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ABSTRACT

Despite significant advancements in the general capability of large language mod-
els (LLMs), they continue to struggle with consistent and accurate reasoning, es-
pecially in complex tasks such as mathematical and code reasoning. One key
limitation is that LLMs are trained primarily on correct solutions, reducing their
ability to detect and learn from errors, which hampers their ability to reliably ver-
ify and rank outputs. To address this, we adopt a widely used method to scale up
the inference-time computation by generating multiple reasoning paths and em-
ploying verifiers to assess and rank the generated outputs by correctness. To get
a better understanding of different verifier training methods, we introduce a com-
prehensive dataset consisting of correct and incorrect solutions for math and code
tasks, generated by multiple LLMs. This diverse set of solutions enables verifiers
to more effectively distinguish and rank correct answers from erroneous outputs.
The training methods for building verifiers were selected based on an extensive
comparison of existing approaches. Moreover, to leverage the unique strengths
of different reasoning strategies, we propose a novel collaborative method in-
tegrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for
verification. CoT provides a clear, step-by-step reasoning process that enhances
interpretability, while PoT, being executable, offers a precise and error-sensitive
validation mechanism. By taking both of their strengths, our approach signifi-
cantly improves the accuracy and reliability of reasoning verification. Our veri-
fiers, Math-Rev and Code-Rev, demonstrate substantial performance gains to ex-
isting LLMs, achieving state-of-the-art results on benchmarks such as GSM8k and
MATH and even outperforming GPT-4o with Qwen-72B-Instruct as the reasoner.

1 INTRODUCTION

Large language models (Brown et al., 2020; Achiam et al., 2023; Touvron et al., 2023a;b; Jiang et al.,
2023; Team et al., 2024) have demonstrated exceptional performance across various natural language
tasks. Notably, the reasoning tasks such as math problem solving (Cobbe et al., 2021; Hendrycks
et al., 2021), code completion (Austin et al., 2021; Chen et al., 2021), multi-modal reasoning (Yue
et al., 2024a; Liang et al., 2024a) have attracted significant attention from AI researchers. Since
reasoning is a critical component of many important high-level tasks, such as scientific discovery
(Liang et al., 2024a; Miret & Krishnan, 2024), world model (Hao et al., 2023), embodied agents
(Song et al., 2023), etc. However, even the most advanced LLMs still face challenges in complex
multi-step reasoning problems (Zhang et al., 2024a; Shi et al., 2024; Trinh et al., 2024). To improve
the performance of LLMs on reasoning, recent studies (Yu et al., 2024b; Yue et al., 2024b; Gou et al.,
2024; Luo et al., 2023; Wei et al., 2024; Tang et al., 2024; Yue et al., 2024c) have mainly focused
on generating synthetic question-answering pairs from stronger LLMs like GPT-4 (Achiam et al.,
2023) or utilizing human-annotated rationales (Toshniwal et al., 2024) for supervised fine-tuning.
These approaches have achieved outstanding performance on reasoning benchmarks like GSM8k
(Cobbe et al., 2021), MATH (Hendrycks et al., 2021; Lightman et al., 2023), MBPP (Austin et al.,
2021), etc.

While these straightforward data generation methods have proven effective, these LLMs are primar-
ily trained to produce outputs that align with the correct reasoning steps they encountered during
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training. However, they lack a fundamental understanding of when and why a particular reasoning
step might be flawed. As a result, while LLMs can effectively mimic the structure of correct reason-
ing paths, they often struggle to ensure the accuracy of these paths and may produce responses that
seem correct at first glance, but are flawed Liang et al. (2024b). This limitation poses challenges for
reliably generating the correct solution. As shown in Fig. 1, many LLMs have low accuracy when
attempting to find a single solution using greedy decoding (i.e. pass@1). However, when allowing
each model to generate 64 solutions (at different temperature settings), the correct answer is often
found among the sampled solutions, with a pass@1 rate (i.e. recall) exceeding 85%. A similar high
pass@1 rate has also been observed by (Li et al., 2024), where models like LLaMA2-7b-base (Tou-
vron et al., 2023b), despite not being particularly strong in complex reasoning, demonstrate high
pass@64 on solving math problems.

LLaMA2-7B
Gemma-7B Mistral-7B

InternLM2-Math-7B Phi-14B
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Figure 1: Comparison of greedy decoding accu-
racy and pass@1 out of 64 sampled solutions on
GSM8k dataset with various LLMs.

This offers hope for addressing the reasoning
challenges of LLMs: scaling up the inference
compute by sampling multiple candidate solu-
tions has emerged as a promising approach and
recently garnered significant attention (Zhang
et al., 2024b; Brown et al., 2024; Bansal et al.,
2024). Rather than relying solely on the greedy
decoding output, these methods involve generat-
ing multiple solutions for a given problem by al-
tering the generation temperature or prompt, scor-
ing each solution by a verifier, and selecting the
best one with the highest score. Such best-of-
N strategies can significantly enhance both the
accuracy and reliability of LLM outputs. How-
ever, prior studies often focus on specific datasets
(e.g., MATH (Lightman et al., 2023; Wang et al.,
2023)) or particular backbone generators (e.g.,
LLaMA (Hosseini et al., 2024) or Gemini (Luo
et al., 2024)), which not only lead to the development of weak and ad-hoc verifiers tailored to certain
cases Snell et al. (2024), but also limits comprehensive comparisons and systematic benchmarking
of different verifier training methods.

In this paper, aiming at building better verifiers for more effective inference-time verification, we
introduce a comprehensive training dataset created by sampling outputs from multiple LLM rea-
soners of varying sizes and purposes. We then categorize them into correct and incorrect sets, and
use them to build verifiers that learn from the diverse solution patterns produced by different LLMs.
Since the methods for training verifiers are so crucial, we conduct a thorough comparison of two
key approaches: outcome reward models (ORMs) (Cobbe et al., 2021) and preference tuning (e.g.,
DPO (Rafailov et al., 2024)). ORMs add extra computational heads with scalar outputs to the per-
token logits of LLMs and train the model with a binary classification loss. In contrast, preference
tuning methods like DPO teach LLMs to learn from pairwise data and generate outputs that align
more closely with preferred responses. While preference-tuned LLMs cannot directly output scalar
scores like ORMs, we can calculate the likelihood of generating certain solutions given the input
problem as the score of the solutions. Our experiments show that reference-free preference tuning
methods, such as SimPO (Meng et al., 2024), are the most effective for training verifiers. The result-
ing verifiers for math reasoning and code reasoning are named Math Reasoning Ensembled Verifier
(Math-Rev) and Code Reasoning Ensembled Verifier (Code-Rev) in this paper, respectively.

Moreover, based on our observation, we locate weakness of LLM-based verifiers, where they easily
overlook the subtle calculation errors and inconsistencies in math reasoning, and struggle to verify
highly abstractive and structured codes. To address these limitations, we propose a novel method
named CoTnPoT to further make verification more comprehensive and powerful. Therefore, we
also explore the complementary strengths of step-by-step language-based solutions and code-based
programming solutions for verification purposes. Step-by-step language solutions, also known as
chain-of-thought (CoT) (Wei et al., 2022) format, are more descriptive and connected to natural
language. In contrast, program solutions, or program-of-thought (PoT) (Chen et al., 2023) format,
are highly abstract and structured, allowing for direct execution to identify runtime errors, but they
are more complex and difficult to read. To address these challenges and leverage the strengths of both
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Lee mows one lawn and charges 
$33. Last week he mowed 
16lawns and three customers 
each gave him a $10 tip. How 
many dollars did Lee earn 
mowing lawns last week?"

CoT solution: 
The total amount of money he earned from 
mowing lawns is $33 x 16 =$528. Three 
customers gave him a $10 tip each, so the total 
amount of money he earned from tips is $10 x 
3 = $30. We add them: $528 + $30 = $558. The 
answer is $\\boxed{558}$."

PoT solution:
def solution():

mowing = 33 * 16 
tips = 10 * 3 
total_earnings = mowing + tips 
return total_earnings

Execution Results: 558

Code Problem:
Write a python 
function to shift 
first element to 
the end of given 
list.

PoT solution: 
def move_last(l):

x = l[0]
l[0] = l[-1]
l[-1] = x  
return l

CoT Comment: 
The code can work as a solution for the problem because it swaps the first and last 
elements of a given list without creating a new list. This is done by assigning the 
first element to a temporary variable x and then assigning the last element to the 
first position. Finally, it assigns the temporary variable x to the last position. This 
effectively shifts the first element to the end of the list without creating a new list.

Verifier 

Verifier 

Figure 2: The workflow of our method. We first sample solutions from multiple LLM reasoners and
then train verifiers using preference loss (Step 1). During inference, for math reasoning, we sample
multiple CoT solutions per question and use a coder LLM to transform them into a PoT format.
Then we filter out any CoT answers that do not match with their corresponding PoT results and feed
the remaining CoT solutions to the verifier. For code reasoning, we concatenate the PoT solution
and CoT description for LLM-based verifier. The solution with the highest score is selected as the
final answer. An example of CoT and PoT solutions is attached.

formats, we propose a method named CoTnPoT that combines language and code answers during
solution verification. Our findings indicate that CoT solutions, being more readable and interpretable
by LLMs, enable verifiers to achieve higher performance. On the other hand, code-based solutions,
which are executable and sensitive to errors, provide a critical signal when assessing the correctness
of language solutions.

With CoTnPoT and Math-Rev, we achieve significantly better math reasoning verification perfor-
mance than two baselines - Math-Shepard (Wang et al., 2023) and Math-Minos (Gao et al., 2024).
In summary, our contributions are twofold:

• We investigate various verifier training methods and establish that reference-free alignment meth-
ods are the most effective. Using SimPO, our developed Math-Rev and Code-Rev achieve state-
of-the-art accuracy.

• We propose a novel method that combines language and code answers for solution verification,
achieving promising synchronization and further improving final accuracy. Using Qwen-72B-
Instruct (Yang et al., 2024) as the backbone reasoner, our approach yields 95.6% and 76.9% accu-
racy on the GSM8k and MATH benchmarks, respectively.

2 OUR METHOD

The workflow of our method is presented in Fig. 2. After collecting a diverse set of solutions,
including both correct and incorrect ones, we train our verifiers, which can be implemented using
any open-weight auto-regressive LLM (e.g., Mistral-7B). During the inference stage, the reasoner
LLM generates responses to an input question, and the verifier is applied to score multiple sampled
solutions from the reasoner.

2.1 DATA COLLECTION FOR TRAINING VERIFIERS

Math Reasoning We use the training sets of GSM8k (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021) as seed datasets and sample model solutions from multiple backbone models: (1)
general-purpose LLMs, including Mistral (Jiang et al., 2023) and Phi3 (Abdin et al., 2024); and
(2) math-specialized models, including InternLM2-Math (Ying et al., 2024) and MAmmoTH2-plus
(Yue et al., 2024c). For each question in GSM8k and MATH, we sample 10 Chain-of-Thought
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(CoT) solutions and remove duplicates. Using functions provided by (Ying et al., 2024), we extract
answers from model predictions and compare them with ground truth, resulting in 159,778 correct
and 100,794 incorrect solutions for the training of Math-Rev, with an average of 10.67 correct and
6.73 incorrect solutions per problem. For the evaluation on the MATH dataset, we follow Lightman
et al. (2023) and use the subset - MATH500, the same as previous work Wang et al. (2023); Gao
et al. (2024).

Code Reasoning Similarly, we utilize general-purpose LLMs, including LLaMA-3-8B (Touvron
et al., 2023b) and Phi3 (Abdin et al., 2024), and code-specialized models, including CodeGemma-
7B-it (Team, 2024a) and CodeQwen1.5 (Team, 2024b). We select the training sets of MBPP (Austin
et al., 2021) and the Python subset of MagiCoder-75k (Wei et al., 2024) as seed datasets. In code
generation tasks, test cases are usually required to determine the correctness of solutions. The
original MBPP training set includes test cases, but the MagiCoder does not. To address this, we use
GPT-4o to generate test cases for each problem in the Python subset of MagiCoder-75k, retaining
only test cases that the reference solution passed. If no generated test case matches the reference
solution, we repeat the process with a temperature of 0.8 up to three times. This process results in
11,527 problems with test cases in the MagiCoder-75k dataset. We then generate 50 solutions for
each seed problem in both that subset and MBPP, resulting in 132,089 correct and 145,345 incorrect
solutions with an average of 11.10 correct and 12.21 incorrect solutions per problem, which are used
for training our Code-Rev.

2.2 TRAINING MATH-REV AND CODE-REV

The verifiers, implemented using LLMs (e.g., Mistral), need to be trained with appropriate training
methods to ensure their effectiveness during inference. We extensively investigate various usable
methods that are introduced next.

Reward-based: ORMs and PRMs. Following the widely accepted definition in (Uesato et al.,
2022), there are two categories of reward-based methods for building verifiers: outcome-reward
models (ORMs) (Cobbe et al., 2021) and process-reward models (PRMs) (Lightman et al., 2023).
ORM, commonly used in RLHF (Ouyang et al., 2022), can produce scalar scores on model re-
sponses, whereas PRM evaluates the reasoning path step-by-step. Despite better performance, PRMs
need to collect process supervision data, relying on either human annotation (Lightman et al., 2023)
or per-step Monte Carlo estimation (Wang et al., 2023), both of which are prohibitively expensive
to scale. Moreover, the PRM method requires the solution to be formatted as step-by-step reasoning
chains (Lightman et al., 2023; Wang et al., 2023; Luo et al., 2024), where steps need to be clearly
separated by special tokens or periods to be scored, thereby limiting the application scenario of
PRM. Consequently, in this paper, we do not assign per-step scores on reasoning paths, but instead
calculate a final score for the whole solution.

Preference-tuning: DPO and Beyond. Direct Preference Optimization (DPO) (Rafailov et al.,
2024) is one of the most popular offline preference optimization methods. Unlike ORM or PRM
which rely on learning an explicit reward model, DPO proposes a novel loss function based on pref-
erence pairs, which reparameterizes the reward function and applies it into the the Bradley-Terry
(BT) ranking objective. This innovation has inspired various follow-up studies, such as IPO (Azar
et al., 2024), KTO (Ethayarajh et al., 2024), CPO (Xu et al., 2024), and R-DPO (Gallego, 2024).
Besides them, the reference-free variants including ORPO (Hong et al., 2024) and SimPO (Meng
et al., 2024) argue that reference models in the above reward functions would incur additional mem-
ory and computational costs and create discrepancy between the reward function and the generation
metric during inference.

Our Verifiers Training. Although those preference-tuning methods are primarily designated to
align LLMs with human preferences, they can also be adapted for training verifiers (Hosseini et al.,
2024). By feeding the backbone LLM of the verifiers with pairs of correct and incorrect solutions,
designated as chosen and rejected outputs, and applying the mentioned training methods, the verifier
can be trained to assign higher generation probabilities to correct solutions over incorrect ones. Then
the probability can be served as a score for ranking solutions. In our paper, Math-Rev and Code-Rev
are trained separately by their respective training data with one of the preference-tuning methods -
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SimPO. We believe that such verifiers have a significant advantage over ORMs: it does not introduce
additional training parameters and not change the goal of generation for LLMs, aligning better with
the original usage of LLM.

2.3 INFERENCE ENHANCED BY VERIFICATION WITH COTNPOT

During the inference stage, after deploying our Math-Rev and Code-Rev verifiers, we identify dis-
tinct challenges in verifying math and code reasoning. For math reasoning, while model-based ver-
ifiers can effectively detect surface-level logical errors such as incorrect use of operators, numbers,
and methods, they struggle to catch subtle mistakes such as calculation errors and small inconsis-
tencies. For example, the verifier LLM always give high score to 3.5 + 2.5 + 4.5 + 1.5 = 13,
where the left part of the equation is the correct solution and the result to it should be 12 instead
of 13. In code reasoning, the structured and abstract nature of code makes it difficult to read and
understand, leading verifiers to assign similar scores to different solutions, indicating their difficulty
in accurately identifying errors within the code.

To address these challenges, we propose a method called CoTnPoT, which enhances verification by
leveraging the connection and complementary strengths of the Chain of Thought (CoT) and Program
of Thought (PoT) solution formats.

For math reasoning, we use an external LLM, DeepseekV2-chat-Lite (Zhu et al., 2024), to transform
CoT solutions SCoT into PoT counterparts SPoT based on problem descriptions Q,

SPoT = CoderLLM(Q,SCoT ). (1)

We choose DeepseekV2-chat-Lite because it obtains both strong math reasoning and coding capabil-
ities and we need to apply them to translate CoT solutions into PoT programs for math problems. We
then verify whether the transformed final answer from the execution of SPoT matches the final an-
swer from SCoT . Our motivation is that logical errors in SCoT would cause run-time errors in SPoT ,
while calculation errors in SCoT would result in mismatched answers between SCoT and SPoT , as
PoT solutions ensure calculation correctness by using the Python interpreter. This approach takes
advantage of the executable nature of program-based solutions.

For code reasoning tasks, we find that directly training verifiers on Python code alone leads to
inferior performance. This may be due to the increased difficulty in reading and understanding
code compared to human language, which can make it harder to detect reasoning errors. Therefore,
we use the same LLM to generate both the code solution SPoT and the corresponding step-by-
step description SDes that explains why the solution is correct. Because using the same LLMs
for both code and description generation reduces over-reliance on external LLMs (we have to use
external LLMs for some math LLMs because they cannot generate codes). During both training
and inference and code verification, we concatenate the description and the code as an integrated
input for the verifier, as shown in Equation 2. This method provides richer information in the code
solutions, making the LLM-based verification process more effective.

SDes = CoderLLM(Q,SPoT ) (2)

We summarize the outline of CoTnPoT for Math Reasoning:

• Sample multiple CoTs SCoT : Generate CoT solutions for the given math problem.

• Translate SCoT into SPoT : Use DeepseekV2-chat-Lite to transform each SCoT into a corre-
sponding PoT solution SPoT based on the problem description Q, as defined in Equation 1.

• Filter SCoT out if its answer does not match SPoT : Check if the final answer from executing
SPoT matches the answer of SCoT . Discard any SCoT where a mismatch occurs, as it likely
contains calculation errors.

• LLM-based Verifier on the remaining SCoT : Apply an LLM-based verifier on the filtered
SCoT solutions to further assess logical consistency.

Outline of CoTnPoT for code Reasoning:

• Sample multiple PoTs SPoT : Generate PoT solutions for the coding problem.

5
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• Write Description SDes based on SPoT : Use coder LLM to generate a descriptive explanation
SDes that justifies the correctness of SPoT .

• Concatenate SPoT and SDes: Combine the code solution and its description into a single input
for verification.

• LLM-based Verifier on the concatenated input: Apply an LLM-based verifier to the concate-
nated SPoT and SDes to enhance error detection accuracy.

3 EXPERIMENTS

3.1 EXPLORING DIFFERENT TRAINING METHODS FOR VERIFIERS

Experiment Setting. For all experiments in Figure 3, we use the latest Mistral-7B-instruct-v0.3
as the backbone LLM for building the verifiers and apply LoRA with a dropout rate of 0.1 to reduce
the computational load during verifier training. The training batch size is set to 64, and the learning
rate to 0.00002 for all verifiers. For ORM, we add an additional computational head on the per-token
logits from the backbone LLM, outputting a scalar value for each token. We take the score of the
last token as the final score, which has shown better performance than averaging them based on our
observations. For DPO and its variants, we construct preference pairs by randomly selecting correct-
incorrect solutions for the same problem from the training set. We use 8 A100-40G GPUs for all the
experiments and employ vLLM to optimize the inference speed. The training of the verifiers takes 5
hours approximately. We first perform supervised fine-tuning on all correct solutions and then apply
preference loss on the preference set.

LLM Reasoners in Evaluation. To evaluate the reasoning performance on the GSM8k dataset,
we use LLaMA2-7B-base and Mistral-7B-v0.1, both fine-tuned on GSM8k, along with Gemma-7B-
it, Phi-14B, InternLM2-Math-7B, and LLaMA3-70B as our reasoners. For LLaMA2 and Mistral,
we sample 100 solutions per problem for voting and verification, while 64 solutions are generated
for the rest. On the MATH dataset, which contains much harder problems than GSM8k, we replace
LLaMA2-7B-base and Mistral-7B-v0.1 with LLaMA3-8B-instruct and Mistral-7B-v0.3 for their
superior reasoning ability, along with other four reasoners. For all problems in MATH500, we
generate 64 solutions individually. All LLM output sampling in our paper is based on a temperature
of 0.8 and top-p of 0.95.

LLaMA2-7B@64
Gemma-7B@64

Mistral-7B@64
InternLM-Math-7B@64

Phi-14B@64

40

50

60

70

80

90

A
cc

ur
ac

y 
(%

)

Greedy Decoding
Major Voting
SFT Verifier
DPO Verifier
KTO Verifier
ORM Verifier
ORPO Verifier
SimPO Verifier

Figure 3: Performance of different verifiers (all
better than greedy decoding)

Experimental Results. The results are
shown in Figure 3. We observe that the veri-
fiers consistently improve the greedy decoding
baseline, especially for weaker reasoners
such as LLaMA2-7B. We also evaluate in-
distribution (ID) LLMs, which are the source
LLMs used to generate the training data for
verifiers, such as Mistral, InternLM2-Math,
and Phi, and out-of-distribution (OOD) LLMs,
such as LLaMA2-7B and Gemma-7B. The
results show no significant difference between
ID and OOD performance improvement by
verifiers, suggesting that our approach can ex-
tend to any LLM reasoners and is not limited to
the LLMs that generate the training data. Fur-
thermore, preference-tuning-based verifiers,
including DPO and SimPO, outperform ORM,
similar to the findings in Hosseini et al. (2024).
The potential reason is that DPO and SimPO train LLMs without changing their structure, thus
aligning better with their previous training goals of auto-regressive text generation. Additionally,
ORPO and SimPO consistently outperform DPO, potentially because the regularization term on the
reference model in the DPO loss might negatively impact verifier training. In other words, we do
not need to control the divergence of the SFT model and the final verifier because it will not be used
for text generation anymore. Therefore, we can conclude that the reference-free method is more
suitable for verifier training.
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Table 1: Performance improvement brought by the proposed CoTnPoT. The best performance each
row is highlighted. Green arrow denotes the percentage improvement over greedy decoding, blue
arrow indicates the improvement over the baseline without CoTnPoT.

Sampling +
CoTnPoT

Voting +
CoTnPoT

pass@1 +
CoTnPoT SimPO SimPO +

CoTnPoT

Weighted
Voting +
CoTnPoT

GSM8k:
LLaMA2-7B-GSM8k 56.56 67.25 88.48 75.21 78.01 78.09

↑ 40.77% ↑ 24.93% ↓ 4.11% 0% ↑ 3.72% ↑ 3.66%
↑ 40.77% ↑ 67.37% ↑ 120.21% ↑ 87.18% ↑ 94.15% ↑ 94.35%

Mistral-7B-GSM8k 71.34 84.76 96.66 87.87 89.54 89.69
↑ 27.85% ↑ 10.80% ↓ 1.85% 0% ↑ 1.90% ↑ 1.94%
↑ 27.85% ↑ 51.90% ↑ 73.23% ↑ 57.47% ↑ 60.47% ↑ 60.73%

Gemma-7B-it 66.79 71.11 83.62 75.06 78.54 78.54
↑ 26.57% ↑ 23.41% ↓ 2.22% 0% ↑ 4.64% ↑ 4.58%
↑ 26.57% ↑ 34.75% ↑ 58.46% ↑ 42.24% ↑ 48.83% ↑ 48.83%

InternLM2-Math-7B 88.40 91.21 97.42 92.34 92.49 92.65
↑ 4.76% ↑ 2.39% ↓ 0.93% 0% ↑ 0.16% ↑ 0.23%
↑ 4.76% ↑ 8.09% ↑ 15.45% ↑ 9.43% ↑ 9.61% ↑ 9.80%

Phi3-14B 89.99 94.19 99.01 94.16 94.47 94.62
↑ 3.76% ↑ 0.67% ↓ 0.23% 0% ↑ 0.33% ↑ 0.45%
↑ 3.76% ↑ 8.60% ↑ 14.16% ↑ 8.57% ↑ 8.92% ↑ 9.10%

LLaMA3-70B-instruct 94.92 95.45 97.73 95.22 95.30 95.60
↑ 0.56% ↑ 0.24% ↓ 0.76% 0% ↑ 0.08% ↑ 0.33%
↑ 0.56% ↑ 1.12% ↑ 3.54% ↑ 0.88% ↑ 0.96% ↑ 1.28%

MATH500:
LLaMA3-8B-Instruct 40.20 41.60 63.60 45.00 45.80 46.00

↑ 34.00% ↑ 13.04% ↓ 8.88% 0% ↑ 1.78% ↑ 1.77%
↑ 34.00% ↑ 38.67% ↑ 112.00% ↑ 50.00% ↑ 52.67% ↑ 53.33%

Mistral-Instruct-v0.3 28.40 32.40 50.00 32.60 35.40 35.60
↑ 121.87% ↑ 54.29% ↓ 13.79% 0% ↑ 8.59% ↑ 7.88%
↑ 121.87% ↑ 153.12% ↑ 290.62% ↑ 154.69% ↑ 176.56% ↑ 178.12%

Gemma-7B-it 33.20 35.80 51.60 32.80 39.20 39.60
↑ 104.94% ↑ 50.42% ↓ 9.79% 0% ↑ 19.51% ↑ 18.56%
↑ 104.94% ↑ 120.99% ↑ 218.52% ↑ 102.47% ↑ 141.98% ↑ 144.44%

InternLM2-Math-7B 58.20 63.00 76.00 62.00 63.60 63.80
↑ 62.57% ↑ 12.90% ↓ 2.31% 0% ↑ 2.58% ↑ 2.24%
↑ 62.57% ↑ 75.98% ↑ 112.29% ↑ 73.18% ↑ 77.65% ↑ 78.21%

Phi3-14B 42.80 48.20 65.00 50.80 50.00 50.20
↑ 81.36% ↑ 4.78% ↓ 11.92% 0% ↓ 1.57% ↓ 1.18%
↑ 81.36% ↑ 104.24% ↑ 175.42% ↑ 115.25% ↑ 111.86% ↑ 112.71%

LLaMA3-70B-instruct 56.80 61.20 76.00 56.80 60.80 62.80
↑ 9.23% ↑ 3.38% ↓ 12.64% 0% ↑ 7.04% ↑ 8.28%
↑ 9.23% ↑ 17.69% ↑ 46.15% ↑ 9.23% ↑ 16.92% ↑ 20.77%

Additionally, preference-tuning methods such as DPO and SimPO theoretically enable auto-
regressive LLMs to generating solutions. However, we observe that the generation ability of verifiers
trained with preference pairs degrades rapidly, rendering them incapable of generating coherent sen-
tences. This observation is also consistent with the findings in Hosseini et al. (2024). We attribute
this degradation to that the verifier training process involves more steps and larger learning rates
than typical alignment practices, which likely causes the verifier’s weights to diverge significantly
from the fine-tuned checkpoint. Consequently, these verifiers lose their generation capability and
are instead better suited for calculating the likelihood of pre-generated solutions.

3.2 EVALUATION OF VERIFIERS WITH COTNPOT

This section focuses on evaluating the inference performance using the trained verifiers with the de-
signed CoTnPoT filtering. In this section, we upgraded the backbone model of our verifier for math
reasoning from Mistral-7B to MAmmoTH-7B-plus (Yue et al., 2024c). This change was motivated
by two key factors: (1) using a more advanced model can enhance verification performance, and (2)
employing a different model demonstrates the generalization capability of our training method. We
acknowledge that this adjustment may raise questions, but we are confident that it does not affect
the overall conclusions of the paper.
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Table 2: Performance of different verification strategies on Code-Rev. We compare the performance
on using the MBPP training set alone and incorporating MagiCoder, and the verification on code
solution only and solution with CoTnPoT comments. Left and right numbers are top-1 pass rates
on MBPP and MBPP+, respectively. The green arrows denote the percentage change compared to
greedy decoding performance.

Codegemma Phi LLaMA3 CodeQwen DeepseekCoder

MBPP
w/o CoTnPoT

64.2/53.9 72.2/58.3 60.4/51.2 75.7/65.7 72.0/60.8
↓ 8.81% / ↓ 5.27% ↑ 0.14% / ↑ 1.04% ↓ 13.84% / ↓ 13.66% ↓ 4.66% / ↓ 4.78% ↓ 4.26% / ↓ 2.25%

MBPP
w CoTnPoT

67.6/55.4 74.9/60.0 66.2/54.8 79.5/69.6 73.9/62.6
↓ 3.98% / ↓ 2.64% ↑ 3.88% / ↑ 3.99% ↓ 5.56% / ↓ 7.59% ↑ 0.13% / ↑ 0.87% ↓ 1.73% / ↑ 0.64%

MBPP + MagiCoder
w/o CoTnPoT

65.1/54.8 73.7/58.4 63.3/52.6 77.5/66.5 73.0/62.2
↓ 7.53% / ↓ 3.69% ↑ 2.22% / ↑ 1.21% ↓ 9.70% / ↓ 11.30% ↓ 2.39% / ↓ 3.62% ↓ 2.93% / 0.00%

MBPP + MagiCoder
w CoTnPoT

70.9/58.3 75.2/60.5 72.7/62.0 80.3/71.1 77.5/67.3
↑ 0.71% / ↑ 2.46% ↑ 4.30% / ↑ 4.85% ↑ 3.71% / ↑ 4.55% ↑ 1.13% / ↑ 3.04% ↑ 3.06% / ↑ 8.20%

Math Reasoning. We further enhance the inference process by combining majority voting with
verifier scores, using the scores from verifiers as weights in the voting process. Specifically, we
apply Gumbel Softmax (Gumbel, 1958; Jang et al., 2022) with the hyperparameter τ to regulate the
influence of verifier-based scores, as shown in Equation 3.

yi =
exp

(
log(πi)

τ

)
∑k

j=1 exp
(

log(πj)
τ

) (3)

where πi represents the unnormalized log probabilities for the i-th solution. Theoretically, if τ is set
to an infinitely large value, the weighted voting will be equivalent to majority voting. If τ is close
to zero, the result will depend solely on the verifier scores. We perform a grid search on τ values
from the set {0.1, 0.5, 1, 5, 10} for GSM8k and MATH datasets separately, finding that 0.5 works
best for GSM8k and 10 works best for MATH. This implies that for simpler problems like those in
GSM8k, we can rely more heavily on verifiers, while for more complex datasets like MATH, the
original model outputs should be weighted more significantly.

As shown in Table 1, blue percentages indicate performance improvements over the baseline with-
out CoTnPoT, and green percentages indicate improvements over greedy decoding. Generally, we
observe that the final column, Weighted Voting + CoTnPoT, consistently outperforms all base-
lines across all reasoners. CoTnPoT brings improvements to most backbone reasoners and both
datasets, demonstrating its effectiveness in filtering incorrect solutions. Notably, CoTnPoT provides
a substantial performance boost for weaker reasoners but is less impactful as the reasoners become
stronger. This is reasonable because verifying and filtering solutions for strong LLMs is a more
challenging task compared to for weaker ones.

Code Reasoning. In addition to using PoT to verify and filter CoT answers, we also explore
leveraging CoT descriptions to improve code solution verification.

As shown in Table 2, incorporating CoTnPoT descriptions into the verification process leads to
significant improvements across all LLM reasoners. We believe that the generated descriptions
enrich the information within the solution, enhancing the verifier’s understanding of the solution. An
ablation study was conducted on the additional training set, i.e., MagiCoder-75k. The experiments
show that MagiCoder-75k serves as a valuable additional training resource for coding benchmarks
like MBPP. Moreover, we observe that greedy decoding is already a strong baseline for coding tasks,
and our verifier-based approaches usually fall short, likely due to the abstractness and obscureness
of codes. That is also the reason why our proposed CoTnPoT-based strategy is effective, i.e., we
provide high-granularity explanations to clarify the solutions.

3.3 COMPARISON WITH VERIFIER BASELINES

We compare our math verifier, Math-Rev, with two recent baselines, Math-Shepard and Math-Minos.
We follow their methodology and use a consistent LLM reasoner, MetaMath-7B-Mistral. Although
there is a slight difference in that we sampled 64 solutions per problem whereas they sampled 256
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Table 3: Our verifier Math-Rev outperforms two baselines with fewer solutions sampled per problem
on both GSM8k and Math500 datasets, demonstrating the effectiveness of our verifier training and
CoTnPoT verification.

Mistral-7B-MetaMath Results GSM8k MATH500

Major Voting @ 64 83.50 35.00
Major Voting @ 256 83.90 35.10
Math-Shepherd @ 256 (Wang et al., 2023) 87.10 37.30
Math-Shepherd + Voting @ 256 (Wang et al., 2023) 86.30 38.30
ORM + PPO + Voting @ 256 (Wang et al., 2023) 89.00 43.10
Math-Shepherd + PPO + Voting @ 256 (Wang et al., 2023) 89.10 43.50
Math-Minos (ORM) @ 256 (Gao et al., 2024) 87.30 37.40
Math-Minos (PRM) @ 256 (Gao et al., 2024) 87.60 37.80
Math-Minos (ORM) + Voting @ 256 (Gao et al., 2024) 88.20 38.30
Math-Minos (PRM) + Voting @ 256 (Gao et al., 2024) 87.80 38.60
Math-Rev (Ours) @ 64 90.37 46.60
Math-Rev + CoTnPoT (Ours) @ 64 90.75 46.40

solutions, our verifier Math-Rev still achieves the best performance, as shown in Table 3. This
success is attributed to the more effective verifier training method, SimPO, and the pairwise training
data sampled from multiple LLM reasoners. Another notable finding is that our CoTnPoT method
poses a slightly negative impact on the MATH500 dataset, the reason is that CoTnPoT is less helpful
on stronger backbone reasoners, as also shown in Table 1. However, it does not hinder its general
applicability demonstrated in Table 1 and still has the potential to improve by switching the coder
model that translates CoT to PoT to stronger ones.

3.4 COMPARISON OF COTNPOT WITH BEST-OF-N AND BEST-OF-2N

Table 4: Comparison of performance for Best-of-N, Best-of-2N, and Best-of-N + CoTnPoT on
GSM8k and MATH datasets.

Model Best-of-N Best-of-2N Best-of-N + CoTnPoT

LLaMA2-7B-SFT (GSM8k) 75.21 76.75 78.01

Mistral-7B-SFT (GSM8k) 87.87 88.65 89.54

Gemma-7B-it (GSM8k) 75.06 77.02 78.54

InternLM2-Math-7B (GSM8k) 91.03 91.03 92.49

LLaMA3-8B-Instruct (MATH) 45.00 45.60 45.80

Mistral-Instruct-v0.3 (MATH) 32.60 35.20 35.40

Gemma-7B-it (MATH) 32.80 34.00 39.20

InternLM2-Math-7B (MATH) 62.00 63.60 63.60

Table 4 presents the comparison between Best-of-N, Best-of-2N, and Best-of-N + CoTnPoT across
various backbone reasoners with N=64. The results show that Best-of-2N consistently outper-
forms Best-of-N, indicating the benefits of an increased sampling budget in improving performance.
However, Best-of-N + CoTnPoT achieves even higher performance than Best-of-2N in most cases,
demonstrating the effectiveness of CoTnPoT, which refines outputs by leveraging an additional coder
LLM rather than merely doubling the sampling budget. These findings suggest that CoTnPoT offers
a computationally efficient yet impactful approach to improving performance compared to simply
increasing the sampling budget.

4 RELATED WORK

4.1 SCALING UP INFERENCE-TIME COMPUTING

Cobbe et al. (2021) is the pioneering work that applies verifiers in mathematical reasoning, where
they train token-level reward models to give scores on problem solutions. Then Uesato et al. (2022);

9
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Lightman et al. (2023) dive into the application of PRM - process reward models, where scores
are assigned to each intermediate step of solutions, providing more fine-grained feedback. Math-
Shepherd (Wang et al., 2023) and MiPS (Wang et al., 2024b) propose using Monte-Carlo Tree-
Search (MCTS) to automate the data collection process instead of human labeling. OVM Yu et al.
(2024a) employs outcome supervision for training a value model, which prioritizes steps that lead
to accurate conclusions during inference. V-Star (Hosseini et al., 2024) presents an iterative frame-
work in LLM training, which collects both correct data for supervised fine-tuning and wrong data
for verifier training. They also showed that DPO is stronger than ORMs in verification. Built on
reranking strategies such as verifiers, multiple studies Brown et al. (2024); Snell et al. (2024) found
that scaling up inference-time computing is much more cost-effective than training. To achieve more
effective and efficient inference-time verification, our approach samples solutions from various LLM
reasoners and comprehensively compares different verifier training methods. Our best verifier Math-
Rev achieves strong performance on math solution verification using only outcome-based labels in
training and even outperforms PRM baselines.

4.2 CONNECT BETWEEN CHAIN-OF-THOUGHT AND PROGRAM-OF-THOUGHT

PAL (Gao et al., 2023) and PoT (Chen et al., 2023) are two early studies that incorporate Python
programs into LLM reasoning. MathCoder (Wang et al., 2024a) proposes a method of generating
novel and high-quality datasets with math problems and their code-based solutions. As for the code-
based verification and feedback, Zhou et al. (2024a) employs a zero-shot prompt on GPT-4 Code
Interpreter to encourage it to use code to self-verify its answers. Zhou et al. (2024b) autoformalizes
informal mathematical statements into formal Isabelle code to verify the internal consistency. ART
(Miao et al., 2024) introduces relation tuples into the reasoning steps and verifies them with code
interpreter to provide feedback, finally improving reasoning accuracy. Compared to existing work
(Zhou et al., 2024a;b), our paper does not explicitly prompt the model to verify language solutions
in code format. Instead, we ask the model to translate between math and code, which is an easier
task for LLMs than verification, yet yields better performance. Also, our approach extends beyond
math reasoning, proving effective in code reasoning as well, thereby suggesting broader applicabil-
ity. Unlike previous studies, we are the first to examine the effectiveness of combining CoT and
PoT methods in verification, demonstrating promising results across both mathematical and code
reasoning tasks.

5 CONCLUSION

In this paper, we address the challenge of improving reasoning verification in LLM by integrating
CoT and Program-of-Thought PoT. Firstly, we collect a comprehensive binary dataset, derived from
multiple LLM reasoners for both math and code reasoning tasks, providing a robust foundation for
training verifiers. Next, through an extensive comparison of outcome reward models (ORMs) and
preference-tuning methods, we identify that reference-free preference tuning, particularly SimPO,
offers superior performance. Moreover, we introduce techniques to generate CoT/PoT based on their
PoT/CoT counterparts for further verification. Our resulting verifiers, Math-Rev and Code-Rev,
outperform existing baselines and achieve state-of-the-art results on benchmarks such as GSM8k
and MATH. We believe this paper could serve as a strong baseline in reasoning verification and
facilitate future studies on reasoning, verifying, reinforcement learning and related areas.

Limitation While our approach demonstrates significant improvements in reasoning verification,
it also comes with certain limitations. First, the sampling and re-ranking strategy introduces ad-
ditional computational overhead compared to greedy decoding, which can be resource-intensive,
especially when applied to large-scale datasets or deployed in real-time applications. Secondly, our
verifier is based on an outcome reward model (ORM) that provides feedback at the solution level
rather than at the step level. This solution-level granularity, while effective in overall verification,
lacks the finer granularity of process reward models (PRMs) that evaluate each step of the reasoning
path. PRMs can potentially offer more detailed feedback and facilitate more precise corrections,
particularly in complex multi-step reasoning tasks. However, implementing step-level verification
would require extensive process supervision data, which is expensive and challenging to scale.
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A APPENDIX

A.1 ABLATION STUDY ON COTNPOT
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Figure 4: Ablation study on CoTnPoT.

In this section, we com-
pare our proposed CoT-
nPoT with two ablated ap-
proaches:

A1. Prompting the same
coder LLM to generate
the final answer directly
through code, and filtering
out CoT solutions that do not match the code solution. This ablation isolates the scenario where the
coder LLM relies solely on its inherent strong math problem-solving ability, instead of analyzing
and transforming the CoT solution.

A2. Prompting the same coder LLM to generate descriptions that analyze the CoT solutions and
assess their correctness. This approach intuitively leverages LLMs as filters for verification.

We implement and compare CoTnPoT, A1, and A2 across all settings and both datasets in Figure
4. The accuracy is averaged at the dataset level for better visibility. We observe that CoTnPoT
consistently outperforms both A1 and A2. The potential reason is that the task of translating CoT
solutions to PoT solutions is easier and requires less reasoning than the processes in A1 and A2.
Therefore, although A1 and A2 are more direct methods to verify a solution, their performance is
limited by the capability of the coder LLM. On the other hand, CoTnPoT relies less on complex
reasoning, making it more effective overall.

A.2 ANALYSIS ON COTNPOT

Our method, CoTnPoT, for math reasoning is designed to filter out low-quality solutions by exam-
ining the match between CoT and PoT solutions. This approach essentially functions as a binary
classification task. By defining the ground truth label of a correct CoT solution as 1 and an incorrect
CoT solution as 0, the correspondence between CoT and PoT solutions is used as the prediction
label, where a match is labeled as 1 and a mismatch as 0. The effectiveness of the CoTnPoT filter is
directly correlated to the performance of this binary classifier, aiming to retain all solutions labeled
as 1 and discard those labeled as 0.

Table 5: Confusion Matrix for the CoTnPoT-based filter.

Actually Positive:
Correct CoT Solution

Actually Negative:
Wrong CoT Solution

Predicted Positive:
CoTnPoT Match True Positives (TPR): 90.09% False Positives (FPR): 20.30%

Predicted Negative:
CoTnPoT Mismatch False Negatives (FNR): 9.91% True Negatives (TNR): 79.70

To validate this method, we randomly selected 50,000 correct and 50,000 incorrect CoT solutions
from our verifier training set and applied the CoTnPoT filter. The performance of the classifier is
summarized in the confusion matrix presented in Table 5. The results demonstrate that the CoTnPoT
classifier effectively identifies correct solutions, as evidenced by high True Positive Rate (TPR) and
False Negative Rate (FNR). While the False Positive Rate (FPR) and True Negative Rate (TNR) are
moderate, indicating some incorrect solutions are not filtered out, the majority of correct solutions
are preserved for further verification. This experiment provides strong evidence of the significant
performance improvement that the CoTnPoT-based filter brings to math reasoning. Figure 6 in the
appendix shows the examples of true positive, false negative, false negative, and true negatives of
the above CoTnPoT classifier.
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A.3 QUALITATIVE ANALYSIS: ERROR DETECTION IN SOLUTIONS

In this experiment, we evaluated the performance of our Math-Rev verifier in identifying and high-
lighting errors in mathematical solutions. Each column in the provided figure represents a math
problem, including both a correct solution and a deliberately modified incorrect solution. We in-
put both solutions into our Math-Rev verifier, and highlight tokens in the wrong solution with log
probabilities less than -10 in red to indicate detected errors, as shown in Figure 5.

Question:

Tracy feeds each of her two dogs 1.5 cups of food per meal. She feeds 
her dogs thrice a day. How many pounds of food do her two dogs 
consume if 1 pound is equal to 2.25 cups?

Question:

Tonya has opened a lemonade stand selling lemonade in small, medium, and large cups 
at $1, $2 and $3 respectively. At the close of business she ended up making $50.  As she 
went back through her inventory she noticed that she sold $11 worth of small lemonades 
and $24 worth of medium lemonades. How many cups of large lemonade did Tonya sell?

Correct Solution:

Tracy feeds each dog 1.5 cups of food per meal, and she has two dogs, so 
they eat a total of 1.5 x 2 = 3 cups per meal.
She feeds her dogs three times a day, so in one day they eat a total of 3 x 
3 = 9 cups of food.
If 1 pound is equal to 2.25 cups, then the number of pounds their food 
consumption is 9 / 2.25 = 4 pounds.
So Tracy's dogs consume 4 pounds of food each day. The answer is: $4$

Correct Solution:

Tonya sold $11 worth of small lemonades, which means she sold $11/$1 = 11 small 
lemonades.
She also sold $24 worth of medium lemonades, which means she sold $24/$2 = 12 
medium lemonades.
Tonya made a total of $50, so the amount she made from selling large lemonades is $50 - 
$11 - $24 = $15.
Since each large lemonade costs $3, Tonya sold $15/$3 = 5 large lemonades.
The answer is 5. 

Wrong Solution:

Tracy feeds each dog 1.5 cups of food per meal, and she has two dogs, so 
they eat a total of 1.5 x 2 = 3 cups per meal.
She feeds her dogs three times a day, so in one day they eat a total of 3 x 
3 = 9 cups of food.
If 1 pound is equal to 2.25 cups, then the number of pounds their food 
consumption is 9 x 2.25 = 20.25 pounds.
So Tracy‘s dogs consume 20.25 pounds of food each day. The answer is: 
$20.25$

Wrong Solution:

Tonya sold $11 worth of small lemonades, which means she sold $11/$1 = 11 small 
lemonades.
She also sold $24 worth of medium lemonades, which means she sold $24/$2 = 12 
medium lemonades.
Tonya made a total of $50, so the amount she made from selling large lemonades is $50 - 
$11 - $24 = $15.
Since each large lemonade costs $3, Tonya sold $15/$2 = 7.5 large lemonades.
The answer is 7.5.

Figure 5: The figure illustrates two mathematical problems, each paired with a correct solution and
an intentionally incorrect solution. The Math-Rev verifier highlights errors in the incorrect solutions
in red, effectively identifying and marking the parts with low log probabilities.
For the first problem, Math-Rev successfully identified the incorrect use of the multiplication opera-
tor and also recognized the incorrect final answer, highlighting these segments in red. This indicates
the verifier’s sensitivity to mathematical operations and the final conclusion drawn from these oper-
ations. In the second problem, the verifier detected the discrepancy in the calculations and identi-
fied the deviation from the problem’s requirements, marking the erroneous parts accordingly. This
demonstrates Math-Rev’s effectiveness in pinpointing computational errors and inconsistencies with
problem statements.

A.4 CASE STUIES ON COTNPOT
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Question:
Charlie wants to sell beeswax candles. For every 
pound of beeswax, he can make 10 tapered candles. 
One pound of beeswax and the wicks cost $10.00 in 
supplies. If he sells each candle for $2.00 each, what 
is his net profit if he makes and sells 20 candles?

True Positive (TP) Solution:
He can make 20/10=2 pounds of candles. So he spends 
10*2=$20.00 in supplies. He sells 20 candles at $2.00 
each so he makes 20*2=$40.00. So his profit is 40-
20=$20.00 #### 20

False Negative (FN) Solution:
He can make 20/10=2 pounds of candles. So he 
spends 10+10=$20.00 in supplies. He sells 
20*2=$40.00 in candles. So he makes a profit of 40-
20=$20.00. #### 20

False Positive (FP) Solution:
He makes 10 candles per pound of beeswax and he 
has 20 pounds of beeswax so he can make 10*20 = 
200 candles. He sells each candle for $2.00 and he 
makes 200 candles so he sells for 2*200 = $400.00. He 
makes $400.00 and spends $10.00 on supplies so his 
net profit is 400-10 = $390.00. #### 390

True Negative (TN) Solution:
He can make 20/10=2 pounds of candles. So he 
spends 10+10=$20.00 in supplies. That means he 
makes a profit of 20-20=$0.00 #### 0

def TP_solution():
    # Calculate the number of pounds of candles Charlie can make
    pounds_of_candles = 20 / 10
    
    # Calculate the cost of supplies
    cost_of_supplies = pounds_of_candles * 10
    
    # Calculate the total revenue from selling the candles
    total_revenue = 20 * 2
    
    # Calculate the net profit
    net_profit = total_revenue - cost_of_supplies
    return net_profit

Result: 20 Match!

def FN_solution():
    # Calculate the pounds of candles Charlie can make
    candles_made = 20 / 10
    
    # Calculate the total cost of supplies
    total_cost = 10 + 10
    
    # Calculate the total revenue from selling the candles
    total_revenue = candles_made * 20 * 2
    
    # Calculate the net profit
    net_profit = total_revenue - total_cost
    return net_profit

Result: 60 Unmatch!

def FP_solution():
    # Calculate the number of candles Charlie can make
    pounds_of_beeswax = 20
    candles_per_pound = 10
    total_candles = pounds_of_beeswax * candles_per_pound
    
    # Calculate the total revenue from selling the candles
    price_per_candle = 2.00
    total_revenue = total_candles * price_per_candle
    
    # Calculate the net profit
    cost_of_supplies = 10.00
    net_profit = total_revenue - cost_of_supplies
    
    return net_profit

Result: 390 Match!

def TN_solution():
    # Calculate the number of pounds of candles Charlie can 
make
    candles_made = 20 / 10
    
    # Calculate the total cost of supplies
    total_cost = 10 + 10
    
    # Calculate the total revenue from selling the candles
    total_revenue = candles_made * 2
    
    # Calculate the net profit
    net_profit = total_revenue - total_cost
    
    return net_profit

Result: -16 Unmatch!

Figure 6: Case study on CoTnPoT. We show four different matching cases under one problem in the
GSM8k test set.
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