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ABSTRACT

Continual learning seeks to train a single network for multiple tasks (one after
another), where training data for each task is only available during the training of
that task. Neural networks tend to forget older tasks when they are trained for the
newer tasks; this property is often known as catastrophic forgetting. To address
this issue, continual learning methods use episodic memory, parameter regular-
ization, masking and pruning, or extensible network structures. In this paper, we
propose a new continual learning framework based on low-rank factorization. In
particular, we represent the network weights for each layer as a linear combination
of several low-rank (or rank-1) matrices. To update the network for a new task,
we learn a low-rank (or rank-1) matrix and add that to the weights of every layer.
We also introduce an additional selector vector that assigns different weights to
the low-rank matrices learned for the previous tasks. We show that our approach
performs better than the current state-of-the-art methods in terms of accuracy and
forgetting. Our method also offers better memory efficiency compared to episodic
memory-based approaches.

1 INTRODUCTION

Deep neural networks have been extremely successful for a variety of learning and representation
tasks (e.g., image classification, object detection/segmentation, reinforcement learning, generative
models). A typical network is trained to learn a function that maps input to the desired output. The
input-output relation is assumed to be fixed and input-output data samples are drawn from a sta-
tionary distribution Parisi et al. (2019). If the input-output relations or data distributions change, the
network can be retrained using a new set of input-output data samples. Since the storage, computing,
and network capacity are limited, we may need to replace old data samples with new samples. Fur-
thermore, privacy concerns may also force data samples to be available for a limited time Delange
et al. (2021); Parisi et al. (2019). In such a training process, a network often forgets the previously
learned tasks; this effect is termed catastrophic forgetting McCloskey & Cohen (1989); Ratcliff
(1990).

Continual learning or lifelong learning approaches aim to address the problem of catastrophic for-
getting by adapting the network or training process to learn new tasks without forgetting the pre-
viously learned ones Nguyen et al. (2018); Li & Hoiem (2017); Aljundi et al. (2017; 2018; 2019);
Chaudhry et al. (2018); Riemer et al. (2019); Rolnick et al. (2019); Farajtabar et al. (2020). In this
paper, we focus on task-incremental continual learning in which data for every task are provided in
a sequential manner to train/update the network Chaudhry et al. (2019a). Let us denote the network
function that maps input x to output for task t as f(x;Wt), whereWt denotes the network weights
for task t. We seek to update theWt for all t as we sequentially receive dataset for one task at a time.
Suppose the training dataset for task t is given as (Xt,Yt) drawn from a distribution Pt, where Xt

denotes the set of input samples and Yt denotes the corresponding ground-truth outputs. Our goal is
to update network weights form the previous task (Wt−1) toWt such that

y ≈ f(x;Wt), for all (x, y) ∼ Pt. (1)

The setup above assumes that the task identity of test samples is known at the test time and the
corresponding network weights are used for inference. This is in contrast to a more challenging case
where we may need to identify the task along with the label Wortsman et al. (2020). Furthermore,
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Figure 1: An overview of our proposed method for continual learning via low-rank network updates. We first
represent (and learn) the weight matrix (or tensor) for each layer as a product of low-rank matrices. To train a
network for new tasks without forgetting the earlier tasks, we reuse the factors from the earlier tasks and add
a new set of factors for the new task. Our experiments suggest that a rank-one update is often sufficient for
successful continual learning.

using Wt for testing data for task t every time ensures zero forgetting; however, this also requires
storing the Wt for all the tasks. One of the main contributions of this paper is to represent, learn,
and update the Wt using low-rank factors such that they can be stored and applied with minimal
memory and computation overhead.

We propose a new method for continual learning that updates network weights using rank-one (or
low-rank) increments. Figure 1 provides an illustration of our proposed method. We represent the
network weights for each layer as a linear combination of several low-rank factors (which can be
represented as a product of two low-rank matrices and a diagonal matrix). To update the network for
task t without forgetting the earlier tasks, we freeze the low-rank factors learned from the previous
tasks, add a new trainable rank-1 (or low-rank) factor for every layer, and combine that with the
older factors using learnable selector weights (shown as a diagonal matrix). We use a multi-head
configuration that has an independent output layer for each task. We present an extensive set of ex-
periments to demonstrate the performance of our proposed method for different benchmark datasets.
We observe that our proposed method outperforms the current state-of-the-art methods in terms of
accuracy with small memory overhead.

The main contributions of this paper are as follows.

1. Represent layers as low-rank matrices: We represent and learn network weights for each
layer as a low-rank structure. We show that low-rank structure is sufficient to represent all
the tasks in continual learning setup.

2. Reuse old factors for better performance with a small memory overhead: We limit
the number of parameters required for network update by reusing the factors learned from
previous tasks. We demonstrate that a rank-1 increment suffices to outperform the existing
techniques.

3. Zero forgetting without replay buffer: Our method has zero forgetting that is achieved
using incremental rank update or network weights. In contrast, most of the existing con-
tinual learning techniques require replay buffer or large memory overhead to achieve zero
forgetting.

Limitations. Our approach has a few limitations. Since we use all the previously learned factors
for inference, the later tasks require more memory and computation for inference. Nevertheless,
we show that using low-rank structure, our total memory requirement is much lower than a single
network. Our method also requires the knowledge of task identity at the time of inference.
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2 BACKGROUND AND RELATED WORK

Continual learning Delange et al. (2021) or lifelong learning Silver & Mercer (2002) aims to train
a single model on a sequence of different tasks and perform well on all the trained tasks once
the training is finished. While training on new tasks, the old data from previous tasks will not
be provided to the model. This scenario mimics the human learning process where they have the
ability to acquire new knowledge and skills throughout their lifespan. However, this setting is still
challenging to neural network models as a common phenomenon called ”catastrophic forgetting
McCloskey & Cohen (1989)” is observed during this learning process, where the data from the new
tasks interfere with the data seen in the previous tasks and thus deteriorating model performance on
preceding tasks. To overcome this issue, different approaches have been proposed so far which can
be divided into three main categories: regularization-based approaches, memory and replay-based
approaches, and dynamic network architecture-based approaches.

Regularization-based approaches Kirkpatrick et al. (2017); Nguyen et al. (2018); Li & Hoiem
(2017) update the whole model in each task but a regularization term `reg is added to the total
loss L = `current + λ`reg to penalize changes in the parameters important to preceding tasks thus
preserving the performance on previous learned tasks. For example, Elastic Weight Consolidation
(EWC) Kirkpatrick et al. (2017) estimates the importance of parameters using Fisher Information
matrix; Variational Continual Learning (VCL) Nguyen et al. (2018) approximates the posterior dis-
tribution of the parameters using variational inference; Learning without Forgetting (LwF) Li &
Hoiem (2017) regularizes the current loss with soft targets taken from previous tasks using knowl-
edge distillation Hinton et al. (2014).

Memory-based approaches Rebuffi et al. (2017); Riemer et al. (2019); Chaudhry et al. (2019a;b);
Tang et al. (2021) usually use memory and replay mechanism to recall a small episodic memory
of previous tasks while training new tasks thus reduce the loss in the previous tasks. For example,
iCaRL Rebuffi et al. (2017) is the first replay method, which learns in a class-incremental way by
selecting and storing exemplars closest to the feature mean of each class; Meta-Experience Replay
(MER) Riemer et al. (2019) combines experience replay with optimization-based meta-learning to
optimize the symmetric trade-off between transfer and interference by enforcing gradient alignment
across examples; AGEM Chaudhry et al. (2019a) projects the gradient on the current minibatch
by using an external episodic memory of patterns from previous experiences as an optimization
constraint; ER-Ring Chaudhry et al. (2019b) jointly trains new task data with that of the previous
tasks.

Dynamic network architecture Rusu et al. (2016); Mallya & Lazebnik (2018); Wortsman et al.
(2020); Wen et al. (2020); Serra et al. (2018); Chaudhry et al. (2020); Yoon et al. (2018) try to
add new neurons to the model at additional new tasks, thus the performances on previous tasks are
preserved by freezing the old parameters and only updating the newly added parameters. For ex-
ample, Progressive neural networks (PNNs) Rusu et al. (2016) leverage prior knowledge via lateral
connections to previously learned features; PackNet Mallya & Lazebnik (2018) iteratively assigns
parameter subsets to consecutive tasks by constituting binary masks. SupSup Wortsman et al. (2020)
also finds masks in order to assign different subsets of the weights for different tasks. BatchEnsem-
ble Wen et al. (2020) learns on separate rank-1 scaling matrices for each task which are then used to
scale weights of the shared network. HAT Serra et al. (2018) incorporates task-specific embeddings
for attention masking. ORTHOG-SUBSPACE Chaudhry et al. (2020) learn tasks in different (low-
rank) vector sub-spaces that are kept orthogonal to each other in order to minimize interference.

Our proposed method falls under the category of dynamic network architecture approaches. Note
that we can represent a low-rank weight matrix using two smaller fully-connected layers and in-
creasing the rank of the weight matrix is equivalent to adding new nodes in the two smaller fully-
connected layers.

3 CONTINUAL LEARNING VIA RANK INCREMENT

We focus on the continual learning setup in which we seek to train a network for T tasks. The main
difference between continual learning and regular learning is that the training data for every task is
only available while training the network for that task. The main challenge in continual learning is
to not forget the previous tasks as we learn new tasks. Learning each task entails training weights for
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the network to learn the task-specific input-output relationship using the task-specific training data.
We represent the training data for task t as (Xt,Yt) drawn from distribution Pt. We represent the
network function for task t as f(x;Wt), whereWt denote the network weights we have to learn for
task t. We seek to develop a continual learning framework in which we represent the weights of any
layer using a small number of low-rank factors. We initialize the network with a base architecture in
which weights for each layer can be represented using a low-rank matrix. We then add new low-rank
factors to each layer as we learn new tasks.

Let us assume the network has K layers and the weights for the kth layer and task t can be rep-
resented as Wk,t. Let us further assume that the weights for the kth layer and task t = 1 can be
represented as a low-rank matrix

Wk,1 = Uk,1Sk,1,1V
>
k,1, (2)

where Uk,1, Vk,1 represent two low-rank matrices and Sk,1,1 represents a diagonal matrix. To learn
the network for task 1, we learn Uk,1, Vk,1, Sk,1,1 for all k. For task 2, we represent the weights for
kth layer as

Wk,2 = Uk,1Sk,1,2V
>
k,1 + Uk,2Sk,2,2V

>
k,2.

Uk,1, Vk,1 represent the two low-rank matrices learned for task 1 and frozen afterwards. Uk,2, Vk,2
represent two low-rank matrices that are added to update the weights, and these will be learned
for task 2. Sk,1,2, Sk,2,2 represent the diagonal matrices, which will be learned for task 2. We
learn Sk,1,2, which is a diagonal matrix that assigns weights to factors corresponding to task 1,
to include/exclude or favor/suppress frozen factors from previous tasks for the new tasks. We can
represent the weights for the kth layer and task t as

Wlayer,task =Wk,t =
∑
i≤t

Uk,iSk,i,tV
>
k,i =

∑
i<t

Uk,i︸︷︷︸
frozen

Sk,i,tV
>
k,i︸︷︷︸

frozen

+ Uk,tSk,t,tV
>
k,t, (3)

where Uk,i, Vk,i are frozen for all i < t and Uk,t, Vk,t and all the Sk,i,t are learned for task t. The
entire network for task t can be represented asWt = {Uk,i, Sk,i,t, Vk,i}i≤t. To update the trainable
network parameters for task t, we solve the following optimization problem:

min
Uk,t,Sk,i,t,Vk,t

∑
(x,y)∈(Xt,Yt)

loss(f(x;Wt[Uk,t, Sk,i,t, Vk,t], y) k ≤ K; i ≤ t, (4)

where we use loss(·, ·) to denote the loss function andWt[Uk,t, Sk,i,t, Vk,t] to indicate the trainable
parameters inWt, while the rest are frozen. We sometimes call Sk,i,t a selector weight matrix/vector
to indicate that its diagonal entries determine the contribution of each factor toward each task/layer
weights.

Our proposed continual learning algorithm works as follows. We train the low-rank factors for the
given task using the respective training samples. Then we freeze the factors corresponding to the
older tasks and only update the new factors and the diagonal matrices. In this manner, the total
number of parameters we add in our model is linearly proportional to the rank of the new factors.
To keep the complexity of the network small, we seek to achieve good accuracy using small rank for
each task update and layer. We summarize our approach in Algorithms 1 and 2.

Note that we do not need to create the weight matrix Wk,t for any layer explicitly since we can
compute all the steps in forward and backward propagation efficiently using the factorized form of
each layer. The size of each layer is determined by the choice of the network architecture. The rank
of each layer for every task is a hyper-parameter that we can select according to the tasks at hand.
To keep the memory overhead small, we need to use small values for rank increment. Let us denote
the rank for Uk,t as rk,t, which represents the increment rank for kth layer and task t. At the time of
test, we can use an appropriate number of factors depending on the task. For instance, if we want to
predict output for task 1 then we use first rk,1 factors and for task 2 we use rk,1 + rk,2 factors. We
can add new factors in an incremental manner as we add new tasks in the continual learning setup.
In the extreme case of rank-1 increments, rk,t = 1. In our experiments, we observed that rank-1
updates compete or exceed the performance of existing continual learning methods (see Table 1) and
the performance of our method improves further as we increase the rank (see Table 4). Any increase
in the rank comes at the expense of an increased memory overhead.
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Algorithm 1 Continual learning with low-rank increments (Training)

Input: Data (X1 and Y1) for the 1st task.
Set initial rank, r1.
Initialize weight matrix factors Uk,1, Vk,1 at random and Sk,1,1 = 1.
Learn Uk,1, Vk,1 and Sk,1,1. . Optimization in equation 4
for t = 2, 3, ..., T do

Input: Training data (Xt and Yt) for tth task.
Initialize low-rank update factors Uk,t, Vk,t.
Freeze the previous factors {Uk,i, Vk,i}i<t.
Initialize the diagonal entries of {Sk,i,t} as 1 for i = t and 0 for i < t.
Learn Uk,t, Vk,t and Sk,i,t for all k, i < t. . Optimization in equation 4

end for

Algorithm 2 Continual learning with low-rank increments (Testing)

Input: Test data x with task identity t.
Retrieve trained weights: Wt = {Uk,i, Vk,i, Sk,i,t} for all k and i ≤ t.
Output: Calculate the network output as f(x,Wt).

4 EXPERIMENTS AND RESULTS

We used different classification tasks on well known continual learning benchmarks to show the
significance of our proposed approach.

4.1 DATASETS AND TASK DESCRIPTION

Experiments are conducted on five datasets: Split CIFAR100, Split MNIST, Permuted MNIST,
Rotated MNIST, and Split MiniImageNet.
S-MNIST partitions the original MNIST dataset into 5 different 2-way classification tasks, each
containing consecutive classes from the original dataset.
P-MNIST creates new tasks by applying a certain random permutation on the pixels of all images
in the original dataset. In our experiment, we generate 20 different tasks, each of which corresponds
to a certain but different permutation.
R-MNIST is similar to Permuted MNIST, but instead of applying a certain random permutation on
the pixels, it applies a certain random rotation to the images in the same tasks. We create 20 different
tasks, each corresponds to a certain but different version of rotation from [0, 180] degree interval.
S-CIFAR100 splits the original CIFAR-100 dataset into 20 disjoint sets, each of which, containing
5 classes, is considered as a separate task. The 5 classes in each task is randomly chosen without
replacement from the total 100 classes.
S-miniImageNet splits a subset of Imagenet dataset into 20 disjoint sets, each of which, containing
5 classes, is considered as a separate task. The 5 classes in each task is randomly chosen without
replacement from the total 100 classes.

4.2 TRAINING DETAILS

Network. We used a three layer fully-connected network with 256-node hidden layers, similar to
the network in Chaudhry et al. (2020). We flattened multi-dimensional input image to a 1D vector
input. We used ReLU activation for all the layers except the last one. We used sigmoid activation in
the last layer for binary classification (S-MNIST) and Softmax for the muticlass classification tasks.
We used the same fully connected network for all the tasks with necessary modifications for input
and output sizes. Our approach can be used in convolutional networks as well. We report the results
using ResNet18 with our approach on S-CIFAR100 dataset in Table 6 (in the appendix).

Factorization. We used the matrix factorization defined in equation 3 in all our experiments. We
used the same initial rank or rank increment for all the layers except the last layer.
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Rank selection. We empirically selected the rank for the first task,rk,1 as 11 based on the experi-
ments on a sample Rotated MNIST task and kept the same value for all the experiments. We then
performed rank-1 increment (rk,t) for each additional task.

We would like to point that A-GEM and Orthog Subspace use first 3 tasks for hyperparameter
tuning. We did not tune our hyperparameters on the test data, rather we choose the parameters
which provides better convergence during training. We increment the weight matrices by rank-1
per task; therefore, learning rate and the number of epochs are the only hyperparameters in our
experiments.

Optimization. We used orthogonal initialization for the low-rank factors, as described in Saxe et al.
(2013). We used all one initialization for the additional factors of the selector matrices Sk,t,t. We
used Adam optimization to update the factors. We used the batch size of 128 for each task.

Performance metric. We use accuracy and forgetting per task, which are two commonly used
metrics in the continual learning literature Chaudhry et al. (2018; 2020), to evaluate the performance
of the described methods.

Let at,j be the test accuracy of task j < t after the model has finished learning task t ∈ {1, ..., T}
in a continual manner. The average accuracy At after the model has learned task t is defined as

At =
1

t

t∑
j=1

at,j . (5)

In Figure 2 we show the evolution of average accuracyAt as t increases. We also show the evolution
of task-wise accuracy at,j in Figure 3, where (t, j) pixel intensity reflects at,j . We report the average
accuracy AT , the average accuracy after the model has learnt every tasks continually, in Table 1.

On the other hand, forgetting is the decrease in the accuracy of a task after its training, and after one
or several tasks are learned continually. We define the average forgetting Ft as:

Ft =
1

t− 1

t−1∑
j=1

(al,j − at,j) (6)

We report the forgetting FT after the model has learnt all the tasks continually in Table 3. Note that
our method performs continual learning without forgetting.

4.3 COMPARING TECHNIQUES

We compare our method against different state-of-the-art continual learning methods and baselines.
EWC Kirkpatrick et al. (2017) is a regularization-based method that uses the Fisher Information
matrix to estimate posterior of previous tasks to preserve important parameters. ICARL Rebuffi
et al. (2017) is a memory-based method that uses exemplars and knowledge distillation Hinton
et al. (2014) to retain previous knowledge. AGEM Chaudhry et al. (2019a) is a memory-based
method built upon Lopez-Paz & Ranzato (2017) that uses episodic memory to solve an constrained
optimization problem. Orth. sub. Chaudhry et al. (2020) learn tasks in different (low-rank) vector
subspaces that are kept orthogonal to each other in order to minimize interference.

In addition, we report results for two non-continual baseline methods: Parallel learning and Mul-
titask learning. Parallel learning trains independent (smaller) low-rank networks of same size
for each task. We report results for three such networks. Parallel 2 uses rank-2 layers, Parallel 4
uses rank-4 layers, and Parallel full uses a full-rank fully-connected network. Parallel 2 requires
approximately the same number of parameters as the rank-1 continual learning network that we use
in our experiments; Parallel 4 provides higher network capacity, while requiring fewer parameters
than the full-rank network. We can treat the performance of the Parallel full approach as the upper
limit that we can achieve using the continual method. Finally, Multitask learning has been used
as a baseline in Chaudhry et al. (2020; 2019a). In multitask learning, we have access to all data to
optimize a single network.
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4.4 RESULTS

Classification performance and comparison. We report classification results for P-MNIST, R-
MNIST, S-MNIST, S-CIFAR100, and S-miniImageNet tasks in Table 1. We also show the results
for the comparing techniques. We observe that our method with rank-1 update perform better than
all the comparing methods (EWC, ICARL, A-GEM, Orthog Subspace) on R-MNIST, S-CIFAR100
and S-miniImageNet tasks. On S-MNIST and P-MNIST tasks, our method performs close to the
best performing Orthog Subspace approach. We also observe that the continual rank-1 update out-
performs non-continual Parallel 2 baseline that has similar number of parameters compared to our
approach. We perform similar to Parallel 4 baseline that uses nearly twice the number of parameters
as our approach. Parallel full acts as an upper limit with the network structure of our choice as it
trains independent full rank networks for every task. Multitask learning is another non-continual
baseline that uses all the data from all the tasks simultaneously. It appears that the three layer fully-
connected network structure does not have enough capacity to learn all the 100 classes at a time for
CIFAR100 and miniImageNet classification; therefore, the performance of the multitark learning
baseline is quite low for these two datasets. We also tested Resnet18 network, which has signif-
icantly more parameters than the network used in Table 1. We report the results for Resnet18 in
Table 6 (in the appendix).

ICARL and A-GEM require replay buffer (episodic memory) for each task. Although Orthog Sub-
space did not use replay buffer for MNIST experiments, it requires replay buffer in their algorithm
and used it for S-CIFAR100 and S-miniImageNet experiments. EWC does not require any replay
buffer, but it suffers from high forgetting as shown in Figure 3. Our proposed approach does not
require any replay buffer and it outperforms other approaches as shown in Table 1.

Table 1: Results on continual learning tasks for S-MNIST, P-MNIST, R-MNIST, S-CIFAR100, and S-
miniImageNet. Average test accuracy over five runs (with standard deviation) is shown for all the experiments.
∗ Orthog subspace does not use replay buffer for MNIST variations.

Method Replay
Buffer P-MNIST R-MNIST S-MNIST S-CIFAR100 S-miniImageNet

EWC No 67.9 (±0.68) 44.5 (±1.09) 97.3 (±0.90) 52.7 (±0.81) 29.3 (±1.08)
ICARL Yes 85.4 (±0.01) 51.2(± 2.41) 94.1 (±0.01) 56.9(±0.31) 39.9(±0.27)
A-GEM Yes 73.9 (±0.52) 53.4 (±1.80) 94.4 (±2.11) 51.3(±1.54) 31.3(±0.89)
Orth sub Yes∗ 86.6 (±0.79) 80.2 (±0.41) 97.8 (±0.93) 57.8 (±1.03) 38.1 (±0.67)
Ours No 85.6 (±0.15) 91.1 (±0.12) 95.9 (±0.10) 65.9 (±2.16) 54.7 (±2.87)
Parallel 2
(r=2) - 65.3 65.5 97.4 62.8 55.4

Parallel 4
(r=4) - 86.3 87.4 97.6 65.6 58.6

Parallel
full rank - 95.9 97.3 99.7 73.1 63.1

Multitask
learning - 96.8 97.7 96.7 16.4 4.21

Memory complexity. Since we increment the rank of each layer for each task, we need to compare
the total number of parameters in the continual-trained network and the Parallel baselines. Note
that if the number of parameters in two approaches is same, we can train one small network per
task independently. We report the total number of parameters for our approach and comparing
approaches in Table 2. Since we used similar fully connected network structure for all the tasks,
we reported results for just Split CIFAR100 classification tasks in Table 2. Although we increase
the rank for every task, the increment is so small that even after 20 tasks our total parameter count
is nearly 14× smaller the closest comparing approach A-GEM and 140× smaller than the non-
continual parallel full rank baseline. We also report the memory overhead in Table 2 for different
approaches. To calculate memory overhead, we combine incremental network/task head size and the
size of replay buffer (i.e. the episodic memory). Since parallel full-rank network is non-continual,
the memory overhead is not reported. We observe that our memory overhead is also significantly
smaller than that of comparing approaches.

7



Under review as a conference paper at ICLR 2022

Figure 2: Average test accuracy for different datasets (Permuted MNIST, Rotated MNIST, Split CIFAR100,
Split miniImageNet) along different tasks using different algorithms (AGEM,EWC, Orthog. Subspace, ICARL
and our approach). Parallel full-rank results corresponds to the case when we train every task on separate full
rank networks independently. We showed the average of 20 tasks. It serves as an upper limit for continual
learning approaches.

Table 2: Total number of parameters and training memory overhead required by different approaches for
continually learning all 20 tasks on Split-CIFAR100 using 3-layer fully-connected network. The numbers
inside bracket is relative to the number of parameters of a single full-rank 3-layer fully-connected network.
The memory overhead includes both the additional network memory required for each task and the size replay
buffers. We use a replay buffer of 20 examples per class per task for A-GEM and Orthog. subspace.

EWC Ours A-GEM Orthog subspace
(w/ replay)

Parallel
fullrank

# parameters 0.93M (1.00) 0.12M (0.14) 1.76M (1.88) 2.82M (3.03) 19.7M (21.18)
memory overhead 1.71M 0.170M 7.90M 9.01M -

Accuracy vs forgetting. We report the average forgetting of different comparing approaches in
Table 3. Our methods and parallel baselines have zero forgetting, whereas all other comparing
continual learning methods exhibit some level of forgetting. To better demonstrate the forgetting,
in Figure 3, we show the accuracy for the tasks along the entire training procedure. ith row (top-
bottom) of the diagram denotes the performance of i tasks on the test sets when we train the ith
task. As expected, we can observe that the training performance for the previously learned tasks
usually drops with the gradual training of the subsequent tasks specially for the regularization based
approach, EWC. However, our algorithm maintains the same performance for the pask tasks as we
do not change any previously learned factors. Even orthogonal subspace approach observes such
forgetting over some tasks.

Table 3: Average forgetting results for different datasets using different approaches. We report the forgetting
in percentage unit (%). We also report the standard deviation.

EWC Ours A-GEM Orthog subspace
(w/ replay)

Parallel
fullrank

P-MNIST 25.8 (±0.70) 0 19.6 (±0.64) 4.49 (±0.93) 0
R-MNIST 52.9 (±1.17) 0 44.2 (±1.85) 14.7 (±0.39) 0
S-CIFAR100 6.96 (±0.80) 0 21.5 (±2.89) 6.30 (±0.38) 0
S-miniImageNet 17.3 (±1.81) 0 18.8 (±1.40) 9.98 (±0.31) 0
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Figure 3: Evolution of task-wise test accuracy on P-MNIST (i,ii,iii) and R-MNIST (iv,v,vi) datasets for EWC
(i,iv), Orthogonal Subspace (ii,v), abd Our approach (iii,vi). We can observe from the decrease in the test
accuracies that EWC and Orthogonal Subspace forget the previous tasks as they learn new tasks. Our approach
does not show any forgetting as we learn new tasks.

Effect of rank. In Table 4, we evaluate the effect of different rank selection for different MNIST
datasets using our continual learning approach. We tested the initial rank (rank for the first task) of
1, 6, and 11, keeping the rank increment to 1. We observed that the accuracy increase as the initial
rank increases, and we achieve nearly 90% accuracy with initial rank of 11. We also tested different
values of rank increment per task and observe that the accuracy increases with larger rank increment.
Nevertheless, rank-1 increment provides us comparable or better performance than the comparing
techniques as shown in Table 1.

Table 4: Test accuracy for different rank choices of continual learning network and multi-task baseline net-
works for S-MNIST, P-MNIST, and R-MNIST.

Method Initial rank,rk,1 Rank increment/task, rk,t P-MNIST R-MNIST S-MNIST
Continual 1 1 1 74.23 81.57 92.66
Continual 2 6 1 82.21 89.39 94.47
Continual 3 11 1 85.61 91.09 95.92
Continual 4 11 2 90.51 92.76 96.21
Continual 5 11 4 93.84 94.12 97.77

5 CONCLUSION

We proposed a new continual learning method in which we update the network weights using low
rank increments as we learn new tasks. Network layers are represented as a linear combination of
low-rank factors. To update the network for a new task, we freeze the factors learned for previous
tasks, add a new low-rank (or rank-1) factor, and combine that with the previous factors using
a learned combination. The proposed method offered considerable improvement in performance
compared to the state-of-the-art methods for continual learning in image classification tasks. In
addition, the proposed low-rank incremental continual learning circumvents the use of memory
buffer or large memory overhead while achieving zero forgetting.
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A APPENDIX

Ablation study. In continual learning, we update rank-1 factors, selector matrices, and bias vec-
tors per task. To evaluate the effect of different settings, we trained the networks with (rank-1 fac-
tors+bias update, bias update, rank-1 factor update). Test accuracy for different datasets is reported
in Table 5. We observe that updating the weight matrices with fixed bias vector for all tasks (rank-1
factors only) or different bias vector for every task (rank-1 factors + bias) provides similar results.
For bias update, we learn the rank-11 factors U and V from the first task. Then we only update
the bias vector for each task. We observe that updating bias vector alone is sufficient to learn new
tasks when the number of samples/task are small (e.g. S CIFAR, S miniImagenet). However, updat-
ing bias alone is insufficient when we have a much larger number of samples/task (e.g. P-MNIST,
R-MNIST has over 20 times more samples/task).

Table 5: Ablation study to evaluate the effect of updating Test accuracy of of four different datasets under
different combinations of selector and bias vector update.

P-MNIST R-MNIST S-CIFAR100 S-miniImageNet
Rank-1 factors + Bias 86.6 91.1 65.9 54.7
Rank-1 factors only 84.8 90.8 64.85 51.97
Bias only 66.1 84.6 63.95 55.61

Convolutional networks. The proposed low-rank increments approach can be generalized to other
type of networks and layers as well. For example, convolutional kernels have four-dimensional
weight tensors as opposed to the two-dimensional weight matrices of fully connected layers. They
are usually formulated as a tensor of output and input channel (Cout, Cin), and the two dimensions
of the convolutional filters (H,W ). We reshape the convolutional weight tensors into matrices of
size Cout × CinHW and perform similar low-rank updates per task as we described for the fully-
connected network in the main paper. We report the results for S-CIFAR-100 dataset with Resnet18
architecture. For each convolutional layers, we reshaped and decomposed the convolution weight
tensors into the same low-rank factors described in (3) and performed low-rank updates per tasks.
We report the results in Table 6. Instead of using a fixed value for rank at each layer as we did in
the fully-connected network setup, we used rank size that is proportional to the size of Cout,i at
ith convolutional layer. We select initial rank = 0.1Cout,i for the first task and incremental rank =
0.02Cout,i for the subsequent continual learning tasks.

Table 6: Test accuracy and forgetting results on split CIFAR-100 dataset using ResNet18 architecture with dif-
ferent continual and non-continual approaches. With convolutional ResNet18 structure every approach perform
better, but our method outperforms the comparing approaches.
∗∗ EWC and ICARL results in this table are reported from Chaudhry et al. (2020)

S-CIFAR-100
Accuracy Forgetting

EWC∗∗ 43.2 (±2.77) 26 (±2)
ICARL∗∗ 46.4 (±1.21) 16 (±1)
AGEM 60.34 (± 2.05) 11.0 (± 2.88)
Ortho sub 63.42 (± 1.82) 8.37 (± 0.71)
Ours 68.46 (±2.52) 0
Parallel full-rank 73.1 0
Multitask learning 70.2 0
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