

log

(
1

pS

)
≤ w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4polylogN

+O (d0 (d0 + n (d⋆)) · logN + n (d) · log (dmax + d0)) .

By taking the expectation and using Jensen’s inequality with the concave H we arrive at

ES [H (LS (h⋆)) | consistent S] ≤ H (ES [LS (h⋆) | consistent S]) = H (ε̂tr) .

Hence

ES

[
log

(
1

pS

) ∣∣∣∣ consistent S
]

≤ w (d⋆) +N ·H (ε̂tr) + 2n (d⋆)N3/4polylogN

+O (d0 (d0 + n (d⋆)) · log (N) + n (d) · log (dmax + d0)) .
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Recall Theorem 4.4. Consider a distribution D induced by a noisy teacher model of depth L⋆ and
widths d⋆ (Assumption 2.4) with a noise level of ε⋆ < 1/2. Let S ∼ DN be a training set such that
N = o(

√
1/Dmax). Then, there exist constants c1, c2 > 0 such that for any student network of depth

L ≥ max {L⋆, 14}+ 2 and widths d ∈ NL holding

∀l = 1, . . . , L⋆−1 dl ≥ d⋆l +N3/4 · (logN)
c1 + c2 · d0 · log (N) , (11)

the generalization error of posterior sampling satisfies the following.

• Under arbitrary label noise,

ES,A(S) [LD (A (S))] ≤ 1− 2−H(ε⋆) + 2N2Dmax +O (Crand (N)) .

• Under independent label noise,∣∣ES,A(S) [LD (A (S))]− 2ε⋆ (1−ε⋆)
∣∣

≤ (1− 2ε⋆)

√
O (Crand (N)) + P (inconsistent S)

P (consistent S)
+

(N − 1)Dmax

3
+ P (inconsistentS) ,

where

Crand (N) =
n (d⋆)·polylog (N)

4
√
N

+
w (d⋆)+d0 (d0 + n (d⋆))·log (N)+n (d)·log (dmax+d0)

N
.

Remark F.10. The bound shown in Section 4.2 is found by bounding P (inconsistentS) as in
Lemma B.1. Assuming that N = ω

(
n (d⋆)

4
polylog (n (d⋆)) + d20 log d0

)
we can deduce that

N = ω (w (d⋆)) as well since

w (d⋆) ≤ (n (d⋆) + d0)
2 ≤ 4 (max {n (d⋆) , d0})2 .

Together with N = o
(√

1/Dmax

)
we get the desired form of the bounds.

Proof. Corollary 3.4 implies that there exist c1, c2 > 0 such that a student NN satisfying (11) can
interpolate any consistent dataset, and so posterior sampling is interpolating for all consistent datasets.

We start by proving the bound for arbitrary label noise. First, we notice that

ε̂tr = P(Y1 ̸= h⋆(X1) | consistentS) =
P(Y1 ̸= h⋆(X1), consistentS)

P (consistentS)

≤ P(Y1 ̸= h⋆(X1))

P (consistentS)
=

ε⋆

P (consistentS)
.

The entropy function H is increasing in
[
0, 1

2

]
and achieves its maximum at 1

2 , so together with the
inequality above, we get,

H (ε̂tr) ≤ H
(
min

{
ε⋆

P(consistentS) ,
1
2

})
= H

(
ε⋆ +min

{
ε⋆

P(consistentS) − ε⋆, 1
2 − ε⋆

})
= H

(
ε⋆ +min

{
ε⋆ P(inconsistentS)

P(consistentS) , 1
2 − ε⋆

}︸ ︷︷ ︸
≜∆

)
= H (ε⋆ +∆) .

Employing the concavity of the entropy function, we get,

H (ε̂tr) ≤ H (ε⋆ +∆) ≤ H(ε⋆) +H ′(ε⋆) ·∆ ≤ H(ε⋆) + H ′(ε⋆) · ε⋆︸ ︷︷ ︸
≤ 1

2 ,algebraically

·P (inconsistentS)

P (consistentS)
.
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By combining the above with Corollary F.6, Lemma F.8, we have that

− log
(
1− E(S,A(S)) [LD (A (S)) | consistent S]

)
≤ ES [log (1/pS) | consistent S] + 3

N

≤ H (ε̂tr) +
1

N

(
w (d⋆) +N ·H (ε̂tr) + 2n (d⋆)N3/4polylogN

+O (d0 (d0 + n (d⋆)) · log (N) + n (d) · log (dmax + d0))
)

≤ H (ε̂tr) +O

(
n(d⋆)·polylog(N)

4√
N

+
w(d⋆)+d0(d0+n(d⋆))·log(N)+n(d)·log(dmax+d0)

N

)
≤ H(ε⋆) + P(inconsistentS)

2P(consistentS)

+O

(
n(d⋆)·polylog(N)

4√
N

+
w(d⋆)+d0(d0+n(d⋆))·log(N)+n(d)·log(dmax+d0)

N

)
= H(ε⋆) + P(inconsistentS)

2P(consistentS) +O (Crand (N)) .

Rearranging the inequality results in

E(S,A(S)) [LD (A (S)) | consistent S]

≤ 1− 2−H(ε⋆)− P(inconsistentS)
2P(consistentS)

−O(Crand(N))

Then, using Lemma A.6, we get,

E(S,A(S)) [LD (A (S)) | consistent S]

≤ 1− 2−H(ε⋆) +
P (inconsistentS)

2P (consistentS)
+O (Crand (N)) .

Repeating the argument from the proof of Theorem 4.2, since for an RV X in [0, 1] and a binary RV
Y we have

E[X] = E[X | Y ]P(Y )︸ ︷︷ ︸
≤1

+E[X | ¬Y ]︸ ︷︷ ︸
≤1

P(¬Y ) ≤ E[X | Y ] + P(¬Y ) ,

we have,

E(S,A(S)) [LD (A (S))] ≤ E(S,A(S)) [LD (A (S)) | consistent S] + P (inconsistent S)

≤ 1− 2−H(ε⋆) +
P (inconsistentS)

2P (consistentS)
+ P (inconsistent S) +O (Crand (N))

≤ 1− 2−H(ε⋆) + 2
P (inconsistentS)

P (consistentS)
+O (Crand (N))

≤ 1− 2−H(ε⋆) + 2
1
2N

2Dmax

1− 1
2N

2Dmax

+O (Crand (N))

≤ 1− 2−H(ε⋆) + 2N2Dmax +O (Crand (N))

where in the last inequality we used t/ (1− t) ≤ 2t for t ∈ [0, 1/2].

Moving on to the independent noise setting, we combine Lemma F.5, Lemma F.8, and ε̂tr ≤ ε⋆ < 1
2

from Lemma B.2, to bound the mutual information as

I (S;A (S)) ≤ ES

[
log

(
1

pS

)
| consistent S

] ≤1︷ ︸︸ ︷
PS (consistent S)+

2

e ln 2

≤ ES

[
log

(
1

pS

)
| consistent S

]
+ 1.1

≤ N ·H (ε⋆) +O (N · Crand (N)) .
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Plugging the above into C(N) of Lemma C.3, we get,

C (N) =
I (S;A (S))−N ·H (ε⋆) +N · PS∼DN (inconsistent S)

N · P (consistent S)

≤ N ·H(ε⋆)+O(N ·Crand(N))−N ·H(ε⋆)+N ·P(inconsistent S)
N ·P(consistent S)

=
O (Crand (N)) + P (inconsistent S)

P (consistent S)
.

Then we continue as in the arbitrary noise setting to get the desired bound.
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G Alignment with Dale’s Law

In this section, we show that our results apply to a model resembling “Dale’s Law” [82], i.e., such
that for each neuron, all outgoing weights have the same sign. To this end, we define the following
model, in which the main difference from Def. 2.1 is that neuron scaling is applied after the threshold
activation.

Definition G.1 (Binary threshold networks with outgoing scaling). For a depth L, widths
d = (d1, . . . , dL), input dimension d0, a scaled-neuron fully connected binary threshold NN with
outgoing weight scaling (oBTN), is a mapping θ 7→ gθ such that gθ : {0, 1}d0 → {−1, 0, 1}dL ,
parameterized by

θ =
{
W(l),b(l),γ(l)

}L

l=1
,

where for every layer l ∈ [L],

W(l)∈ QW
l ={0, 1}dl×dl−1 , γ(l)∈ Qγ

l ={−1, 0, 1}dl , b(l)∈ Qb
l ={−dl−1 + 1, . . . , dl−1}dl .

This mapping is defined recursively as gθ (x) = g(L) (x) where

g(0) (x) = x ,

∀l ∈ [L] g(l) (x) = γ(l) ⊙ I
{
W(l)g(l−1) (x) + b(l) > 0

}
.

Lemma G.2. Let gθ be an oBTN as in Def. G.1. Then there exists a BTN hθ′ with the same dimensions
and b′(l) ∈ Q2b

l ≜ {−2dl−1 + 1, . . . , 2dl} such that hθ′ ≡ gθ + s for s ∈ {0, 1}dL such that for all
i = 1, . . . , dL, si = 1 only if γ(L)

i = −1.

Proof. We prove the lemma by induction on depth. As we will see, the base case is a particular
case of the step of the induction, so we start with the latter. Let l = 1, . . . , L. For ease of notation,
we denote C = g(l) and A = g(l−1), as well as C ′ = h(l), A′ = h(l−1). In addition, we omit the
superscripts from the lth layer’s parameters. Let i = 1, . . . , dl, then by the induction hypothesis there
exists some a ∈ {0, 1}dl−1 such that A (x) = A′ (x)− a, for all inputs x,

C (x)i = γi · I

bi +

dl−1∑
j=1

wijA (x)j > 0

 = γi · I

bi +

dl−1∑
j=1

wij

(
A′ (x)j − aj

)
> 0


= γi · I


bi −

dl−1∑
j=1

wijaj

+

dl−1∑
j=1

wijA
′ (x)j > 0

 .

If γi = +1, choose γ′
i = +1, and b′i = bi −

∑dl−1

j=1 wijaj . Clearly, since wij , aj ∈ {0, 1}, it holds

that
∣∣∣∑dl−1

j=1 wijaj

∣∣∣ ≤ dl−1 so b′i ∈ Q2b
l . Then

C (x)i = I

b′i + γ′
i ·

dl−1∑
j=1

wijA
′ (x)j > 0

 = C ′ (x)i
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i.e., the claim holds with si = 0. If γi = −1 then

C (x)i = γi · I


bi −

dl−1∑
j=1

wijaj

+

dl−1∑
j=1

wijA
′ (x)j > 0


= −I


bi −

dl−1∑
j=1

wijaj

+

dl−1∑
j=1

wijA
′ (x)j > 0


= −1 + I


bi −

dl−1∑
j=1

wijaj

+

dl−1∑
j=1

wijA
′ (x)j ≤ 0


= −1 + I

−

bi −
dl−1∑
j=1

wijaj

−
dl−1∑
j=1

wijA
′ (x)j ≥ 0


= −1 + I

1−

bi −
dl−1∑
j=1

wijaj

−
dl−1∑
j=1

wijA
′ (x)j > 0

 .

Thus, we can construct the lth layer of h by choosing γ′
i = −1 and b′i = 1−

(
bi −

∑dl−1

j=1 wijaj

)
so

C (x)i = −1 + I

1−

bi −
dl−1∑
j=1

wijaj

−
dl−1∑
j=1

wijA
′ (x)j > 0


= −1 + I

b′i + γ′
i

dl−1∑
j=1

wijA
′ (x)j > 0


= C ′ (x)i − si

with si = 1. Finally, if γi = 0, then Ci is identically 0, so we can choose γ′
i = b′i = si = 0. Notice

that this construction also proves the base case l = 1 where a = 0.

Corollary G.3. Let Θ′ be the set of oBTN parameters such that for all θ ∈ Θ′, gθ : {0, 1}d0 →
{0, 1}dL . Then there exists a BTN, h as in Lemma G.2 such that gθ ≡ h.

Proof. Let θ ∈ Θ′. Since gθ (x) ̸= −1 for all x, there exist parameters θ′ ∈ Θ′ such that gθ′ ≡ gθ,
and γ′(L) ≥ 0. Hence, by Lemma G.2 there exists a BTN h such that h ≡ gθ′ , i.e., with s = 0.

Remark G.4. Similar results can be shown in the other direction. That is, that BTNs can be represented
as slightly larger oBTNs.

Finally, recall from Appendix F, that the cardinality of the hypothesis class is related to the error
terms of Theorem 4.2 and Theorem 4.4 only logarithmically, meaning that we can apply the results to
Def. G.1 without qualitatively changing them.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
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Guidelines:
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• The claims made should match theoretical and experimental results, and reflect how
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
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Answer: [Yes]
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• The answer NA means that the paper does not include theoretical results.
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4. Experimental Result Reproducibility
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of the paper (regardless of whether the code and data are provided or not)?
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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to reproduce that algorithm.
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the architecture clearly and fully.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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that is necessary to appreciate the results and make sense of them.
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error rates).
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they were calculated and reference the corresponding figures or tables in the text.
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the experiments?
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• The answer NA means that the paper does not include experiments.
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or cloud provider, including relevant memory and storage.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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