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Abstract

The design of a metric between probability distributions is a longstanding problem motivated
by numerous applications in machine learning. Focusing on probability distributions in the
Euclidean space R¢, we introduce a novel pseudo-metric between probability distributions
by leveraging the extension of univariate quantiles to multivariate spaces. Data depth is a
nonparametric statistical tool that measures the centrality of any element 2 € R? with respect
to (w.r.t.) a probability distribution or a dataset. It is a natural median-oriented extension
of the cumulative distribution function (cdf) to the multivariate case. Thus, its upper-level
sets—the depth-trimmed regions—give rise to a definition of multivariate quantiles. The
new pseudo-metric relies on the average of the Hausdorff distance between the depth-based
quantile regions for each distribution. Its good behavior regarding major transformation
groups, as well as its ability to factor out translations, are depicted. Robustness, an appealing
feature of this pseudo-metric, is studied through the finite sample breakdown point. Moreover,
we propose an efficient approximation method with linear time complexity w.r.t. the size of
the dataset and its dimension. The quality of this approximation and the performance of
the proposed approach are illustrated in numerical experiments.

1 Introduction

Metrics or pseudo-metrics between probability distributions have attracted a long-standing interest in
information theory (Kullback, 1959; Rényi, 1961; Csiszar, 1963; Stummer & Vajda, 2012), probability theory
and statistics (Billingsley, 1999; Sriperumbudur et al., 2012; Panaretos & Zemel, 2019; Rachev, 1991). While
they serve many purposes in machine learning (Cha & Srihari, 2002; MacKay, 2003), they are of crucial
importance in automatic evaluation of natural language generation (see e.g. Kusner et al., 2015; Zhang et al.,
2019), especially when leveraging deep contextualized embeddings such as the popular BERT (Devlin et al.,
2018). Yet designing a measure to compare two probability distributions is a challenging research field. This
is certainly due to the inherent difficulty in capturing in a single measure typical desired properties such as:
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(i) metric or pseudo metric properties, (ii) invariance under specific geometric transformations, (iii) efficient
computation, and (iv) robustness to contamination.

One can find in the literature a vast collection of discrepancies between probability distributions that rely on
different principles. The f-divergences (Csiszar, 1963) are defined as the weighted average by a well-chosen
function f of the odds ratio between the two distributions. They are widely used in statistical inference but are,
by design, ill-defined when the supports of both distributions do not overlap, which is a significant limitation in
many applications. Integral Probability Metrics (IPMs; Sriperumbudur et al., 2012) are based on a variational
definition of the metric, i.e. the maximum difference in expectation for both distributions calculated over a
class of measurable functions and give rise to various metrics (Maximum Mean Discrepancy (MMD), Dudley’s
metric, L;-Wassertein Distance) depending on the choice of this class. However, except in the case of MMD,
which enjoys a closed-form solution, the variational definition raises issues in computation. From the side of
Optimal transport (OT) (see Villani, 2003; Peyré & Cuturi, 2019), the L,-Wasserstein distance is based on a
ground metric able to take into account the geometry of the space on which the distributions are defined. Its
ability to handle non-overlapping support and appealing theoretical properties make OT a powerful tool,
mainly when applied to generative models (Arjovsky et al., 2017), domain adaptation (Courty et al., 2014;
Courty et al., 2017), realign datasets in natural sciences (Janati et al., 2019; Schiebinger et al., 2019) or
automatic text evaluation (Zhao et al., 2019; Colombo et al., 2021a).

In this work, we adopt another angle. Focusing on probability distributions in the Euclidean space R%, we
propose to consider a new metric between probability distributions by leveraging the extension of univariate
quantiles to multivariate spaces. The notion of quantile function is an interesting ground to build a comparison
between two probability measures as illustrated by the closed-form of the Wasserstein distance defined over
R. However, given the lack of natural ordering on R¢ as soon as d > 1, extending the concept of univariate
quantiles to the multivariate case raises a real challenge. Many extensions have been proposed in the literature,
such as minimum volume sets (Einhmahl & Mason, 1992), spatial quantiles (Koltchinskii & Dudley, 1996)
or data depth (Tukey, 1975). The latter offers different ways of ordering multivariate data regarding a
probability distribution. Precisely, data depths are non-parametric statistics that determine the centrality of
any element = € R? w.r.t. a probability measure. They provide a multivariate ordering based on topological
properties of the distribution, allowing it to be characterized by its location, scale or shape (see, e.g. Mosler,
2013 or Chapter 2 of Stacrman, 2022 for a review). Several data depths were subsequently proposed, such as
convex hull peeling depth (Barnett, 1976), simplicial depth (Liu, 1990), Oja depth (Oja, 1983) or zonoid
depth (Koshevoy & Mosler, 1997) differing in their properties and applications. With a substantial body
of literature devoted to its computation, recent advances allow for fast exact (Pokotylo et al.; 2019) and
approximate (Dyckerhoff et al., 2021) computation of several depth notions. The desirable properties of data
depth, such as affine invariance, continuity w.r.t. its arguments, and robustness (Zuo & Serfling, 2000) make
it an important tool in many fields. Today, in its variety of notions and applications, data depth constitutes
a versatile methodology (Mosler & Mozharovskyi, 2021) that has been successfully employed in a variety of
machine learning tasks such as regression (Rousseeuw & Hubert, 1999; Hallin et al., 2010), classification (Li
et al., 2012; Lange et al., 2014), anomaly detection (Serfling, 2006; Rousseeuw & Hubert, 2018; Staerman
et al., 2020) and clustering (Jornsten, 2004).

This paper presents a new discrepancy measure between probability distributions, well-defined for non-
overlapping supports, that leverages the interesting features of data depths. This measure is studied through
the lens of the previously stated properties, yielding the contributions listed below.

Contributions:

e A new discrepancy measure between probability distributions involving the upper-level sets of data
depth is introduced. We show that this measure defines a pseudo-metric in general. Its good behavior
regarding major transformation groups, as well as its ability to factor out translations, are depicted.
Its robustness is investigated through the concept of finite sample breakdown point.

e An efficient approximation of the depth-trimmed regions-based pseudo-metric is proposed for convex
depth functions such as halfspace and projection. This approximation relies on a nice feature of the
Hausdorff distance when computed between convex bodies.



Published in Transactions on Machine Learning Research (MM/YYYY)

e The behavior of this algorithm regarding its parameters is studied through numerical experiments,
which also highlight the by-design robustness of the depth-trimmed regions based pseudo-metric.
Applications to robust clustering of images and automatic evaluation of natural language generation
(NLG) show the benefits of this approach when benchmarked with state-of-the-art probability metrics.

2 Background on Data Depth

In this section, we recall the concept of statistical data depth function and its attractive theoretical properties
for clarity. Here and throughout, the space of all probability measures on R? with d € N* is denoted by
M;(R?). By gy we denote the push-forward operator of the function g. Introduced by Tukey (1975), the
concept of data depth initially extends the notion of median to the multivariate setting. In other words, it
measures the centrality of any element o € R? regarding a probability distribution (respectively, a dataset).
Formally, a data depth is defined as follows:

D: RYx MR — [0,1], (1)
(x,p) +—  D(z,p).

We denote by D(z,p) (or D,(z) for brevity) the depth of x € R? w.r.t. p € M;(R?). The higher D(z, p), the
deeper it is in p. The depth-induced median of p is then defined by the set attaining sup,cpa D(z, p). Since
data depth naturally and in a nonparametric way defines a pre-order on R? w.r.t. a probability distribution,
it can be seen as a centrality-based alternative to the cumulative distribution function (cdf) for multivariate
data. For any «a € [0,1], the associated a-depth region of a depth function is defined as its upper-level set:

Dy ={xe R, D,(z) > a}.

It follows that depth regions are nested, i.e. Dg/ C Dy for any a < o'. These depth regions generalize the
notion of quantiles to a multivariate distribution.

A depth function’s relevance to capturing information about a distribution relies on the statistical properties
it satisfies. Such properties have been thoroughly investigated in Liu (1990); Zuo & Serfling (2000) and
Dyckerhoff (2004) with slightly different sets of axioms (or postulates) to be satisfied by a proper depth
function. In this paper, we restrict to convex depth functions (Dyckerhoff, 2004) mainly motivated by recent
algorithmic developments including theoretical results (Nagy et al., 2020) as well as implementation guidelines
(Dyckerhoff et al., 2021).

The general formulation (1) opens the door to various possible definitions. While these differ in theoretical and
practically related properties such as robustness or computational complexity (see Mosler & Mozharovskyi,
2021 for a detailed discussion), several postulates have been developed throughout the recent decades the
“good” depth function should satisfy. Formally, a function D is called a convex depth function if it satisfies
the following postulates:

D1 (AFFINE INVARIANCE) D(g(z), gsp) = D(z, p) holds for g : x € R? = Ax + b with any non-singular
matrix A € R¥? and any vector b € R,

D2 (VANISHING AT INFINITY) lim D,(z)=0.

[]|—o0
D3 (UPPER SEMICONTINUITY) {z € R? D,(z) < a} is an open set for every a € (0, 1].
D4 (QUASICONCAVITY) For every A € [0,1] and z,y € RY, D,(Az + (1 — A)y) > min{D,(z), D,(y)}.
While (D1) is useful in applications providing independence w.r.t. measurement units and coordinate system,
(D2) and (D3) appear as natural properties since data depth is a (center-outward) generalization of cdf.

Limit values vanish due to median-oriented construction. (D4) allows to preserve the original center-outward
ordering goal of data depth and induces convexity of the depth regions. Furthermore, it is easy to see that
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(D1-D4) respectively yield properties of affine equivariance, boundedness, closedness and convexity of the
central regions D (Dyckerhoff, 2004). Thanks to (D2-D4), if @ > 0, non-empty regions associated to convex
depth functions are convex bodies (compact convex set in R?).

Below we recall two convex depth functions satisfying (D1-D4) that will be used throughout the paper: the
halfspace depth (Tukey, 1975) and the projection depth (Liu, 1992), which are probably the most studied
in the literature. For this, let S*~! be the unit sphere in R? and X a random variable defined on a certain
probability space (2, A, P) that takes values in X C R? following distribution p. The halfspace depth of a
given € R? w.r.t. pis defined as the smallest probability mass that can be contained in a closed halfspace
containing z:

HD,(z) = inf P((u,X) < (u,x)).

u€eSd—1

Projection depth, being a monotone transform of the Stahel-Donoho outlyingness (Donoho & Gasko, 1992;
Stahel, 1981), is defined as follows:

|(u, z) — med({u, X))\ "
PDp(x)=(1+u§gfl MAD((u, X)) ) ’

where med and MAD stand for the univariate median and median absolute deviation from the median,
respectively.

Remark 2.1. Data depth functions have connections with the density function in particular cases. Indeed,
for elliptical distributions, the level sets of any data depth satisfying (D1-D4) are concentric ellipsoids with
the same center, and orientation as the density level sets (Liu & Singh, 1993). The density is a local measure
assigning the score of an element as the probability mass in an infinitesimal neighborhood. In contrast, data
depths are global measures of ordering taking into account the whole distribution to assign a score to an
element and are thus not equivalent to the density for general distributions. However, they provide interesting
alternatives in many applications, such as anomaly detection (see e.g. Staerman et al., 2021b). For example,
the density will assign a zero score to every x € R? far from a concentrated group of observations regardless
of the distance. At the same time, the projection depth described above will be able to rank these “outliers”
depending on how it moves away from them.

3 A Pseudo-Metric based on Depth-Trimmed Regions

In this section, we introduce the depth-based pseudo-metric and study its properties. We consider depth
regions possessing the same probability mass to compare those from different probability distributions fairly.
Following Paindaveine & Bever (2013), we denote by « : (3, p) € [0,1] x M1(R%) — (B, p) € [0,1] the
highest level such that the probability mass of the depth-trimmed region at this level is at least 5. Precisely,
for any pair (8, p) € [0,1) x M;(R%):

a(B,p) =sup{y € [0,1]: p(D]) > B}. (2)

In the remainder of this paper, when the quantity «(8, p) will be associated with depth regions of p, the
second argument of the function a(-,-) will be omitted, for notation simplicity. It is worth mentioning that

Dg‘(ﬁ/) C Dg‘(ﬁ) for any 8 > ', since 8 — (3, p) is a monotone decreasing function. Thus, fo(ﬁ) is the
smallest depth region with probability larger than or equal to § and can be defined in an identical way as:

a(B) —
Dp()_ ﬂ DZ,
’YEFp(B)

where I'y(8) = {¢ € [0,1] - p (DS) > B}. The strict inequalities in (2) and in the definition of I',(8) eliminate
cases where the supremum does not exist. Indeed, when 8 = 0, the depth region is then an infinitesimal set
with a probability higher than zero. To the best of our knowledge, the supremum exists (without necessarily
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being unique) in the case of the halfspace depth (Rousseeuw & Rutz, 1999) and the projection depth (Zuo,

2003) under mild assumptions. The set {D,’f(ﬁ ). Be [0,1—¢], € € (0,1]} where each region probability mass
is equal to 3 then defines quantile regions of p.

Let p, v be two probability measures on X', ) C R? respectively. Denote by d# (A, B) the Hausdorff distance
between the sets A and B. The pseudo-metric between probability distributions p and v based on the
depth-trimmed regions is defined as follows.

Definition 3.1. Let e € (0,1] and p € (0,00), for all pairs (p,v) in My (X) x M1(Y), the depth-trimmed
regions (DR, ) discrepancy measure between p and v is defined as

p " a(8) pa(d))
DRp,E(/'[/)V):/O d'H (DM 7DV ) dﬁ (3)

Our discrepancy measure relies on the Hausdorff distance averaged over depth-trimmed regions with the same
probability mass w.r.t. each distribution. Properties (D2—D3) ensure that for every 0 < 8 < 1, D,‘f(ﬁ) isa
non-empty compact subset of R? leading to a well-defined discrepancy measure. Observe that the parameter
€ can be considered as a robustness tuning parameter. Indeed, choosing higher ¢ amounts to ignore the larger
upper-level sets of data depth function, i.e. the tails of the distributions, see Sections 3.2 and 5.1.
Remark 3.2. Data depths provide robustness to (3) together with the e-trimming. Indeed, data depths
such as the three previously introduced in Section 2 exhibit attractive robustness properties. The asymptotic
breakdown point of the halfspace median is higher than 1/(d+1). In contrast, the projection median is known
to have a breakdown point equal to 1/2 (Donoho & Gasko, 1992; Ramsay et al., 2019).

Remark 3.3. When d =1, the L,-Wasserstein distance enjoys an explicit expression involving quantile and
distribution functions. Let X' ~ py, Y ~ vy be two random variables where p1,v, are univariate probability
distributions. Denoting by F;ll the quantile function of X1, the L,-Wasserstein distance can be written as

1
W (i1, 10) = / Fol(q) = Fil (o) da. (4)

Since data depth and its central regions are extensions of cdf and quantiles to dimension d > 1, DR, . is then
a possible (center-outward) generalization of (4) to higher dimensions. When DR, . is associated with the
halfspace depth, a simple calculus (see Lemma A.3 in the Appendiz for mathematical details) leads to

1/2
DRg’E(/,Ll,Vl) = 2/

, {IFc(@) - Frl@)lP, [F5l (- q) = Fyl(1 = )} dg.
€

Thus, Wp(p1,v1) < ilg(l) DRp (p1,v1) in general where the equality holds for symmetric distributions.

3.1 Metric Properties

We now investigate to which extent the proposed discrepancy measure satisfies the metric axioms. As a first
go, we show that DR, . fulfills most conditions. However, it does not define distance in general.

Proposition 3.4 (METRIC PROPERTIES). For any convez data depth, DR, . is positive, symmetric and
satisfies triangular inequality but the entailment DR, (1, v) = 0 => p = v does not hold in general.

Thus, DR, . defines a pseudo-metric rather than a distance. Based on distance, the proposed discrepancy
measure preserves isometry invariance, as stated in the following proposition.

Proposition 3.5 (ISOMETRY INVARIANCE). Let A € R** be a non-singular matriz and b € R%. Define the
isometry mapping g : x € R+ Ax + b with AA"T = I, then it holds:

DRy (93, g3v) = DRy (11, V),

where gyp s the push-forward of p by g. In particular, it ensures invariance of DRy, . under translations and
rotations.
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Although formulas (3) and (4) are based on the same spirit, there are no apparent reasons why the proposed
pseudo-metric should have the same behavior as the Wasserstein distance. It is the purpose of Proposition 3.6
to investigate the ability to factor out translations, for DR, . associated with the halfspace depth, giving a
positive answer for the case of two Gaussian distributions with equal covariance matrices.

Proposition 3.6 (TRANSLATION CHARACTERIZATION). Consider X,Y two random variables following
w € My(X) and v € M1(Y) with expectations my, ms and variance-covariance matrices 31, Xo respectively.
Denoting by p*,v* the centered versions of u,v, it holds:

DR (1,v) = DR3 (", ") = |y = ms] | <2 DRy (", ") |lmy — ]|

Now, let p ~ N(my,X1) and v ~ N (ma, X2). Then it holds:

)

’DRLE(M, l/)—\|m17m2||‘ < C. sup |\/uT21uf\/uT22u

u€eSd—1

where C, = 0176 |71 (1 — a(B))| dB with ® the cdf of the univariate standard Gaussian distribution.

Following Proposition 3.6: when X7 = 3, one has DRy (¢,v) = DRy (pt,v) = |jm; — my|| for any
w~ N(mp, %) and v ~ N (my, 35) providing a closed-form expression in the Gaussian case. This proposition
shows that DR, . can factor out translations in a similar way as Wasserstein distance if DRy o(u*, v*) is zero.
Furthermore, it is clear that if DRy (™, v*) = 0 then DRy (u*, v*) is zero too.

3.2 Robustness

In this part, we explore the robustness of the proposed distance, associated with the halfspace depth, given
the finite sample breakdown point (BP; Donoho, 1982; Donoho & Hubert, 1983). This notion investigates the
smallest contamination fraction under which the estimation breaks down in the worst case. Considering a
sample S,, = {X7,..., X,,} composed of i.i.d. observations drawn from a distribution p with empirical measure
fin = (1/n) Y 1 dx,, the finite sample breakdown point of DR, . w.r.t. S,, denoted by BP(DR,,.,S,,) is
defined as:

o
min : sup DR, (finto, fin) = +oo; o€ N* 5
{n Yo g ...I.)Zo p,a(.un—&-o ,un) }

where fin 4o, = %ﬂ, (Z?:l ox, + 2521 5Zj) is the “concatenate” empirical measure between X, ..., X,, and
the contamination sample Z1, ..., Z, with o € N*. It is well known that the extremal regions of the halfspace
depth are not robust while its central regions are rather stable under contamination (Donoho & Gasko, 1992).
Fortunately, by construction, the parameter ¢ allows us to ignore these extremal depth regions and thus
ensure the robustness of the depth-trimmed regions distance. Based on the results of Donoho & Gasko (1992)
and Nagy & Dvorak (2021), the following proposition provides a lower bound on the finite sample breakdown
point of DR, ., which highlights the robustness of the proposed distance as well as its dependence on e.
Proposition 3.7 (BREAKDOWN POINT). For the halfspace depth function, for any B € [0,1 — €] such that
a(B, fin) < max(fin), it holds:

[na(l =&, fin)/(1 — (1 — ¢, fin))]
n+ [na(l —¢ fin)/(1 = a(l =&, fin))]
O‘maX(ﬂn)
14+ amax(ﬂn)

’LfOl(]. - Evﬁn) < %7

BP(DR,.,S,) >

otherwise,

where aumax(ftn) = max HDj, (x).
z€R4 )
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Thus, at least a proportion a(1 — ¢, fin)/(1 — a(1 — ¢, fi,)) of outliers must be added to break down DR, .
when considering larger regions, while central regions are robust independently of . For two datasets, DR, .
breaks down if depth regions for at least one of the datasets do. The breakdown point is then the minimum
between the breakdown points of each dataset. However, the breakdown point considers the worst case, i.e.
the supremum over all possible contaminations, and is often pessimistic. Indeed the proposed pseudo-metric
can handle more outliers in certain cases, as experimentally illustrated in Section 5.1.

4 Efficient Approximate Computation

Exact computation of DR, . can appear time-consuming due to the high time complexity of the algorithms that
calculate depth-trimmed regions (c.f. Liu & Zuo, 2014 and Liu et al., 2019a for projection and halfspace depths,
respectively) rapidly growing with dimension. However, we design a universal approximate algorithm that
achieves (log-) linear time complexity in n. Since properties (D2—D4) ensure that depth regions are convex
bodies in R?, they can be characterized by their support functions defined by hx(u) = sup{(z,u), = € K}
for any u € S9! where K is a convex compact of R?. Following Schneider (1993), for two (convex) regions

Dﬁ‘(ﬁ ) and DY ), the Hausdorff distance between them can be calculated as:

dH(Dg(ﬁ),DS(B)) = Ssup |thf(B) (u) — hDS(B) ('LL)|

u€Sd—1

As we shall see in Section 5.1, mutual approximation of h ) (u) by points from the sample and of sup
by taking maximum over a finite set of directions allows for stable estimation quality. Recently, motivated
by their numerous applications, many algorithms have been developed for the (exact and approximate)
computation of data depths; see, e.g., Section 5 of Mosler & Mozharovskyi (2021) for a recent overview.
Depths satisfying the projection property (which also include halfspace and projection depth, see Dyckerhoff
(2004)) can be approximated by taking minimum over univariate depths; see e.g. Rousseeuw & Struyf (1998);
Chen et al. (2013); Liu & Zuo (2014), Nagy et al. (2020) for theoretical guarantees, and Dyckerhoff et al.
(2021) for an experimental validation.

Empirical data. Let X,Y be two samples X = {X1,...,X,} and Y = {Y3,...,Y,,} from p, v such that
fn = (1/n) >, 6x, and D, = (1/m) > 1" Oy, . When calculating approximated depth of sample points
DX £ {D(X;, fin)}*; (respectively DY), a matrix MX € R"*K (respectively MY € R™*X) of projections
of sample points on (a common) set of K € N* directions (with its element Mz?fk = (ug, X;) for some
up, ~ U(SY1), where U(-) is the uniform probability distribution) can be obtained as a side product. More
precisely, DX, DY MX MY are used in Algorithm 1, which implements the MC-approximation of the integral
in (3). See Figure 1 for an illustration of the principle of this algorithm in practice.

Figure 1: Illustration of the principle of the depth trimmed-regions based pseudo-metric with n, = 3 and
£ =1{0.2,0.5,0.9}.
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Particular cases of approximation algorithms for the halfspace depth and the projection depth are recalled
in Section C in the Appendix. Time complexity of Algorithm 1 is O(K(Q.(nV m,d) V ny(n VvV m))), where
Q.(-,-) stands for the complete complexity of computing univariate depths—in projections on u—for all points
of the sample. As a byproduct, projections on u can be saved to be reused after for the approximation of

h e (w). For the halfspace depth Qpgy(n, d) = O(n(d V log n)) composed of projection of the data onto wu,

ordering them, and passing to record the depths, see Mozharovskyi et al. (2015). For the projection depth,
Qi (n,d) = O(nd), where after projecting the data onto u, univariate median and MAD can be computed
with complexity O(n), see Liu & Zuo (2014)). In comparison with popular distances, fixing n = m, the
Wasserstein distance is of order O(n?(d V n)) with approximations in O(n?d) for Sinkhorn (Cuturi et al.,
2013) and in O(Kn(d V log(n))) for the Sliced-Wasserstein distance (Rabin et al., 2012); the MMD (Gretton
et al., 2007) is of order O(n?d). For example, the computational complexity of DR, . with the projection
depth is only of O(Kn(dV ny)) and thus competes with the fastest (max) sliced-Wasserstein distance.

Algorithm 1 Approximation of DR, .
Initialization: X, Y ng,K
1: H = 0; compute DX, DY MX MY
2: for/=1,...,n, do
3:  Draw By ~U([0,1 —¢])

4:  Compute ay () := &(Be, )
5. Determine points inside ay(-)-regions:

IF ={i: DX > au(X)}; ) ={j: DY > du(Y)}
6: fork=1,...,K do
7 Compute approximation of support functions: h?:max M%(X,k; hz = max M}% A
8: end for ‘ ‘
9:  Increase cumulative Hausdorff distance:

H += max |hi* — hY|P

k<K

10: end for

Output: ﬁ%p,g = (H/ngy)'?

5 Numerical Experiments

In this section, we first investigate different properties of the proposed pseudo-metric such as the convergence
rates of the pseudo-metric estimator w.r.t. the sample size, the quality of the approximation introduced in
Section 4 and its dependency on the number of projections. Further, we present two studies on the robustness
of the proposed pseudo-metric DR, . to outliers. Finally, we show the performance of this pseudo-metric
on two machine learning tasks, clustering and automatic evaluation of neural language generation. Where
applicable, we include state-of-the-art methods for comparison.

5.1 Statistical Convergence, Approximation and Robustness

This part describes the behavior of the proposed pseudo-metric through different perspectives. On synthetic
datasets, we investigate the statistical convergence rates of the empirical version of DR, . to the population
one. We assess the Monte Carlo approximation proposed in Section 4 and compare it to the Sliced Wasserstein
distance. Finally, we highlight how DR, . behaves under the presence of outliers using two different settings.
Due to space limitations, experiments on the influence of the parameters n, and ¢ are deferred to the
Appendix section.

Empirical analysis of statistical rates. Deriving theoretical finite-sample analysis may appear to be
challenging for the proposed pseudo-metric. Thus, we numerically investigate the statistical convergence
speed of DR .. To that end, we simulate two samples X and Y from two standard Gaussian distributions in
dimension two with varying sample sizes from n = 10 to n. = 10000, see Section D.3 for additional experiments
with d € {5,10}. We compute the DRy . between X and Y with n, € {5,20,100} using the halfspace and
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the projection depths. Our proposed metric is computed with a high number of directions K = 25000 to
isolate the statistical error. We report the estimation error averaged over ten runs in Figure 2 (log-log scale),
that is, the value of the pseudo-metric itself, the true value of DRy . being equal to zero. When the Monte
Carlo approximation error influenced by the parameter n, is negligible (n, = 100), Figure 2 suggests that
the statistical rates should be in O(n~'/%). Furthermore, Figure 7 indicates a rates of order O(n~8/4) and
Figure 8 of order O(n*0'6/ 4). These observations suggest a slow rate that depends on the dimension d of
the data. However, the approximation error being negligible due to the K = 25000 sampled directions, the
statistical rates seem to depend only linearly on the dimension. Looking at the error values for n = 10000 for
d = 2,5,10, it increases by a factor of two, such as the dimension.

10° 100
—
(@]
=
w — ) = 5

— n(l = 20
107!
10! 102 103 104 10! 102 103 104
Number of samples Number of samples

Figure 2: Empirical analysis of statistical convergence rates. Resulting error of the proposed pseudo-metric
when increasing the sample size using the projection depth (left) and the halfspace depth (right) for various
N parameters.

Approximation error in terms of the number of projections. Proposition 3.6 allows to derive a closed
form expression for DRg (i, ) when p,v are Gaussian distributions with the same variance-covariance
matrix. In order to investigate the quality of the approximation on light-tailed and heavy-tailed distributions,
we focus on computing DR, . with p =2, ¢ = 0.3, n, = 20 and using the halfspace depth for varying number
of random projections K between a sample of 1000 points stemming from g ~ N (04, I4) for d = 5 and two
different samples. These two samples are constructed from 1000 observations stemming from Gaussian and
symmetrical Cauchy distributions, both with a center equal to 7;. Comparison with the approximation
of max Sliced-Wasserstein (max-SW; see e.g. Kolouri et al., 2019), which shares the same closed-form as
DRy, is also provided. Denoting by max-SW the Monte-Carlo approximation of the max-SW, the relative
approximation errors, i.e., (DRy. —||7all2)/||7all2 and (max-SW —||74||2)/||7al|2, are computed investigating
both the quality of the approximation and the robustness of these discrepancy measures. Results that
report the averaged approximation error and the 25-75% empirical quantile intervals are depicted in Figure
3. They show that DR, . possesses the same behavior as max-SW when considering Gaussians while it
behaves advantageously for Cauchy distribution. Computation times are depicted in Figure 4, highlighting a
constant-multiple improvement compared to the max-SW, which is already computationally fast.

Robustness to outliers. We analyze the robustness of DR, . by measuring its ability to overcome outliers
(its robustness regarding the influence of the parameter £ are given in the Section D.4 in the Appendix).
In this benchmark, we naturally include existing robust extensions of the Wasserstein distance: Subspace
Robust Wasserstein (SRW; Paty & Cuturi, 2019) searching for a maximal distance on lower-dimensional
subspaces, ROBOT (Mukherjee et al., 2020) and RUOT (Balaji et al., 2020) being robust modifications of the
unbalanced optimal transport (Chizat et al., 2018). Medians-of-Means Wasserstein (MoMW; Staerman et al.,
2021a) that replaces the empirical means in the Kantorivich duality formulae by the robust mean estimator
MoM (see e.g. Lecué & Lerasle, 2020; Laforgue et al., 2021), is not employed due to high computational
burden. Further, for completeness, we add the standard Wasserstein distance (W) and its approximation, the
Sliced-Wasserstein (Sliced-W; Rabin et al., 2012) distance, the trimmed Sliced-Wasserstein (TSW; Manole
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Figure 3: Relative approximation error (averaged over 100 runs) of DR, . and the max Sliced-Wassserstein
for Gaussian (left) and Cauchy (right) sample with dimension d = 5 for differing numbers of approximating
directions.
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Figure 4: Computation time (averaged over 100 runs) of DR, . and the max Sliced-Wassserstein for Gaussian
with n = 100, d = 5 (left) and n = 1000, d = 50 (right) for differing numbers of approximating directions.

et al., 2022) with the same number of projections (K = 1000) as DR, .. Since the scales of the compared
methods differ, relative error is used as a performance metric, i.e., the ratio of the absolute difference of the
computed distance with and without anomalies divided by the latter. Two settings for a pair of distributions
are addressed: (a) Fragmented hypercube precedently studied in Paty & Cuturi (2019), where the source
distribution is uniform in the hypercube [—1,1]? and the target distribution is transformed from the source
via the map T : x — x + 2sign(x) where sign(.) is taken element-wisely. Outliers are drawn uniformly from
[—4,4]%. (b) Two multivariate standard Gaussian distributions, one shifted by 109, with outliers drawn
uniformly from [—10,20]2. Our analysis is conducted over 500 sampled points from the distributions described
above.

To investigate the robustness of DR, ., we consider the following value of : 0.3 computed with the projection
depth. We set the same trimming value for TSW. Thus, data depths are computed on source and target
distributions such that 30% of data with lower depth values w.r.t. each distribution are not used in computation
of DR, .3, respectively. Figure 5, which plots the relative error depending on the portion of outliers varying
up to 30%, illustrates advantageous behavior of DR, . for reasonable (starting with ~ 2.5%) contamination.

5.2 Machine Learning Applications
This part presents two machine learning applications, clustering applied to images and automatic evaluation

of natural language generation. On a real image dataset extracted from Fashion-MNIST where images are
seen as bags of pixels, we evaluate the robustness of spectral clustering based on DR, .. Further, we analyze

10
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Figure 5: Relative error (averaged over 100 runs) of different distances for increasing outliers proportion on
fragmented hypercube (left) and Gaussian (right) data.

the relevance of using DR, . as an evaluation metric in natural language generation to compare the empirical
distributions of words of a pair of texts.

(Robust) Clustering on bags of pixels. We demonstrate the relevance of the proposed pseudo-metric
through an application to (robust) clustering. To that end, we perform spectral clustering (Shi & Malik, 2000)
on two datasets derived from Fashion-MNIST (FM). Each grayscale image is seen as a bag of pixels (Jebara,
2003), i.e. as an empirical probability distribution over a 3-dimensional space (the two first dimensions
indicate the pixel position and the third one, its intensity). The first dataset (FM) is constructed by taking
the 100 first images in each class of the Fashion-MNIST dataset. The second dataset (Cont. FM), considered
contaminated, is designed by introducing white patches on the left corner of 50 images drawn uniformly in the
first dataset, which yields 5% of contamination. We benchmark DR, . (using the projection depth) setting
p =2 and ¢ = 0.1 with the Wasserstein (W), the Sliced-Wasserstein (Sliced-W) and the Maximum Mean
Discrepancy (MMD; Gretton et al., 2007) distances. DR, . and the Sliced-Wasserstein are approximated
by Monte-Carlo using 100 directions while the MMD distance is computed using a Gaussian kernel with a
bandwidth equal to 1. As a baseline method, spectral clustering is also applied to images considered as vectors
using Fuclidean distance. Standard parameters of the scikit-learn spectral clustering implementation are
employed with a number of clusters fixed to 10. Performances of the benchmarked metrics are assessed by
measuring the normalized mutual information (NMI; Shannon, 1948) and the adjusted rank index (ARI;
Hubert & Arabie, 1985), which are standard clustering evaluation measures when the ground truth class
labels are available. Results presented in Table 1 show that for both cases, i.e. with or without contamination,
spectral clustering based on DR, . outperforms spectral clustering based on the other metrics.

FM Cont. FM
NMI ARI NMI ARI
DR, . 0.58 0.43 0.55 0.42
W 0.50 0.35 0.48 0.30
Sliced-W 0.55 0.39 0.47 0.33
MMD 0.54 0.37 0.50 0.36

Euclidean 0.50 0.32 0.48 0.30

Table 1: Spectral clustering performances.

Automatic evaluation of natural language generation (NLG). Collecting human annotations to
evaluate NLG systems is both expensive and time-consuming. Thus, automatically assessing the similarity

11
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Correctness Data Coverage Relevance

T T p r T P T T
DR, . 89.4 80.0 92.6 | 84.2 583 723 |86.2 62.7 729
W 86.2 730 86.7| 804 453 623 | 838 513 67.6
Sliced-W  86.1 73.0 85.8| 8.9 455 60.0 | 82.0 51.3 068.2
MMD 254 T1.7 83| 19.1 453 10.0 | 26.1 51.3 15.0
BertS 855 733 834 | 747 533 682 | 8.3 65.0 794

MoverS 84.1 73.3 84.1 | 787 533 66.2 | 8.1 650 774
BLEU 776 60.0 663 | 55.7 36.6 50.2| 63.0 51.6 65.2
ROUGE 80.6 650 65.0]| 76,5 60.3 76.3 | 643 56.7 69.2
MET. 86.5 70.0 66.3 | 77.3 46.6 50.2 | 82.1 58.6 652
TER 79.6 58.0 783 | 69.7 380 582 | 75.0 77.6 70.2

Table 2: Absolute correlation at the system level with three human judgment criteria. The best overall results
are indicated in bold, best results in their group are underlined.

between two texts is highly interesting for the NLP community (Specia et al., 2010). This task aims to
build an evaluation metric that achieves a high correlation with the score given by a human annotator.
String-based metrics (i.e. that compare the string representations of texts) such as BLEU (Papineni et al.,
2002), METEOR (MET.; Banerjee & Lavie, 2005), ROUGE (Lin, 2004), TER (Snover et al., 2006), have
been outperformed in many tasks by embedding-based metrics, i.e., that rely on continuous representations
(Devlin et al., 2019). Embedding-based metrics, e.g BertScore (BertS; Zhang et al., 2019) and MoverScore
(MoverS; Zhao et al., 2019) that are now the state-of-the-art domain, compare input and reference texts
both represented as probability distributions and are both constructed similarly. The first step relies on a
deep contextualized encoder (BERT in our case, see Devlin et al., 2019) that maps texts into elements of a
finite-dimensional space. Each text corresponds to a collection of words, where each word is represented by
an element in R?, where d is fixed by the encoder. The second step involves using a function that measures
the similarity between the embedded texts.

We follow previous BERT-based metrics and evaluate performances of DR, . (with p = 2, ¢ = 0.01 and using
the AT-IRW depth (Staerman et al., 2021b)) on two different NLG tasks namely: data2text generation (using
the WebNLG 2020 dataset (Ferreira et al., 2020)) and summarization. For the sake of place, summarization
results and additional experimental details are reported in Section E in the Appendix. For WebNLG, we
follow standard methods to assess the performance of NLG metrics (see e.g. Zhao et al., 2019). We compute
the correlation with the following annotation scores: correctness, data coverage, and relevance. We report in
Table 2 correlation results on the WebNLG task using Pearson (r), Spearman (p) and Kendall (7) correlation
coefficients. When performing a fair comparison between metrics, i.e. when DR, ., W, Sliced-W, MMD are
directly used on the output of BERT, we observe that DR, . achieves the best results on all configurations.
It is worth noting that DR, . also compares favorably against existing state-of-the-art NLG methods in many
different scenarios and shows promising results.

6 Discussion

Leveraging the notion of statistical data depth function, a novel pseudo-metric between multivariate probability
distributions—that meets the aforementioned requirements—was introduced. The developed framework
exhibits inherent versatility due to numerous data depth variants. The linear approximation algorithm
and the robustness property make DR, . a promising tool for a large spectrum of applications beyond
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clustering and NLG, e.g. in generative adversarial networks (GANSs) or information retrieval. Moreover,
recent works extending the notion of data depth to further types of data such as functional and time-series
data (Nieto-Reyes & Battey, 2016; Gijbels & Nagy, 2017), directional (or spherical) data (Ley et al., 2014),
random matrices (Paindaveine & Van Bever, 2018), curves (or paths) data (Lafaye et al., 2020), and random
sets (Cascos et al., 2021) shall allow for the use of the proposed pseudo-metric for a wide range of applications.

Acknowledgments

The authors thank the Jean Zay supercomputer operated by GENCI IDRIS with the compute grant 2023-
ADO011014668R1 and Adastra with the grant AD010614770, where the NLP experiments have been done.

13



Published in Transactions on Machine Learning Research (MM/YYYY)

References

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

Soéren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. Dbpedia:
A nucleus for a web of open data. In The semantic web, pp. 722-735. Springer, 2007.

Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport with applications in generative
modeling and domain adaptation. Advances in Neural Information Processing Systems, 33:12934-12944
2020.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved correlation
with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures
for machine translation and/or summarization, pp. 65-72, 2005.

Vic Barnett. The ordering of multivariate data. Journal of the Royal Statistical Society: Series A (General),
139(3):318-344, 1976.

Manik Bhandari, Pranav Gour, Atabak Ashfaq, Pengfei Liu, and Graham Neubig. Re-evaluating evaluation
in text summarization. arXiv preprint arXiv:2010.07100, 2020.

Patrick Billingsley. Convergence of probability measures (2nd ed.). John Wiley & Sons, 1999.

Victor-Emmanuel Brunel. Concentration of the empirical level sets of tukey’s halfspace depth. Probability
Theory and Related Fields, 173(3):1165-1196, 2019.

Ignacio Cascos, Qiyu Li, and Ilya Molchanov. Depth and outliers for samples of sets and random sets
distributions. Australian & New Zealand Journal of Statistics, 63(1):55-82, 2021.

Sung-Hyuk Cha and Sargur N. Srihari. On measuring the distance between histograms. Pattern Recognit., 35
(6):1355—-1370, 2002.

Emile Chapuis, Pierre Colombo, Matteo Manica, Matthieu Labeau, and Chloe Clavel. Hierarchical pre-training
for sequence labelling in spoken dialog. arXiv preprint arXiv:2009.11152, 2020.

Emile Chapuis, Pierre Colombo, Matthieu Labeau, and Chloe Clave. Code-switched inspired losses for generic
spoken dialog representations. arXiv preprint arXiv:2108.12465, 2021.

Eirini Chatzikoumi. How to evaluate machine translation: A review of automated and human metrics. Natural
Language Engineering, 26(2):137-161, 2020.

Dan Chen, Pat Morin, and Uli Wagner. Absolute approximation of tukey depth: Theory and experiments.
Computational Geometry, 46(5):566 — 573, 2013.

Yen-Chun Chen and Mohit Bansal. Fast abstractive summarization with reinforce-selected sentence rewriting.
arXi preprint arXiv:1805.11080, 2018.

Lénaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and Francois-Xavier Vialard. Unbalanced optimal
transport: dynamic and kantorovich formulations. Journal of Functional Analysis, 274(11):3090 — 3123,
2018.

Pierre Colombo, Wojciech Witon, Ashutosh Modi, James Kennedy, and Mubbasir Kapadia. Affect-driven
dialog generation. arXiv preprint arXiv:1904.02793, 2019.

Pierre Colombo, Emile Chapuis, Matteo Manica, Emmanuel Vignon, Giovanna Varni, and Chloe Clavel.
Guiding attention in sequence-to-sequence models for dialogue act prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 7594-7601, 2020.

Pierre Colombo, Guillaume Staerman, Chloé Clavel, and Pablo Piantanida. Automatic text evaluation
through the lens of Wasserstein barycenters. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 10450-10466. Association for Computational Linguistics, 2021a.

14



Published in Transactions on Machine Learning Research (MM/YYYY)

Pierre Colombo, Chouchang Yang, Giovanna Varni, and Chloé Clavel. Beam search with bidirectional
strategies for neural response generation. arXiv preprint arXiv:2110.03389, 2021b.

N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal transport for domain adaptation. IEEFE
Transactions on Pattern Analysis and Machine Intelligence, 39(9):1853-1865, 2017.

Nicolas Courty, Rémi Flamary, and Devis Tuia. Domain adaptation with regularized optimal transport. In
Toon Calders, Floriana Esposito, Eyke Hiillermeier, and Rosa Meo (eds.), Machine Learning and Knowledge
Discovery in Databases, pp. 274-289, 2014.

Imre Csiszar. Eine informationstheoretische ungleichung und ihre anwendung auf den bewis der ergodizitéat
von markhoffschen kette. Magyer Tud. Akad. Mat. Kutato Int. Koezl, 8:85-108, 1963.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Sinkhorn distances: Lightspeed computation of
optimal transportation. In Advances in Neural Information Processing Systems, 2013.

Hoa Trang Dang and Karolina Owczarzak. Overview of the tac 2008 update summarization task. In
Proceedings of the Text Analysis Conference (TAC), 2008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-Training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171-4186, June 2019.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and
Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding and generation.
arXiv preprint arXiv:1905.03197, 2019.

David L. Donoho. Breakdown properties of location estimators. P.h.D., qualifying paper, Dept. Statistics,
Hardvard University, 1982.

David L. Donoho and Miriam Gasko. Breakdown properties of location estimates based on half space depth
and projected outlyingness. The Annals of Statistics, 20:1803-1827, 1992.

David L. Donoho and Peter J. Hubert. The notion of breakdown point. A Festschrift for Erich Lehman, pp.
157-184, 1983.

Rainer Dyckerhoff. Data depth satisfying the projection property. Allgemeines Statistisches Archiv, 88(2):
163-190, 2004.

Rainer Dyckerhoff, Pavlo Mozharovskyi, and Stanislav Nagy. Approximate computation of projection depths.
Computational Statistics and Data Analysis, 157:107166, 2021.

John H.J. Einhmahl and David M. Mason. Generalized quantile process. The annals of statistics, 20(2):
1062-1078, 1992.

Thiago Ferreira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon Mille, Diego Moussallem, and
Anastasia Shimorina. The 2020 bilingual, bi-directional webnlg+ shared task overview and evaluation
results (webnlg+ 2020). In Proceedings of the 3rd International Workshop on Natural Language Generation
from the Semantic Web (WebNLG+), 2020.

Thiago Castro Ferreira, Diego Moussallem, Emiel Krahmer, and Sander Wubben. Enriching the webnlg
corpus. In Proceedings of the 11th International Conference on Natural Language Generation, pp. 171-176,
2018.

Alexandre Garcia, Pierre Colombo, Slim Essid, Florence d’Alché Buc, and Chloé Clavel. From the token to
the review: A hierarchical multimodal approach to opinion mining. arXiv preprint arXiv:1908.11216, 2019.

15



Published in Transactions on Machine Learning Research (MM/YYYY)

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. Creating training corpora
for nlg micro-planning. In 55th annual meeting of the Association for Computational Linguistics (ACL),
2017.

Sebastian Gehrmann, Yuntian Deng, and Alexander Rush. Bottom-up abstractive summarization. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4098-4109,
2018.

Irene Gijbels and Stanislav Nagy. On a general definition of depth for functional data. Statistical Science, 32
(4):630-639, 2017.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Scholkopf, and Alex Smola. A kernel method
for the two-sample-problem. Advances in Neural Information Processing Systems, 2007.

Marc Hallin, Davy Paindaveine, and Miroslav Siman. Multivariate quantiles and multiple-output regression
quantiles: From 11 optimization to halfspace depth. Ann. Statist., 38(2):635-669, 04 2010.

Abdelhamid Hassairi and Ons Regaieg. On the tukey depth of a continuous probability distribution. Statistics
& Probability Letters, 78(15):2308 — 2313, 2008.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193-218, 1985.

Hicham Janati, Marco Cuturi, and Alexandre Gramfort. Wasserstein regularization for sparse multi-task
regression. In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1407-1416.
PMLR, 2019.

Tony Jebara. Images as bags of pixels. In Proceedings of the Ninth IEEFE International Conference on
Computer Vision, pp. 265-272, 2003.

Rebecka Jornsten. Clustering and classification based on the 11 data depth. Journal of Multivariate Analysis,
90(1):67 — 89, 2004.

Chris Kedzie, Kathleen McKeown, and Hal Daume III. Content selection in deep learning models of
summarization. arXiv preprint arXiv:1810.12343, 2018.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81-93, 1938.
Philipp Koehn. Statistical machine translation. Cambridge University Press, 2009.

Soheil Kolouri, Kimia Nadjahi, Simsekli Umut, Roland Badeau, and Gustavo Rohde K. Generalized sliced
wasserstein distance. In Advances Neural Information Processing Systems, 2019.

Vladimir I. Koltchinskii and Robert M. Dudley. On spatial quantiles. Unpublished manuscript, 1996.

Gleb Koshevoy and Karl Mosler. Zonoid trimming for multivariate distributions. The Annals of Statistics, 25
(5):1998-2017, 10 1997.

Solomon Kullback. Information Theory and Statistics. John Wiley, 1959.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document distances.
In International conference on machine learning, pp. 957-966. PMLR, 2015.

Pierre Lafaye, Pavlo Mozharovskyi, and Myriam Vimond. Depth for curve data and applications. Journal of
the American Statistical Association, pp. 1-17, 2020. in press.

Pierre Laforgue, Guillaume Staerman, and Stephan Clémencon. Generalization bounds in the presence
of outliers: a median-of-means study. In Proceedings of the 38th International Conference on Machine
Learning, volume 139, pp. 5937-5947, 2021.

Tatjana Lange, Karl Mosler, and Pavlo Mozharovskyi. Fast nonparametric classification based on data depth.
Statistical Papers, 55(1):49-69, 2014.

16



Published in Transactions on Machine Learning Research (MM/YYYY)

Guillaume Lecué and Matthieu Lerasle. Robust machine learning by median-of-means: Theory and practice.
The Annals of Statistics, 48(2):906-931, 04 2020.

Gregor Leusch, Nicola Ueffing, Hermann Ney, et al. A novel string-to-string distance measure with applications
to machine translation evaluation. In Proceedings of Mt Summit IX, pp. 240247, 2003.

Gregor Leusch, Nicola Ueffing, and Hermann Ney. CDER: Efficient MT evaluation using block movements.
In 11th Conference of the EACL, 2006.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves
Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

Christophe Ley, Camille Sabbah, and Thomas Verdebout. A new concept of quantiles for directional data
and the angular Mahalanobis depth. Electronic Journal of Statistics, 8(1):795-816, 2014.

Jun Li, Juan A. Cuesta-Albertos, and Regina Y. Liu. Dd-classifier: Nonparametric classification procedure
based on dd-plot. JASA, 107(498):737-753, 2012.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches
Out, pp. 74-81, 2004.

Regina Y. Liu. On a notion of data depth based on random simplices. The Annals of Statistics, 18(1):405-414,
1990.

Regina Y. Liu. Data Depth and Multivariate Rank Tests, pp. 279-294. North-Holland, Amsterdam, 1992.

Regina Y. Liu and Kesar Singh. A quality index based on data depth and multivariate rank tests. Journal of
the American Statistical Association, 88(421):252-260, 1993.

Xiaohui Liu and Yijun Zuo. Computing projection depth and its associated estimators. Statistics and
Computing, 24(1):51-63, 2014.

Xiaohui Liu, Karl Mosler, and Pavlo Mozharovskyi. Fast computation of tukey trimmed regions and median
in dimension p > 2. Journal of Computational and Graphical Statistics, 28(3):682-697, 2019a.

Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. arXiv preprint arXiv:1908.08345,
2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqgi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019b.

David J. C. MacKay. Information theory, inference and learning algorithms. Cambridge university press,
2003.

Francois Mairesse, Milica Gasic, Filip Jurcicek, Simon Keizer, Blaise Thomson, Kai Yu, and Steve Young.
Phrase-based statistical language generation using graphical models and active learning. In Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics, pp. 1552-1561, 2010.

Tudor Manole, Sivaraman Balakrishnan, and Larry Wasserman. Minimax confidence intervals for the sliced
wasserstein distance. FElectronic Journal of Statistics, 16(1):2252-2345, 2022.

Paul McNamee and Hoa Trang Dang. Overview of the tac 2009 knowledge base population track. In
Proceedings of the Text Analysis Conference (TAC), volume 17, pp. 111-113, 20009.

I Dan Melamed, Ryan Green, and Joseph Turian. Precision and recall of machine translation. In Companion
Volume of the Proceedings of HLT-NAACL 2003-Short Papers, pp. 61-63, 2003.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in
Vector Space. arXiv preprint arXiv:1301.83781, 2013.

17



Published in Transactions on Machine Learning Research (MM/YYYY)

Karl Mosler. Multivariate Dispersion, Central Regions, and Depth. Springer, 2002.
Karl Mosler. Depth statistics. Robustness and complex data structures, 2013.

Karl Mosler and Pavlo Mozharovskyi. Choosing among notions of depth for multivariate data. Statistical
Science, 2021. In press.

Karl Mosler and Pavlo Mozharovskyi. Choosing among notions of multivariate depth statistics. Statistical
Science, 37(3):348-368, 2022.

Pavlo Mozharovskyi, Karl Mosler, and Tatjana Lange. Classifying real-world data with the D Da-procedure.
Advances in Data Analysis and Classification, 9(3):287-314, 2015.

Debarghya Mukherjee, Aritra Guha, Justin Solomon, Yuekai Sun, and Mikhail Yurochkin. Outlier-robust
optimal transport. arXiw preprint arXiv:2012.07363, 2020.

Debarghya Mukherjee, Aritra Guha, Justin M Solomon, Yuekai Sun, and Mikhail Yurochkin. Outlier-robust
optimal transport. In International Conference on Machine Learning, pp. 7850-7860. PMLR, 2021.

Stanislav Nagy. Halfspace depth does not characterize probability distributions. Statistical Papers, 26(3):
1135-1139, 2019.

Stanislav Nagy and Jifi Dvorak. Illumination depth. Journal of Computational and Graphical Statistics, 30
(1):78-90, 2021.

Stanislav Nagy, Carsten Schiitt, and Elisabeth M. Werner. Halfspace depth and floating body. Statist. Surv.,
13:52-118, 2019. doi: 10.1214/19-SS123.

Stanislav Nagy, Rainer Dyckerhoff, and Pavlo Mozharovskyi. Uniform convergence rates for the approximated
halfspace and projection depth. FElectronic Journal of Statistics, 14(2):3939-3975, 2020.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Ranking sentences for extractive summarization with
reinforcement learning. arXiv preprint arXiv:1802.08636, 2018.

Ani Nenkova and Rebecca J Passonneau. Evaluating content selection in summarization: The pyramid
method. In Proceedings of the human language technology conference of the north american chapter of the
association for computational linguistics: Hlt-naacl 2004, pp. 145-152, 2004.

Ani Nenkova, Rebecca Passonneau, and Kathleen McKeown. The pyramid method: Incorporating human
content selection variation in summarization evaluation. ACM Transactions on Speech and Language
Processing (TSLP), 4(2):4—es, 2007.

Alicia Nieto-Reyes and Heather Battey. A topologically valid definition of depth for functional data. Statistical
Science, 31(1):61-79, 2016.

Hannu Oja. Descriptive statistics for multivariate distributions. Statistics & Probability Letters, 1(6):327-332,
1983.

Davy Paindaveine and Germain Van Bever. From depth to local depth: A focus on centrality. Journal of the
American Statistical Association, 108(503):1105-1119, 2013.

Davy Paindaveine and Germain Van Bever. Halfspace depths for scatter, concentration and shape matrices.
The Annals of Statistics, 46(6B):3276-3307, 12 2018.

Victor M. Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual Review of Statistics
and Its Application, 6(1):405-431, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pp. 311-318, July 2002.

18



Published in Transactions on Machine Learning Research (MM/YYYY)

Francois-Pierre Paty and Marco Cuturi. Subspace robust Wasserstein distances. In Proceedings of the 36th
International Conference on Machine Learning, volume 97, pp. 5072-5081, 2019.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global Vectors for Word Representa-
tion. In Proceedings of the 2014 EMNLP (EMNLP), pp. 1532-1543. ACL, 2014.

Laura Perez-Beltrachini, Rania Sayed, and Claire Gardent. Building rdf content for data-to-text generation.
In The 26th International Conference on Computational Linguistics (COLING 2016), 2016.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends® in Machine
Learning, 11(5-6):355-607, 2019.

Oleksii Pokotylo, Pavlo Mozharovskyi, and Rainer Dyckerhoff. Depth and depth-based classification with
R-Package ddalpha. Journal of Statistical Software, Articles, 91(5):1-46, 2019.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application
to texture mixing. In Alfred M. Bruckstein, Bart M. ter Haar Romeny, Alexander M. Bronstein, and
Michael M. Bronstein (eds.), Scale Space and Variational Methods in Computer Vision, pp. 435-446, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-24785-9.

S.T. Rachev. Probability Metrics and the Stability of Stochastic Models. Wiley Series in Probability and
Statistics - Applied Probability and Statistics Section. Wiley, 1991.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv preprint arXiv:1910.10683, 2019.

Kelly Ramsay, Stéphane Durocher, and Alexandre Leblanc. Integrated rank-weighted depth. Journal of
Multivariate Analysis, 173:51-69, 2019.

Peter A Rankel, John Conroy, Hoa Trang Dang, and Ani Nenkova. A decade of automatic content evaluation
of news summaries: Reassessing the state of the art. In Association for Computational Linguistics (ACL),
pp. 131-136, 2013.

Peter J. Rousseeuw and Mia Hubert. Regression depth. Journal of the American Statistical Association, 94
(446):388-402, 1999.

Peter J. Rousseeuw and Mia Hubert. Anomaly detection by robust statistics. WIREs Data Mining and
Knowledge Discovery, 8(2):1236, 2018.

Peter J. Rousseeuw and Ida Rutz. The depth function of a population distribution. Metrika, 49(3):213-244,
1999.

Peter J. Rousseeuw and Anja Struyf. Computing location depth and regression depth in higher dimensions.
Statistics and Computing, 8(3):193-203, 1998.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the 4th Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pp. 547-561,
Berkeley, Calif., 1961. University of California Press.

Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon, Joshua
Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia Lee, Jenny Chen, Justin Brumbaugh, Philippe Rigollet,
Konrad Hochedlinger, Rudolf Jaenisch, Aviv Regev, and Eric S. Lander. Optimal-transport analysis of
single-cell gene expression identifies developmental trajectories in reprogramming. Cell, 176(4):928-943.e22,
2019.

19



Published in Transactions on Machine Learning Research (MM/YYYY)

Rolf Schneider. Convexr Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge,
1993.

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-generator
networks. arXiv preprint arXiv:1704.04368, 2017.

Robert Serfling. Depth functions in nonparametric multivariate inference. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 72, 2006.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379-423,
1948.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 22(08):888-905, 2000.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study of translation
edit rate with targeted human annotation. In Proceedings of the 7th Conference of the Association for
Machine Translation in the Americas: Technical Papers, pp. 223-231, 2006.

Lucia Specia, Dhwaj Raj, and Marco Turchi. Machine translation evaluation versus quality estimation.
Machine translation, 24(1):39-50, 2010.

Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Scholkopf, and Gert R. G. Lanckriet.
On the empirical estimation of integral probability metrics. Electronic Journal of Statistics, 6:1550 — 1599,
2012.

Guillaume Staerman. Functional anomaly detection and robust estimation. PhD thesis, Institut polytechnique
de Paris, 2022.

Guillaume Staerman, Pavlo Mozharovskyi, and Stéphan Clémencon. The area of the convex hull of sampled
curves: a robust functional statistical depth measure. In Proceedings of the 23nd International Conference
on Artificial Intelligence and Statistics, volume 108, pp. 570-579, 2020.

Guillaume Staerman, Pierre Laforgue, Pavlo Mozharovskyi, and Florence d’Alché Buc. When ot meets
mom: Robust estimation of wasserstein distance. In Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, volume 130, pp. 136-144, 2021a.

Guillaume Staerman, Pavlo Mozharovskyi, and Stéphan Clémencon. Affine-invariant integrated rank-weighted
depth: Definition, properties and finite sample analysis. arXiv preprint arXiv:2106.11068, 2021b.

Werner. A. Stahel. Breakdown of covariance estimators. Technical report, Fachgruppe fiir Statistik, ETH,
Ziirich, 1981.

Peter Stanchev, Weiyue Wang, and Hermann Ney. Eed: Extended edit distance measure for machine
translation. In Proceedings of the Fourth WMT (Volume 2: Shared Task Papers, Day 1), pp. 514-520, 2019.

Wolfgang Stummer and Igor Vajda. On bregman distances and divergences of probability measures. IEEFE
Transactions on Information Theory, 58(3):1277 — 1288, 2012.

John W. Tukey. Mathematics and the picturing of data. In R.D. James (ed.), Proceedings of the International
Congress of Mathematicians, volume 2, pp. 523-531. Canadian Mathematical Congress, 1975.

Cedric Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics Series. American
Mathematical Society, New York, 2003.

Danqging Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, and Xuanjing Huang. Heterogeneous graph neural
networks for extractive document summarization. arXiv preprint arXiw:2004.12393, 2020.

Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl, and Hermann Ney. Character: Translation edit rate
on character level. In Proceedings of the First WMT: Volume 2, Shared Task Papers, pp. 505-510, 2016.

20



Published in Transactions on Machine Learning Research (MM/YYYY)

Tsung-Hsien Wen, Milica Gasié¢, Nikola Mrksi¢, Pei-Hao Su, David Vandyke, and Steve Young. Semantically
conditioned LSTM-based natural language generation for spoken dialogue systems. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pp. 1711-1721, 2015.

Wojciech Witon, Pierre Colombo, Ashutosh Modi, and Mubbasir Kapadia. Disney at iest 2018: Predicting
emotions using an ensemble. In Proceedings of the 9th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis, pp. 248253, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art
natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Wonjin Yoon, Yoon Sun Yeo, Minbyul Jeong, Bong-Jun Yi, and Jaewoo Kang. Learning by semantic similarity
makes abstractive summarization better. arXiv preprint arXiv:2002.07767, 2020.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted gap-
sentences for abstractive summarization. In Proceedings of the 37th International Conference on Machine
Learning, volume 119, pp. 11328-11339, 2020.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating text
generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M Meyer, and Steffen Eger. Moverscore: Text genera-
tion evaluating with contextualized embeddings and earth mover distance. arXiv preprint arXiv:1909.02622,
2019.

Ming Zhong, Pengfei Liu, Danqing Wang, Xipeng Qiu, and Xuanjing Huang. Searching for effective neural
extractive summarization: What works and what’s next. arXiv preprint arXiv:1907.03491, 2019.

Ming Zhong, Pengfei Liu, Yiran Chen, Danging Wang, Xipeng Qiu, and Xuanjing Huang. Extractive
summarization as text matching. arXiv preprint arXiv:2004.08795, 2020.

Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang, Ming Zhou, and Tiejun Zhao. Neural document
summarization by jointly learning to score and select sentences. arXiv preprint arXiv:1807.02305, 2018.

Zuo. Projected based depth functions and associated medians. The annals of statistics, 31(5):1460-1490,
2003.

B.Y. Zuo and R. Serfling. General notions of statistical depth function. The Annals of Statistics, 28(2):
461-482, 2000.

Appendix

This Appendix is organized as follows:

e Appendix A contains additional notations, preliminary results and additional information about the
proposed pseudo-metric.

o Appendix B contains the proofs of the propositions/theorems provided in the paper.
o Appendix C contains approximation algorithms to compute halfspace/projection/AI-IRW depth.
e Appendix D contains additional synthetic experiments.

e Appendix E contains details on experimental settings of NLP applications.
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A Preliminary Results
First, we introduce additional notations and recall some lemmas, used in the subsequent proofs.

A.1 Hausdorff Distance

The Hausdorff distance between two bounded subspaces K1, Ko of R? is defined as:

dy (K1, K2) = maxq sup inf ||z —yl||, sup inf ||z — .
(i o) =max {sup inf Jle =yl sup int el

Furthermore, if Iy and Ky are convex bodies, i.e. non empty compact convex sets, the Hausdorff distance
can be reformulated with support functions of IC1, Ks:

dy(K1,K3) = sup |h;¢1(u) — hic, (u)’7

uesSd—1
where hi, (u) = sup{{u,x), = € K1}.

A.2 Quantile Regions

Let u € S%~! and X ~ p where u € M;(X) with X C R%. We define the (1 — 3) directional quantile of a
distribution g in the direction w as:

QG =inf{teR: P((u,X) <t)>1-p},

and the upper (1 — 3) quantile set of p:

Q:[ﬁ = {x eRY: (u,x) < qih‘lf, Vue Sd_l} )

A.3 Auxiliary Results

We now recall useful results, so as to characterize the halfspace depth regions.

Lemma A.1 (Brunel, 2019, Lemma 1). Let pn € M1(X), for any B € (0,1), it holds: D} = W

Lemma A.2 (Brunel, 2019, Proposition 1). Let yu € My(X) with a (1 — j3) directional quantile g, for

any u € S, Assume that u — 4, are sublinear, i.e., qILM < g +Xa,), YA>0. Then for any
u € S it holds hQin (u) =g,

Lemma A.3. Letd = 1 and X' ~ uy, Y' ~ vy be two random variables where pi,v, are univariate
probability distributions. Denoting by F);ll the quantile function of X, then the depth-trimmed region based
pseudo-metric (associated with the halfspace depth) is defined as

1/2

DR () =2 [

e {IF ) = B P - - Bl - o)l f da

Proof. In dimension one, the halfspace depth of any ¢ € R w.r.t. u; and 4 boils down to
Dt ) = min { Fxi (), 1= Fxa(t) b and - D(t, 1) = min { Fya (1), 1 = Ba (1)},
and for any v € [0, 1], its upper-level sets to intervals
D), =[Fxi(3), Fxi(l=9)] and D} = [Fyi(v), Fyi(1—-7)). (5)
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Now, the quantile function a(f,.) can be explicitly derived as function of 8 € [0, 1]:

a(B, ) =sup {7 € (0.1 i ([Fxl (), Fxl(1 =) = 5}

:sup{’}/E[O,l}: 1—2726}
1-8

2

Following the same reasoning, it holds a(8,v1) = % Further, by change of variables

1/2

1—¢ p
1— 2 1— 2 P
/0 dyg (Df“ /2 p(! B)/) dﬁ:z//2 dy (D%, D2 )" dg.
S

Combining (5) and the Hausdorff distance definition recalled in Section A.1 lead to the result.

A.4 Additional information

This part provides additional information and remarks about the proposed pseudo-metric. We also summarize
properties of DR,, . in Table 3 w.r.t. different depth functions used in the paper.

First, in some cases of convex data depth, the pseudo-metric could define a distance. DR, . is a distance if
and only if the upper-level sets of the chosen data depth fully characterize probability distributions. To our
knowledge, It has been proved only for the Halfspace depth under mild assumptions (Hassairi & Regaieg,
2008; Nagy et al., 2019) and the Zonoid depth assuming the first moment on the distribution (Mosler, 2002).

Remark A.4 (FLEXIBILITY.). One of the main benefits of our pseudo-metric is its flexibility. Our general
definition allows the use of any depth function, see e.g. Mosler € Mozharovskyi (2022) for a review of the
main depths, at the price of choosing one that is relevant for the underlying data.

Remark A.5 (ROBUSTNESS.). The trimming improves the robustness of DR, . and sliced-Wasserstein.
While it is not the only source of robustness in DR, ., the Wasserstein metric is generally known to be
non-robust (Mukherjee et al., 2021; Balaji et al., 2020). Indeed, the robustness in DRy, . also comes from the
robustness of the chosen depth and the trimming step may not be helpful in specific situations.

Remark A.6 (TRIMMING COMPARISON WITH TSW.). The trimming occurs in different spaces for the
trimmed sliced Wasserstein and DR, .. Our pseudo-metric trimming relies on peeling the larger quantile
regions (depth regions) that directly consider the multivariate data’s structure. In contrast, the trimming in
SW occurs at the projection level. Since, in practice, the projections are chosen uniformly on the unit sphere,
this trimming does not consider the correlation of the data, for example. It may remove non-outlier points of
the data.

B Technical Proofs
We now prove the main results stated in the paper.

B.1 Proof of Proposition 3.4

For any 0 < 8 <1—¢ withe € (0,1], and any p € My(X), v € M1(Y), fo(ﬁ), DSP) are non-empty compact
subsets of R? due to the properties (D2-D3). The Hausdorff distance dy,, recalled in Section A.1, is known to be
a distance on the space of non-empty compact sets which implies that DR, . satisfies positivity, symmetry and

the triangle inequality (thanks to Minkowski inequality). If i = v then Dﬁ(ﬁ ) = pat# ), V B € [0,1—¢] which
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Halfspace Projection IRW AI-IRW
Pseudo-metric v v v v
Isometry invariance v v X v
Fast approximation with support vector v v X v
Depth computation O(Kn(dVlogn)) O(ndK) O(ndK)  O(d® + ndK)
Robust depth regions X v X v

Table 3: Properties satisfied by DR, . associated with the halfspace, projection and affine-invariant integrated
rank-weighted depths.

leads to DRy, . (u,v) = 0. The reverse is not true. DR, .(u,v) = 0 implies Dﬁ(ﬁ) = DS([’), VB el0,1—¢
that not leads to u = v. Indeed, convex depth regions do not characterize probability distributions in general
(see Nagy, 2019 for the halfspace depth) that would be the first step in order to prove the previous entailment.

B.2 Proof of Proposition 3.5

Let A € R¥*? be a non-singular matrix and b € R? such that g : x — Az 4 b. Then, it holds:

1—e p
DR (ouug) = [ [ D3] as

. 1—e
9 / [d1(ADZ? +b, 4D +3)]" a, (6)
0

where (i) holds because any data depth satisfies (D1) by definition. Furthermore,

dy(ADSP) +5, ADZ®) +b) =max{ sup  inf ||Az—Ayl|, sup inf [[Az— Ayl
zeDs® yeDy ™ yeD® zeDi

(@) . .
= max{ sup inf ||z —y||, sup inf ||z — vyl
:EED:?(B) yeD,‘,"(B) yEDS(B) a:Gfo(B)

= dH(Dg(ﬁ)v Dg(ﬁ))v
where (ii) holds by virtue of hypothesis AAT = I;. Replacing it in (6) yields the desired results.

B.3 Proof of Proposition 3.6

First assertion. Denote 71, Z5 two random variables following p*, v* respectively. Assume that X,Y, 71, Z5
are defined on the probability space (2, A,P). For any z € R% and 8 € [0,1 — €],

T € Dﬁ(ﬁ) < HD,(z) > a(f) <= VYue sé-1, P({u, X) <{u,z)) > a(B)
—=VueSTt P((u,Z +m;) < (u,z)) >
—=VueST P((u,Z)) < (u,x—my)) > ap)

= zr—m € ijﬁﬂ).

The same reasoning holds for v and v*. Following this, for any 8 € [0, 1 —¢] and u € S, it holds:
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¥

hDS(B) (u) = thig)(u) — <u, m1> and hDS(B) (u) = hDa(g)(u) — <u, II12>.

Thus it holds:

1—¢
DR3 _(p,v) = / sup
0

u€eSd—1

dg

:

h e (u) — (u, my) — hDj*(B)(u) + (u, my)

w*

IN

1—¢
sup |<u,m1 my |2—|—/ sup |h a(/i)( ) — hDaim(u)fQ dg

ueSd—1 weSd—1 w*

1—¢
+2 sup | u, My — my) |/ sup !h a(B) u)—h a(ﬂ) |d5
LLESd 1 eSd 1 p*

= [|lmy — my|* + DR3 (1%, V") + 2[|my — my||DR; (1", v). (7)
On the other side, we have:

l1—e
DR; _(u,v) > sup |<u’m1*m2>|2+/ sup [h e (u) — hDg*(U)|2 dg

ueSd—1 weSd—1 u*

1—e
—2 sup |(u,m; —my) |/ sup |h a(B) u) — a(B) )| dp
wEeSd—1 ueSd—1 w*

= |lmy — me|[* + DR} (1", v*) = 2|lmy — ma|[DRy o (u",v7). (8)

Combining (7) and (8) lead to the desired result.

Second assertion. For any u € S?!, the (1 — a(f)) quantiles of random variables (u, X) and (u,Y’) such
that (u, X) ~ N ((u,my),u"B1u) and (u,Y) ~ N ({u, ms),u’ Eou) are defined by

Q0 2 = (y,my) + 01— a(B)VuT Ziu ¢ = (u,my) + 1 — a(B)VuT Zau,

where ® is the cumulative distribution function of the univariate standard Gaussian distribution. Now, to
apply Lemma A.2, it is sufficient to prove that directional quantiles are sublinear. It holds using subadditivity
of the square root function. Indeed, for any u,v € S®~! and A > 0, we have:

(u+xo,my) + & (1 — a(B)y/ (u+ M) T (u+ Av) = (u,my) + Mo, my) + & (1 — a(B)v/(u+ )T (u+ M)
< (u,my) + Mo, my) + & (1 — a(B)) [\/uTzlu n A\/mzw}

q'u . a(B) A ql a(ﬂ)

The same reasoning holds for v. Applying Lemma A.1 and Lemma A.2, for any u € S% !, we have
h ot (u) = g7 and h Do ® (u) = g2, Tt follows:
by :

1—¢ 1—¢
DRLE(M, V) :/ dy (Da(ﬁ) Da ) dpg = / sup |h a(ﬁ)( ) a(ﬁ) ’dﬁ
0 0

uesd-1 Pw
l1—e
= / sup
0 ueSd—1

1—e
< ||m17m2||+/ sup
0

{(u,m; —my) + &1 (1 — a(B)) {\/u—'—Elu — \/UTEQU:| ) dg

o1 (1 - a(B)) [\/uTxlu - \/UTEQU} ‘ ds

ueSd—1
= |lm; — my||+ C. sup |\/uT21u— \/uTEgu|,
ucSd—1
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with C, = fOkE |®~1(1 — a(B))| dB. The lower bound is obtained by means the same reasoning. Notice that

1—e
||m; —ms|| = sup ‘(u,ml — m2>| :/ sup |<u,m1 — m2>| dgs.
ueSd—1 0 ueSd—1

Introducing h s (1), h ace) (1) and using triangular inequality, subadditivity of the supremum and linearity
} ’

of the integral, we obtain:

[lm; —mgaf|| < DRy (p,v) + Cc sup ‘\/u—rﬁlu —VuTZ9u
u€eSd—1

)

which ends the proof.

B.4 Proof of Proposition 3.7

For DR, . to break down at Sy, it needs to have at least one trimmed-region that breaks down. Then the
breakdown point of DR, . is higher than the minimum of the breakdown point of each region. Indeed, we
have

BP(DRP,6>STL) = min{ sup DR € (ﬂn+oaﬂn) = +OO}

n+0 Z17"'7ZO

sup dy (D) pein) +oo}

. i )
n+o ZrviZe Hn+o Hn

> min min
Be(0,1—¢€]

= min BPD;P".S,).
st B 7 50)

Now applying Lemma 3.1 in Donoho & Gasko (1992) and Theorem 4 in Nagy & Dvordk (2021), a lower
bound of the breakdown point of each halfspace region, for every 8 € [0,1 — €], is given by

[na(l = &, i) /(1 — a(l = &, fn))]
n+ [na(l—e, fin)/(1 = a(l =&, fin))]
Omax (fin)
14+ amax(ﬂn)

. B N amaxi(ﬂn)
if ol =&, fin) < 7752 Ty

a(B.pn)
BP(DY\P) S,y >

otherwise,

where amax(ftn) = max HD;, (z).
r€R4 )

C Approximation Algorithm
In this part, we display the approximation algorithms of the halfspace depth (see Algorithm 2), the projection

depth (see Algorithm 3) and the AI-IRW depth (see Algorithm 4, proposed in Staerman et al., 2021b) used
in the first step of the Algorithm 1.

Algorithm 2 Approximation of the halfspace depth
Initialization: X € R"*4 K.

1: Construct U € R¥™X by sampling uniformly K vectors Uy, ..., Uk in S!

2: Compute M = XU

3: Compute the rank value o (4, k), the rank of index ¢ in M, j, for every i <n and k < K
4: Set D; = IICIEII} o(i, k) for every i <n

Output: D_, M
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Algorithm 3 Approximation of the projection depth
Initialization: X € R"*4, K.
1: Construct U € R¥*K by sampling uniformly K vectors Uy, ..., U in S !
Compute M = XU
Find Myeq,r the median value of M., Vk < K
Compute MAD;, = median{|Mi7k - M,ned7k|, 1<n}fork <K
Compute V s.t. V; = |M1k - Mmcd,k|/MADk
Set D; = 1?2}% 1/(14+ V) for every i <n

Output: D,M

SAN

Algorithm 4 Approximation of the AI-IRW depth
Initialization: X € R"*4 K.
1: Construct U € R K by sampling uniformly K vectors Uy, ..., Uy in S41
Compute X using any estimator R
Perform Cholesky or SVD on ¥ to obtain »-1/2
Compute V = £-1/2U/||~1/2U]||
Compute M = XV
Compute the rank value o(i, k), the rank of index ¢ in M. j, for every i <n and k < K
Set D; = & Zszl o(i, k) for every i <n
Output: DM

D Additional Experiments

D.1 lllustration of Data Depth Contours

Figure 6, which plots a family of AI-IRW (using MCD estimator) depth induced trimmed-contours for a
dataset contaminated with outliers, illustrates its robustness.

Figure 6: AI-IRW depth contours for a bivariate sample contaminated with outliers.

D.2 lllustration of the Depth Trimmed-Regions based Pseudo-Metric

Figure 1, which plots a family of (approximated) AI-IRW depth induced trimmed-regions for two datasets
contaminated with outliers, illustrates the key idea of our proposed pseudo-metric.
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D.3 Empirical Analysis of Statistical Rates

This part presents complementary results of those obtained in the Section 5.1. Considering the same
experiment as in the core paper, Figures 7 and 8 display the results of the same experiment but with
dimension d = 5 and d = 10, respectively.

| -
glo0 .
10
8 — na = 5
— na = 20
n — n(l = 100
10! 102 103 10* 107 102 103 10*
Number of samples Number of samples

Figure 7: Empirical analysis of statistical convergence rates. Resulting error of the proposed pseudo-metric
when increasing the sample size using the projection depth (left) and the halfspace depth (right) for various
N parameters with d = 5.

Error

m— g =5
100 — na=20

10?1 102 103 104 ot 102 103 104
Number of samples Number of samples

Figure 8: Empirical analysis of statistical convergence rates. Resulting error of the proposed pseudo-metric
when increasing the sample size using the projection depth (left) and the halfspace depth (right) for various
n, parameters with d = 10.

D.4 The Influence of the Parameter ¢

The parameter ¢ plays the role of the robust tuning parameter of DRy .. In this part, we complete our
theoretical results provided in Section 3.2. We assess the robustness of our pseudo-metric making varying the
parameter . Precisely, we simulate two normal samples X and Y from two standard Gaussian distributions
in dimension two with a sample size of 10000. From that, we construct abnormal samples with a proportion
of anomalies equal to {1%, 10%,20%}. To that end, we choose a proportion of normal samples and replace
their first (for X) and second (for Y) coordinates as follows: Xanom = 30 4+ 507 and Yinom = —30 — 502
where Z follows a uniform distribution on [0, 1]; leading to points far from the normal distributions. Thus,
we compute DRy . with both robust and non-robust data depths, i.e. the projection and halfspace depths
between X and Y being used as a benchmark. Further, we compute DR;. between abnormal samples
and report mean error (comparing values obtained between normal samples and values obtained between

28



Published in Transactions on Machine Learning Research (MM/YYYY)

abnormal samples; averaged over ten runs) on Figure 9. First, when computing with a robust depth function,
we can see that the robustness of the proposed pseudo-metric relies directly on the parameter €. This is
shown by the presence of an elbow when the parameter € reaches the level of the proportion of anomalies.
In contrast, we can see that for a non-robust depth function such as the halfspace depth, our proposed
pseudo-metric becomes non-robust once the abnormal proportion is higher than 1%, leading to a poorly robust
depth. This experiment then confirms our theoretical results on the Breakdown Point of DR, . highlighted
in Propostion 3.7. The parameter € provides robustness to our pseudo-metric when combined with a robust
depth function.

1
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—
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107!
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3 &

Figure 9: Influence of the parameter £ on the robustness of the proposed pseudo-metric with a robust depth
function (the projection depth, left) and a non-robust one (the halfspace depth, right) for various proportion
of anomalies.

D.5 The Choice of the Parameter n,

Proposition 3.6 allows to derive a closed form expression for DRy . (pt, ) when p, v are Gaussian distributions
with the same variance-covariance matrix. In order to investigate the quality of the approximation on
light-tailed and heavy-tailed distributions, we focus on computing DRs ¢.1 (with K = 500) for varying number
of n, between a sample of 1000 points stemming from u ~ N (04, X) for d € {2,3,10}, ¥ drawn from the
Wishart distribution (with parameters (d, I4)) on the space of definite matrices and three different samples
(which yields nine settings). These three samples are constructed from 1000 observations stemming from
elliptically symmetric Cauchy, Student-to and Gaussian distributions all centered at 7,. Results that report
the averaged approximation error and the 25-75% empirical quantile intervals are depicted in Figure 10. They
show that DR, . converges slowly for Cauchy with growing n., while it converges with small n, for Gaussian
and Student-ty distributions.
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Figure 10: Relative approximation error (averaged over 100 repetitions, y-axis in log scale) of DR, . for
elliptically symmetric Cauchy (left), Student-ts (middle) and Gaussian (right) distributions for differing
numbers of n,,.
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D.6 Robustness to Outliers

Datasets on which experiments regarding “Robustness to outlier” in Section 5 have been performed are
displayed in Figure 11.
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Figure 11: datasets related to robustness experiments depicted in Section 5 with 20% of outliers for fragmented
hypercube (left) and Gaussian (right).

D.7 Trimming approximation comparison between DR, . and T'SW,, .

This part investigates the effect of the trimming parameter for DR, . and the trimmed sliced Wasserstein,
TSW, ¢, regarding the stability and efficiency of the trimming. We simulate two datasets of size n = 100
stemming from a d-dimensional centred Gaussian distribution with d € {3,10} and ¥ drawn from a Wishart
distribution. First, We compute the two metrics with p = 2 and ¢ = 0. Further, we compute DR,
and TSWy . for ¢ € [0.05,0.45] and compute the absolute differences with the non-trimmed values, i.e.
|DR2,o — DRy .| and |T'SW5 o — T'SW> .|. The experiment is repeated 10 times, and the results are reported
in Figure 12. While the trimming effect does not depend on the dimension of the trimmed sliced Wasserstein,
the trimming effect drastically deteriorates the given value of the sliced Wasserstein. In contrast, the trimming
effect on DR deteriorates much less the metric quality, even if this increases with the dimension.

D.8 Illlustration different depths and outliers

This part provides intuition between three data depth, IRW, AI-IRW and the robust version of AI-IRW
regarding how they discard abnormal data. The experiment is conducted as follows. We simulate a two
dimensional Gaussian distribution and add some isolated anomalies (orange) and aggregated anomalies (red)
at hand. We compute the three depth functions on this dataset and draw the several quantile regions, see
Figure 13. Quantiles regions defined by each depth are of different shape, characterizing abnormal data in
different manners. Regarding the pseudo-metric DR, ., discarding abnormal data will depends on (1) the
quantiles regions defined by the chosen data depth and (2) the trimming parameter €. The quality of the
DR, . in discarding anomalies relies on the quality of the chosen depth functions that are gathererd, e.g. in
Mosler & Mozharovskyi (2022).

E Application to NLP

In this section, we gather details on experimental settings and additional results on the automatic evaluation
of natural language generation (NLG).

E.1 Extended related works on Automatic Evaluation of NLG

Many metrics have been recently introduced for the automatic evaluation of text generation. In this work,
we rely on untrained metrics. These metrics can be grouped into two categories: string-based metrics that
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Figure 12: Approximation error between the metric computed with ¢ = 0 (without trimming) and e varying
in [0.05,0.45] for both DR, . and T'SW,, ..

IRW AI-IRW Robust AI-IRW

Figure 13: Contours of different depths computed on data with outliers, IRW (left), AI-IRW (middle) and
the robust version of AI-IRW (right). Red crosses and orange triangles are two different type of outliers.
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depend on the string representation of the input texts to compute the similarity score and embedding-based
metrics that rely on a continuous representation of the texts.

String matching metrics can be divided into two categories: N-gram matching and edit distance-based metrics.
Perhaps the most used N-gram matching metrics are BLEU, ROUGE and METEOR. Edit distance-based
metrics (e.g. TER; Snover et al., 2006) measure the distance as the number of basic operations such as
‘edit’/‘delete’/‘insert’. Variants of TER include CHARACTERE (Wang et al., 2016), CDER (Leusch et al.,
2006), EED (Stanchev et al., 2019). String-based metrics fail to produce meaningful scores in the case of
paraphrases, especially if no common n-grams are found between the candidate and the reference text.

The second category of untrained metrics (namely embedding-based metrics) achieves state-of-the-art
performance in many NLG evaluation tasks and has been introduced to address the issues mentioned
above. Originally introduced for the widely used words embedding (Garcia et al., 2019; Colombo et al., 2019;
2020; 2021b) such as Word2Vec (Mikolov et al., 2013) or Glove (Pennington et al., 2014), this class of metrics
has leveraged recently introduced contextualized word representations (CWR). CWR, such as BERT, ELMO
(Peters et al., 2018), HILAMOD (Chapuis et al., 2020; 2021) or ROBERTA (Liu et al., 2019b) are popular in
NLP (Witon et al., 2018) as they achieve SOTA performance on many tasks. The two most popular metrics
are MoverScore and BertScore.

E.2 Evaluation

For the task of evaluation of text generation, we assume that we have access to a dataset
{Tr, ATE, M(TE,)Y52, 12, where T, represents the i-th generated text by the j-th natural genera-
tion system, and h(7T; CJJZ) represents score assigned by the human annotator' to Téi, and T, is the reference
text. np is the number of available texts, and ng is the number of different systems.

To assess the relevance of an evaluation metric 91, the correlation with the human judgment is considered
one of the most important criteria (Banerjee & Lavie, 2005; Koehn, 2009; Chatzikoumi, 2020). To measure
this correlation, two evaluation strategies are commonly adopted and built on top of a classical correlation
measure, denoted C, e.g. Kendall (7; Kendall, 1938), Pearson (r; Leusch et al., 2003) or Spearman (p;
Melamed et al., 2003).

o The text level correlation (Ciert) measures the ability of the metric to distinguish between badly and
well generated text. Formally, Cic.: is defined as follows:

1 &
Creat =5 ij C(M! H™"), (9)
Mt =[9m( I,TC - M(Tg,, TES)),
B b)) T

o The system level correlation (Csys) assesses the ability of a metric to distinguish between good and
bad systems. Formally, Cy, is defined as follows:

Cuye =C(MPV* HV*), (10)

1 < 1 <
Msy3=7§ M(Tg,, TL --.7§smT,T"S
|:nT — (Rz’ Ci)7 7nT Pt (Rz’ C; ):|’
1 & 1 <
HS@/S:—E h(T} —E h(T}S
|:nT P (Ci)a ’nT P (Ci ):|7

We refer the reader to Bhandari et al. (2020) for further details on the evaluation of text generation.

n practice an averaged score is considered as each sentence is annotated by 3 different annotators. The considered datasets
directly provide the aggregated score.
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Correctness Data Coverage Relevance

r T p r T p r T p
DR, . 89.4 80.0 92.6 | 84.2 583 723 | 86.2 62.7 72.9
Wasserstein 86.2 73.0 86.7| 80.4 453 623 | 83.8 51.3 67.6
Sliced-Wasserstein  86.1 73.0 85.8 | 80.9 45,5 60.0 | 82.0 51.3 68.2
MMD 254 717 83| 19.1 453 10.0 | 26.1 51.3 15.0
BertScore 855 733 834 | 747 533 682 | 8.3 650 79.4
MoverScore 84.1 733 84.1 | 787 533 66.2 | 8.1 650 774
BLEU 776 60.0 66.3 | 55.7 36.6 50.2 | 63.0 51.6 65.2
ROUGE-1 80.6 65.0 65.0| 76.5 60.3 76.3 | 64.3 56.7 69.2
ROUGE-2 73.6 583 63.3 | 54.7 35.0 43.1 | 62.0 46.7 60.8
METEOR 86.5 70.0 66.3 | 77.3 46.6 50.2 | 82.1 58.6 65.2
TER 79.6 58.0 783 | 69.7 38.0 582 | 75.0 7T7.6 70.2

Table 4: WebNLG 2020 (full results): absolute correlation at the system level with three human judgment
criteria. Best overall results are indicated in bold, best results in their group are underlined.

E.3 Results on Data2text

In this section, we gather further details and results on data2text automatic evaluation.

E.3.1 Task Description

In WebNLG 2020, the goal is to create new efficient generation algorithms that can verbalise knowledge-based
fragments. These algorithms are called Knowledge Base Verbalizers (Gardent et al., 2017) and are used
during the micro-planning phase of NLG systems (Ferreira et al., 2018). WebNLG has been gathered to be
more representative of the progress of recent NLG systems than previously existing task-oriented dialogue
datasets (see e.g. SFHOTEL (Wen et al., 2015) and BAGEL (Mairesse et al., 2010)). As previously mentioned
for the data2text task we work on the WebNLG2020 challenge (Gardent et al., 2017; Perez-Beltrachini
et al., 2016). Data and system performances can be found in https://webnlg-challenge.loria.fr/.
The task consists in mapping RDF triples to natural language (RDF format is used for many application
including FOAF (see http://www.foaf-project.org/). For WebNLG 2020, the triplets are extracted
from DBpedia (Auer et al., 2007). Data have been made freely available from the authors at https:
//gitlab.com/shimorina/webnlg-dataset/-/tree/master/release_v3.0. To compose this dataset, 15
systems (both symbolic and neural-based) have been used. The final dataset is composed of over 3k samples of
human annotations (see https://webnlg-challenge.loria.fr/files/WebNLG-2020-Presentation.pdf
for more details).

Example: Given the following triplet (John_Blaha birthDate 1942_08_26) (John_Blaha birthPlace
San_Antonio) (John_Blaha job Pilot) the ground-truth reference is John Blaha, born in San
Antonio on 1942-08-26, worked as a pilot.

E.3.2 Results

We gather in Table 4 complete results on the WebNLG tasks including results on ROUGE-2. To compare
DR, . (with € = 0.01, ny, =5, p = 2) with the different metrics (i.e. Wasserstein, Sliced-Wasserstein, MMD),
we work on Roberta-based model from the HuggingFace hub (Wolf et al., 2019) and extract representation
from the 11th layer. From Table 4, we observe a similar behavior from BertScore and MoverScore. This
similarity has also been reported in a different setting in the previous work of Zhao et al. (2019). Overall, we
observe that DR, . is always among its group’s top-scoring metrics and achieves the best overall results on
several configurations. It is worth noticing that DR, . only relies on information available in the candidate
and the reference text. In contrast, BertScore and MoverScore use IDF information computed on every
dataset.
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E.4 Results on Summarization

In this section, we gather experimental details and results on the automatic evaluation of the text summa-
rization task.

E.4.1 Task Description

Text summarization has attracted much attention in recent years (Zhang et al., 2020). Two types of models
exist: extractive and abstractive. In extractive summarization, the system copies chunks of informative
fragments from the input texts, whereas, in abstractive summarization, the system generates novel words.
In this section, we describe our experimental setting. We present the tasks and the baseline metrics used
for the automatic evaluation of summarization. We work with the dataset from Bhandari et al. (2020) for
this task. This dataset has been introduced to solve several flaws (Rankel et al., 2013) present in existing
summarization datasets such as TAC (Dang & Owczarzak, 2008; McNamee & Dang, 2009). The dataset
has been annotated using the pyramid score (Nenkova et al., 2007; Nenkova & Passonneau, 2004) and
automatically built from the CNN/Daily News (Bhandari et al., 2020). It gathers 11490 summaries coming
from 11 extractive systems (See et al., 2017; Chen & Bansal, 2018; Raffel et al., 2019; Gehrmann et al., 2018;
Dong et al., 2019; Liu & Lapata, 2019; Lewis et al., 2019; Yoon et al., 2020) and 14 abstractive systems
(Zhou et al., 2018; Narayan et al., 2018; Kedzie et al., 2018; Zhong et al., 2019; Liu & Lapata, 2019; Dong
et al., 2019; Wang et al., 2020; Zhong et al., 2020).

Example: The goal is to assign a similarity score between a reference text: “Manchester United take on
Manchester City on Sunday. Match will begin at 4 pm local time at United’s Old Trafford home. Police have
no objections to kick-off being so late in the afternoon. Last late afternoon weekend kick-off in the Manchester
derby saw 34 fans arrested at Wembley in 2011 fa cup semi-final” and the text generated by a NLG system:
“Manchester Derby takes place at Old Trafford on Sunday afternoon police have no objections to the late
afternoon kick-off both sides are challenging for a top-four spot in the Premier League the man in charge of
patrolling the sell-out clash has no such fears”.

E.4.2 Results

We gather in Table 5, the results on the summarization task. We use a bert-based uncased model and
rely on the representations extracted from the 9th layer (similarly to BertScore). For this experiment the
following parameters are used: ¢ = 0.01, n, = 5, p = 2. For this task, we can reproduce results from
Bhandari et al. (2020) where the different behavior regarding the extractive and the abstractive systems is
also observed. In this experiment, we observe that DR, . can achieve stronger results than other metrics
based on Wasserstein, Sliced-Wasserstein and MMD. We also observe that DR, . outperforms MoverScore
and BertScore on extractive systems (on 7 and 7). We believe these results support our approach.
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Abstractive Extractive

r T p r T p
DR, . 721 721 70.1 | 915 91.5 69.2
Wasserstein 71.0 704 T71.1 | 742 742 40.0
Sliced-Wasserstein  70.1 687 71.0 | 724 739 69.2
MMD 68.2 675 679 | 75.6 75.6 56.1
BertScore 71.7 719 720 | 709 729 73.8
MoverScore 72.4 719 73.0 | 76.1 76.1 47.4
ROUGE-1 73.5 73.0 74.4 | 722 74.0 69.1
ROUGE-2 73.0 73.5 73.0 | 55.1 53.2 69.1
Js-2 68.9 6.8 69.8 | 92.9 5.5 19.0

Table 5: Summarization: absolute correlation coeflicients (using Pearson (r), Spearman (p) and Kendall (1)
coefficient) between different metrics on text summarization. Best overall results are indicated in bold, best
results in their group are underlined.
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