
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MODEL-FREE OFFLINE REINFORCEMENT LEARNING
WITH ENHANCED ROBUSTNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) has gained considerable attention for its ability
to learn policies from pre-collected data without real-time interaction, which makes
it particularly useful for high-risk applications. However, due to its reliance on
offline datasets, existing works inevitably introduce assumptions to ensure effective
learning, which, however, often lead to a trade-off between robustness to model
mismatch and scalability to large environments. In this paper, we enhance both
aspects with a novel double-pessimism principle, which conservatively estimates
performance and accounts for both limited data and potential model mismatches,
two major reasons for the previous trade-off. We then propose a universal, model-
free algorithm to learn an optimal policy that is robust to potential environment
mismatches, which enhances robustness in a scalable manner. Furthermore, we
provide a sample complexity analysis of our algorithm when the mismatch is
modeled by the lα-norm, which also theoretically demonstrates the efficiency
of our method. Extensive experiments further demonstrate that our approach
significantly improves robustness in a more scalable manner than existing methods.

1 INTRODUCTION

Traditional reinforcement learning (RL) (Sutton & Barto, 2018) optimizes an agent’s performance
through iterative trial-and-error interactions with the environment, and has shown significant success
in many areas such as video games (Wei et al., 2022; Liu et al., 2022a). However, such an online
learning scheme can be costly or unsafe in real-world applications. For instance, in domains including
autonomous driving (Kiran et al., 2021), stock market trading (Kabbani & Duman, 2022), and
healthcare (Yu et al., 2021), poor decisions can have significant consequences, making extensive
explorations impractical. To address them, offline RL has been developed (Lange et al., 2012; Levine
et al., 2020), enabling agents to learn from pre-collected datasets, offering a more reliable framework.

Since offline RL relies heavily on pre-collected datasets, the quality of these datasets largely de-
termines performance. It is hence unclear whether satisfactory performance can be achieved for
complex problems with a relatively limited dataset. In this context, two key challenges in improving
offline RL performance have been studied. The first is scalability—the ability to handle large-scale
problems. Without real-time interaction, learning an effective policy for large-scale problems from a
limited dataset, which may not fully cover the entire state-action space, can be challenging. Recent
research has focused on improving scalability by adapting model-free algorithms (Shi et al., 2022;
Yan et al., 2022; Laroche et al., 2019; Fujimoto et al., 2019; Ghasemipour et al., 2021; Kumar et al.,
2019; Wu et al., 2019; Siegel et al., 2020) and leveraging function approximation techniques (Ross
& Bagnell, 2012; Liu et al., 2020; Xie et al., 2021a; Yin et al., 2021a; Xie & Jiang, 2021; Jiang &
Huang, 2020). However, due to the complexity of large environments, many of these approaches
assume that the dataset sufficiently represents the full deployment environment, typically presuming
that the deployment environment is identical to the one from which the data was collected.

However, this assumption can be too restrictive. Static datasets only capture the environment at the
time of data collection, but real-world applications frequently face environmental uncertainty due
to perturbations or non-stationarity. This mismatch between the data collection and deployment
environments, commonly known as the sim-to-real gap (Zhao et al., 2020), can cause significant
performance degradation during deployment. Therefore, it is crucial to enhance the robustness of
offline RL to ensure that the learned policies can perform reliably in the presence of such uncertainties.
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A promising solution is to adapt robust RL frameworks (Iyengar, 2005; Nilim & El Ghaoui, 2004) to
the offline setting, as explored recently in (Shi & Chi, 2022; Blanchet et al., 2023). However, these
methods often come at the cost of scalability. Due to their inherent structure, robust RL methods
typically rely on dynamic planning, which requires knowledge of the full transition dynamics, and
are predominantly model-based. This necessitates learning and storing a complete transition model,
which is resource-intensive (Zhang et al., 2021a) and limits scalability for large-scale problems.

Recognizing the limitations of current methods and the challenges posed by large-scale problems and
model uncertainty, a trade-off between robustness and scalability becomes apparent. Enhancing one
typically comes at the expense of the other. This naturally leads to the following question:

Can we develop a unified framework that enhances both scalability and robustness in offline RL?

In this paper, we address this question by presenting a model-free algorithm to learn an optimal policy
that is both robust to model uncertainty and scalable to large-scale problems. Our method introduces
a principle of double pessimism to simultaneously address two key sources of uncertainty: (1) the
uncertainty arising from inaccurate estimations due to the underexplored datasets, and (2) model
mismatch between the data collection and deployment environments. We then propose a streamlined
conceptual framework, design a model-free algorithm, and provide the first theoretical guarantee of
convergence and robustness of our approach. Our contributions can be summarized as follows.

• Double-Pessimism Principle for Offline RL with Model Mismatch. We begin by framing
the challenge of enhancing robustness in offline RL within an offline robust RL framework,
where an uncertainty set captures potential environmental mismatches. To solve offline
robust RL in a scalable manner, we propose the double-pessimism principle that does
not require transition kernel estimations. This principle maintains a conservative estimate
of robust performance, obtained directly from data collection without requiring model
estimation. We then introduce the first model-free pessimistic robust Q-learning algorithm.
Our algorithm optimizes performance under model mismatch using an offline dataset, while
offering greater memory efficiency and more scalability than previous methods.

• First and Near-Optimal Model-Free Algorithm for Offline Robust RL. We provide a
rigorous sample complexity analysis for our model-free double-pessimistic robust Q-learning
algorithm under the widely used lα-norm uncertainty set. Our analysis shows that, given a
dataset satisfying the partial coverage condition (to be introduced later), our algorithm can
identify an optimal robust policy with near-optimal sample complexity, comparable to that
of model-based offline robust RL and model-free offline non-robust RL. This represents
the first sample complexity analysis for model-free robust offline RL, demonstrating its
applicability to large-scale problems that require high data efficiency.

• Numerical Experimental Verification of Enhanced Robustness. We conduct extensive
numerical experiments to demonstrate the improvements in robustness achieved by our
algorithms in both simulated environments (Archibald et al., 1995) and real physics-based
Classic Control problems (Brockman et al., 2016). In each case, our algorithm consistently
outperforms existing methods in handling model uncertainty, showcasing its enhanced
ability to maintain stable performance across a wide range of environmental perturbations.
Moreover, our approach demonstrates superior scalability stemming directly from our model-
free algorithm design, as shown by its effectiveness in solving more complex Classic Control
problems with robustness guarantees, which have proven difficult or unsolvable for previous
model-based robust methods.

2 PRELIMINARIES

2.1 FINITE-HORIZON MARKOV DECISION PROCESS (MDP)

A finite-horizon MDP is represented byM =
(
S,A, H, P ≜ {Ph}Hh=1, r ≜ {rh}Hh=1

)
, where S

and A are the finite state and action spaces of size S and A, respectively, and H is the horizon length.
The probability transition kernel Ph : S ×A → ∆(S) and the reward function rh : S ×A → [0, 1]
are defined at each step h (1 ≤ h ≤ H). At each step h, the agent starts in state sh, takes action ah,
transitions to the next state sh+1 according to the transition kernel Ph,sh,ah , and receives a reward
rh(sh, ah). This process terminates after H steps when the agent reaches state sH+1.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

A policy π = {πh}Hh=1 defines the strategy for selecting actions in different states, where πh : S →
∆(A) specifies the probability distribution over actions at step h. The performance of an agent
following a policy π is measured by the value function V π,P = {V π,Ph }Hh=1, where

V π,Ph (s) ≜ Eπ,P

[
H∑
t=h

rt(st, at)
∣∣∣ sh = s

]
. (1)

The expectation is taken over the trajectory {sh, ah, rh}Hh=1 generated by executing the policy π and
transitioning according to the transition kernel P : ah ∼ πh(sh) and sh+1 ∼ Ph,sh,ah .

2.2 INFINITE-HORIZON MDP

An infinite-horizon MDP is defined asM =
(
S,A, P, r, γ

)
, where both the transition kernel P and

the reward function r are stationary and do not change over time. The discount factor γ < 1 ensures
the finiteness of the accumulated reward over an infinite horizon.

Due to its stationary nature, it suffices to consider only stationary policies π : S → ∆(A), which
specify the action-selection probabilities over the action space. The value function V π,P of a policy
π with transition kernel P is defined as

V π,P (s) ≜ Eπ,P

[ ∞∑
t=1

γtrt(st, at)
∣∣∣ s0 = s

]
. (2)

2.3 ROBUST MDP

A finite-horizon robust MDP (RMDP) is specified by
(
S,A, H,P = {Ph}, r

)
, and an infinite-

horizon RMDP is denoted by
(
S,A,P, r, γ

)
, where P is a set containing some transition kernels,

named the uncertainty set. At each step, the environment transitions to the next state following an
arbitrary kernel belonging to the uncertainty set, instead of a fixed one as in non-robust MDPs. In
this paper, we consider the (s, a)-rectangular uncertainty set (Wiesemann et al., 2013), where P is
independently defined for each state-action pair, with

⊗
denoting the Cartesian product:

Ph =
⊗

(s,a)∈S×A

Ph,s,a (finite-horizon), P =
⊗

(s,a)∈S×A

Ps,a (infinite-horizon). (3)

The performance of a policy in an RMDP is evaluated based on its worst-case value function
over all the instances in the uncertainty set. Specifically, the finite-horizon robust value functions
V π = {V πh }Hh=1 and the infinite-horizon robust value functions V π are defined as

V πh (s) ≜ inf
P∈P

V π,Ph (s) (finite-horizon), V π(s) ≜ inf
P∈P

V π,P (s) (infinite-horizon)

where the infimum is taken over the uncertainty set of transition kernels. For a given initial state
distribution ρ ∈ ∆(S), we write the expected robust performance as

V π1 (ρ) ≜ Es1∼ρ[V π1 (s1)] (finite-horizon), V π(ρ) ≜ Es∼ρ[V π(s)] (infinite-horizon). (4)

The goal of an RMDP is to learn a policy that optimizes the worst-case performance, or equivalently,
the robust value functions. Such a policy is referred to as an optimal robust policy:

π∗ = {π∗
h} ≜ argmax

π
V π1 (ρ), (finite-horizon), (5)

π∗ ≜ argmax
π

V π(ρ), (infinite-horizon). (6)

3 FORMULATION: ENHANCING ROBUSTNESS AND SCALABILITY

In this section, we develop our formulation, where we utilize RMDPs to formulate the offline RL
problem against model mismatch.

In the offline setting, the dataset is collected under a fixed environment P (referred to as the nominal
kernel) by executing some behavior policy µ. However, due to factors such as non-stationarity,

3
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unexpected perturbations, or adversarial attacks, the deployment environment may differ from P .
To account for this model deviation and improve robustness, we construct an uncertainty set by
perturbing the nominal kernel and aim to learn the optimal robust policy. Specifically, following (Xu
& Mannor, 2010; Xu et al., 2010; Derman et al., 2021; Kumar et al., 2023), we define the uncertainty
set (of (s, a)-pair) for modeling environmental perturbations as:

Ph,s,a = {Ph,s,a + q ∈ ∆(S) : q ∈ Qh,s,a} (finite-horizon), (7)
Ps,a = {Ps,a + q ∈ ∆(S) : q ∈ Qs,a} (infinite-horizon), (8)

for some set Qh,s,a,Qs,a containing the possible model perturbations, and aim to learn the optimal
robust policy for the corresponding RMDPs. This will not only provide an optimized lower bound on
performance when the deployment environment lies within the uncertainty set, but also improves the
robustness to model uncertainty Pinto et al. (2017).

3.1 FINITE-HORIZON

In the finite-horizon setting, the dataset D consists of K episodes each of length H . These episodes
are independently generated based on a certain behavior policy µ and the nominal kernel P :

D = {(sk1 , ak1 , rk1 , ..., skH , akH , rkH , skH+1)k=1,...,K}, (9)

where aki ∼ µ(·|ski ), ski+1 ∼ Pi,ski ,aki , and the initial state sk1 ∼ ρ.

Since the dataset is collected by a fixed policy under a single nominal environment, there exists a
distribution shift between the data distribution, and the distribution induced by the optimal policy
and the worst-case kernel. To guarantee that a provable efficient algorithm can be designed based
on the dataset, we adopt a popular assumption on the distributional mismatch between the dataset
distribution and the occupancy measure induced by the optimal policy π∗, as in (Shi & Chi, 2022).
Assumption 1 (Robust single-policy concentrability). The behavior policy µ satisfies that

C∗ ≜ max
(s,a,P ′,h)∈S×A×P×[H]

dπ
∗

P ′,h(s, a)

dµP,h(s, a)
< +∞, (10)

where dπP,h is the occupancy distribution induced by policy π and transition kernel P at step h.

In Assumption 1, we only require that the dataset covers the state-action pairs that are visited by the
optimal policy, known as the partial coverage condition (Rashidinejad et al., 2021).

Our goal is then to learn an ϵ-optimal policy π̂ for the RMDP with the uncertainty set defined as in
equation 3 and equation 7, such that

V π
∗

1 (ρ)− V π̂1 (ρ) ≤ ϵ. (11)

3.2 INFINITE-HORIZON

In the infinite-horizon setting, the offline dataset contains a single trajectory of length T obtained by
executing a behavior policy µ under the nominal kernel P :

D = {s1, a1, r1, s2, ..., sT }, (12)

where s1 ∼ ρ, ai ∼ µ(·|si) and si+1 ∼ Psi,ai . For the infinite horizon setting, we adopt the
following two assumptions on the behavior policy.

We first adopt the partial coverage assumption in (Blanchet et al., 2023; Wang et al., 2024b).
Assumption 2. The behavior policy µ satisfies

C∗ ≜ max
(s,a,P ′)∈S×A×P

dπ
∗

P ′ (s, a)

dµP (s, a)
< +∞, (13)

where dπP denotes the occupancy distribution induced by policy π and transition kernel P .

We make an additional assumption on the behavior policy as follows.

4
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Assumption 3. The behavior policy µ is stationary, and the induced Markov chain under the nominal
kernel is uniformly ergodic.

Remark 1. This assumption is commonly adopted in prior works (Wang et al., 2020; Yan et al.,
2022; Li et al., 2020; Wang & Zou, 2020), as it ensures that the dataset includes all state-action
pairs covered by the behavior policy, provided the dataset size exceeds a certain threshold. This
assumption is required since the dataset consists of a single Markovian trajectory. When the dataset
contains i.i.d. samples from the occupancy distribution dµP , as in (Wang et al., 2024b; Li et al., 2022),
such an assumption can be removed.

Our goal is then to find an ϵ-optimal policy π̂ through D for the RMDP with the uncertainty set
defined in equation 3 and equation 8, such that

V π
∗
(ρ)− V π̂(ρ) ≤ ϵ. (14)

4 DOUBLE-PESSIMISM PRINCIPLE

In this section, we introduce our model-free algorithm for learning an optimal robust policy from
an offline dataset. As we mentioned, two major challenges in offline RL are the two sources of
uncertainty: one arising from the limited and under-explored dataset, and the other from the mismatch
between the data collection and target environments. We aim to develop a unified double-pessimism
principle to address both of them.

As suggested by previous studies on offline RL, e.g., (Rashidinejad et al., 2021; Li et al., 2022; Shi
et al., 2022; Yan et al., 2022; Wang et al., 2024b), the uncertainty arising from the dataset can be
addressed using a single-pessimism principle. This involves introducing a penalty term bn, which
depends on the visitation frequency of each state-action pair, to penalize less frequently visited pairs.
By doing so, we obtain a conservative estimate of the value function under the nominal transition
kernel.

However, addressing the uncertainty arising from model mismatch is particularly challenging, espe-
cially with a model-free approach. Most previous robust RL studies require that the estimation of the
worst-case transition, σP(V ) ≜ minp∈P pV , be unbiased. This can be satisfied when the agent can
freely generate data as needed (e.g., (Wang et al., 2023d; Liu et al., 2022b; Wang et al., 2023c;b)),
yet is impractical in offline settings. To address this issue, we argue that another pessimism principle
can be adopted, and that learning a policy robust to model mismatch does not require an unbiased
estimator. Instead, as long as the estimator from the algorithm provides a lower bound on the robust
value function, it is sufficient to account for the uncertainty due to model mismatch and still learn
a robust policy. We therefore propose a model-free estimator that lower bounds σ(V ) to produce a
conservative estimation as follows.

Definition 1. For the uncertainty set Ps,a, a function κ is referred to as a model-mismatch penalty
function if for any non-negative vector V and a sample s′ ∼ Ps,a from the nominal kernel,

E[V (s′)− κs,a(V )] ≤ σPs,a(V ). (15)

Such a penalty function ensures that at each step, the updated estimate represents a lower bound on
the true worst-case scenario, resulting in a conservative estimation. A universal design of the penalty
function κ is provided in Appendix C.

We then combine the two pessimism principles together, to develop our double-pessimism algorithm
based on the Q-learning algorithm. For each sample (s, a, s′), we update the Q table by

Q(s, a)← (1− η)Q(s, a) + η

(
r(s, a) + γV (s′) (16)

− γκs,a(V )︸ ︷︷ ︸
Pessimism principle of model mismatch

− bn(V )︸ ︷︷ ︸
Pessimism principle of limited dataset

)
. (17)

As we will show later, such an update rule incorporating the double-pessimism principle ensures that
our estimation is conservative, and can effectively tackle the uncertainty in offline robust RL. More

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

importantly, such an update rule does not require any information on the transition model, and hence
can be adapted in a model-free manner and is more suitable for large-scale problems.

Based on this, we develop our model-free offline algorithms for both finite and infinite horizon cases.
In the following sections, we present these algorithms and develop their sample complexity analysis.

5 DOUBLE-PESSIMISM Q-LEARNING FOR FINITE-HORIZON MDPS

Adopting the double-pessimism principle, we propose our algorithm for finite-horizon MDPs.

Algorithm 1 Double-Pessimism Q-Learning for finite-horizon RMDPs.

Input: D, target success probability 1− δ, uncertainty set radius R, penalty function κ
Initialize: Qh(s, a) = 0, Nh(s, a) = 0, Vh(s) = 0, ∀s, a, h
for k = 1, . . . ,K do

Sample a trajectory {sh, ah, rh}Hh=1 from Dµ
for h = 1, . . . ,H do
Nh(sh, ah)← Nh(sh, ah) + 1; n← Nh(sh, ah); ηn ← H+1

H+n

bn ← cb

√
H3 log2(SAKH/δ)

n

Qh(sh, ah)← (1−ηn)Qh(sh, ah)+ηn
{
rh(sh, ah)+Vh+1(sh+1)−κh,sh,ah(Vh+1)−bn

}
Vh(sh)← max

{
Vh(sh), maxaQh(sh, a)

}
end for
π̂kh(s)← argmaxaQh(s, a), ∀s, h

end for
π̂h(s)← π̂Kh (s), ∀s, h
Output: π̂ = {π̂h}

In our algorithm, the term κ is for conservative estimation of the worst-case performance within
the uncertainty set, while the term b addresses the pessimism of the limited dataset. We track the
visitation count of each state-action pair and construct the penalty term b based on these counts. As
the dataset visits a pair more frequently, the associated uncertainty decreases and b decreases.
Remark 2. Our algorithm design is universal and works for any uncertainty set models, as long
as we have a penalty function κ satisfying equation 15, which is provided in Appendix C. However,
since κ for different models requires individual studies, we mainly derive our theoretical analysis for
the lα-norm models (Kumar et al., 2023; Derman et al., 2021): Ph,s,a = {Ph,s,a + q : q ∈ Q}, with

Q =

{
q ∈ RS :

∑
i

q(i) = 0, ∥q∥α ≤ Rh,s,a
}
,

where Rs,a is small enough so that Ph,s,a + q ∈ ∆(S), ∀q ∈ Q.

We again emphasize that our double-pessimism principle and algorithm design can be extended
further to other uncertainty set models. We provide a detailed discussion on the universal construction
of κ and its implementation complexity in Appendix C.

Next, we develop our theoretical results for lα-norm sets. We first show that equation 15 is satisfied
by our design, and the algorithm results in a conservative estimation of the robust value function.
Lemma 1. For the lα-norm uncertainty set, set the penalty function κ as

κh,s,a(V ) ≜ Rh,s,amin
w∈R
∥we− V ∥β , (18)

where β = 1
1− 1

α

is the Hölder conjugate of α, and e = (1, 1, ..., 1) ∈ RS . Then, equation 15 is
satisfied. Moreover, it holds that for all (k, h, s) ∈ [K]× [H]× S ,

Vh(s) ≤ V
π̂k
h

h (s) ≤ V ⋆h (s). (19)
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The lemma provides a concrete construction of the penalty function for the lα-norm model. More
importantly, our model-free estimator and algorithm result in pessimistic estimations of robust value
functions, tackling both uncertainty sources. In our next result, we show that our double-pessimism
principle is effective in learning the optimal robust policy from the mismatched offline dataset.
Theorem 2. For the lα-norm uncertainty set, and any δ ∈ (0, 1), suppose that the behavior policy µ
satisfies Assumption 1. When T ≜ HK > Õ(SC⋆), the policy π̂ returned by Algorithm 1 satisfies

V ⋆1 (ρ)− V π̂1 (ρ) ≤ Õ

(√
H6SC⋆

T

)
(20)

with probability at least 1− δ. Here, f(T ) = Õ(g(T )) means that |f(T )| ≤ C · g(T ) · (log g(T ))k
for some constants C > 0 and k ≥ 0, when T is sufficiently large.
Remark 3. Our algorithm is the first model-free algorithm for offline RL under model mismatch with
sub-optimality gap analysis. The sub-optimality gap we obtain in the previous result further implies
that we can learn an ϵ-optimal policy as long as the size of the offline dataset T exceeds

Õ
(
H6SC⋆

ϵ2

)
︸ ︷︷ ︸

ϵ-dependent

+ Õ(SC⋆)︸ ︷︷ ︸
burn-in cost

. (21)

Note that in the sample complexity, the second term, referred to as the burn-in cost, is a universal
constant that does not depend on ϵ, while the first term asymptotically depends on ϵ. When ϵ becomes
smaller, the first term dominates the overall complexity, resulting in an asymptotic complexity of
Õ
(
H6SC⋆

ϵ2

)
. A more detailed discussion of the complexity will be provided in Section 7.

6 DOUBLE-PESSIMISM Q-LEARNING FOR INFINITE-HORIZON MDPS

In this section, we present our algorithm design and analysis for offline RL with infinite-horizon
MDPs. Due to space limitation and similarities in algorithm design, the algorithm is deferred to
Algorithm 3 in Appendix E.1. The algorithm follows a similar design as the finite-horizon one, where
the two terms κ and b represent conservative penalties for the double-pessimism principle. Again, our
algorithm design is universal, but we develop the sample complexity results only for lα-norm models.
Theorem 3. Consider the lα-norm uncertainty set and any δ ∈ (0, 1). Suppose that the behavior
policy µ satisfies Assumption 2 and Assumption 3. Then, the policy π̂ returned by Algorithm 3 satisfies

V ⋆ (ρ)− V π̂ (ρ) ≤ Õ

(√
C⋆S

T (1− γ)5
+

C⋆S

T (1− γ)2
+

C⋆

T (1− γ)3

)
(22)

with probability at least 1− δ.
Remark 4. An ϵ-optimal robust policy can be learned as long as the size of the offline dataset exceeds

Õ
(

SC∗

(1− γ)5ϵ2

)
. (23)

This sample complexity matches the results of model-free offline non-robust RL Yan et al. (2022)
without variance reduction techniques, which implies the near-optimality of our method. Compared
to model-based offline robust RL Shi & Chi (2022); Blanchet et al. (2023), our result matches theirs
in terms of C∗, S, ϵ, but exhibits a higher order dependence on (1− γ). We argue that, in general,
model-free algorithms tend to have lower memory requirements but incur higher sample complexity
compared to model-based approaches. A more detailed discussion will be provided in Section 7.

7 RELATED WORK

7.1 COMPARISON WITH PRIOR ARTS

In this section, we compare our work to the most closely related studies for tabular offline robust
RL (Shi & Chi, 2022; Blanchet et al., 2023). The results are summarized in Table 1, where we only
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Reference Memory complexity Sample complexity Computational complexity

Our Work O(SA) Õ
(

SC⋆

ϵ2(1−γ)5

)
Polynomial

(Blanchet et al., 2023) O(S2A) Õ
(

S2C⋆

ϵ2(1−γ)4

)
NP Hard

(Shi & Chi, 2022) O(S2A) Õ
(

SC⋆

ϵ2Pmin(1−γ)4

)
Polynomial

Table 1: Comparison with offline robust RL works. (Shi & Chi, 2022) is for the KL-divergence set.

include the infinite horizon ones. Compared to previous studies, our method offers improved memory
and computational complexity, while maintaining comparable sample complexity.

First, both related works are model-based, which involves estimating and storing the transition model
{P̂s,a : (s, a) ∈ S ×A} ∈ RS2A. This approach thus requires an additional memory of sizeO(S2A)
to store the model, along with O(SA) space for the number of visited state-action pairs from the
dataset. As a result, it becomes inefficient for large-scale problems or environments with complicated
transition dynamics. In contrast, our model-free algorithm only requires O(SA)-sized space for the
number of visits. Such a reduced memory complexity enables our model-free algorithms to handle
large-scale problems, scaling effectively to large-scale or even continuous problems.

In terms of computational complexity, the most related work (Blanchet et al., 2023) requires to
solve a non-rectangular RMDP, which is generally NP-hard (Wiesemann et al., 2013). In contrast,
our algorithm can be effectively implemented in polynomial time, which is much more practical.
Compared to (Shi & Chi, 2022), our algorithm still enjoys lower computational complexity, since the
update rule of the model-based approach requires computing the inner product P̂s,aV , whereas our
model-free approach eliminates this computation and only requires a single vector entry V (s′). See
Appendix C for a more detailed discussion.

In terms of sample complexity, both of our sample complexity results match the ones for offline
non-robust Q-learning without variance reduction, illustrating our data efficiency and near-optimality.
Our result improves the dependence on S compared to (Blanchet et al., 2023) under the l∞-norm
uncertainty set, showing the enhanced scalability to large-scale problems. On the other hand, it is
the general observation that model-based methods tend to demonstrate better sample complexity
in terms of (1− γ) than model-free methods, especially when additional techniques like variance
reduction are not employed. Such findings have been widely noted in various settings, for instance,
when comparing robust RL with generative models ((Wang et al., 2024a) vs. (Shi et al., 2023)) and
non-robust offline RL ((Yan et al., 2022) vs. (Li et al., 2022)).

On a side note, we note that our result for the finite-horizon setting exhibits a higher-order dependence
on H (where we set H = 1

1−γ as the effective horizon in infinite setting). This is due to the non-
stationary environment inherent in the finite-horizon setting, which is also consistent with findings
from previous studies, such as (Shi & Chi, 2022).

To summarize, our approach addresses existing gaps in offline RL by enhancing robustness to
model mismatch, reducing memory requirements, and providing adaptability to large-scale problems,
establishing a state-of-the-art method in the field.

7.2 OTHER RELATED WORKS

Offline RL without model mismatch. A significant body of offline RL works assumes identical
collection and deployment environments. Based on that, many early works further rely on the global
coverage assumption, where the behavior policy covers all state-action pairs (Scherrer, 2014; Chen &
Jiang, 2019; Munos, 2005; Yin et al., 2021b; Yin & Wang, 2021a; Jiang, 2019; Wang et al., 2019;
Liao et al., 2020; Liu et al., 2019; Zhang et al., 2020; Uehara et al., 2020; Duan et al., 2020; Xie
& Jiang, 2020; Levine et al., 2020; Antos et al., 2007; Farahmand et al., 2010). This assumption is
often too restrictive and unrealistic, as it requires complete coverage of state-action pairs in historical
data (Gulcehre et al., 2020; Agarwal et al., 2020a; Fu et al., 2020). A more practical partial coverage
setting is later proposed, allowing to learn from a less explored dataset. Under partial coverage,
the optimal policy can still be learned by incorporating the pessimism principle to handle dataset
uncertainty (Jin et al., 2021; Uehara & Sun, 2021; Xie et al., 2021a;b; Rashidinejad et al., 2021;
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Zanette et al., 2021; Yin & Wang, 2021b; Shi et al., 2022; Li et al., 2022; Zhan et al., 2022; Wang
et al., 2024b; Kumar et al., 2020). Differently, we consider potential model mismatches.

Robust RL. Robust RL (Iyengar, 2005; Nilim & El Ghaoui, 2004; Xu & Mannor, 2010) aims to
tackle the challenge of model mismatch in RL, by optimizing the worst-case performance over an
uncertainty set. Existing work focuses mainly on the online setting (Wang & Zou, 2021; 2022; Wang
et al., 2023a; Badrinath & Kalathil, 2021; Dong et al., 2022; Lu et al., 2024; Liu & Xu, 2024a) or with
a generative model (Yang et al., 2021; Xu et al., 2023; Panaganti & Kalathil, 2022; Shi et al., 2023;
Wang et al., 2024a). Offline robust RL, except for the two mentioned above, either relies on strong
assumptions, such as global coverage or absorbing states (Panaganti et al., 2022; Yang et al., 2021),
or employs fitted type algorithm designs (Yang et al., 2022; Panaganti et al., 2022; Liu et al., 2023).
More importantly, most of them are model-based, while we develop the first model-free algorithm
for offline robust RL. Another line of research aims to improve robustness and scalability through
function approximation (Liu & Xu, 2024b; Wang et al., 2024a; Ma et al., 2022), yet we focus on the
tabular setting to develop a more fundamental understanding of offline RL. Another line of robust RL
aims to optimize the performance under the environment from a corrupted dataset collected under the
same environment Yang et al. (2023); Zhang et al. (2021b; 2022), which is different from our setting.

8 EXPERIMENTS

We use numerical experiments to demonstrate the advantages of our framework in terms of robustness.
We consider two sets of environments: simulated MDPs with controllable transition dynamics and
Classic Control environments. More experiments are further provided in Appendix B.

8.1 SIMULATION MDPS

We first evaluate the performance of our algorithm on the Garnet problem (Archibald et al., 1995), a
randomly generated MDP G(a, b, c) with a states, b actions, and c branches (see Appendix A for a
more detailed description). Both the nominal kernels and reward functions are generated randomly.
The uncertainty set is constructed using the l∞-norm, with the radius Rs,a ∈ [0.1, 0.5].

We first generate a dataset of size N from the nominal kernel and apply our double-pessimism
algorithm, with the single-pessimism baseline (Yan et al., 2022), to learn policies. We then compute
the robust value functions of the learned policies and plot the difference between these values and
the optimal robust value functions, referred to as the optimality gap, in Figure 1. The results are
averaged over 10 times, with the maximum and minimum gaps as an envelope around the average
value. The results show that our double-pessimism algorithm converges to the true optimal robust
value as the dataset size increases, maintaining a lower optimality gap, while the single-pessimism
approach results in a larger gap. These findings demonstrate that our double-pessimism principle
significantly enhances robustness while remaining model-free and scalable.
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Figure 1: Optimality gaps under different Garnet problems.

8.2 CLASSIC CONTROL PROBLEMS

To further demonstrate the improvements in both scalability and robustness offered by our approach,
we consider more complex Classic Control tasks from OpenAI Gym (Brockman et al., 2016),
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specifically CartPole and MountainCar. The dynamics of these environments are indirectly controlled
by their parameters, e.g., the length of the pole in CartPole, the gravity and the force in MountainCar,
and it is of interest to improve the robustness against their uncertainty. Since these model mismatches
are hard to model, model-based approaches become ineffective,yet our model-free method remains
applicable and effective in such scenarios.

For each dataset generated under the nominal environment with the default parameters, we imple-
mented our algorithm alongside the baseline (Yan et al., 2022) to learn policies. To evaluate the
robustness of the learned policies, we test their performance in modified environments with parameter
perturbations (Pinto et al., 2017; Wang & Zou, 2021), where we randomly perturbed these parameters
within the range of [−τ, τ ] for 800 trials and evaluated the policies in these perturbed environments.
We present the average performance across these 800 trials in Fig. 2. As the results show, our
double-pessimism algorithm maintains a higher average performance under environment perturba-
tions, demonstrating superior robustness, which aligns with our theoretical findings. This illustrates
the enhanced robustness achieved by our approach. Moreover, given the large-scale and complex
dynamics of these environments which are difficult for model-based approaches, our model-free
algorithm effectively addresses these challenges, further demonstrating the scalability of our method.

(a) τ = 0.6, CartPole-v0 (b) τ = 0.7, CartPole-v0 (c) τ = 0.8, CartPole-v0

(d) τ = 0.02, MountainCar-v0 (e) τ = 0.04, MountainCar-v0 (f) τ = 0.06, MountainCar-v0

Figure 2: Reward profiles with different parameter perturbations.

9 CONCLUSION

We explored offline RL with a focus on improving scalability and robustness simultaneously. We
framed the problem as offline robust RL and developed a model-free algorithm to optimize the
worst-case performance within an uncertainty set accounting for the possible model mismatch. To
address two key challenges—uncertainty from the under explored dataset and model mismatch
between data collection and deployment environments—we introduced a double-pessimism principle
that conservatively estimates the agent’s performance in a model-free manner. Building on this, we
designed a universal model-free algorithm that eliminates the need for model estimation, adapts to
various uncertainty sets, and scales to large problems. We further analyzed its performance for the
widely studied lα-norm uncertainty set, showing near-optimal data efficiency of our approach. Our
approach significantly improves the robustness, scalability, and efficiency of offline RL compared to
existing methods, pushing the boundaries of offline RL research.
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A EXPERIMENTAL SETUP OF SECTION 8

A.1 GARNET PROBLEMS

For simulated MDP environments, we implement Algorithm 3 on Garnet problems G(20, 30, 20),
G(30, 50, 30) and G(50, 100, 50). Here, the branch number denotes the number of states that can
be achieved after taking an action. The uncertainty radius Rs,a is randomly drawn from a uniform
distribution ranging from 0.1 to 0.5 for all state-action pairs. The true robust expected values for
the Garnet problems, over a certain state distribution, can be obtained via the model-based robust
value iteration method. For each problem, we first generate a stochastic behavior policy with partial
coverage over state-action pairs. To obtain a near-optimal stochastic behavior policy, we compute
the Q-values for the nominal kernel, and adopt a softmax transformation to assign probabilities
for all state-action pairs. The randomness (i.e., optimality) of the behavior policy is controlled via
temperature parameter tb = 1. State-action pairs with probabilities Ps,a ≤ 0.03 (for G(20, 30, 20)),
Ps,a ≤ 0.02 (for G(30, 50, 30)) and Ps,a ≤ 0.01 (for G(50, 100, 50)) are then excluded to achieve
partial coverage. Finally, non-zero elements are re-normalized to maintain a valid probability
distribution. By deploying the behavior policy on the nominal kernel, 10 datasets are generated at
each dataset size from T = 1000 to T = 20000. We compared the double-pessimism method with
the single-pessimism method in (Yan et al., 2022). We set γ = 0.95, Cb = 1× 10−4 and δ = 0.02.

A.2 CLASSIC CONTROL PROBLEMS

Note in the Classic Control problems, the underlying uncertain environments may not be modeled
using our perturbation-based uncertainty set in equation 8, but we can still implement our algorithms
to enhance the robustness. We generate the dataset according to a random behavior policy, and
implement Algorithm 3 with the radius R = τ . In our experiments, we set γ = 0.95, Cb = 1× 10−4

and δ = 0.02. After a policy is learned, we test its performance under a perturbed environment with
the parameter randomly generated from [−τ, τ ] for 800 times, and plot the average performance
among them.

B ADDITIONAL EXPERIMENT RESULTS

B.1 COMPARISONS IN TABULAR ENVIRONMENTS

In this section, we include additional experiment results under three simulated environments. Specif-
ically, we consider the Frozen-Lake and Taxi environments from OpenAI Gym (Brockman et al.,
2016), and the American Option problem (Panaganti et al., 2022; Shi & Chi, 2022; Zhou et al., 2021).
The transition dynamics of these environments can be directly controlled, and we construct l∞-norm
uncertainty sets centered at their nominal kernels. Similarly, we trained our double-pessimism
Q-learning together with the single-pessimism baseline, and plotted the optimality gap between the
learned and optimal robust value functions. As the results in Figure 3 show, our double-pessimism
Q-learning effectively obtains the optimal robust policy, whereas the single-pessimism Q-learning
only achieves sub-optimal performance. The results hence indicate that our additional pessimism
effectively enhances robustness against model uncertainty, verifying our theoretical results.

(a) Frozen-Lake (b) Taxi (c) American Option

Figure 3: Optimality gaps under different Gym environments.
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B.2 SCALABLE ALGORITHM WITH FUNCTION APPROXIMATION: DOUBLE-PESSIMISM CQL

In this section, we extend the evaluation of our double-pessimism framework to large-scale problems
using function approximation techniques. The algorithms presented earlier (Algorithm 1, Algo-
rithm 3), while model-free, are designed for tabular settings and require memory space of O(SA)
for the Q-table, making them less efficient for large-scale applications. To improve scalability,
replacing the Q-table with low-dimensional function approximations (e.g., neural networks) to reduce
memory costs is a widely adopted approach. On the other hand, existing offline RL algorithms like
Conservative Q-learning (CQL, Kumar et al. (2020)) and Implicit Q-learning (IQL, Kostrikov et al.
(2021)), along with others (Ross & Bagnell, 2012; Laroche et al., 2019; Fujimoto et al., 2019; Kumar
et al., 2019; Agarwal et al., 2020b; Liu et al., 2020; Jin et al., 2021; Xie et al., 2021a; Yin et al., 2021a;
Rashidinejad et al., 2021; Xie & Jiang, 2021; Jiang & Huang, 2020), have focused solely on offline
RL without model mismatch, resulting in degraded performance when model mismatch is present.

Aiming to enhance both robustness and scalability, we design and evaluate a double-pessimism
CQL algorithm, demonstrating that our framework is not limited to tabular settings but can also be
integrated with function approximation or deep RL techniques, significantly improving robustness
against model mismatch. Specifically, in CQL, the approximated Q-function is obtained by

Q̂πCQL := argmin
Q

{
α ·
(
Es∼D,a∼µ(a|s)[Q(s, a)]− Es∼D,a∼π̂β(a|s)[Q(s, a)]

)
︸ ︷︷ ︸

Pessimism for dataset

(24)

+
1

2
Es,a,s′∼D

[(
Q− B̂πQ

)2]
︸ ︷︷ ︸

Non-robust Bellman error

}
. (25)

Here, the first term is introduced to adopt the pessimism principle for the limited dataset (without
model mismatch), and the second term is the standard Bellman error to approximate the Q functions.
To further introduce another pessimism for the model mismatch, we modify the loss term to:

Q̂πCQL,double := argmin
Q

{
α ·
(
Es∼D,a∼µ(a|s)[Q(s, a)]− Es∼D,a∼π̂β(a|s)[Q(s, a)]

)
︸ ︷︷ ︸

Pessimism for dataset

(26)

+
1

2
Es,a,s′∼D

[(
Q− B̂πQ− γκ(Q)

)2]
︸ ︷︷ ︸

Robust Bellman error, Pessimism for mismatch

}
, (27)

where we introduce a model mismatch penalty term to the second error term to take model mismatch
into consideration. Specifically, B̂πQ − γκ(Q) is the estimation of the robust Bellman operator.
Based on this construction, we can similarly design a double-pessimism CQL algorithm, from which
enhanced robustness is expected.

(a) τ = 0.2 (b) τ = 0.5 (c) τ = 0.8

Figure 4: Double-Pessimism CQL vs. Vanilla CQL under CartPole.

To validate the effectiveness of our double-pessimism principle, we compare our double-pessimism
CQL with the vanilla single-pessimism CQL under two environments: CartPole from OpenAI Gym
and Halfcheetah-medium-v2 from D4RL benchmark Fu et al. (2020). Both policies are trained in
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(a) τ = 0.5 (b) τ = 0.8

Figure 5: Double-Pessimism CQL vs. Vanilla CQL under Halfcheetah-medium-v2.

nominal environments and evaluated in randomly perturbed environments (perturbation radius τ )
over 800 trials. The results, shown in Figure 4 and Figure 5, display the average performance as solid
curves, with envelopes representing standard deviations.

As the results indicate, our double-pessimism CQL consistently outperforms the vanilla CQL in
perturbed environments, demonstrating enhanced robustness. This experiment confirms the universal
applicability of our double-pessimism framework in improving robustness, regardless of the specific
algorithm used. It also highlights the scalability of our approach, which can be integrated with
advanced deep offline RL algorithms for large-scale problems using function approximation.

B.3 ABLATION EXPERIMENTS

Our double-pessimism principle addresses two key challenges: the first component tackles the limited
dataset coverage in offline RL to handle out-of-distribution issues, while the second addresses model
mismatch between the data generation and deployment environments.

In this section, we conduct ablation experiments to evaluate the effectiveness of this principle. Specif-
ically, we compare four algorithms in an offline setting: vanilla Q-learning (with zero pessimism),
robust Q-learning (with model-mismatch pessimism only), offline non-robust Q-learning (with dataset
pessimism only), and our proposed offline robust Q-learning (with double pessimism). The experi-
ments are conducted on two Garnet problems, where we evaluate the robust value functions of the
learned policies with respect to an uncertainty set defined by the l∞-norm.

The results are shown in Figure 6. The solid curve represents the average value across 10 independent
runs, while the shaded area indicates the maximum and minimum values observed.

Our double-pessimism approach outperforms all four algorithms, including those with a single source
of pessimism, demonstrating the effectiveness of our framework. Furthermore, the single-pessimism
methods achieve better performance than the vanilla algorithm with no pessimism, highlighting
the benefits of incorporating pessimism in offline robust RL. However, both are ultimately outper-
formed by our double-pessimism method, underscoring the importance of addressing both sources of
uncertainty through the double-pessimism principle.

C FURTHER DISCUSSION OF κ

C.1 A UNIVERSAL CONSTRUCTION OF κ

In this section, we discuss the design of the penalty function κ for universal uncertainty set models
defined by some distribution divergence/distance functions F (·||·):

P = {P + q ∈ ∆(S) : F (P + q||P ) ≤ R}. (28)

Note that this uncertainty set includes perturbed environments within a region centered around the
nominal kernel, effectively modeling environmental uncertainty in practical applications. This is

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) G(30, 10, 30) (b) G(40, 20, 40)

Figure 6: Robust value functions in Garnet problems.

because, in practice, perturbed environments should not deviate significantly from the nominal kernel
and should therefore fall within a defined region.

We first present the following theorem for a universal construction of the penalty function κ.
Theorem 4. Let κ(V ) be the optimal value of the following constrained problem:

max
q
−
∑

qiVi, s.t.
∑
i

qi = 0, F (P + q||P ) ≤ R. (29)

Then, κ(V ) satisfies equation 15, i.e.,
PV − κ(V ) ≤ σP(V ). (30)

Proof. Note that the problem in equation 29 is equivalent to the problem

max
q∈Q
−qV, where Q = {q ∈ RS ,

∑
i

qi = 0, F (P + q||P ) ≤ R}. (31)

The proof is then straightforward by noting that P ⊂ Q, hence
PV − κ(V ) ≤ min

p∈P
pV = σP(V ). (32)

Such a result provides a universal construction of the penalty function κ, for the perturbed-based
uncertainty set as in equation 28. Note that κ(V ) depends on P , which is unknown in practice, but
any unbiased estimation of it is sufficient. To illustrate this and show the generality of our design, we
develop a case study for the χ2-divergence uncertainty set in the following section.

C.2 CASE STUDY: lα-NORM UNCERTAINTY SET

In this section, we provide a more detailed discussion on the lα-norm uncertainty set we focus on.

Adapting the construction to the lα-norm model, we obtain the constructions illustrated in Lemma 1:
for any α, set

κ(V ) ≜ Rmin
w∈R
∥we− V ∥β , (33)

with β = 1
1− 1

α

. For popular choices of α, the optimization problem in equation 33 has a closed-form
solution, specified in Table 2 (Kumar et al., 2023).

Note that for the three choices of α = 1, 2,∞, the resulting penalty terms incur a computational
complexity of O(S). When combined with our algorithm, this leads to an overall implementation
complexity of O(SA) per step. In contrast, the model-based methods proposed in (Shi & Chi,
2022; Blanchet et al., 2023) have a computational cost of O(S2A) per step (Kumar et al., 2023),
highlighting the superior efficiency and scalability of our approach.
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α κ(v)

∞ maxs v(s)−mins v(s)
2

2

√∑
s

(
v(s)−

∑
s v(s)

S

)2
1

∑⌊(S+1)/2⌋
i=1 v(si)−

∑S
i=⌊(S+1)/2⌋ v(si)

Table 2: Penalty term for lα-norm uncertainty set

C.3 CASE STUDY: χ2 UNCERTAINTY SET

We adapt the construction we obtained to the widely used χ2-divergence as a case study. The design
of κ for other uncertainty sets can be obtained in a similar way.

Specifically, the uncertainty defined for the (s, a)-pair is

Ps,a = {Ps,a + q ∈ ∆(S) : Dχ2(Ps,a + q||Ps,a) ≤ Rs,a}, (34)

where Dχ2(p||q) =
∑
i
(pi−qi)2

qi
is the χ2-divergence. We aim to design a model-free function κ that

serves as the penalty term to address the uncertainty from the model mismatch.

We first establish the following lemma.
Lemma 5. The constrained problem

min
q

∑
i

qiVi, s.t.
∑
i

qi = 0, Dχ2(q + Ps,a||Ps,a) ≤ Rs,a (35)

has the solution

−
√
Rs,aVarPs,a

(V ). (36)

Proof. To simplify the notation, we omit the subscript s, a from Ps,a and Rs,a. We note that if any
entry Pi = 0, then any feasible qi = 0, otherwise the χ2-divergence will be infinite. Thus, we can
simply ignore the i-th entry in this case and only consider the remaining ones. Hence, we assume
Pi > 0,∀i without loss of generality.

Note that the condition Dχ2(q + P ||P ) ≤ R is equivalent to∑
i

q2i
Pi
≤ R, (37)

hence the Lagrangian function L of the constrained problem is

L =
∑
i

qiVi + λ
∑
i

qi + µ

(∑
i

q2i
Pi
−R

)
. (38)

From the KKT conditions (Bertsekas, 1997), the solution q∗ and the Lagrangian multiplier λ∗, µ∗

must satisfy

Vi + λ∗ + µ∗ 2q
∗
i

Pi
= 0,∀i. (39)

Thus,

q∗i Vi = −λ∗q∗i − 2µ∗ (q
∗
i )

2

Pi
,∀i, (40)

and hence, ∑
i

q∗i Vi = −2µ∗
∑
i

(q∗i )
2

Pi
= −2µ∗R, (41)
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where we use the constraint
∑
i q

∗
i = 0 and

∑
i
(q∗i )

2

Pi
= R.

Again, from equation 39, we have that

4(µ∗)2
(
q∗i
Pi

)2

= (Vi + λ∗)2, (42)

and hence, (
q∗i
Pi

)2

=
(Vi + λ∗)2

4(µ∗)2
. (43)

Taking the sum over i implies that∑
i

(q∗i )
2

Pi
= R =

∑
Pi

(Vi + λ∗)2

4(µ∗)2
, (44)

and hence,

2µ∗R =

√
R
∑
i

Pi(Vi + λ∗)2. (45)

On the other hand, note that equation 39 further implies that

0 =
∑
i

PiVi + λ∗
∑
i

Pi, (46)

and hence,

λ∗ = −
∑
i

PiVi. (47)

Plugging in equation 45 implies that

2µ∗R =
√
RVarP (V ). (48)

Hence, from equation 41, the optimal solution of the constrained problem is then −
√
RVarP (V ),

which completes the proof.

With the optimal solution to equation 35, we can then design the penalty function κ for the χ2

uncertainty set defined as in equation 34. Firstly, we note that equation 35 is a relaxation of the
support function over equation 34, therefore the optimal solution to equation 35 is not greater than
σP(V ), and therefore is a pessimistic penalty of the model mismatch. We thus design the penalty
function as

κ(V ) =
∑
i

PiVi −
√
RVarP (V ). (49)

We note that in the model-free setting, it is straightforward to obtain an unbiased estimation of κ,
which however requires more than 1 sample. Specifically, for n i.i.d. samples (s, a, s′i), i = 1, ..., n,
the model-free penalty function is defined as

κ(V ) = V̄ −
√
R

√∑n
i=1(V (s′i)− V̄ )2

n− 1
, (50)

where V̄ =
∑

i V (s′i)

n . Such a penalty function satisfies the condition equation 15 of the pessimism
principle, and hence we can extend our model-free algorithms to the χ2-divergence model. We
present the algorithm for the infinite horizon in Algorithm 2. Different from Algorithm 3, for the
χ2-divergence model, we require 2 samples at each step to estimate κ. However, the estimation does
not required any information on Ps,a and hence Algorithm 3 is still model-free.

We further validate the effectiveness of our algorithm in optimizing performance under model
mismatch in an offline setting through numerical experiments. Specifically, we implemented our
algorithm alongside the baseline single-pessimism Q-learning algorithm (Yan et al., 2022) on Garnet
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Algorithm 2 Double-Pessimism Q-Learning for infinite-horizon RMDPs with χ2-divergence uncer-
tainty set.

Input: D, target success probability 1− δ, Γ =
⌈

4
1−γ log

ST
δ

⌉
Initialize: Q0 (s, a) = 0, V0(s) = 0, n0(s, a) = 0, ∀s, a
for t = 1, ..., T do

Sample 2 samples (st−1, at−1, s
1
t ),(st−1, at−1, s

2
t ) from D

nt (st−1, at−1)← nt−1(st−1, at−1) + 2; nt(s, a)← nt−1(s, a), ∀(s, a) ̸= (st−1, at−1)
n← nt(s, a); ηn ← (Γ + 1)/(Γ + n)

bn ← cb

√
Γ log(ST/δ)

n(1−γ)2

M ← Vt−1(s
1
t )+Vt−1(s

2
t )

2

κ← −
√
Rst,at ((Vt−1(s1t )−M)2 + (Vt−1(s2t )−M)2)

Qt (st−1, at−1) = (1− ηn)Qt−1 (st−1, at−1) + ηn

{
r (st−1, at−1) + γM − γκ− bn

}
Qt(s, a) = Qt−1(s, a) for all (s, a) ̸= (st−1, at−1)

Vt (st−1) = max

{
maxa∈AQt (st−1, a) , Vt−1(st−1)

}
,

Vt(s) = Vt−1(s) for all s ̸= st−1.
end for
π̂(s) = argmaxa∈AQT (s, a),∀s
Output: π̂

problems with varying parameters, and three simulation environments: Frozen-Lake, Taxi, and
American Option. Using datasets of different sizes, we computed the robust value function of the
learned policy via dynamic programming (Iyengar, 2005), and plotted the results in Figure 7 and
Figure 8. Each curve represents the average over 10 independent runs, with the shaded region
indicating the maximum and minimum values. As demonstrated in the results, our double-pessimism
Q-learning significantly outperforms the single-pessimism approach, showcasing the robustness of
our algorithm to model mismatch and confirming the efficacy of our double-pessimism design.

(a) G(15, 8, 15) (b) G(20, 10, 20)

Figure 7: Robust value functions of two Granet problems over χ2-divergence uncertainty set. Solid
lines represent the mean values over 10 independent runs. Shaded areas represent the maximum and
minimum values.
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(a) Frozen-Lake (b) Taxi (c) American Option

Figure 8: Robust value functions of three simulation environments over the χ2-divergence uncertainty
set. Solid lines represent the mean values over 10 independent runs. Shaded areas represent the
maximum and minimum values.

D ANALYSIS OF THE FINITE HORIZON SETTING

D.1 NOTATION

Recall the learning rate defined by

ηn =
H + 1

H + n
(51)

for the n-th visit of a given state-action pair at a given time step h. We further adopt two sequences
of related quantities for any integers N ≥ 0 and n ≥ 1 from (Shi et al., 2022):

ηN0 ≜

{∏N
i=1(1− ηi) = 0, if N > 0,

1, if N = 0
, (52)

ηNn ≜


ηn
∏N
i=n+1(1− ηi), if N > n,

ηn, if N = n,

0, if N < n

. (53)

It has been shown in (Shi et al., 2022; Yan et al., 2022) that
N∑
n=0

ηNn = 1. (54)

We also introduce the following notation:

• Nk
h (s, a), or simply Nk

h : The number of episodes that have visited the state-action pair
(s, a) at step h before the start of the k-th episode.

• knh(s, a), or simply kn: The index of the episode in which the state-action pair (s, a) is
visited at step h for the n-th time. We adopt the convention that k0 = 0.

• P kh ∈ {0, 1}1×S : A row vector corresponding to the empirical transition at step h of the
k-th episode, defined as

P kh (s) = 1
(
s = skh+1

)
for all s ∈ S. (55)

• πk = {πkh}Hh=1 with πkh(s) ≜ argmaxaQ
k
h(s, a) for all (h, s) ∈ [H]×S: The deterministic

greedy policy at the beginning of the k-th episode.
• π̂: The final output of the algorithm, corresponding to πK+1 as defined above. For simplicity

in our analysis, we treat π̂ as πK , which does not affect the result.

D.2 LEMMAS FOR THEOREM 2

In this section, we present the lemmas that are utilized in the proof of Theorem 2.

The first lemma demonstrates how our choice of the penalty term κ can address the uncertainty arising
from model mismatch.
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Lemma 6. (Theorem 1 in (Kumar et al., 2023)) Let Ps,a be the uncertainty set defined using the
lα-norm. For any vector V , the following relationship holds:

σPs,a(V ) = Ps,aV − κs,a(V ), (56)

where κ is defined as in equation 18.

The following lemma provides properties concerning the learning rates and is adapted from (Jin et al.,
2018; Li et al., 2021).
Lemma 7 (Lemma 1 in (Li et al., 2021)). For any integer N > 0, the following properties hold:

1

Na
≤

N∑
n=1

ηNn
na
≤ 2

Na
for all

1

2
≤ a ≤ 1, (57a)

max
1≤n≤N

ηNn ≤
2H

N
,

N∑
n=1

(ηNn )2 ≤ 2H

N
,

∞∑
n=N

ηNn ≤ 1 +
1

H
. (57b)

The following lemmas concern the concentration properties of the sample generation.

The first lemma below is adapted from Xie et al. (2021b, Lemma A.1).
Lemma 8. (Lemma 8 in (Shi et al., 2022)) SupposeN ∼ Binomial(n, p), where n ≥ 1 and p ∈ [0, 1].
For any δ ∈ (0, 1), we have

p

N ∨ 1
≤

8 log
(
1
δ

)
n

, (58)

and

N ≥ np

8 log
(
1
δ

) if np ≥ 8 log

(
1

δ

)
, (59a)

N ≤
{
e2np if np ≥ log

(
1
δ

)
,

2e2 log
(
1
δ

)
if np ≤ 2 log

(
1
δ

)
.

(59b)

with probability at least 1− 4δ.

The following lemma is a standard concentration inequlity result.
Theorem 9 (Freedman’s inequality (Freedman, 1975)). Consider a filtration F0 ⊂ F1 ⊂ F2 ⊂ · · · ,
and let Ek stand for the expectation conditioned on Fk. Suppose that Yn =

∑n
k=1Xk ∈ R, where

{Xk} is a real-valued scalar sequence obeying

|Xk| ≤ R and Ek−1

[
Xk

]
= 0 for all k ≥ 1

for some quantity R <∞. We also define

Wn :=

n∑
k=1

Ek−1

[
X2
k

]
.

In addition, suppose that Wn ≤ σ2 holds deterministically for some given quantity σ2 <∞. Then,
for any positive integer m ≥ 1, with probability at least 1− δ one has

|Yn| ≤
√
8max

{
Wn,

σ2

2m

}
log

2m

δ
+

4

3
R log

2m

δ
. (60)

The Freedman’s inequality further implies several important results related to our problem.
Lemma 10. Let {W i

h ∈ RS | 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1} be a collection of vectors satisfying the
following properties:

• W i
h is fully determined by the samples collected up to the end of the (h− 1)-th step of the

i-th episode;
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• ∥W i
h∥∞ ≤ Cw.

For any positive integer N ≥ H , consider the following sequence:

Xi(s, a, h,N) ≜ ηNNi
h(s,a)

(
P ihW

i
h+1 −Rs,aκ(W i

h+1)− σh,s,a(W i
h+1)

)
1
{
(sih, a

i
h) = (s, a)

}
.

(61)

With probability at least 1− δ,∣∣∣∣∣
k∑
i=1

Xi(s, a, h,N)

∣∣∣∣∣ ≲
√
H

N
C2

w log2
SAT

δ
(62)

holds simultaneously for all (k, h, s, a,N) ∈ [K]× [H]× S ×A× [K].

Proof. Let uih(s, a,N) = ηN
Ni

h(s,a)
. From equation 57b in Lemma 7, we have

∣∣uih(s, a,N)
∣∣ ≤ 2H

N
≜ Cu.

Given that Varh,s,a
(
W

knh(s,a)
h+1

)
≤ C2

w, we can apply Lemma 7 from (Li et al., 2021) to obtain, with
probability at least 1− δ,∣∣∣∣∣

k∑
i=1

Xi(s, a, h,N)

∣∣∣∣∣
≲

√
Cu log

2 SAT

δ

√√√√Nk
h (s,a)∑
n=1

ηNn C
2
w +

(
CuCw +

√
Cu

N
Cw

)
log2

SAT

δ

≲

√
H

N
log2

SAT

δ
· Cw +

HCw

N
log2

SAT

δ

≲

√
HC2

w

N
log2

SAT

δ
,

where the final line uses equation 57b from Lemma 7 again.

Lemma 11. Let
{
W k
h (s, a) ∈ RS | (s, a) ∈ S × A, 1 ≤ k ≤ K, 1 ≤ h ≤ H + 1

}
be a collection

of vectors satisfying the following properties:

• W k
h (s, a) is fully determined by the given state-action pair (s, a) and the samples collected

up to the end of the (k − 1)-th episode;

• ∥W k
h (s, a)∥∞ ≤ Cw.

For any positive Cd ≥ 0, consider the following sequences:

Xh,k ≜ Cd

dπ⋆

P,h(s
k
h, a

k
h)

dµP,h(s
k
h, a

k
h)
W k
h+1(s

k
h, a

k
h)−

∑
(s,a)∈S×A

dπ⋆

P,h(s, a)W
k
h+1(s, a)

 , (63)

Xh,k ≜ Cd

dπ⋆

P,h(s
k
h, a

k
h)

dµP,h(s
k
h, a

k
h)
W k
h+1(s

k
h, a

k
h)−

∑
(s,a)∈S×A

dπ⋆

P,h(s, a)W
k
h+1(s, a)

 . (64)

Consider any δ ∈ (0, 1). Then with probability at least 1− δ,∣∣∣∣∣
K∑
k=1

Xh,k

∣∣∣∣∣ ≤
√√√√ K∑
k=1

8C2
dC

⋆
∑

(s,a)∈S×A

dπ⋆

P,h(s, a)
[
Ph,s,aW k

h+1(s, a)
]2

log
2H

δ
+ 2CdC

⋆Cw log
2H

δ
,

(65)
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∣∣∣∣∣
K∑
k=1

Xh,k

∣∣∣∣∣ ≤
√√√√ K∑
k=1

8C2
dC

⋆
∑

(s,a)∈S×A

dπ⋆

P,h(s, a)Ph,s,a
[
W k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

⋆Cw log
2H

δ
,

(66)

hold simultaneously for all h ∈ [H].

Proof. The proof similarly follows from (Shi et al., 2022).

We then prove Lemma 1 showing the effectiveness of our double pessimism principle, i.e., that our
estimation is a conservative estimation of the robust value function.
Lemma 12. Consider any δ ∈ (0, 1), and suppose that cb > 0 is some sufficiently large constant.
Then, with probability at least 1− δ,∣∣∣∣∣
Nk

h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
σh,s,a(V

kn(s,a)
h+1 )− P k

n(s,a)
h V

kn(s,a)
h+1 +Rs,aκ(V

kn(s,a)
h+1 )

)∣∣∣∣∣ ≤
Nk

h (s,a)∑
n=1

η
Nk

h (s,a)
n bn

(67)

holds simultaneously for all (k, h, s, a) ∈ [K]× [H]× S ×A, and

V kh (s) ≤ V π
k

h (s) ≤ V ⋆h (s) (68)

holds simultaneously for all (k, h, s) ∈ [K]× [H]× S .

Proof. Proof of inequality equation 67. We show it by invoking Lemma 10. Let

W i
h+1 := V ih+1,

which satisfies

∥W i
h+1∥∞ ≤ H =: Cw.

Note that it holds that

σh,s,a(V
kn(s,a)
h+1 )− P k

n(s,a)
h V

kn(s,a)
h+1 +Rs,aκ(V

kn(s,a)
h+1 )

= Ph,s,aV
kn(s,a)
h+1 −Rs,aκ(V k

n(s,a)
h+1 )− P k

n(s,a)
h V

kn(s,a)
h+1 +Rs,aκ(V

kn(s,a)
h+1 )

= Ph,s,aV
kn(s,a)
h+1 − P k

n(s,a)
h V

kn(s,a)
h+1 , (69)

where the first equation is from Lemma 6. Hence applying Lemma 10 implies that with probability at
least 1− δ,

Nk
h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
σh,s,a(V

kn(s,a)
h+1 )− P k

n(s,a)
h V

kn(s,a)
h+1 +Rs,aκ(V

kn(s,a)
h+1 )

)

=

∣∣∣∣∣
Nk

h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣
=

∣∣∣∣∣
k∑
i=1

Xi

(
s, a, h,Nk

h (s, a)
)∣∣∣∣∣

≤ cb

√
H3ι2

Nk
h (s, a)

(70)

holds simultaneously for all (s, a, k, h) ∈ S ×A× [K]× [H], provided that the constant cb > 0 is
large enough and that N = Nk

h (s, a) > 0. When Nk
h (s, a) = 0, we have the trivial bound∣∣∣∣∣

Nk
h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ = 0. (71)
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Additionally, from the definition bn = cb

√
H3ι2

n , we observe that
∑Nk

h (s,a)
n=1 η

Nk
h (s,a)

n bn ∈
[
cb
√

H3ι2

Nk
h (s,a)

, 2cb
√

H3ι2

Nk
h (s,a)

]
, if Nk

h (s, a) > 0∑Nk
h (s,a)

n=1 η
Nk

h (s,a)
n bn = 0, if Nk

h (s, a) = 0
(72)

holds simultaneously for all s, a, h, k ∈ S ×A× [H]× [K], which follows directly from the property
equation 57a in Lemma 7.

Combining the above, equation 70 and equation 72 hence imply that∣∣∣∣∣
Nk

h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
σh,s,a(V

kn(s,a)
h+1 )− P k

n(s,a)
h V

kn(s,a)
h+1 +Rs,aκ(V

kn(s,a)
h+1 )

)∣∣∣∣∣
≤
Nk

h (s,a)∑
n=1

η
Nk

h (s,a)
n bn.

Proof of inequality equation 68. Note that the second inequality of equation 68 is straightforward as

V πh (s) ≤ V ⋆(s)
holds for any policy π. As a consequence, it suffices to establish the first inequality of equation 68:

V kh (s) ≤ V π
k

h (s) for all (s, h, k) ∈ S × [H]× [K]. (73)

Define

ko(h, k, s) := max
{
l : l < k and V lh(s) = max

a
Qlh(s, a)

}
(74)

for any (h, k, s) ∈ [H]× [K]× S, which denotes the index of the latest episode — before the end
of the (k − 1)-th episode — in which Vh(s) has been updated. We abbreviate ko(h, k, s) as ko(h)
whenever it is clear from the context.

We utilize an induction approach to show that. Assume that

V k
′

Γ (s) ≤ V π
k′

Γ (s) for all (k′,Γ, s) ∈ [k − 1]× [H + 1]× S, (75a)

V kΓ (s) ≤ V π
k

Γ (s) for all Γ ≥ h+ 1 and s ∈ S. (75b)

We need to verify
V kh (s) ≤ V π

k

h (s) for all s ∈ S. (76)

Step 1: base case.

Let us begin with the base case when h+ 1 = H + 1 for all episodes k ∈ [K]. Recognizing the fact
that V πH+1 = V kH+1 = 0 for any π and any k ∈ [K], we directly arrive at

V kH+1(s) ≤ V π
k

H+1(s) for all (k, s) ∈ [K]× S. (77)

Step 2: induction. To justify equation 76 under the induction hypothesis equation 75, we decompose
the difference term to obtain

V π
k

h (s)− V kh (s) = V π
k

h (s)−max
{
max
a

Qkh(s, a), V
k−1
h (s)

}
= Qπ

k

h

(
s, πkh(s)

)
−max

{
max
a

Qkh(s, a), V
ko(h)
h (s)

}
, (78)

where the last line holds since Vh(s) has not been updated during episodes ko(h), ko(h)+1, · · · , k−1
(in view of the definition of ko(h) in equation 74). We shall prove that the right-hand side of
equation 78 is non-negative by discussing the following two cases separately.

Case 1. Consider the case where V kh (s) = maxaQ
k
h(s, a). Note that

πkh(s) = argmax
a

Qkh(s, a), when V kh (s) = max
a

Qkh(s, a) (79)
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holds for all (k, h) ∈ [K]× [H], Thus

V π
k

h (s)− V kh (s) = Qπ
k

h

(
s, πkh(s)

)
−max

a
Qkh(s, a)

= Qπ
k

h

(
s, πkh(s)

)
−Qkh

(
s, πkh(s)

)
. (80)

To continue, we turn to controlling a more general term Qπ
k

h (s, a)−Qkh(s, a) for all (s, a) ∈ S ×A.

Invoking the fact ηN
k
h

0 +
∑Nk

h
n=1 η

Nk
h

n = 1 (see equation 52 and equation 54) leads to

Qπ
k

h (s, a) = η
Nk

h
0 Qπ

k

h (s, a) +

Nk
h∑

n=1

η
Nk

h
n Qπ

k

h (s, a).

This relation combined with equation 102 allows us to express the difference between Qπ
k

h and Qkh
as follows

Qπ
k

h (s, a)−Qkh(s, a)

= η
Nk

h
0

(
Qπ

k

h (s, a)−Q1
h(s, a)

)
+

Nk
h∑

n=1

η
Nk

h
n

[
Qπ

k

h (s, a)− rh(s, a)− V k
n

h+1(s
kn

h+1) +Rs,aκ(V
kn

h+1) + bn

]
(a)
= η

Nk
h

0

(
Qπ

k

h (s, a)−Q1
h(s, a)

)
+

Nk
h∑

n=1

η
Nk

h
n

[
Ph,s,aV

πk

h+1 −Rs,aκ(V π
k

h+1)− V k
n

h+1(s
kn

h+1) +Rs,aκ(V
kn

h+1) + bn

]
(b)

≥
Nk

h∑
n=1

η
Nk

h
n

[
Ph,s,aV

πk

h+1 −Rs,aκ(V π
k

h+1)− V k
n

h+1(s
kn

h+1) +Rs,aκ(V
kn

h+1) + bn

]
(c)
=

Nk
h∑

n=1

η
Nk

h
n

[
σh,s,a(V

πk

h+1)− σh,s,a(V k
n

h+1) + σh,s,a(V
kn

h+1)− V k
n

h+1(s
kn

h+1) +Rs,aκ(V
kn

h+1) + bn

]
(d)

≥
Nk

h∑
n=1

η
Nk

h
n

[(
Ph,s,a − P k

n

h

)
V k

n

h+1 + bn

]
. (81)

Here, (a) invokes the robust Bellman equation Qπ
k

h (s, a) = rh(s, a) + σh,s,a(V
πk

h+1); (b) holds since
Qπ

k

h (s, a) ≥ 0 = Q1
h(s, a); (c) is from Lemma 6; and (d) comes from the fact

V π
k

h+1 ≥ V kh+1 ≥ V k
n

h+1,

owing to the induction hypothesis in equation 75 as well as the monotonicity of Vh+1 in Lemma 12.
Consequently, it follows from equation 81 that

Qπ
k

h (s, a)−Qkh(s, a)

≥
Nk

h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1 +

Nk
h (s,a)∑
n=1

η
Nk

h (s,a)
n bn

≥
Nk

h (s,a)∑
n=1

η
Nk

h (s,a)
n bn −

∣∣∣∣∣
Nk

h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣
≥ 0 (82)

for all state-action pair (s, a), where the last inequality holds due to the bound in equation 67 in
Lemma 12. Plugging the above result into equation 80 directly establishes that

V π
k

h (s)− V kh (s) = Qπ
k

h

(
s, πk(s)

)
−Qkh

(
s, πk(s)

)
≥ 0. (83)

Case 2. When V kh (s) = V
ko(h)
h (s), it indicates that

V
ko(h)
h (s) = max

a
Q
ko(h)
h (s, a), π

ko(h)
h (s) = argmax

a
Q
ko(h)
h (s, a), (84)
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which follows from the definition of ko(h) in equation 74 and the corresponding fact in equation 79.
We also make note of the fact that

πkh(s) = π
ko(h)
h (s), (85)

which holds since Vh(s) (and hence πh(s)) has not been updated during episodes ko(h), ko(h) +
1, · · · , k − 1 (in view of the definition equation 74). Combining the above two results, we can show
that

V π
k

h (s)− V kh (s) = Qπ
k

h

(
s, πkh(s)

)
− V ko(h)h (s) = Qπ

k

h

(
s, πkh(s)

)
−max

a
Q
ko(h)
h (s, a)

= Qπ
k

h

(
s, π

ko(h)
h (s)

)
−Qko(h)h

(
s, π

ko(h)
h (s)

)
≥ 0, (86)

where the final line can be verified using exactly the same argument as in the previous case to show
equation 81 and then equation 83. Here, we omit the proof of this step for brevity.

To conclude, substituting the relations equation 83 and equation 86 in the above two cases back into
equation 78, we arrive at

V π
k

h (s)− V kh (s) ≥ 0

as desired in equation 76. This immediately completes the induction argument.

Lemma 13. With probability at least 1− δ, it holds that

K∑
k=1

∑
(s,a)∈S×A

dπ
⋆

P,h(s, a)

Nk
h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
σh,s,a(V

⋆
h+1)− σh,s,a(V

knh(s,a)
h+1 )

)
(87)

≤
(
1 +

1

H

) K∑
k=1

∑
s∈S

dπ
⋆

P,h+1(s)
(
V ⋆h+1(s)− V kh+1(s)

)
+ 24

√
H2C⋆K log

2H

δ
+ 12HC⋆ log

2H

δ
.

Proof. It is sufficient to show that

Ah ≜
K∑
k=1

∑
(s,a)∈S×A

dπ
⋆

P,h(s, a)

Nk
h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
σh,s,a(V

⋆
h+1)− σh,s,a(V

knh(s,a)
h+1 )

)
︸ ︷︷ ︸

=:Ah,k

(88)

≤
K∑
k=1

(
1 +

1

H

)∑
s∈S

dπ
⋆

P,h+1(s)
(
V ⋆h+1(s)− V kh+1(s)

)
︸ ︷︷ ︸

=:Bh,k

+24

√
H2C⋆K log

2H

δ
+ 12HC⋆ log

2H

δ
.

Define two auxiliary sequences {Yh,k}Kk=1 and {Zh,k}Kk=1 which are the empirical estimates of Ah,k
and Bh,k, respectively. For any time step h in episode k, Yh,k and Zh,k are defined as follows

Yh,k :=
dπ

⋆

P,h(s
k
h, a

k
h)

dµP,h(s
k
h, a

k
h)

Nk
h (skh,a

k
h)∑

n=1

η
Nk

h (skh,a
k
h)

n

(
σh,skh,akh(V

⋆
h+1)− σh,skh,akh(V

kn(skh,a
k
h)

h+1 )
)
,

Zh,k :=

(
1 +

1

H

)
dπ

⋆

P,h(s
k
h, a

k
h)

dµP,h(s
k
h, a

k
h)

(
σh,skh,akh(V

⋆
h+1)− σh,skh,akh(V

k
h+1)

)
.

Note that

K∑
k=1

Yh,k =

K∑
k=1

dπ
⋆

P,h(s
k
h, a

k
h)

dµP,h(s
k
h, a

k
h)

Nk
h (skh,a

k
h)∑

n=1

η
Nk

h (skh,a
k
h)

n

(
σh,skh,akh(V

⋆
h+1)− σh,skh,akh(V

kn(skh,a
k
h)

h+1 )
)
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(i)
=

K∑
l=1

dπ
⋆

P,h(s
l
h, a

l
h)

dµP,h(s
l
h, a

l
h)


NK

h (slh,a
l
h)∑

N=N l
h(s

l
h,a

l
h)

ηNN l
h(s

l
h,a

l
h)

(σh,slh,alh(V ⋆h+1)− σh,slh,alh(V
l
h+1)

)
(89)

≤
(
1 +

1

H

) K∑
k=1

dπ
⋆

P,h(s
k
h, a

k
h)

dµP,h(s
k
h, a

k
h)

(
σh,skh,akh(V

⋆
h+1)− σh,skh,akh(V

k
h+1)

)
=

K∑
k=1

Zh,k. (90)

Here, (a) holds by replacing kn(skh, a
k
h) with l and gathering all terms that involve V ⋆h+1−V lh+1; in the

last line, we have invoked the property
∑NK

h (s,a)
N=n ηNn ≤

∑∞
N=n η

N
n = 1 + 1/H (see equation 57b)

together with the fact V ⋆h+1 − V lh+1 ≥ 0 (see Lemma 12), and have further replaced l with k.

With the above relation in hand, in order to verify equation 89, we further decompose Ah into several
terms

Ah =

K∑
k=1

Ah,k =

K∑
k=1

Yh,k +

K∑
k=1

(Ah,k − Yh,k)
(a)

≤
K∑
k=1

Zh,k +

K∑
k=1

(Ah,k − Yh,k)

=

K∑
k=1

Bh,k +

K∑
k=1

(Zh,k −Bh,k) +
K∑
k=1

(Ah,k − Yh,k) (91)

where (a) follows from equation 90.

As a result, it remains to control
∑K
k=1 (Zh,k −Bh,k) and

∑K
k=1 (Ah,k − Yh,k) separately in the

following.

Step 1: controlling
∑K
k=1 (Ah,k − Yh,k). We shall first control this term by means of Lemma 11.

Specifically, consider

W k
h+1(s, a) :=

Nk
h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
σh,s,a(V

⋆
h+1)− σh,s,a(V

kn(s,a)
h+1 )

)
, Cd := 1 (92)

which satisfies

∥∥W k
h+1(s, a)

∥∥
∞ ≤

Nk
h (s,a)∑
n=1

η
Nk

h (s,a)
n

(∥∥V ⋆h+1

∥∥
∞ +

∥∥∥V kn(s,a)h+1

∥∥∥
∞

)
≤ 2H =: Cw. (93)

Here, we use the fact that ηN
k
h

0 +
∑Nk

h
n=1 η

Nk
h

n = 1 (see equation 52 and equation 54). Then, applying
Lemma 11 with equation 92, we have with probability at least 1− δ, the following inequality holds
true∣∣∣∣∣
K∑
k=1

(Ah,k − Yh,k)

∣∣∣∣∣ =:
∣∣∣∣∣
K∑
k=1

Xh,k

∣∣∣∣∣
≤

√√√√ K∑
k=1

8C2
dC

⋆
∑

(s,a)∈S×A

dπ
⋆

P,h(s, a)
[
W k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

⋆Cw log
2H

δ

≤ 16

√
H2C⋆K log

2H

δ
+ 4HC⋆ log

2H

δ
, (94)

where the last inequality is from
∣∣W k

h+1(s, a)
∣∣ ≤ ∥∥V ∗

h+1 − V
kn(s,a)
h+1 ∥∞ ≤ H .

Step 2: controlling
∑K
k=1 (Zh,k −Bh,k). Similarly, we shall control

∑K
k=1 (Zh,k −Bh,k) by invok-

ing Lemma 11.

Recall that

Zh,k −Bh,k =

(
1 +

1

H

)
dπ

⋆

P,h(s
k
h, a

k
h)

dµP,h(s
k
h, a

k
h)

(
σh,skh,akh(V

⋆
h+1)− σh,skh,akh(V

k
h+1)

)
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−
(
1 +

1

H

)∑
s∈S

dπ
⋆

P,h+1(s)
(
V ⋆h+1(s)− V kh+1(s)

)
, (95)

and let us consider

W k
h+1(s, a) := σh,skh,akh(V

⋆
h+1)− σh,skh,akh(V

k
h+1), Cd :=

(
1 +

1

H

)
≤ 2 (96)

which satisfies ∥∥W k
h+1(s, a)

∥∥
∞ ≤

∥∥V ⋆h+1

∥∥
∞ +

∥∥V kh+1

∥∥
∞ ≤ 2H =: Cw. (97)

Similarly, in view of Lemma 11, we can show that with probability at least 1− δ,∣∣∣∣∣
K∑
k=1

(Bh,k − Zh,k)

∣∣∣∣∣ =
∣∣∣∣∣
K∑
k=1

Xh,k

∣∣∣∣∣
≤ 16

√
H2C⋆K log

2H

δ
+ 8HC⋆ log

2H

δ
. (98)

Step 3: putting all this together. Substitution results in equation 94 and equation 98 back into
equation 91 completes the proof of equation 89 as follows

Ah ≤
K∑
k=1

Bh,k +

∣∣∣∣ K∑
k=1

(Zh,k −Bh,k)
∣∣∣∣+ ∣∣∣∣ K∑

k=1

(Ah,k − Yh,k)
∣∣∣∣

≤
K∑
k=1

Bh,k + 24

√
H2C⋆K log

2H

δ
+ 12HC⋆ log

2H

δ
.

This hence completes the proof.

Lemma 14. Denote the term
∑K
k=1

∑
(s,a)∈S×A d

π⋆

P,h(s, a)η
Nk

h (s,a)
0 H +

2
∑K
k=1

∑
(s,a)∈S×A d

π⋆

P,h(s, a)
∑Nk

h (s,a)
n=1 η

Nk
h (s,a)

n bn by Ih. Consider any δ ∈ (0, 1). With
probability at least 1− δ, we have

H∑
h=1

(
1 +

1

H

)h−1
(
Ih + 24

√
H2C⋆K log

2H

δ
+ 12HC⋆ log

2H

δ

)
≲ H2SC⋆ι+

√
H5SC⋆Kι3, (99)

where we recall that ι := log
(
SAT
δ

)
.

Proof. The proof can be obtained by directly following the proof in (Shi et al., 2022), and is hence
omitted here.

D.3 PROOF OF THEOREM 2

We then proceed to the proof.

Theorem 15. (Restatement of Theorem 2) Consider any δ ∈ (0, 1). Suppose that the behavior policy
µ satisfies Assumption 1. There exists some universal constant ca, such that if we set ι := log

(
SAT
δ

)
and set T > SC⋆ι, then the policy π̂ returned by Algorithm 1 satisfies

V ⋆1 (ρ)− V π̂1 (ρ) ≤ ca

√
H6SC⋆ι3

T
(100)

with probability at least 1− δ.
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Proof. For any state-action pair (s, a), according to the update rule specified in Algorithm 1, we have

Qkh(s, a) = Qk
Nk

h+1
h (s, a)

=
(
1− ηNk

h

)
Qk

Nk
h

h (s, a) + ηNk
h

{
rh(s, a) + V k

Nk
h

h+1

(
sk

Nk
h

h+1

)
−Rs,aκ(V k

Nk
h

h+1 )− bNk
h

}
, (101)

where the first identity holds because kN
k
h denotes the most recent episode before k that visits (s, a) at

step h, and the learning rate is defined as in equation 51. Note that k > kN
k
h always holds. Applying

the above relation recursively and using the notation defined in equation 52, we obtain

Qkh(s, a) = η
Nk

h
0 Q1

h(s, a) +

Nk
h∑

n=1

η
Nk

h
n

(
rh(s, a) + V k

n

h+1

(
sk

n

h+1

)
−Rs,aκ(V k

n

h+1)− bn
)
. (102)

Applying Lemma 12, the optimality gap term equation 100 can be decomposed as follows

V ⋆1 (ρ)− V π̂1 (ρ)

= E
s1∼ρ

[
V ⋆1 (s1)

]
− E
s1∼ρ

[
V π

K

1 (s1)
]

(a)

≤ E
s1∼ρ

[
V ⋆1 (s1)

]
− E
s1∼ρ

[
V K1 (s1)

]
(b)

≤ 1

K

K∑
k=1

(
E

s1∼ρ

[
V ⋆1 (s1)

]
− E
s1∼ρ

[
V k1 (s1)

])

=
1

K

K∑
k=1

∑
s∈S

dπ
⋆

1 (s)
(
V ⋆1 (s)− V k1 (s)

)
, (103)

where (a) follows from Lemma 12 (i.e., V π
K

1 (s) ≥ V K1 (s) for all s ∈ S), (b) results from the
monotonicity property in Lemma 12, and the final equality holds because dπ

⋆

1 (s) = ρ(s).

We then bound the right-hand side of equation 103. Since π⋆ is a deterministic policy, dπ
⋆

P,h(s) =

dπ
⋆

P,h(s, π
⋆(s)). And from the fact that V kh (s) ≥ maxaQ

k
h(s, a) ≥ Qkh(s, π

⋆
h(s)) and V ⋆h (s) =

Q⋆h(s, π
⋆
h(s)), we have that

K∑
k=1

∑
s∈S

dπ
⋆

P,h(s)
(
V ⋆h (s)− V kh (s)

)
=

K∑
k=1

∑
s∈S

dπ
⋆

P,h(s, π
⋆
h(s))

(
V ⋆h (s)− V kh (s)

)
≤

K∑
k=1

∑
s∈S

dπ
⋆

P,h(s, π
⋆
h(s))

(
Q⋆h
(
s, π⋆h(s)

)
−Qkh

(
s, π⋆h(s)

))
=

K∑
k=1

∑
(s,a)∈S×A

dπ
⋆

P,h(s, a)
(
Q⋆h(s, a)−Qkh(s, a)

)
, (104)

for any h ∈ [H], where the last identity holds because

dπ
⋆

P,h(s, a) = 0 for any a ̸= π⋆h(s). (105)

To further bound the term Q⋆h(s, a)−Qkh(s, a) in equation 104, we first adapt equation 54 and have
that

Q⋆h(s, a) =

Nk
h∑

n=0

η
Nk

h
n Q⋆h(s, a)
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= η
Nk

h
0 Q⋆h(s, a) +

Nk
h∑

n=1

η
Nk

h
n Q⋆h(s, a)

= η
Nk

h
0 Q⋆h(s, a) +

Nk
h∑

n=1

η
Nk

h
n

(
rh(s, a) + σh,s,a(V

⋆
h+1)

)
, (106)

where the second line follows from the robust Bellman’s optimality equation. Combining equation 102
and equation 106 implies that

Q⋆h(s, a)−Qkh(s, a)

= η
Nk

h
0

(
Q⋆h(s, a)−Q1

h(s, a)
)
+

Nk
h∑

n=1

η
Nk

h
n

(
σh,s,a(V

⋆
h+1)− V k

n

h+1(s
kn

h+1) +Rs,aκ(V
kn

h+1) + bn

)
(a)
= η

Nk
h

0

(
Q⋆h(s, a)−Q1

h(s, a)
)
+

Nk
h∑

n=1

η
Nk

h
n bn +

Nk
h∑

n=1

η
Nk

h
n

(
σh,s,a(V

⋆
h+1)− σh,s,a(V k

n

h+1)
)

+

Nk
h∑

n=1

η
Nk

h
n

(
Ph,s,a − P k

n

h

)
V k

n

h+1 (107)

≤ ηN
k
h

0 H + 2

Nk
h∑

n=1

η
Nk

h
n bn +

Nk
h∑

n=1

η
Nk

h
n

(
σh,s,a(V

⋆
h+1)− σh,s,a(V k

n

h+1)
)
, (108)

where (a) is from Lemma 6 and the definition of P k
n

h V k
n

h+1 = V k
n

h+1(s
kn

h+1), and the last inequality
follows from the fact Q⋆h(s, a)−Q1

h(s, a) = Q⋆h(s, a)− 0 ≤ H and equation 67 in Lemma 12. Plug
equation 108 in equation 104, we have that

K∑
k=1

∑
s∈S

dπ
⋆

P,h(s)
(
V ⋆h (s)− V kh (s)

)

≤
K∑
k=1

∑
(s,a)∈S×A

dπ
⋆

P,h(s, a)η
Nk

h (s,a)
0 H + 2

K∑
k=1

∑
(s,a)∈S×A

dπ
⋆

P,h(s, a)

Nk
h (s,a)∑
n=1

η
Nk

h (s,a)
n bn︸ ︷︷ ︸

=: Ih

+

K∑
k=1

∑
(s,a)∈S×A

dπ
⋆

P,h(s, a)

Nk
h (s,a)∑
n=1

η
Nk

h (s,a)
n

(
σh,s,a(V

⋆
h+1)− σh,s,a(V k

n

h+1)
)
. (109)

We then bound the last term on the right-hand side of equation 109. By applying Lemma 13, it
implies that

K∑
k=1

∑
s∈S

dπ
⋆

P,h(s)
(
V ⋆h (s)− V kh (s)

)
≤
(
1 +

1

Γ

) K∑
k=1

∑
s∈S

dπ
⋆

P,h+1(s)
(
V ⋆h+1(s)− V kh+1(s)

)
+ Ih + 24

√
H2C⋆K log

2H

δ
+ 12HC⋆ log

2H

δ
. (110)

Recursively applying equation 110 over the time steps h = H,H − 1, · · · , 1 with the terminal
condition V kH+1 = V ⋆H+1 = 0 further implies that

K∑
k=1

∑
s∈S

dπ
⋆

1 (s)
(
V ⋆1 (s)− V k1 (s)

)
34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

≤ max
h∈[H]

K∑
k=1

∑
s∈S

dπ
⋆

P,h(s)
(
V ⋆h (s)− V kh (s)

)
≤

H∑
h=1

(
1 +

1

Γ

)h−1
(
Ih + 24

√
H2C⋆K log

2H

δ
+ 12HC⋆ log

2H

δ

)
. (111)

Finally, to bound the right-hand side of equation 111, we combine Lemma 14 and equation 103,
which yields

V ⋆1 (ρ)− V π̂1 (ρ)

≤ 1

K

K∑
k=1

∑
s∈S

dπ
⋆

1 (s)
(
V ⋆1 (s)− V k1 (s)

)
≤ 1

K
max
h∈[H]

K∑
k=1

∑
s∈S

dπ
⋆

P,h(s)
(
V ⋆h (s)− V kh (s)

)
≤ ca

2

√
H5SC⋆ι3

K
+
ca
2

H2SC⋆ι

K
=
ca
2

√
H6SC⋆ι3

T
+
ca
2

H3SC⋆ι

T

≤ ca

√
H6SC⋆ι3

T
(112)

for some sufficiently large constant ca > 0, where the last inequality is valid as long as T > SC⋆ι.

This hence completes the proof of Theorem 2.

E ANALYSIS OF THE INFINITE HORIZON SETTING

E.1 ALGORITHM FOR INFINITE HORIZON

Algorithm 3 Double-Pessimism Q-Learning for infinite-horizon RMDPs.

Input: D, target success probability 1− δ, uncertainty set radius R, Γ =
⌈

4
1−γ log

ST
δ

⌉
, penalty

function κ
Initialize: Q0 (s, a) = 0, V0(s) = 0, n0(s, a) = 0, ∀s, a
for t = 1, ..., T do

Sample a sample (st−1, at−1, st) from D
nt (st−1, at−1)← nt−1(st−1, at−1) + 1; nt(s, a)← nt−1(s, a), ∀(s, a) ̸= (st−1, at−1)
n← nt(s, a); ηn ← (Γ + 1)/(Γ + n)

bn ← cb

√
Γ log(SAT/δ)

n(1−γ)2

Qt (st−1, at−1) = (1− ηn)Qt−1 (st−1, at−1) + ηn

{
r (st−1, at−1) + γVt−1 (st) −

γκst−1,at−1
(Vt−1)− bn

}
Qt(s, a) = Qt−1(s, a) for all (s, a) ̸= (st−1, at−1)

Vt (st−1) = max

{
maxa∈AQt (st−1, a) , Vt−1(st−1)

}
,

Vt(s) = Vt−1(s) for all s ̸= st−1.
end for
π̂(s) = argmaxa∈AQT (s, a),∀s
Output: π̂

In this section, we present the analysis of the infinite horizon robust MDPs.
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E.2 NOTATION

The notation used in the proof for the infinite horizon setting is largely similar to that used in the
finite horizon case. For any state s ∈ S and action a ∈ A, we define:

Ps,a = P (· | s, a) ∈ R1×S

to be the (s, a)-th row of a probability transition matrix P ∈ RSA×S .

For any t ≥ 0, we define Pt ∈ RSA×S to be an empirical probability transition matrix, given by:

Pt(s
′ | s, a) =

{
1, if (s, a, s′) = (st−1, at−1, st)

0, otherwise
(113)

for all s, s′ ∈ S and a ∈ A.

For any deterministic policy π, we introduce two probability transition kernels: Pπ : S → ∆(S) and
Pπ : S ×A → ∆(S ×A), defined as follows:

Pπ(s
′ | s) = P (s′ | s, π(s)), (114a)

Pπ(s′, a′ | s, a) =
{
P (s′ | s, a), if a′ = π(s′)

0, otherwise
(114b)

for any (s, a), (s′, a′) ∈ S ×A.

Additionally, we define ρπ
⋆

to be a distribution over S ×A such that:

ρπ
⋆

(s, a) =

{
ρ(s), if a = π⋆(s)

0, otherwise
(115)

For any sequence {ai}n2
i=n1

and two integers m1 and m2, we define:

m2∑
i=m1

ai =

{∑min{n2,m2}
i=max{n1,m1} ai, if max{n1,m1} ≤ min{n2,m2}

0, otherwise

E.3 LEMMAS FOR THEOREM 3

Lemma 16. (Lemma 4.1 in (Jin et al., 2018), Lemma 1 in (Li et al., 2021)) Recall the learning rates
are

ηt0 :=

t∏
j=1

(1− ηj) and ηti :=


ηi
∏t
j=i+1 (1− ηj) , if t > i,

ηi, if t = i,

0, if t < i,

(116)

where ηj = (Γ + 1)/(Γ + j). Then

1. For any integer t ≥ 1,
∑t
i=1 η

t
i = 1 and ηt0 = 0.

2. For any integer t ≥ 1 and any 1/2 ≤ a ≤ 1,

1

ta
≤

t∑
i=1

1

ia
ηti ≤

2

ta
.

3. For any integer t ≥ 1,

max
i∈[t]

ηti ≤
2Γ

t
and

t∑
i=1

(
ηti
)2 ≤ 2Γ

t
.
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4. For any integer i ≥ 1,
∞∑
t=i

ηti = 1 +
1

Γ
.

We then present the following lemma to establish an upper bound on Q⋆ −Qt, and simultaneously
justify that the value function estimate Vt is always a pessimistic view of V πt (and hence V ⋆).
Lemma 17. With probability exceeding 1− δ, for all s ∈ S and t ∈ [T ], it holds that

Q⋆
(
s, π⋆(s)

)
−Qt

(
s, π⋆(s)

)
≤ γ

n∑
i=1

ηni
(
σs,π⋆(s)(V

⋆)− σs,π⋆(s)(Vki)
)
+ βn

(
s, π⋆(s)

)
, (117)

where n = nt(s, π
⋆(s)) and we define

βn
(
s, π⋆(s)

)
≡ βn := 3cb

√
Γι

n (1− γ)2
;

in addition, we also have

Vt(s) ≤ V πt(s) ≤ V ⋆(s), ∀s ∈ S. (118)

Proof. Proof of equation 117. Consider any given pair (s, a) ∈ S ×A and denote n = nt(s, a), the
total number of times that (s, a) has been visited prior to time t. Set k0 = −1, and let

ki := min
{{

0 ≤ k < T : k > ki−1, (sk, ak) = (s, a)
}
, T
}

(119)

for each 1 ≤ i ≤ T . Clearly, each ki is a stopping time. In view of the update rule, we have

Qt (s, a) =

n∑
i=1

ηni

{
r (s, a) + γVki (ski+1)− γκ(Vki)− bi (s, a)

}
,

which together with the robust Bellman optimality equation gives

(Q⋆ −Qt) (s, a)

= r (s, a) + γσs,a(V
⋆)−

n∑
i=1

ηni

{
r (s, a) + γVki (ski+1)− γκ(Vki)− bi (s, a)

}
= γσs,a(V

⋆)−
n∑
i=1

ηni

{
γVki (ski+1)− γκ(Vki)− bi (s, a)

}
=

n∑
i=1

ηni γ (σs,a(V
⋆)− σs,a(Vki)) +

n∑
i=1

ηni γ
((
P − Pki

)
Vki

)
(s, a) +

n∑
i=1

ηni bi (s, a) , (120)

where the last two lines are valid since
∑n
i=1 η

n
i = 1 (cf. Lemma 16) and Lemma 6.

Henceforth, we only focus on the case where a = π⋆(s). Define Fi to be the σ-field generated by
{(si, ai)}kii=0. It is straightforward to check that for any 1 ≤ τ ≤ T ,{

1ki<T
((
P − Pki

)
Vki

)(
s, π⋆(s)

)}τ
i=1

is a martingale difference sequence with respect to {Fi}i≥0. Then, we can invoke the Azuma-
Hoeffding inequality together with the basic bound ∥Vki∥∞ ≤ 1

1−γ to show that for any fixed s ∈ S
and τ ∈ [T ], ∣∣∣∣∣

τ∑
i=1

1ki<T η
τ
i

((
P − Pki

)
Vki

)(
s, π⋆(s)

)∣∣∣∣∣ ≲ 1

1− γ

√√√√ τ∑
i=1

(ητi )
2
log

ST

δ

≲

√
Γ

τ (1− γ)2
log

ST

δ
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holds with probability exceeding 1 − δ/(ST ). Here, the last line utilizes Lemma 16. Taking the
union bound over τ ≤ T allows us to replace τ with n = nt(s, a) in the above inequality, namely,
for any fixed s ∈ S and a ∈ A, with probability exceeding 1− δ/S we have∣∣∣∣∣

n∑
i=1

ηni γ
((
P − Pki

)
Vki

)(
s, π⋆(s)

)∣∣∣∣∣ ≲
√

Γι

n (1− γ)2
(121)

holds for all n = nt(s, π
⋆(s)) with 1 ≤ t ≤ T . In view of Lemma 16, for any s ∈ S and a ∈ A we

know that

cb

√
Γι

nt(s, a) (1− γ)2
≤
nt(s,a)∑
i=1

η
nt(s,a)
i bi (s, a) ≤ 2cb

√
Γι

nt(s, a) (1− γ)2
. (122)

Therefore, when cb is sufficiently large, it follows that

(Q⋆ −Qt)
(
s, π⋆(s)

)
≤ γ

n∑
i=1

ηni
(
σs,π⋆(s)(V

⋆)− σs,π⋆(s)(Vki)
)
+ 3cb

√
Γι

n (1− γ)2
.

Taking the union bound over s ∈ S and defining

βn
(
s, π⋆(s)

)
:= 3cb

√
Γι

n (1− γ)2
,

we can conclude that with probability exceeding 1− δ,

(Q⋆ −Qt)
(
s, π⋆(s)

)
≤ γ

n∑
i=1

ηni
(
σs,π⋆(s)(V

⋆)− σs,π⋆(s)(Vki)
)
+ βn

(
s, π⋆(s)

)
for all s ∈ S and t ∈ [T ].

Proof of equation 118. Note that V ⋆ ≥ V πt holds trivially due to the optimality of V ⋆. We are
therefore left with showing V πt ≥ Vt. Suppose for the moment that with probability exceeding 1− δ,
for all s ∈ S, t ∈ [T ] and j ∈ [t], it holds that

(Qπt −Qj)
(
s, πt(s)

)
≥ γ

(
σs,πt(s)(V

πt)− σs,πt(s)(Vj)
)

1
{
nt
(
s, πt(s)

)
≥ 1
}
; (123)

the proof of this claim (123) is deferred to later. As a consequence, for every s ∈ S and t ∈ [T ], there
exists j(t) ∈ [t] such that

(V πt − Vt) (s)
(a)
= Qπt

(
s, πt(s)

)
−Qj(t)

(
s, πt(s)

)
(b)
= Qπt

(
s, πt(s)

)
−Qj(t)

(
s, πj(t)(s)

)
(c)
≥ min

{
γ
(
σs,πt(s)(V

πt)− σs,πt(s)(Vj(t))
)
, 0
}

(d)
≥ min

{
γ
(
σs,πj(t)(s)(V

πt)− σs,πj(t)(s)(Vt)
)
, 0
}
.

Here, (a) and (b) hold since the update rule asserts that there must exist some j(t) ≤ t such that
Vt(s) = Vj(t)(s) = Qj(t)(s, πj(t)(s)) and πt(s) = πj(t)(s); (c) utilizes (123); and (d) follows from
the monotonicity of Vt in t (by construction). By setting

smin := argmin
s∈S

(V πt − Vt) (s) ,

we can deduce that

(V πt − Vt) (smin) ≥ min
{
γ
(
σsmin,πj(t)(smin)(V

πt)− σsmin,πj(t)(smin)(Vt)
)
, 0
}

≥ min

{
γmin
s∈S

(V πt − Vt) (s) , 0
}

= min {γ (V πt − Vt) (smin) , 0} ,
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which together with the assumption 0 < γ < 1 immediately gives
(V πt − Vt) (smin) ≥ 0.

Given that (V πt − Vt) (s) ≥ (V πt − Vt) (smin) for every s ∈ S, we conclude the proof.

Now we show equation 123. First of all, if nt
(
s, πt(s)

)
= 0, then for all j ∈ [t], Qj

(
s, πt(s)

)
= 0

since it is never updated; therefore, (123) holds true. From now on, we shall only focus on the case
when nt

(
s, πt(s)

)
≥ 1.

Consider any s ∈ S , t ∈ [T ] and j ∈ [t]. For the moment, let us define {ki}Ti=1 w.r.t. the state-action
pair

(
s, πt(s)

)
in the same way as (119). We can then repeat the argument in (120) to decompose(

Qπt −Qj
)(
s, πt(s)

)
=
(
r + γσ(V πt)

)(
s, πt(s)

)
−
nj(s,πt(s))∑

i=1

η
nj(s,πt(s))
i

{
r
(
s, πt(s)

)
+ γVki (ski+1)−Rπt(s)

s κ(V πt)− bi
(
s, πt(s)

)}

=

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i γ

{(
σs,πt(s)(V

πt)− σs,πt(s)(Vki)
)
+
((
P − Pki

)
Vki

)(
s, πt(s)

)}

+

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i bi

(
s, πt(s)

)
≥

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i

 γ min
1≤i≤n

(
σs,πt(s)(V

πt)− σs,πt(s)(Vki)
)

+

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i γ

((
P − Pki

)
Vki

)(
s, πt(s)

)
+

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i bi

(
s, πt(s)

)
≥ γ

(
σs,πt(s)(V

πt)− σs,πt(s)(Vt)
)

+

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i γ

((
P − Pki

)
Vki

)(
s, πt(s)

)
+ cb

√
Γι

nj
(
s, πt(s)

)
(1− γ)2

.

Here, the last inequality follows from (122), as well as the facts that
∑nj(s,πt(s))
i=1 η

nj(s,πt(s))
i = 1

(cf. Lemma 16) and that Vt is non-decreasing in t. It thus boils down to showing that for every s ∈ S ,
t ∈ [T ] and j ∈ [t],

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i γ

((
P − Pki

)
Vki

)(
s, πt(s)

)
≲

√
Γι

nj
(
s, πt(s)

)
(1− γ)2

. (124)

If this were true and if cb is sufficiently large, then we could combine the above two inequalities to
conclude the proof of (123).

We then prove the inequality equation 124. Notice that for all (s, πt(s)) such that nt(s, πt(s)) ≥ 1, it
must appear at least once in the sample trajectory. Therefore it suffices to show that for all 0 ≤ l < T
and t ∈ [T ], it holds that

nt(sl,al)∑
i=1

η
nt(sl,al)
i γ

((
P − Pki

)
Vki

)
(sl, al) ≲

√
Γι

nt(sl, al) (1− γ)2
,

where we abuse the notation by defining {ki}Ti=1 for the state-action pair (sl, al) in the same way as
(119). Furthermore, it suffices to only check those (sl, al) in the sample trajectory that were visited
for the first time, i.e., nl(sl, al) = 0 and nl+1(sl, al) = 1. It is straightforward to check that, for any
1 ≤ τ ≤ T , {

1ki<T
((
P − Pki

)
Vki

)
(sl, al)

}τ
i=1
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is a martingale difference sequence with respect to {Fi}i≥0, where Fi is the σ-field generated by
{(si, ai)}kii=0. Then, we can invoke the Azuma-Hoeffding inequality to show that: for any such
(sl, al) and any τ ∈ [T ], with probability exceeding 1− δ/T 2,∣∣∣∣∣

τ∑
i=1

1ki<T η
τ
i

((
P − Pki

)
Vki

)
(sl, al)

∣∣∣∣∣ ≲ 1

1− γ

√√√√ τ∑
i=1

(ητi )
2
log

T

δ
≲

√
Γι

τ (1− γ)2
.

Taking the union bound over τ ∈ [T ] allows us to replace τ with nt(sl, al) in the above inequality,
namely, this shows that for any such (sl, al), with probability exceeding 1− δ/T we have∣∣∣∣∣∣

nt(sl,al)∑
i=1

η
nt(sl,al)
i

((
P − Pki

)
Vki

)
(sl, al)

∣∣∣∣∣∣ ≲
√

Γι

nt(sl, al) (1− γ)2

for all t ∈ [T ]. Taking the union bound over all such (sl, al) (which are concerned with at most T
pairs), we see that with probability exceeding 1− δ,∣∣∣∣∣∣

nt(sl,al)∑
i=1

η
nt(sl,al)
i

((
P − Pki

)
Vki

)
(sl, al)

∣∣∣∣∣∣ ≲
√

Γι

nt(sl, al) (1− γ)2

is valid for any 0 ≤ j < T and any t ∈ [T ]. This establishes the inequality equation 124, thus
concluding the proof.

Next, we define two disjoint sets of state-action pairs, divided based on the associated occupancy
probability induced by the behavior policy:

I :=

{(
s, π⋆(s)

)
| s ∈ S, µb

(
s, π⋆(s)

)
≥ δ

ST

}
, (125a)

Ic :=
{(
s, π⋆(s)

)
| s ∈ S, µb

(
s, π⋆(s)

)
<

δ

ST

}
. (125b)

It turns out that the state-action pairs in Ic are rarely visited, as formalized by the following lemma.

Lemma 18. (Lemma 3 in (Yan et al., 2022))With probability exceeding 1− δ, we have

Ic ∩
{
(st, at)

}T
t=tmix(δ)

= ∅.

Lemma 19. (Lemma 5 in (Yan et al., 2022)) We can construct an auxiliary set of random variables{(
sik, a

i
k

)
: 1 ≤ k ≤ K − 1

}
satisfying{ (

sik, a
i
k

)
: 1 ≤ k ≤ K − 1

} i.i.d.∼ µb, (126a)

P
{(
sik, a

i
k

)
= (skτ+i, akτ+i) for all 1 ≤ k ≤ K − 1

}
≥ 1− δ

T
, (126b)

and (
sik, a

i
k

)
is independent of

{
(st, at) : 0 ≤ t ≤ (k − 1) τ + i

}
. (126c)

Lemma 20. (Lemma 4 in (Yan et al., 2022)) Let Γ =
⌈

4
1−γ log

ST
δ

⌉
for some 0 < δ < 1. For any

vector with non-negative entries V ∈ Rd , we have

∞∑
j=0

[
γ

(
1 +

1

Γ

)3
]j 〈

ρ(Pπ⋆)j , V
〉
≲

1

1− γ
〈
d⋆ρ, V

〉
+

δ

ST 4 (1− γ)
∥V ∥∞ . (127)
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E.4 PROOF OF THEOREM 3

Following (Yan et al., 2022), we similarly define the following terms first:

αj :=

[
γ

(
1 +

1

Γ

)3
]j T∑

t=1

〈
ρ(Pπ⋆)j , V ⋆ − Vt

〉
,

θj :=

[
γ

(
1 +

1

Γ

)3
]j T∑

t=1

∑
s∈S

[
ρ(Pπ⋆)j

] (
s, π⋆(s)

)
min

{
βnt(s,π⋆(s))

(
s, π⋆(s)

)
,

1

1− γ

}
,

ξj :=

[
γ

(
1 +

1

Γ

)3
]j tmix(δ)∑

t=1

〈
ρ(Pπ⋆)j , V ⋆ − Vt

〉
+

[
γ

(
1 +

1

Γ

)3
]j+1 〈

ρ(Pπ⋆)j+1, V ⋆ − V0
〉
,

ψj :=

[
γ

(
1 +

1

Γ

)3
]j T∑

t=tmix(δ)

[ ∑
s∈S,a∈A

[
ρπ

⋆

(Pπ
⋆

)j
]
(s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,a

(
V ⋆ − Vki(s,a)

)

−
(
1 +

1

Γ

) [
ρπ

⋆

(Pπ
⋆

)j
]
(st, at)

µb (st, at)

nt(st,at)∑
i=1

η
nt(st,at)
i Pst,at

(
V ⋆ − Vki(st,at)

)]
,

ϕj := γj+1

(
1 +

1

Γ

)3j+2 T∑
t=0

1(st,at)∈I

[[
ρπ

⋆

(Pπ
⋆

)j
]
(st, at)

µb (st, at)
Pst,at (V

⋆ − Vt)

−
(
1 +

1

Γ

) ∑
s∈S,a∈A

[
ρπ

⋆

(Pπ
⋆

)j
]
(s, a)Ps,a (V

⋆ − Vt)

]
,

where we recall the definition of I in equation 125.

We then proceed to the proof.

Theorem 21. (Restatement of Theorem 3) Consider any δ ∈ (0, 1). Suppose that the behavior policy
µ satisfies Assumption 2. The policy π̂ returned by Algorithm 3 satisfies

V ⋆ (ρ)− V π̂ (ρ) ≤ Õ

(√
C⋆S

T (1− γ)5
+

C⋆S

T (1− γ)2
+

C⋆

T (1− γ)3

)
. (128)

with probability at least 1− δ.

Proof. Note that

V ⋆ (ρ)− V π̂ (ρ) =
〈
ρ, V ⋆ − V π̂

〉 (a)
≤ ⟨ρ, V ⋆ − VT ⟩

(b)
≤ 1

T

T∑
t=1

⟨ρ, V ⋆ − Vt⟩
(c)
=

1

T
α0. (129)

Here, (a) holds true according to Lemma 17; (b) follows from the monotonicity of Vt in t (by
construction); and (c) follows simply from the definition of α0. We then turn attention to bounding
α0, towards which we observe that

α0 =

tmix(δ)−1∑
t=1

⟨ρ, V ⋆ − Vt⟩+
T∑

t=tmix(δ)

∑
s∈S

ρ (s)min

{
Q⋆
(
s, π⋆(s)

)
− Vt(s),

1

1− γ

}

≤
tmix(δ)−1∑
t=1

⟨ρ, V ⋆ − Vt⟩+
T∑

t=tmix(δ)

∑
s∈S

ρ (s)min

{
Q⋆
(
s, π⋆(s)

)
−Qt

(
s, π⋆(s)

)
,

1

1− γ

}

≤
tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ γ

T∑
t=tmix(δ)

∑
s∈S

ρ (s)

nt(s,π
⋆(s))∑

i=1

η
nt(s,π

⋆(s))
i

(
σs,π⋆(s)(V

⋆)− σs,π⋆(s)(Vki)
)

︸ ︷︷ ︸
=: ζ
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+

T∑
t=1

∑
s∈S

ρ (s)min

{
βnt(s,π⋆(s))

(
s, π⋆(s)

)
,

1

1− γ

}
︸ ︷︷ ︸

=:
θ0

1+R

.

Here, the first identity holds since V ⋆(s) = Q⋆
(
s, π⋆(s)

)
and 0 ≤ V ⋆(s)− Vt(s) ≤ 1/(1− γ) for

all s ∈ S, the second line relies on the fact that Vt(s) ≥ maxaQt(s, a) ≥ Qt(s, π
⋆(s)), while the

last line invokes Lemma 17. With probability exceeding 1− δ, the first term ζ can be upper bounded
by

ζ ≤ γ
T∑

t=tmix(δ)

∑
s∈S

ρ (s)

nt(s,π
⋆(s))∑

i=1

η
nt(s,π

⋆(s))
i

(
σs,π⋆(s)(V

⋆)− σs,π⋆(s)(Vki)
)

= γ

T∑
t=tmix(δ)

∑
s∈S,a∈A

µb (s, a)
ρπ

⋆

(s, a)

µb (s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,π⋆(s) (V

⋆ − Vki)

− γ
T∑

t=tmix(δ)

∑
s∈S,a∈A

µb (s, a)
ρπ

⋆

(s, a)

µb (s, a)
Rs,a

nt(s,a)∑
i=1

η
nt(s,a)
i (κ(V ⋆)− κ(Vki))

≤ γ
T∑

t=tmix(δ)

∑
s∈S,a∈A

µb (s, a)
ρπ

⋆

(s, a)

µb (s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,π⋆(s) (V

⋆ − Vki)

+ 2γ

T∑
t=tmix(δ)

∑
s∈S,a∈A

µb (s, a)
ρπ

⋆

(s, a)

µb (s, a)
Rs,a

nt(s,a)∑
i=1

η
nt(s,a)
i (V ⋆ − Vki) ,

where we utilize the fact that V ∗ ≥ Vki and κ is 1-Lipschitz. Hence we further have that
α0

≤ (1 +R)γ

T∑
t=tmix(δ)

∑
s∈S,a∈A

µb (s, a)
ρπ

⋆

(s, a)

µb (s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,π⋆(s) (V

⋆ − Vki)

+ (1 +R)

tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ θ0

(a)
≤ γ(1 +R)

(
1 +

1

Γ

) T∑
t=tmix(δ)

1{(st, at) ∈ I}
ρπ

⋆

(st, at)

µb (st, at)

nt(st,at)∑
i=1

η
nt(st,at)
i Pst,at

(
V ⋆ − Vki(st,at)

)
+ ψ0

+ (1 +R)

tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ θ0

(b)
≍ γ

(
1 +

1

Γ

) T∑
t=tmix(δ)

1{(st, at) ∈ I}
ρπ

⋆

(st, at)

µb (st, at)

 nT (st,at)∑
j=nt(st,at)

ηjnt(st,at)

Pst,at (V
⋆ − Vt) + ψ0

+ (1 +R)

tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ θ0

(c)
≤ γ

(
1 +

1

Γ

)2 T∑
t=0

1{(st, at) ∈ I}
ρπ

⋆

(st, at)

µb (st, at)
Pst,at (V

⋆ − Vt) + ψ0

+ (1 +R)

tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ θ0

= γ

(
1 +

1

Γ

)3 T∑
t=0

∑
s∈S,a∈A

ρπ
⋆

(s, a)Ps,a (V
⋆ − Vt) + ψ0 + ϕ0 + (1 +R)

tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ θ0
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= γ

(
1 +

1

Γ

)3 T∑
t=0

⟨ρPπ⋆ , V ⋆ − Vt⟩+ ψ0 + ϕ0 + (1 +R)

tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ θ0

≤ α1 + ψ0 + ϕ0 + γ

(
1 +

1

Γ

)3

⟨ρPπ⋆ , V ⋆ − V0⟩+ (1 +R)

tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ θ0,

where we remind the reader of our notation ρπ
⋆

in equation 115. Here, (a) is valid (i.e.,
ρ(st, at)/µb(s, a) is well defined for t ≥ tmix(δ)) due to Lemma 18; (b) holds by grouping the
terms in the previous line; and (c) utilizes Lemma 16 and the property that V ⋆ ≥ Vt (cf. Lemma 17).
Therefore, we arrive at

α0 ≤
tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ ζ + θ0

≤ (1 +R)

tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ α1 + ψ0 + ϕ0 + γ

(
1 +

1

Γ

)3

⟨ρPπ⋆ , V ⋆ − V0⟩+ θ0

= α1 + ξ0 + θ0 + ψ0 + ϕ0,

where we have used the definition of ξ0. Repeat the same argument to reach

αj ≤ αj+1 + ξj + θj + ψj + ϕj

for all j ≥ 1. This in turn allows us to conclude that

α0 ≤ lim sup
j→∞

αj︸ ︷︷ ︸
=:α

+

∞∑
j=0

ξj︸ ︷︷ ︸
=: ξ

+

∞∑
j=0

θj︸ ︷︷ ︸
=: θ

+

∞∑
j=0

ψj︸ ︷︷ ︸
=:ψ

+

∞∑
j=0

ϕj︸ ︷︷ ︸
=:ϕ

. (130)

We will then bound the terms α, ξ, θ, ψ and ϕ separately in the subsequent steps. Our proofs are
similar to the ones in (Yan et al., 2022), hence we omit the repeated part.

Bounding α. The bound is similar to (Yan et al., 2022). It is first observed that

α = lim sup
j→∞

[
γ

(
1 +

1

Γ

)3
]j T∑

t=1

〈
ρ(Pπ⋆)j , V ⋆ − Vt

〉
≤ T

1− γ
lim sup
k→∞

[
γ

(
1 +

1

Γ

)3
]k

=0.

Bounding ξ.

By utilizing (127), it holds that

ξ =

tmix(δ)∑
t=1


∞∑
j=0

[
γ

(
1 +

1

Γ

)3
]j 〈

ρP jπ⋆ , V ⋆ − Vt
〉+

∞∑
j=0

[
γ

(
1 +

1

Γ

)3
]j+1 〈

ρ(Pπ⋆)j+1, V ⋆ − V0
〉

≲
1

1− γ

tmix(δ)∑
t=0

〈
d⋆ρ, V

⋆ − Vt
〉
+

1

ST 4 (1− γ)
tmix(δ) + 1

1− γ

≲
tmix

(1− γ)2
log

1

δ
+

tmix

T 4 (1− γ)2
log

1

δ
.

Bounding θ. Following (Yan et al., 2022), we have that Note that

θ =

∞∑
j=0

[
γ

(
1 +

1

Γ

)3
]j T∑

t=1

∑
s∈S

[
ρ(Pπ⋆)j

]
(s)min

{
βnt(s,π⋆(s)),

1

1− γ

}

≲
C⋆Stmixι

(1− γ)2
+

√
C⋆STι2

(1− γ)5
.
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Bounding ψ. Note that

ψ =

∞∑
j=0

γ

[
γ

(
1 +

1

Γ

)3
]j T∑

t=tmix(δ)

[ ∑
s∈S,a∈A

[
ρπ

⋆

(Pπ
⋆

)j
]
(s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,a

(
V ⋆ − Vki(s,a)

)

−
(
1 +

1

Γ

) [
ρπ

⋆

(Pπ
⋆

)j
]
(st, at)

µb (st, at)

nt(st,at)∑
i=1

η
nt(st,at)
i Pst,at

(
V ⋆ − Vki(st,at)

)]

=

T∑
t=tmix(δ)

[ ∑
s∈S,a∈A

d̃ (s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,a

(
V ⋆ − Vki(s,a)

)

−
(
1 +

1

Γ

)
d̃ (st, at)

µb (st, at)

nt(st,at)∑
i=1

η
nt(st,at)
i Pst,at

(
V ⋆ − Vki(st,at)

)]
.

Here,

d̃ (s, a) :=

∞∑
j=0

γ

[
γ

(
1 +

1

Γ

)3
]j [

ρπ
⋆

(Pπ
⋆

)j
]
(s, a)

for any (s, a) ∈ S ×A. Note that this equation exactly matches with Step 2.4 in (Yan et al., 2022),
hence the remaining proof similarly follows, and is omitted here. Specifically, we have that

ψ ≲
C⋆tmixι

(1− γ)3
log2

(
T

δ

)
+
C⋆Stmix

(1− γ)2
log

(
T

δ

)
.

Bounding ϕ. Similar to (Yan et al., 2022), we can employ an analogous argument to show that ϕ can
be bounded as

ϕ ≲
C⋆tmixι

(1− γ)3
log2

(
T

δ

)
+
C⋆Stmix

(1− γ)2
log

(
T

δ

)
.

Now, plugging the bounds on α, θ, ψ and ϕ further implies that

α0 ≤ α+ ξ + θ + ψ + ϕ

≲

√
C⋆STι2

(1− γ)5
+
C⋆Stmixι

(1− γ)2
+

C⋆tmixι

(1− γ)3
log2

(
T

δ

)
.

We then invoke equation 129 to conclude that

V ⋆ (ρ)− V π̂ (ρ) ≤ α0

T
≲

√
C⋆Sι2

T (1− γ)5
+

C⋆Stmixι

T (1− γ)2
+

C⋆tmixι
2

T (1− γ)3
.

This hence completes the proof.

44


	Introduction
	Preliminaries
	Finite-Horizon Markov Decision Process (MDP)
	Infinite-Horizon MDP
	Robust MDP

	Formulation: Enhancing Robustness and Scalability
	Finite-Horizon
	Infinite-Horizon

	Double-Pessimism principle
	Double-Pessimism Q-Learning for Finite-Horizon MDPs
	Double-Pessimism Q-Learning for Infinite-Horizon MDPs
	Related work
	Comparison with prior arts
	Other related works

	Experiments
	Simulation MDPs
	Classic Control problems

	Conclusion
	Experimental Setup of sec:main exp
	Garnet Problems
	Classic Control Problems

	Additional Experiment Results
	Comparisons in Tabular Environments
	Scalable Algorithm with Function Approximation: Double-Pessimism CQL
	Ablation Experiments

	Further Discussion of 
	A Universal construction of 
	Case Study: l-norm Uncertainty set
	Case Study: 2 uncertainty set

	Analysis of the finite horizon setting
	Notation
	Lemmas for thm:lcb
	Proof of thm:lcb

	Analysis of the infinite horizon setting
	Algorithm for infinite horizon
	Notation
	Lemmas for thm:lcb-inf
	Proof of thm:lcb-inf


