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Abstract

3D anomaly detection in point-cloud data is critical for industrial quality control,
aiming to identify structural defects with high reliability. However, current memory
bank-based methods often suffer from inconsistent feature transformations and
limited discriminative capacity, particularly in capturing local geometric details
and achieving rotation invariance. These limitations become more pronounced
when registration fails, leading to unreliable detection results. We argue that
point-cloud registration plays an essential role not only in aligning geometric struc-
tures but also in guiding feature extraction toward rotation-invariant and locally
discriminative representations. To this end, we propose a registration-induced,
rotation-invariant feature extraction framework that integrates the objectives of
point-cloud registration and memory-based anomaly detection. Our key insight is
that both tasks rely on modeling local geometric structures and leveraging feature
similarity across samples. By embedding feature extraction into the registration
learning process, our framework jointly optimizes alignment and representation
learning. This integration enables the network to acquire features that are both ro-
bust to rotations and highly effective for anomaly detection. Extensive experiments
on the Anomaly-ShapeNet and Real3D-AD datasets demonstrate that our method
consistently outperforms existing approaches in effectiveness and generalizability.

1 Introduction

3D anomaly detection aims to identify structural defects in point-cloud data, with critical applications
in industrial quality control. Despite the emergence of domain-specific datasets such as Real3D-
AD [1] and Anomaly-ShapeNet [2], the rarity of real-world anomalies (e.g., orientation shift and
other irregularities [3–5]) presents a persistent challenge. Consequently, most existing approaches
adopt unsupervised paradigms that rely solely on normal samples for training.

Among unsupervised approaches, memory bank-based methods have shown promise by maintaining a
repository of normal features and computing anomaly scores based on their deviation from incoming
test samples. To address spatial misalignment between test samples and stored prototypes, several
recent methods [1, 6, 7] universally adopt FPFH [8] with RANSAC-based [9] coarse registration
prior to feature extraction. However, as illustrated in Figure 1(a), significant residual misalignments
often persist even after registration. While registration failures harm anomaly detection performance,

∗ The first two authors contributed equally.
† Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/CHen-ZH-W/Reg2Inv


(c) (d) 

(b) (a) 

Figure 1: (a) Existing methods still exhibit misalignments after registration. (b) Visualization of
PointMAE features in the memory bank, with different colors for different objects. (c) Our method
achieves accurate point cloud alignment. (d) Visualization of our locally discriminative features in
the memory bank.

it also points to a deeper problem: the feature encoders themselves lack the geometric sensitivity and
transformation consistency required to support reliable anomaly detection.

This limitation stems largely from the nature of commonly used encoders such as PointMAE [10],
which are designed to capture global semantics but often fail to preserve fine-grained local geom-
etry(Figure 1(b)) and essential invariances. In particular, these encoders are not optimized to be
rotation-invariant or to capture local structural nuances, both of which are essential for effective
anomaly detection. As a result, feature representations struggle to maintain consistent correspon-
dences under varying orientations and structural perturbations, especially in the presence of anomalies.
When registration errors occur, these weaknesses exacerbate feature misalignment, ultimately result-
ing in unreliable anomaly scores.

To address these challenges, we propose a shift in how registration is employed within the anomaly
detection pipeline. Rather than using it as a separate preprocessing module, we treat registration
as an integral component of feature learning. Our key insight is that both point cloud registration
and memory-based anomaly detection rely on the same core capabilities: modeling local geometric
structures and capturing meaningful feature similarities across samples. Registration, by design,
requires learning features that are rotation-invariant, locally sensitive, and structurally discriminative
to establish accurate correspondences between source and target point clouds. Similarly, anomaly
detection depends on features that can preserve fine-grained local details and remain consistent under
rigid transformations, enabling precise comparisons between a test sample and normal prototypes
stored in a memory bank. By aligning feature learning with registration objectives, our approach
naturally yields representations well-suited for anomaly detection, overcoming the limitations of
conventional encoders like PointMAE in handling geometric variations and structural defects.

Building on this insight, we propose a unified framework, called Reg2Inv, to derive registration-
induced rotation invariance for 3D anomaly detection. During training, the model learns features
through a registration task that enforces both geometric alignment and multi-scale feature consis-
tency between source and target point clouds. This process not only establishes accurate structural
correspondences but also shapes the feature extractor to produce rotation-invariant and locally dis-
criminative representations(Figure 1(d)). At inference time, the model extracts features from a test
point cloud, computes a registration matrix to align it with a prototype, and then compares the
normalized features to those in a coreset-sampled memory bank. Anomaly scores are derived from
these comparisons, allowing the system to identify local defects even under rotation or deforma-
tion. By jointly optimizing feature learning and alignment, our method effectively addresses spatial
misalignment(Figure 1(c)) and enhances feature robustness, enabling more reliable 3D anomaly
detection. Experimental results on Anomaly-ShapeNet and Real3D-AD confirm the superiority of
our approach over existing baselines.

In summary, our contributions are threefold:
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• We delve into the intrinsic alignment between point cloud registration and memory bank-based
3D anomaly detection, and show that registration is a powerful feature learner for acquiring
discriminative and rotation-invariant representations.

• We propose a unified framework Reg2Inv for registration-induced rotation-invariant feature extrac-
tion, which jointly performs accurate prototype-sample alignment and enables effective anomaly
scoring based on robust local geometric features.

• We conduct extensive experiments on two benchmark datasets, Anomaly-ShapeNet and Real3D-
AD, demonstrating that our method consistently outperforms existing state-of-the-art approaches
in 3D anomaly detection.

2 Related Work

2.1 2D Anomaly Detection

Anomaly detection in 2D images has seen significant progress in recent years, particularly under
anomaly-free training settings. Popular approaches include feature embedding methods, among
which flow-based, memory bank-based, and reconstruction-based techniques are widely adopted.
Flow-based methods [11–14] model the distribution of normal features using normalizing flows
and detect anomalies via likelihood estimation. Memory bank-based approaches [15–20] store
features from pre-trained encoders and identify anomalies by comparing test samples to stored
normal patterns. Reconstruction-based methods [21–26] learn to reconstruct normal inputs and detect
anomalies through reconstruction errors. In this work, we focus on anomaly detection in 3D point
clouds. Unlike structured 2D images, point clouds are unstructured, unordered, and often sparse,
posing greater challenges for feature learning and anomaly detection.

2.2 3D Anomaly Detection

3D anomaly detection targets structural irregularities in point-cloud data [27, 28] and has seen
increasing research attention. Existing methods generally fall into two categories: reconstruction-
based and memory bank-based. Among reconstruction-based methods, IMRNet [2] detects anomalies
by reconstructing masked normal samples; R3D-AD [29] restores normal geometry from pseudo-
abnormal inputs; and PO3AD [30] enhances local reconstruction by predicting offsets in defective
regions. While these methods are effective at capturing fine-grained anomalies, they often suffer from
sensitivity to resolution and noise.

Memory bank-based methods aim to learn compact representations of normal structures for compari-
son. Reg3D-AD [1] uses PointMAE [10] to extract features and stores both features and coordinates
in separate memory banks. Group3AD [6] introduces a group-level feature aggregation strategy
to improve anomaly sensitivity and alignment. ISMP [7] proposes an internal spatial modality
perception framework that leverages a spatial insight engine for enhanced feature discrimination.
While these methods have shown promising results, they often overlook the limitations of current
registration strategies and, more importantly, reflect a deeper issue: feature representations frequently
lack transformation consistency and local discriminability. In contrast, our work integrates point
cloud registration into the anomaly detection pipeline to jointly optimize spatial alignment and
feature learning. By aligning feature extraction with registration objectives, our framework generates
rotation-invariant and locally discriminative features, significantly enhancing detection robustness.

2.3 Coarse-to-Fine Point Cloud Registration

Coarse-to-fine strategies emerge as a compelling approach to capture hierarchical visual structure [31,
32], which also has been proven to be effective in both 2D image matching [33–35] and 3D point
cloud registration [36, 37]. Geometric Transformer [37], in particular, achieves robust registration by
incorporating geometric structure into attention-based models. Our approach builds upon this line of
work by not only employing a coarse-to-fine registration pipeline but also enhancing it with feature
learning objectives that ensure both robust alignment and discriminative local feature extraction.

3



ℳ� 𝑔𝑔𝑔𝑔 

ℳ� 𝑔𝑔𝑔𝑔 

test  
sample 

Top-k 

Rotation-Invariant Feature Extractor 
Voxel 
Down- 
sample Geometric 

Transformer 

𝓠𝓠�  

𝓟𝓟�  

𝓠𝓠� 

𝓟𝓟�  

𝓠𝓠�;𝐅𝐅𝐅𝓠𝓠�   𝓟𝓟� ;𝐅𝐅𝐅𝓟𝓟�   

𝓟𝓟� ;𝐅𝐅𝐅𝐅𝓟𝓟�   𝓠𝓠�;𝐅𝐅𝐅𝐅𝓠𝓠�   

𝐅𝐅𝓠𝓠�  𝐅𝐅𝓟𝓟�  

R
IC

on
v+

+ 

Registration-Induced  Feature Learning 

T 
Rotation- 
Invariant  
Feature  
Extractor 

ℒ𝑜𝑜𝑜𝑜 

…
 

𝓖𝓖𝒙𝒙𝒊𝒊
𝓟𝓟� ;𝐅𝐅𝐅𝒙𝒙𝒊𝒊

𝓟𝓟�   𝓖𝓖𝒚𝒚𝒊𝒊
𝓠𝓠� ;𝐅𝐅𝐅𝒚𝒚𝒊𝒊

𝓠𝓠�   Confidence Matrix 

ℒ𝑝𝑝 Optimal  
Transport 

…
 

𝓖𝓖𝒙𝒙𝒊𝒊
𝓟𝓟� ;𝐅𝐅𝐅′𝒙𝒙𝒊𝒊

𝓟𝓟�   𝓖𝓖𝒚𝒚𝒊𝒊
𝓠𝓠� ;𝐅𝐅𝐅′𝒚𝒚𝒊𝒊

𝓠𝓠�   

ℒ𝑓𝑓 

Confidence Matrix 

Optimal  
Transport 

ℳ� 𝑔𝑔𝑔𝑔: Ground-truth  
patch matches 

Rotation- 
Invariant  
Feature  
Extractor 

Registration-Induced  Anomaly Detection 

Gaussian Correlation 

patch  
matches …

 
…

 

…
 

…
 

Extract 
Local Patch 

Optimal  
Transport 

…
 

…
 

… 

… 

… 
…

 
…

 

Top-k 

Top-k 

Top-k 
Ransac T C S Filter 

Memory Bank Template 

Sample 

train sample 

T Rigid transformation C Concatenate S Search and compute anomaly score 

𝓟𝓟 

𝓠𝓠 

𝓟𝓟� ;𝐅𝐅𝐅𝐅𝓟𝓟�   

ℳ�𝑖𝑖  

KPConv-FPN 

Figure 2: The overview of Reg2Inv. In the feature learning stage, the model learns features via a
registration task that enforces geometric alignment and multi-scale consistency between paired point
clouds. At inference time, the model computes a registration matrix for alignment with the prototype
and extracts rotation-invariant features for anomaly detection. The feature extractor is designed to
obtain a set of features for anomaly detection and two sets of features for registration.

3 Methodology

Problem statement. The 3D anomaly detection task involves a training set Dtrain = {Pn
i ∈

RNi×3}Mi=1 containing M normal objects and a test set Dtest = {Pn
i ∈ RNi×3}Ji=1 ∪ {Pa

i ∈
RNi×3}Ki=1, consisting of J normal and K abnormal objects (where n and a denote normal and
abnormal, respectively). Each normal object Pn contains only normal points pn, while an abnormal
object Pa includes both pn and abnormal points pa. The goal of this task is to train models on Dtrain
with two purposes: (1) object-level anomaly detection: distinguishing Pn and Pa in Dtest; and (2)
point-level anomaly localization: identify pa within Pa to localize anomalies.

Overview. As shown in Figure 2, our framework Reg2Inv consists of two stages: Registration-
Induced Feature Learning and Registration-Induced Anomaly Detection, both built upon a Rotation-
Invariant Feature Extractor. The model performs point-cloud registration in the feature learning stage
by enforcing geometric and feature consistency across multi-scale patches and points. This refines
the feature extractor to learn rotation-invariant and discriminative features while aligning structural
correspondences. During anomaly detection, the model extracts rotation-invariant features from test
samples, computes a registration matrix to align them with a prototype, and identifies anomalies by
comparing normalized features to a coreset-sampled memory bank.

3.1 Registration-Induced Feature Learning

Point sampling & Ground-truth matches generation. In the feature learning stage, we first
generate transformed pairs (P,Q) by applying random rigid transformations Tgt to each P ∈
Dtrain, yielding Q. Since both point cloud registration and anomaly detection benefit from reduced
data complexity, and dense point clouds lead to redundant or invalid point-wise alignments, we
employ multi-scale voxel downsampling on both P and Q, obtaining the first level points P̃ , Q̃
and the coarsest level points P̂ , Q̂. Notably, P̂ and Q̂ are voxel downsampled from P̃ and Q̃, their
relationships can be captured via a point-to-node grouping strategy [36–38]. Specifically, each p̃ ∈ P̃
is associated with its nearest coarsest-level point p̂ ∈ P̂ , forming patches GP . The construction of
GQ follows the same procedure applied to Q̃ and Q̂. Formally, the patch GP is defined as:

GP
i =

{
p̃ ∈ P̃ | i = argminj

(
∥p̃− p̂j∥2

)
, p̂j ∈ P̂

}
. (1)

Given the GP and GQ, we construct two types of ground-truth matches between them to enable
supervised loss computation. Specifically, under the known rigid transformation Tgt, we compute the
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overlap ratio between patch pairs (GP
i ,GQ

j ). Patch pairs with an overlap ratio > 0.1 are selected as
ground-truth patch matches:

M̂gt = {(GP
i ,GQ

j ) | Overlap(Tgt(GP
i ),GQ

j ) > 0.1}. (2)

In addition, we randomly sample Ng patch pairs from M̂gt and establish ground-truth point matches
by confidence threshold t as follows:

M̃gt
i = {(p̃, q̃) | ∥Tgt(p̃)− q̃∥2 < t, p̃ ∈ GP

xi
, q̃ ∈ GQ

yi
}, (3)

where (GP
xi
,GQ

yi
) ∈ M̂gt and |M̃gt| = Ng .

Features extraction. To leverage registration guidance for extracting discriminative and rotation-
invariant features tailored to anomaly detection, we design a feature extractor comprising three
components: RIConv++ [39], a KPConv-FPN backbone [40, 41], and a Geometric Transformer
module [37] with layer normalization. To capture fine-grained geometric details from P̃ and Q̃,
we apply RIConv++ to extract dense local features features F′′P̃ ∈ R|P̃|×d′′

and F′′Q̃ ∈ R|Q̃|×d′′
,

where d′′ denotes the local feature dimension. These features encode rotation-invariant and geometri-
cally coherent local structures, which are essential for anomaly detection. To encode hierarchical
information across multiple resolutions, we employ the KPConv-FPN to process multi-scale point
clouds and generate multi-level point-wise features. The corresponding outputs for P̃ and Q̃ are
denoted as F′P̃ ∈ R|P̃|×d′

and F′Q̃ ∈ R|Q̃|×d′
, where d′ denotes the point feature dimension. These

features capture discriminative contextual patterns at the point level, enabling accurate and robust
spatial alignment. Finally, P̂ and Q̂ are processed using the Geometric Transformer module with
layer normalization, yielding patch-wise features FP̂ ∈ R|P̂|×d and FQ̂ ∈ R|Q̂|×d, where d is the
final patch feature dimension. These features represent global structural priors that facilitate reliable
registration under partial overlap or sparsity.

Given these extracted features, for each patch GP
i , we use M̂gt to define its local feature matrix and

point feature matrix as F′′P̃
i ⊂ F′′P̃ and F′P̃

i ⊂ F′P̃ , respectively. The local feature matrix F′′Q̃
j and

point feature matrix F′Q̃
j for each patch GQ

j are computed and denoted in a similar way.

Training objective To achieve accurate point cloud registration while simultaneously leveraging
the registration process to extract rotation-invariant features suitable for anomaly detection, our
overall training objective is formulated as a combination of three complementary components:

L = Lf + Lp + Loc. (4)

Here, Lf is a negative log-likelihood loss [42] used for aligning local features. This loss is key in
encouraging the network to learn geometrically coherent and rotation-invariant representations, which
are crucial for effective anomaly detection. For each ground-truth patch match (GP

xi
,GQ

yi
) ∈ M̂gt, we

first employ the optimal transport layer [42] to extract a local feature assignment matrix, from which
we then compute the corresponding cost matrix C′′

i. Subsequently, we augment each cost matrix C′′
i

by adding one row and one column filled with a learnable dustbin parameter α, forming C′′∗
i . We

then utilize the Sinkhorn [43] algorithm on C′′∗
i to obtain a soft local feature assignment matrix Z ′′∗

i .
The Z ′′∗

i is used to compute the Lf,i defined as:

Lf,i = −
∑

(x,y)∈M̃gt
i

log z′′
∗
i,x,y −

∑
x∈Ii

log z′′
∗
i,x,mi+1 −

∑
y∈Ji

log z′′
∗
i,ni+1,y. (5)

where M̃gt
i represents the set of matched points, while Ii and Ji denote the sets of unmatched points

in GP
xi

and GQ
yi

. The Lf is computed by averaging the individual loss: Lf = 1
Ng

∑Ng

i=1 Lf,i.

Lp and Loc are used to supervise point cloud registration at different levels of granularity. Lp follows
a negative log-likelihood loss and shares a similar computation process with Lf . It is tailored for point
matching, refining point-level alignment, and enforcing accurate correspondences between individual
points, which improves cross-cloud matching accuracy and enhances registration robustness.
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Loc denotes the overlap-aware circle loss [37, 44], which prioritizes correspondences in regions
with significant overlap. This helps improve the reliability of registration under partial overlap or
sparse input by focusing on structurally consistent patches. Its definition is as follows:

LP
oc =

1

|A|
∑

GP
i ∈A

log
[
1 +

∑
GQ
j ∈εip

eλ
j
iβ

i,j
p (dj

i−∆p) ·
∑

GQ
k ∈εin

eβ
i,k
n (∆n−dk

i )
]
. (6)

The synergy among these losses ensures accurate and robust registration, while promoting rotation-
invariant and geometrically coherent representations, which are crucial for reliable anomaly detection.
Further details on the loss formulations are provided in the appendix.

3.2 Registration-Induced Anomaly Detection

Point alignment. During the inference phase, a sample from Dtrain is selected as the template Q,
and all samples in both Dtrain and Dtest must undergo registration to align with this template. The
same point sampling and feature extraction from training were applied to all samples. To find patch
matches of each sample pair (P,Q), we compute a Gaussian correlation matrix H ∈ R|P̂|×|Q̂| with
hi,j = exp(−∥FP̂

i −FQ̂
j ∥22) as in [37]. We then perform a dual-normalization operation [35, 45] on

H to obtain an augmented correlation matrix H̄. Finally, we select the largest Nc entries in H̄ as the
patch matches:

M̂ =
{
(p̂xi

, q̂yi
) | (xi, yi) ∈ topkx,y

(
h̄x,y

)}
. (7)

For each match (GP
xi
,GQ

yi
) ∈ M̂, we compute its point assignment matrix Z ′∗

i which is then recovered
to Z ′

i by dropping the last row and the last column. We select the largest k entries in Z ′
i as the point

matches:
M̃i =

{(
GP
xi
(xj) ,GQ

yi
(yj)

)
| (xj , yj) ∈ mutual _ topkx,y (z

′
i,x,y)

}
. (8)

The point matches computed from each patch match are then collected together to estimate the rigid
transformation T by RANSAC [9]. Subsequently, the estimated transformation T is applied to align
P̃ with Q̃:

P̃align = T (P̃). (9)

Feature normalization and memory bank construction. For each train sample P ∈ Dtrain, we
derive local features F′′P̃ ∈ R|P̃|×d′′

and the corresponding alignment coordinates P̃align ∈ R|P̃|×3.
These are then aggregated across all training samples in Dtrain to form collections of feature vectors
Ff and coordinate vectors Fc, from which we compute the normalization parameters γf and γc,
respectively. The final representation F is obtained by normalizing Ff and Fc using γf and γc, and
then fusing them via a concatenation-based operator, that is F = Φ(Ff/γf ,Fc/γc). Finally, we
apply the Coreset sampling technique [1, 15, 46] to construct the memory bank B.

Feature filtering and anomaly detection. For each test sample P ∈ Dtest, we compute the final
representation F in the same way. Feature filtering is performed to eliminate edge artifacts and ensure
enhanced feature normalization across test samples. Specifically, we construct local neighborhoods
around the feature-corresponding points by computing Ni = KNN(pi, k), where pi ∈ P . We then
calculate the centroid of each local neighborhood:

µi =
1

|Ni|
∑

pj∈Ni

pj . (10)

The feature filtering process can be summarized by the following equation:

Filter(i) =

{
1 if ∥pi − µi∥ = minp∈Ni ∥p− µi∥
0 otherwise . (11)

The filtered feature set Ffil = {fi | Filter (i) = 1} is subsequently employed for anomaly detection.
The point-level anomaly score si is defined as:

si = min
fbank∈B

∥fi − f bank∥2, (12)

where fi ∈ Ffil. The object-level anomaly score S is computed by aggregating all point-level scores
into a score mask and taking the maximum value after smoothing: S = max({si} ∗ fn), where fn is
a mean filter of size n and ∗ is the point-wise convolution operator.
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Table 1: Comparison of AUROC results at the object and point levels (%) of various methods on
Real3D-AD. The best result in red and the second-best in blue for each category. (Raw) denotes the
raw point coordinates used as input to the method. (FPFH) and (PMAE) denote configurations using
Fast Point Feature Histograms [8] and PointMAE [10] as feature extractors. The top three methods
are reconstruction-based, while the remaining ones are memory bank-based.

O-AUROC(↑) / P-AUROC(↑)
Method Airplane Car Candy Chicken Diamond Duck Fish

IMRNet 76.2 / 71.1 / 75.5 / 78.0 / 90.5 / 51.7 / 88.0 /
R3D-AD 77.2 / 69.3 / 71.3 / 71.4 / 68.5 / 90.9 / 69.2 /
PO3AD 80.4 / 65.4 / 78.5 / 68.6 / 80.1 / 82.0 / 85.9 /
BTF(RAW) 73.0 / 56.4 64.7 / 64.7 53.9 / 73.5 78.9 / 60.9 70.7 / 56.3 69.1 / 60.1 60.2 / 51.4
BTF(FPFH) 52.0 / 73.8 56.0 / 70.8 63.0 / 86.4 43.2 / 73.5 54.5 / 88.2 78.4 / 87.5 54.9 / 70.9
M3DM 43.4 / 54.7 54.1 / 60.2 55.2 / 67.9 68.3 / 67.8 60.2 / 60.8 43.3 / 66.7 54.0 / 60.6
PatchCore(FPFH) 88.2 / 56.2 59.0 / 75.4 54.1 / 78.0 83.7 / 42.9 57.4 / 82.8 54.6 / 26.4 67.5 / 82.9
PatchCore(PMAE) 72.6 / 56.9 49.8 / 60.9 66.3 / 62.7 82.7 / 72.9 78.3 / 71.8 48.9 / 52.8 63.0 / 71.7
CPMF 70.1 / 61.8 55.1 / 83.6 55.2 / 73.4 50.4 / 55.9 52.3 / 75.3 58.2 / 71.9 55.8 / 98.8
Reg3D-AD 71.6 / 63.1 69.7 / 71.8 68.5 / 72.4 85.2 / 67.6 90.0 / 83.5 58.4 / 50.3 91.5 / 82.6
Group3AD 74.4 / 63.6 72.8 / 74.5 84.7 / 73.8 78.6 / 75.9 93.2 / 86.2 67.9 / 63.1 97.6 / 83.6
ISMP 85.8 / 75.3 73.1 / 83.6 85.2 / 90.7 71.4 / 79.8 94.8 / 92.6 71.2 / 87.6 94.5 / 88.6
Ours 81.8 / 92.3 75.8 / 94.4 100. / 96.9 94.4 / 91.0 100. / 97.9 75.0 / 93.7 67.2 / 84.6

Method Gemstone Seahorse Shell Starfish Toffees Average

IMRNet 67.4 / 60.4 / 66.5 / 67.4 / 77.4 / 72.5 /
R3D-AD 66.5 / 72.0 / 84.0 / 70.1 / 70.3 / 73.4 /
PO3AD 69.3 / 75.6 / 80.0 / 75.8 / 77.1 / 76.5 /
BTF(RAW) 68.6 / 59.7 59.6 / 52.0 39.6 / 48.9 53.0 / 39.2 70.3 / 62.3 63.5 / 57.1
BTF(FPFH) 64.8 / 89.1 77.9 / 51.2 75.4 / 57.1 57.5 / 50.1 46.2 / 81.5 60.3 / 73.3
M3DM 64.4 / 67.4 49.5 / 56.0 69.4 / 73.8 55.1 / 53.2 45.0 / 68.2 55.2 / 63.1
PatchCore(FPFH) 37.0 / 91.0 50.5 / 73.9 58.9 / 73.9 44.1 / 60.6 56.5 / 74.7 59.3 / 68.2
PatchCore(PMAE) 37.4 / 44.4 53.9 / 63.3 50.1 / 70.9 51.9 / 58.0 58.5 / 58.0 59.4 / 62.0
CPMF 58.9 / 44.9 72.9 / 96.2 65.3 / 72.5 70.0 / 80.0 39.0 / 95.9 58.6 / 75.8
Reg3D-AD 41.7 / 54.5 76.2 / 81.7 58.3 / 81.1 50.6 / 61.7 82.7 / 75.9 70.4 / 70.5
Group3AD 53.9 / 56.4 84.1 / 82.7 58.5 / 79.8 56.2 / 62.5 79.6 / 80.3 75.1 / 73.5
ISMP 46.8 / 85.7 72.9 / 81.3 62.3 / 83.9 66.0 / 64.1 84.2 / 89.5 75.7 / 83.6
Ours 73.5 / 90.7 53.2 / 64.5 69.2 / 90.6 84.1 / 84.0 62.6 / 73.7 78.0 / 87.8

4 Experiments

4.1 Experimental Settings

Datasets. Evaluation is conducted on Anomaly-ShapeNet [2] and Real3D-AD [1]. Anomaly-
ShapeNet is a synthetic 3D anomaly detection dataset with 1,600 samples across 40 categories, each
containing 4 normal samples in the training set. Real3D-AD is a real-world high-resolution dataset
with 12 object categories, each category has 4 normal training samples and 100 test instances. To
simulate practical scenarios, training samples in Real3D-AD are captured via full 360◦ scans, while
test samples are collected from single-view perspectives.

Evaluation metrics. We evaluate anomaly detection performance at both the object and point levels
using the Area Under the Receiver Operating Characteristic Curve (AUROC). Object-level AUROC
(O-AUROC) measures the effectiveness of anomaly detection, while Point-level AUROC (P-AUROC)
assesses localization accuracy. Higher values in both metrics indicate stronger anomaly detection and
localization capabilities.

Details. We set the local feature dimension to 32. For adaptive voxelization, the voxel size is
dynamically determined via binary search to maintain 8,192 sampled points on Real3D-AD and
4,096 on Anomaly-ShapeNet. The model is trained for 100k iterations using the Adam optimizer
with an initial learning rate of 1e-4. The learning rate is first linearly warmed up for 10k steps, then
decayed following a cosine schedule to 10% of the initial value. Experiments are conducted on a
single RTX 4090D GPU.

Baselines. Our method is evaluated against two categories of state-of-the-art 3D anomaly detection
approaches on Anomaly-ShapeNet: (1) Reconstruction-based methods, including IMRNet [2],
R3D-AD [29], and PO3AD [30]; and (2) Memory bank-based methods, including BTF [47],
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Table 2: Comparison of AUROC results at the object and point levels (%) of various methods on
Anomaly-ShapeNet.

O-AUROC(↑) / P-AUROC(↑)
Method ashtray0 bag0 bottle0 bottle1 bottle3 bowl0 bowl1 bowl2 bowl3 bowl4 bowl5

IMRNet 67.1 / 67.1 66.0 / 66.8 55.2 / 55.6 70.0 / 70.2 64.0 / 64.1 68.1 / 78.1 70.2 / 70.5 68.5 / 68.4 59.9 / 59.9 67.6 / 57.6 71.0 / 71.5
R3D-AD 83.3 / 72.0 / 73.3 / 73.7 / 78.1 / 81.9 / 77.8 / 74.1 / 76.7 / 74.4 / 65.6 /
PO3AD 100. / 96.2 83.3 / 94.9 90.0 / 91.2 93.3 / 84.4 92.6 / 88.0 92.2 / 97.8 82.9 / 91.4 83.3 / 91.8 88.1 / 93.5 98.1 / 96.7 84.9 / 94.1
BTF(RAW) 57.8 / 51.2 41.0 / 43.0 59.7 / 55.1 51.0 / 49.1 56.8 / 72.0 56.4 / 52.4 26.4 / 46.4 52.5 / 42.6 38.5 / 68.5 66.4 / 56.3 41.7 / 51.7
BTF(FPFH) 42.0 / 62.4 54.6 / 74.6 34.4 / 64.1 54.6 / 54.9 32.2 / 62.2 50.9 / 71.0 66.8 / 76.8 51.0 / 51.8 49.0 / 59.0 60.9 / 67.9 69.9 / 69.9
M3DM 57.7 / 57.7 53.7 / 63.7 57.4 / 66.3 63.7 / 63.7 54.1 / 53.2 63.4 / 65.8 66.3 / 66.3 68.4 / 69.4 61.7 / 65.7 46.4 / 62.4 40.9 / 48.9
PatchCore(FPFH) 58.7 / 59.7 57.1 / 57.4 60.4 / 65.4 66.7 / 68.7 57.2 / 51.2 50.4 / 52.4 63.9 / 53.1 61.5 / 62.5 53.7 / 32.7 49.4 / 72.0 55.8 / 35.8
PatchCore(PMAE) 59.1 / 49.5 60.1 / 67.4 51.3 / 55.3 60.1 / 60.6 65.0 / 65.3 52.3 / 52.7 62.9 / 52.4 45.8 / 51.5 57.9 / 58.1 50.1 / 50.1 59.3 / 56.2
CPMF 35.3 / 61.5 64.3 / 65.5 52.0 / 52.1 48.2 / 57.1 40.5 / 43.5 78.3 / 74.5 63.9 / 48.8 62.5 / 63.5 65.8 / 64.1 68.3 / 68.3 68.5 / 68.4
Reg3D-AD 59.7 / 69.8 70.6 / 71.5 48.6 / 88.6 69.5 / 69.6 52.5 / 52.5 67.1 / 77.5 52.5 / 61.5 49.0 / 59.3 34.8 / 65.4 66.3 / 80.0 59.3 / 69.1
ISMP / 60.3 / 74.7 / 77.0 / 56.8 / 77.5 / 85.1 / 54.6 / 73.6 / 77.3 / 74.0 / 53.4
Ours 90.0 / 78.5 100. / 99.1 100. / 99.5 100. / 84.9 100. / 81.7 100. / 98.3 80.7 / 82.8 65.6 / 82.2 58.5 / 76.1 85.2 / 78.8 81.8 / 82.4

Method bucket0 bucket1 cap0 cap3 cap4 cap5 cup0 cup1 eraser0 headset0 headset1

IMRNet 58.0 / 58.5 77.1 / 77.4 73.7 / 71.5 77.5 / 70.6 65.2 / 75.3 65.2 / 74.2 64.3 / 64.3 75.7 / 68.8 54.8 / 54.8 72.0 / 70.5 67.6 / 47.6
R3D-AD 68.3 / 75.6 / 82.2 / 73.0 / 68.1 / 67.0 / 77.6 / 75.7 / 89.0 / 73.8 / 79.5 /
PO3AD 85.3 / 75.5 78.7 / 89.9 87.7 / 95.7 85.9 / 94.8 79.2 / 94.0 67.0 / 86.4 87.1 / 90.9 83.3 / 93.2 99.5 / 97.4 80.8 / 82.3 92.3 / 90.7
BTF(RAW) 61.7 / 61.7 32.1 / 68.6 66.8 / 52.4 52.7 / 68.7 46.8 / 46.9 37.3 / 37.3 40.3 / 63.2 52.1 / 56.1 52.5 / 63.7 37.8 / 57.8 51.5 / 47.5
BTF(FPFH) 40.1 / 40.1 63.3 / 63.3 61.8 / 73.0 52.2 / 65.8 52.0 / 52.4 58.6 / 58.6 58.6 / 79.0 61.0 / 61.9 71.9 / 71.9 52.0 / 62.0 49.0 / 59.1
M3DM 30.9 / 69.8 50.1 / 69.9 55.7 / 53.1 42.3 / 60.5 77.7 / 71.8 63.9 / 65.5 53.9 / 71.5 55.6 / 55.6 62.7 / 71.0 57.7 / 58.1 61.7 / 58.5
PatchCore(FPFH) 46.9 / 45.9 55.1 / 57.1 58.0 / 47.2 45.3 / 65.3 75.7 / 59.5 79.0 / 79.5 60.0 / 65.5 58.6 / 59.6 65.7 / 81.0 58.3 / 58.3 63.7 / 46.4
PatchCore(PMAE) 59.3 / 58.6 56.1 / 57.4 58.9 / 54.4 47.6 / 48.8 72.7 / 72.5 53.8 / 54.5 61.0 / 51.0 55.6 / 85.6 67.7 / 37.8 59.1 / 57.5 62.7 / 42.3
CPMF 48.2 / 48.6 60.1 / 60.1 60.1 / 60.1 55.1 / 55.1 55.3 / 55.3 69.7 / 55.1 49.7 / 49.7 49.9 / 50.9 68.9 / 68.9 64.3 / 69.9 45.8 / 45.8
Reg3D-AD 61.0 / 61.9 75.2 / 75.2 69.3 / 63.2 72.5 / 71.8 64.3 / 81.5 46.7 / 46.7 51.0 / 68.5 53.8 / 69.8 34.3 / 75.5 53.7 / 58.0 61.0 / 62.6
ISMP / 52.4 / 67.2 / 86.5 / 73.4 / 75.3 / 67.8 / 86.9 / 60.0 / 70.6 / 58.0 / 70.2
Ours 81.3 / 61.0 90.2 / 85.5 65.9 / 86.1 86.3 / 94.5 68.1 / 86.4 90.2 / 97.0 73.3 / 79.8 93.3 / 88.1 100. / 98.0 100. / 94.6 84.3 / 97.0

Method helmet0 helmet1 helmet2 helmet3 jar0 phone shelf0 tap0 tap1 vase0 vase1

IMRNet 59.7 / 59.8 60.0 / 60.4 64.1 / 64.4 57.3 / 66.3 78.0 / 76.5 75.5 / 74.2 60.3 / 60.5 67.6 / 68.1 69.6 / 69.9 53.3 / 53.5 75.7 / 68.5
R3D-AD 75.7 / 72.0 / 63.3 / 70.7 / 83.8 / 76.2 / 69.6 / 73.6 / 90.0 / 78.8 / 72.9 /
PO3AD 76.2 / 87.8 96.1 / 94.8 86.9 / 93.2 75.4 / 84.6 86.6 / 87.1 77.6 / 81.0 57.3 / 66.3 74.5 / 78.3 68.1 / 69.2 85.8 / 95.5 74.2 / 88.2
BTF(RAW) 55.3 / 50.4 34.9 / 44.9 60.2 / 60.5 52.6 / 70.0 42.0 / 42.3 56.3 / 58.3 16.4 / 46.4 52.5 / 52.7 57.3 / 56.4 53.1 / 61.8 54.9 / 54.9
BTF(FPFH) 57.1 / 57.5 71.9 / 74.9 54.2 / 64.3 44.4 / 72.4 42.4 / 42.7 67.1 / 67.5 60.9 / 61.9 56.0 / 56.8 54.6 / 59.6 34.2 / 64.2 21.9 / 61.9
M3DM 52.6 / 59.9 42.7 / 42.7 62.3 / 62.3 37.4 / 65.5 44.1 / 54.1 35.7 / 35.8 56.4 / 55.4 75.4 / 65.4 73.9 / 71.2 42.3 / 60.8 42.7 / 60.2
PatchCore(FPFH) 54.6 / 54.8 48.4 / 48.9 42.5 / 45.5 40.4 / 73.7 47.2 / 47.8 38.8 / 48.8 49.4 / 61.3 75.3 / 73.3 76.6 / 76.8 45.5 / 65.5 42.3 / 45.3
PatchCore(PMAE) 55.6 / 58.0 55.2 / 56.2 44.7 / 65.1 42.4 / 61.5 48.3 / 48.7 48.8 / 88.6 52.3 / 54.3 45.8 / 85.8 53.8 / 54.1 44.7 / 67.7 55.2 / 55.1
CPMF 55.5 / 55.5 58.9 / 54.2 46.2 / 51.5 52.0 / 52.0 61.0 / 61.1 50.9 / 54.5 68.5 / 78.3 35.9 / 45.8 69.7 / 65.7 45.1 / 45.8 34.5 / 48.6
Reg3D-AD 60.0 / 60.0 38.1 / 62.4 61.4 / 82.5 36.7 / 62.0 59.2 / 59.9 41.4 / 59.9 68.8 / 68.8 67.6 / 58.9 64.1 / 74.1 53.3 / 54.8 70.2 / 60.2
ISMP / 68.3 / 62.2 / 84.4 / 72.2 / 82.3 / 66.1 / 68.7 / 52.2 / 55.2 / 66.1 / 84.3
Ours 81.7 / 92.5 98.6 / 90.6 87.5 / 89.1 87.6 / 95.6 100. / 98.2 100. / 99.2 57.7 / 63.2 94.8 / 91.8 80.4 / 86.9 99.6 / 98.0 60.5 / 70.5

Method vase2 vase3 vase4 vase5 vase7 vase8 vase9 Average

IMRNet 61.4 / 61.4 70.0 / 40.1 52.4 / 52.4 67.6 / 68.2 63.5 / 59.3 63.0 / 63.5 59.4 / 69.1 66.1 / 65.0
R3D-AD 75.2 / 74.2 / 63.0 / 75.7 / 77.1 / 72.1 / 71.8 / 74.9 /
PO3AD 95.2 / 97.8 82.1 / 88.4 67.5 / 90.2 85.2 / 93.7 96.6 / 98.2 73.9 / 95.0 83.0 / 95.2 83.9 / 89.8
BTF(RAW) 41.0 / 40.3 71.7 / 60.2 42.5 / 61.3 58.5 / 58.5 44.8 / 57.8 42.4 / 55.0 56.4 / 56.4 49.3 / 55.0
BTF(FPFH) 54.6 / 64.6 69.9 / 69.9 51.0 / 71.0 40.9 / 42.9 51.8 / 54.0 66.8 / 66.2 26.8 / 56.8 52.8 / 62.8
M3DM 73.7 / 73.7 43.9 / 65.8 47.6 / 65.5 31.7 / 64.2 65.7 / 51.7 66.3 / 55.1 66.3 / 66.3 55.2 / 61.6
PatchCore(FPFH) 72.1 / 72.1 44.9 / 43.0 50.6 / 50.5 41.7 / 44.7 69.3 / 69.3 66.2 / 57.5 66.0 / 66.3 56.8 / 58.0
PatchCore(PMAE) 74.1 / 74.2 46.0 / 46.5 51.6 / 52.3 57.9 / 57.2 65.0 / 65.1 66.3 / 36.4 62.9 / 42.3 56.2 / 57.7
CPMF 58.2 / 58.2 58.2 / 58.2 51.4 / 51.4 61.8 / 65.1 39.7 / 50.4 52.9 / 52.9 60.9 / 54.5 55.9 / 57.3
Reg3D-AD 60.5 / 40.5 65.0 / 51.1 50.0 / 75.5 52.0 / 62.4 46.2 / 88.1 62.0 / 81.1 59.4 / 69.4 57.2 / 66.8
ISMP / 73.3 / 76.2 / 54.5 / 47.2 / 70.1 / 85.1 / 61.5 / 69.1
Ours 100. / 99.7 84.5 / 84.4 81.8 / 92.7 100. / 87.9 64.3 / 86.3 81.8 / 93.4 87.3 / 97.1 86.1 / 88.2

M3DM [48], PatchCore [15], CPMF [49], Reg3D-AD [1], and ISMP [7]. On Real3D-AD, we
additionally compare with Group3AD [6]. Performance metrics for all compared methods are
obtained from their original publications or publicly available implementations.

4.2 Quantitative results

4.2.1 Results on Real3D-AD

Table 1 presents the comparison of object-level and point-level anomaly detection performance on
Real3D-AD. According to the average scores, our method achieves the best results on both metrics,
outperforming the second-best method by 1.5% in O-AUROC and 4.2% in P-AUROC. Notably,
our method attains the highest P-AUROC score in 8 categories and ranks second in one category,
demonstrating its strong localization capability and confirming that the features learned by our model
are highly discriminative.

4.2.2 Results on Anomaly-ShapeNet

Table 2 summarizes the results of anomaly detection and localization on Anomaly-ShapeNet. Our
method achieves the best performance on O-AUROC, outperforming the second-best by 2.2%, and
ranks second on P-AUROC with only a 1.6% gap to the top. Notably, Our approach significantly
outperforms all memory bank-based methods, including Reg3D-AD and ISMP, on both O-AUROC
(by 28.9%) and P-AUROC (by 19.1%), and achieves the best performance across 30 object categories.
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(a) (b) (d) (c) (e) (f) 
Figure 3: Visualization comparison of localization results on Real3D-AD. (a) Ground truth. (b) Ours.
(c)&(e) PatchCore using FPFH and PointMAE, respectively. (d) ISMP. (f) Reg3D-AD.

These results show that our method learns rotation-invariant features with strong robustness and
local discriminability, leading to more reliable 3D anomaly detection. The comparisons confirm its
effectiveness and superiority, especially within memory bank-based frameworks.

4.3 Qualitative Results

As shown in Figure 3, our method generates sharper and more accurate anomaly maps on Real3D-AD,
with detected anomalies closely aligning to the ground-truth defect regions. This leads to a significant
improvement in P-AUROC compared to alternative approaches. Additional qualitative results are
provided in the appendix.

4.4 Ablation Study

We conduct ablation studies on the registration strategy, training objective, memory bank feature
composition, and performance under noisy point clouds to evaluate their respective effects. Additional
ablation results are provided in the appendix.

Table 3: Ablation study on registration strategy.

Regis. PatchCore
(RAW)

PatchCore
(PMAE) Reg3D-AD Ours

F+R 65.3 64.2 70.5 72.6

Our 66.6 75.6 79.6 87.8

Evaluation on registration. We eval-
uate the impact of different registration
methods on anomaly detection perfor-
mance using the Real3D-AD dataset.
As shown in Table 3, two key insights
emerge. First, when our registration
method is applied, all downstream ap-
proaches achieve improved P-AUROC
scores, demonstrating that it provides
more accurate and stable alignment for anomaly localization compared to the commonly used
FPFH+RANSAC. Second, even when using FPFH+RANSAC for registration, our method still out-
performs competing approaches, indicating that our feature representations possess stronger rotation
invariance and robustness properties essential for reliable 3D anomaly detection.

Table 4: Ablation study on training objective.

loss O-AUROC P-AUROC

w/o Loc 58.1 68.1

w/o Lp 76.9 87.0

w/o Lf 73.4 86.0

Loc + Lf + Lf 78.0 87.8

Evaluation on training objective. To assess
the roles of Loc, Lf , and Lp, we performed
a detailed ablation study on the Real3D-AD
dataset. As shown in Table 4, Loc is crucial for
accurate registration, effectively aligning local
patches even under partial overlap or sparsity,
and its removal causes severe degradation. Lf

enhances feature robustness by strengthening
rotation invariance and local discriminability,
thereby improving overall anomaly localization
accuracy. Lp has limited effect on accuracy but
ensures efficient and reliable point matching; without it, inference slows due to numerous spurious
matches. Overall, Loc and Lf enable accurate and stable detection, while Lp improves efficiency,
jointly balancing performance and computational cost.
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Table 5: Ablation study on memory bank feature composition.
Real3D-AD Anomaly ShapeNet

Coord. Feat. O-AUROC P-AUROC Coord. Feat. O-AUROC P-AUROC
✓ 70.3% 66.2% ✓ 80.5% 67.2%

✓ 76.4% 83.7% ✓ 82.4% 85.0%
✓ ✓ 78.0% 87.8% ✓ ✓ 86.1% 88.2%

Table 6: Ablation study on noisy point clouds.
Setting 1 Setting 2

Metric O-AUROC P-AUROC Noise O-AUROC P-AUROC
Clean 78.0 87.8 Clean 78.0 87.8

SD=0.001 76.7 87.5 SD=0.001 76.9 86.5
SD=0.003 77.7 86.4 SD=0.003 63.0 69.1
SD=0.005 76.8 83.1 SD=0.005 56.6 56.5

Evaluation on memory bank feature composition. We evaluate the contribution of each memory
bank feature component on Real3D-AD and Anomaly-ShapeNet. As shown in Table 5, coordinates
(Coord.) and local features (Feat.) play complementary roles. Coord. provides global spatial
cues, while Feat. captures fine-grained geometric details. Their combination achieves the best
performance, showing strong synergy: Coord. locates anomalies globally, and Feat. enhances local
discrimination. This is especially evident in geometric anomaly detection, where the combined use
improves P-AUROC by 21.6% (Real3D-AD) and 21.0% (Anomaly-ShapeNet) over Coord.-only
baselines.

Evaluation on noisy point clouds. We evaluate the robustness of our method to noisy point clouds
on the Real3D-AD dataset under two settings. In Setting 1, Gaussian noise (SD = 0.005) is injected
during training, with varying noise levels applied during testing. In Setting 2, noise is introduced
only at test time. As shown in Tables 6, the model trained without noise augmentation (Setting 2)
exhibits a clear performance drop at higher noise levels (SD ≥ 0.003), revealing its sensitivity to
input perturbations. In contrast, noise-based augmentation during training (Setting 1) allows the
model to maintain stable performance across different noise intensities.

5 Conclusion

In this paper, we propose Reg2Inv, a unified framework that leverages registration to learn rotation-
invariant features for 3D anomaly detection. We identify key limitations in existing encoders, such as
their poor preservation of fine-grained local geometry and lack of rotation invariance. To address
these issues, we integrate registration into the feature learning process, enabling the extraction of
structurally discriminative and transformation-robust representations. By jointly optimizing geometric
alignment and multi-scale feature consistency within a unified training objective, our method produces
features suitable for both registration and anomaly detection. Extensive experiments validate the
effectiveness of Reg2Inv in achieving accurate registration and reliable anomaly detection.

Limitation. Despite promising results, our approach has several limitations. Training a model per
class increases computational and storage costs. In less discriminative classes, the rotation-invariant
feature extractor shows limited generalization. In addition, registration is not always accurate for
anomaly detection. We plan to address these issues in future work to improve the method’s efficiency
and practicality.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions made in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in the Conclusion.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
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address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper describes the reproduction details and the code will be released after
the paper is accepted.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code is available at https://github.com/CHen-ZH-W/Reg2Inv.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper presents detailed experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report the statistical significance of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper introduces the hardware platform and training steps of the experi-
ment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not involve potential positive societal impacts and negative
societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper has appropriate citations to the models and data sources used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
A Method Details

A.1 RIConv++

RIConv++ [39] is a rotation-invariant convolution method designed for deep learning on 3D point
clouds. It proposes an Information-Rich Invariant Feature (IRIF) formulation that not only captures
the relationship between the central point and its neighbors but also encodes the internal geometric
relations among the neighboring points, thereby enhancing feature discriminability.

A.2 Training objective details

Lf for local feature alignment and Lp for point matching. For each ground-truth patch match
(GP

xi
,GQ

yi
) ∈ M̂gt, two parallel optimal transport layers [42] are used to extract local feature as-

signment matrix and point assignment matrix, respectively. Specifically, we first compute cost
matrices:

C′′
i = F′′P̃

xi
(F′′Q̃

yi
)T /d′′,

C′
i = F′P̃

xi
(F′Q̃

yi
)T /d′,

(13)

where C′′
i and C′

i ∈ Rni×mi ,ni = |GP
xi
|,mi = |GQ

yi
|. The cost matrices C′′

i are then augmented to
C′′∗

i by appending a new row and a new column, filled with a learnable dustbin parameter α. We then
utilize the Sinkhorn [43] algorithm on C′′∗

i to compute a soft local feature assignment matrix Z ′′∗
i .

The point assignment matrix Z ′∗
i is computed similarly. To prioritize local feature alignment and

point matching, we apply separate negative log-likelihood losses [42] to the assignment matrices
Z ′′∗

i and Z ′∗
i . The set of matched points is M̃gt

i . The sets of unmatched points in the two patches are
denoted as Ii and Ji. The individual local feature aligning loss Lf,i and point matching loss Lp,i are
computed as:

Lf,i = −
∑

(x,y)∈M̃gt
i

log z′′
∗
i,x,y −

∑
x∈Ii

log z′′
∗
i,x,mi+1 −

∑
y∈Ji

log z′′
∗
i,ni+1,y, (14)

Lp,i = −
∑

(x,y)∈M̃gt
i

log z′
∗
i,x,y −

∑
x∈Ii

log z′
∗
i,x,mi+1 −

∑
y∈Ji

log z′
∗
i,ni+1,y, (15)

The final losses are computed by averaging the individual loss: Lf = 1
Ng

∑Ng

i=1 Lf,i, Lp =

1
Ng

∑Ng

i=1 Lp,i.

Loc for patch matching. To prioritize high-overlap matches for point cloud registration, we
compute the overlap-aware circle loss [37, 44] on P ,

LP
oc =

1

|A|
∑

GP
i ∈A

log
[
1 +

∑
GQ
j ∈εip

eλ
j
iβ

i,j
p (dj

i−∆p) ·
∑

GQ
k ∈εin

eβ
i,k
n (∆n−dk

i )
]
. (16)

Where A is the set of anchor patches in P that have at least one patch pair in M̂gt. For each anchor
patch GP

i ∈ A, εip and εin denote the sets of its positive and negative patches in Q. dji = ∥FP̂
i −FQ̂

j ∥2
is the feature distance, and λj

i = (oji )
1
2 and oji represents the overlap ratio between GP

i and GQ
j .

βi,j
p = γ(dji −∆p) and βi,k

n = γ(∆n − dki ) are the positive and negative weights, respectively. We
set the margins ∆p = 0.1 and ∆n = 1.4. The same applies to the loss LQ

oc in Q and the overall loss
of the circle based on overlap is Loc = (LP

oc + LQ
oc)/2.

The loss function L = Lf + Lp + Loc is composed of a feature aligning loss Lf for local feature
aligning, a point matching loss Lp for point matching, and an overlap-aware circle loss Loc for patch
matching.
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Table 7: Comparison of inference speed.

Metric RegAD M3DM ISMP Ours
AITPS 7.71 6.43 4.37 2.53

A.3 Normalization parameters compute

For each train sample P ∈ Dtrain, we derive local features F′′P̃ ∈ R|P̃|×d′′
and the corresponding

alignment coordinates P̃align ∈ R|P̃|×3. These are then aggregated across all training samples in
Dtrain to form collections of feature vectors Ff and coordinate vectors Fc, from which we compute
the normalization parameters γf and γc, respectively:{

γf = maxi∈{1,...,N} ∥F
(i)
f ∥2,Ff =

⋃M
i=1 F

′′P̃
i ,

γc = maxi∈{1,...,N} ∥F
(i)
c ∥2,Fc =

⋃M
i=1 P̃

align
i ,

(17)

where M denotes the total number of samples in Dtrain and N represents the dimensionality of the
feature vectors.

A.4 AUROC

We evaluate anomaly detection performance at both the object and point levels using the Area
Under the Receiver Operating Characteristic Curve (AUROC). The AUROC quantifies the overall
discriminative capability of a model. Given prediction scores s(x) for samples x, the true positive
rate (TPR) and false positive rate (FPR) at a decision threshold τ are defined as

TPR(τ) =
TP(τ)

TP(τ) + FN(τ)
, FPR(τ) =

FP(τ)
FP(τ) + TN(τ)

. (18)

The Receiver Operating Characteristic (ROC) curve plots TPR(τ) against FPR(τ) over all thresholds
τ ∈ [0, 1]. The AUROC is defined as the area under this curve:

AUROC =

∫ 1

0

TPR(FPR) d(FPR). (19)

In discrete form, the AUROC can be approximated as

AUROC =
1

N+N−

N+∑
i=1

N−∑
j=1

I
(
s(x+

i ) > s(x−
j )

)
, (20)

where N+ and N− denote the number of positive and negative samples, and I(·) is the indicator
function.

A.5 Training Efficiency

Our method learns features via a registration task that enforces geometric alignment and multi-
scale consistency between source and target point clouds. As it does not rely on category-specific
supervision, it is inherently category-agnostic and can be trained jointly across the entire dataset.
Under our experimental setup (RTX 3090 GPU, batch size 1), full training takes approximately 27
hours on Anomaly-ShapeNet (40 categories) and about 34 hours on Real3D-AD (12 categories). In
contrast, methods like R3D-AD and PO3D-AD require 1 hour and 7 hours per category, respectively.
While our single training run is longer, it eliminates the need for category-wise training, resulting in
significantly greater overall efficiency.

A.6 Inference Efficiency

To assess runtime efficiency, we report the average inference time per sample (AITPS, measured
in seconds). Using an RTX 3090 GPU with a batch size of 1, our method achieves an average
processing time of 2.53 seconds per Real3D-AD sample, which is faster than other memory bank-
based approaches, as shown in Tables 7.
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B More Ablation Studies

To better understand the role of different design choices in our framework, we perform ablation
studies on four critical components: (i) the computation method for object-level anomaly scoring; (ii)
the neighborhood size in RIConv++; (iii) normalization and filtering of features during inference; (iv)
using alternative extracted features for memory bank construction. These ablations provide insights
into how each component contributes to overall performance and robustness. Additionally, to evaluate
the robustness of our method, we conduct an experiment with varying rotation angles of point clouds,
demonstrating its stability under different geometric transformations.

B.1 Evaluation on the calculation method of object-level anomaly score.

Table 8: Ablation study on calculation method.

Method mean max ours

O-AUROC 81.6 82.8 86.1

We evaluate the impact of different strate-
gies for computing the object-level anomaly
score(%) on the Anomaly-ShapeNet dataset.
We compare two standard aggregation meth-
ods: mean, defined as S = mean({si}), and
max, defined as S = max({si}). Our pro-
posed method, denoted as ours, is formulated
as S = max({si} ∗ fn), where si is the point-level anomaly score, fn is a mean filter of size n,
and ∗ is the point-wise convolution operator. As shown in Table 8, our method achieves the highest
O-AUROC score among all aggregation strategies. Unlike conventional mean or max operations, our
approach first applies local smoothing followed by a max operation, which effectively highlights true
anomalous regions while reducing the impact of noise and unreliable point-level predictions.

B.2 Evaluation on neighborhood size in RIConv++.
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Figure 4: Ablation study on neighborhood sizes.

Figure 4 shows object-level and point-level AU-
ROC results with varying neighborhood sizes in
RIConv++, evaluated on the Real3D-AD dataset.
Selecting an appropriate neighborhood size is
critical: an excessively large size may dilute ge-
ometric patterns by aggregating diverse points,
weakening local feature discrimination; con-
versely, an overly small size may limit contex-
tual coverage, reducing the expressiveness of lo-
cal structures. Despite these effects, our method
remains relatively robust to neighborhood size
choices. As shown in Figure 4, detection and
localization performance peak at patch numbers
32 and 64, respectively. We set the patch num-
ber to 32 in our implementation to prioritize detection performance, with only a minor trade-off in
localization accuracy.

B.3 Evaluation on Normalization & Filter in inference phase.

We evaluate the impact of feature normalization and filtering strategies during the inference phase
on both object-level and point-level anomaly detection performance(%) using the Real3D-AD
dataset. As shown in Table 9, normalization emerges as the key component driving performance
improvement. Feature normalization alone improves O-AUROC by 10.5% and P-AUROC by 21.6%.
In contrast, filtering plays a more auxiliary role. Applying filtering alone results in only marginal
gains, but when combined with normalization, it significantly enhances performance, achieving an
O-AUROC improvement of 17.9% and a P-AUROC improvement of 22.5%. These results highlight
the importance of proper feature conditioning during inference and suggest a synergistic effect
between normalization and filtering in improving model reliability and sensitivity.
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Table 9: Ablation study on Normalization & Filter.
Normalization Filter O-AUROC P-AUROC

60.1 65.3

✓ 62.9 65.7

✓ 70.6 86.9

✓ ✓ 78.0 87.8

B.4 Evaluation on alternative feature sources for memory bank construction

We conducted an ablation study on alternative feature representations for memory bank construction
using the Real3D-AD dataset. As shown in Table 10, KPConv-FPN features F′ are suboptimal due to
limited receptive fields and weaker semantics.

Table 10: Ablation study on the memory bank construction.
Memory Bank Construction O-AUROC P-AUROC

F′ 51.1 43.8
Palign + F′ 54.0 56.1

F′′ 76.4 83.7
Palign + F′′ 78.0 87.8

B.5 Evaluation on rotated point clouds

We conducted a rotation experiment on the Real3D-AD dataset to directly demonstrate the enhanced
rotation invariance and robustness of our learned features. At test time, each point cloud is randomly
rotated around one of the X, Y, or Z axes by 90°, 180°, or 270°. We then evaluate the performance
of the model using only the features learned in these rotations. As shown in Table 11, the model
achieves consistent performance at all angles, confirming that the learned features possess strong
rotation invariance and generalizability.

Table 11: Results under varying levels of rotation.
Rotation Angle O-AUROC P-AUROC

0° 76.4 83.7
90° 76.3 83.9
180° 76.2 83.6
270° 76.6 84.3

C More Qualitative Results

We present additional qualitative results to further demonstrate the anomaly localization capability of
our method. Figure 5 shows the results on the Real3D-AD dataset, while Figures 6 and 7 display
the results on the Anomaly-ShapeNet dataset. These visualizations highlight that our method not
only accurately identifies anomalous regions but also produces spatially coherent anomaly scores,
effectively distinguishing between normal and defective structures in 3D point clouds.
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Figure 5: More qualitative results of localization on the Real3D-AD dataset.
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Figure 6: More qualitative results of localization on the Anomaly-Shapenet dataset.
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Figure 7: More qualitative results of localization on the Anomaly-Shapenet dataset.
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