
Registration is a Powerful Rotation-Invariance Learner for 3D Anomaly Detection

Yuyang Yu^{1*} Zhengwei Chen^{1*} Xuemiao Xu^{1†} Lei Zhang^{2†} Haoxin Yang¹
Yongwei Nie¹ Shengfeng He³

¹South China University of Technology ²Guangdong University of Petrochemical Technology

³Singapore Management University

yyyoung0611@gmail.com chen_zw_123@163.com

{xuemx, nieyongwei}@scut.edu.cn harxis@outlook.com

zhanglei@gdutp.edu.cn shengfenghe@smu.edu.sg

<https://github.com/CHen-ZH-W/Reg2Inv>

Abstract

3D anomaly detection in point-cloud data is critical for industrial quality control, aiming to identify structural defects with high reliability. However, current memory bank-based methods often suffer from inconsistent feature transformations and limited discriminative capacity, particularly in capturing local geometric details and achieving rotation invariance. These limitations become more pronounced when registration fails, leading to unreliable detection results. We argue that point-cloud registration plays an essential role not only in aligning geometric structures but also in guiding feature extraction toward rotation-invariant and locally discriminative representations. To this end, we propose a registration-induced, rotation-invariant feature extraction framework that integrates the objectives of point-cloud registration and memory-based anomaly detection. Our key insight is that both tasks rely on modeling local geometric structures and leveraging feature similarity across samples. By embedding feature extraction into the registration learning process, our framework jointly optimizes alignment and representation learning. This integration enables the network to acquire features that are both robust to rotations and highly effective for anomaly detection. Extensive experiments on the Anomaly-ShapeNet and Real3D-AD datasets demonstrate that our method consistently outperforms existing approaches in effectiveness and generalizability.

1 Introduction

3D anomaly detection aims to identify structural defects in point-cloud data, with critical applications in industrial quality control. Despite the emergence of domain-specific datasets such as Real3D-AD [1] and Anomaly-ShapeNet [2], the rarity of real-world anomalies (e.g., orientation shift and other irregularities [3–5]) presents a persistent challenge. Consequently, most existing approaches adopt unsupervised paradigms that rely solely on normal samples for training.

Among unsupervised approaches, memory bank-based methods have shown promise by maintaining a repository of normal features and computing anomaly scores based on their deviation from incoming test samples. To address spatial misalignment between test samples and stored prototypes, several recent methods [1, 6, 7] universally adopt FPFH [8] with RANSAC-based [9] coarse registration prior to feature extraction. However, as illustrated in Figure 1(a), significant residual misalignments often persist even after registration. While registration failures harm anomaly detection performance,

* The first two authors contributed equally.

† Corresponding authors.

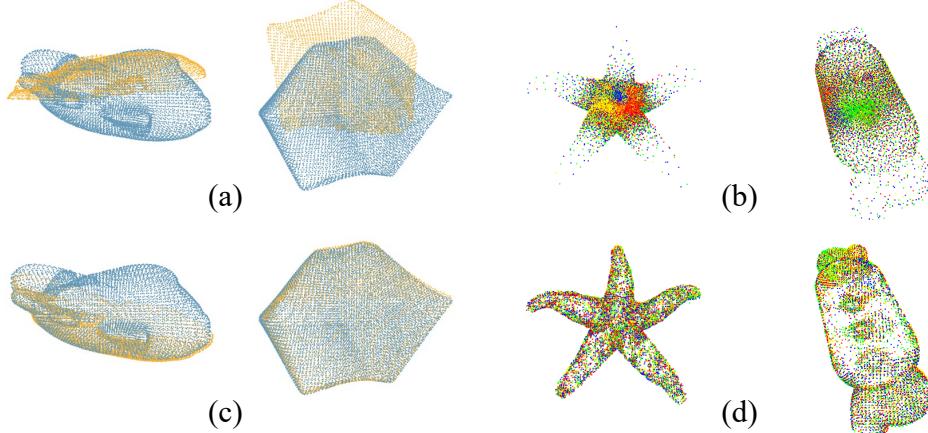


Figure 1: (a) Existing methods still exhibit misalignments after registration. (b) Visualization of PointMAE features in the memory bank, with different colors for different objects. (c) Our method achieves accurate point cloud alignment. (d) Visualization of our locally discriminative features in the memory bank.

it also points to a deeper problem: the feature encoders themselves lack the geometric sensitivity and transformation consistency required to support reliable anomaly detection.

This limitation stems largely from the nature of commonly used encoders such as PointMAE [10], which are designed to capture global semantics but often fail to preserve fine-grained local geometry (Figure 1(b)) and essential invariances. In particular, these encoders are not optimized to be rotation-invariant or to capture local structural nuances, both of which are essential for effective anomaly detection. As a result, feature representations struggle to maintain consistent correspondences under varying orientations and structural perturbations, especially in the presence of anomalies. When registration errors occur, these weaknesses exacerbate feature misalignment, ultimately resulting in unreliable anomaly scores.

To address these challenges, we propose a shift in how registration is employed within the anomaly detection pipeline. Rather than using it as a separate preprocessing module, we treat registration as an integral component of feature learning. Our key insight is that both point cloud registration and memory-based anomaly detection rely on the same core capabilities: modeling local geometric structures and capturing meaningful feature similarities across samples. Registration, by design, requires learning features that are rotation-invariant, locally sensitive, and structurally discriminative to establish accurate correspondences between source and target point clouds. Similarly, anomaly detection depends on features that can preserve fine-grained local details and remain consistent under rigid transformations, enabling precise comparisons between a test sample and normal prototypes stored in a memory bank. By aligning feature learning with registration objectives, our approach naturally yields representations well-suited for anomaly detection, overcoming the limitations of conventional encoders like PointMAE in handling geometric variations and structural defects.

Building on this insight, we propose a unified framework, called **Reg2Inv**, to derive *registration-induced rotation invariance* for 3D anomaly detection. During training, the model learns features through a registration task that enforces both geometric alignment and multi-scale feature consistency between source and target point clouds. This process not only establishes accurate structural correspondences but also shapes the feature extractor to produce rotation-invariant and locally discriminative representations (Figure 1(d)). At inference time, the model extracts features from a test point cloud, computes a registration matrix to align it with a prototype, and then compares the normalized features to those in a coresnet-sampled memory bank. Anomaly scores are derived from these comparisons, allowing the system to identify local defects even under rotation or deformation. By jointly optimizing feature learning and alignment, our method effectively addresses spatial misalignment (Figure 1(c)) and enhances feature robustness, enabling more reliable 3D anomaly detection. Experimental results on Anomaly-ShapeNet and Real3D-AD confirm the superiority of our approach over existing baselines.

In summary, our contributions are threefold:

- We delve into the intrinsic alignment between point cloud registration and memory bank-based 3D anomaly detection, and show that registration is a powerful feature learner for acquiring discriminative and rotation-invariant representations.
- We propose a unified framework Reg2Inv for registration-induced rotation-invariant feature extraction, which jointly performs accurate prototype-sample alignment and enables effective anomaly scoring based on robust local geometric features.
- We conduct extensive experiments on two benchmark datasets, Anomaly-ShapeNet and Real3D-AD, demonstrating that our method consistently outperforms existing state-of-the-art approaches in 3D anomaly detection.

2 Related Work

2.1 2D Anomaly Detection

Anomaly detection in 2D images has seen significant progress in recent years, particularly under anomaly-free training settings. Popular approaches include feature embedding methods, among which flow-based, memory bank-based, and reconstruction-based techniques are widely adopted. Flow-based methods [11–14] model the distribution of normal features using normalizing flows and detect anomalies via likelihood estimation. Memory bank-based approaches [15–20] store features from pre-trained encoders and identify anomalies by comparing test samples to stored normal patterns. Reconstruction-based methods [21–26] learn to reconstruct normal inputs and detect anomalies through reconstruction errors. In this work, we focus on anomaly detection in 3D point clouds. Unlike structured 2D images, point clouds are unstructured, unordered, and often sparse, posing greater challenges for feature learning and anomaly detection.

2.2 3D Anomaly Detection

3D anomaly detection targets structural irregularities in point-cloud data [27, 28] and has seen increasing research attention. Existing methods generally fall into two categories: reconstruction-based and memory bank-based. Among reconstruction-based methods, IMRNet [2] detects anomalies by reconstructing masked normal samples; R3D-AD [29] restores normal geometry from pseudo-abnormal inputs; and PO3AD [30] enhances local reconstruction by predicting offsets in defective regions. While these methods are effective at capturing fine-grained anomalies, they often suffer from sensitivity to resolution and noise.

Memory bank-based methods aim to learn compact representations of normal structures for comparison. Reg3D-AD [1] uses PointMAE [10] to extract features and stores both features and coordinates in separate memory banks. Group3AD [6] introduces a group-level feature aggregation strategy to improve anomaly sensitivity and alignment. ISMP [7] proposes an internal spatial modality perception framework that leverages a spatial insight engine for enhanced feature discrimination. While these methods have shown promising results, they often overlook the limitations of current registration strategies and, more importantly, reflect a deeper issue: feature representations frequently lack transformation consistency and local discriminability. In contrast, our work integrates point cloud registration into the anomaly detection pipeline to jointly optimize spatial alignment and feature learning. By aligning feature extraction with registration objectives, our framework generates rotation-invariant and locally discriminative features, significantly enhancing detection robustness.

2.3 Coarse-to-Fine Point Cloud Registration

Coarse-to-fine strategies emerge as a compelling approach to capture hierarchical visual structure [31, 32], which also has been proven to be effective in both 2D image matching [33–35] and 3D point cloud registration [36, 37]. Geometric Transformer [37], in particular, achieves robust registration by incorporating geometric structure into attention-based models. Our approach builds upon this line of work by not only employing a coarse-to-fine registration pipeline but also enhancing it with feature learning objectives that ensure both robust alignment and discriminative local feature extraction.

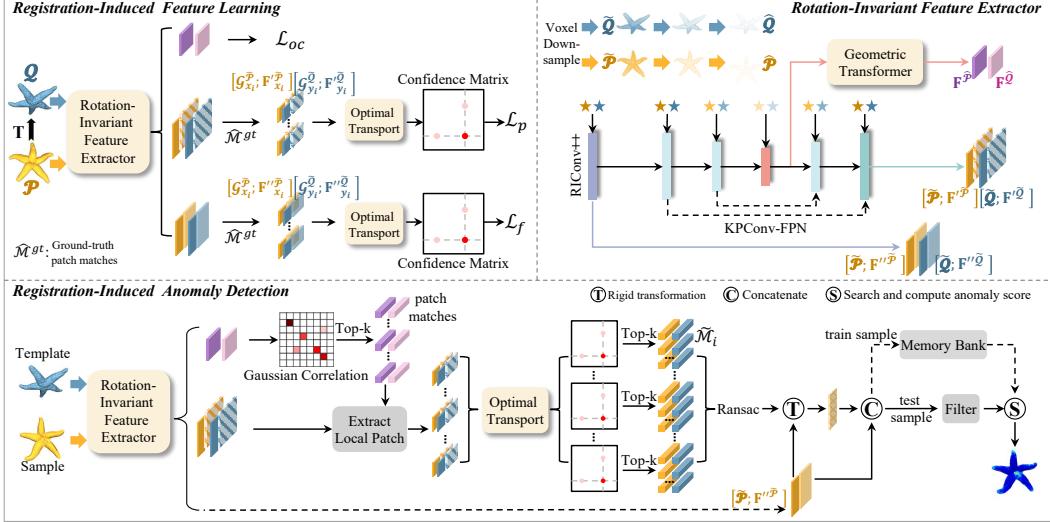


Figure 2: The overview of Reg2Inv. In the feature learning stage, the model learns features via a registration task that enforces geometric alignment and multi-scale consistency between paired point clouds. At inference time, the model computes a registration matrix for alignment with the prototype and extracts rotation-invariant features for anomaly detection. The feature extractor is designed to obtain a set of features for anomaly detection and two sets of features for registration.

3 Methodology

Problem statement. The 3D anomaly detection task involves a training set $\mathcal{D}_{\text{train}} = \{\mathcal{P}_i^n \in \mathbb{R}^{N_i \times 3}\}_{i=1}^M$ containing M normal objects and a test set $\mathcal{D}_{\text{test}} = \{\mathcal{P}_i^n \in \mathbb{R}^{N_i \times 3}\}_{i=1}^J \cup \{\mathcal{P}_i^a \in \mathbb{R}^{N_i \times 3}\}_{i=1}^K$, consisting of J normal and K abnormal objects (where n and a denote normal and abnormal, respectively). Each normal object \mathcal{P}^n contains only normal points p^n , while an abnormal object \mathcal{P}^a includes both p^n and abnormal points p^a . The goal of this task is to train models on $\mathcal{D}_{\text{train}}$ with two purposes: (1) object-level anomaly detection: distinguishing \mathcal{P}^n and \mathcal{P}^a in $\mathcal{D}_{\text{test}}$; and (2) point-level anomaly localization: identify p^a within \mathcal{P}^a to localize anomalies.

Overview. As shown in Figure 2, our framework **Reg2Inv** consists of two stages: *Registration-Induced Feature Learning* and *Registration-Induced Anomaly Detection*, both built upon a *Rotation-Invariant Feature Extractor*. The model performs point-cloud registration in the feature learning stage by enforcing geometric and feature consistency across multi-scale patches and points. This refines the feature extractor to learn rotation-invariant and discriminative features while aligning structural correspondences. During anomaly detection, the model extracts rotation-invariant features from test samples, computes a registration matrix to align them with a prototype, and identifies anomalies by comparing normalized features to a coresnet-sampled memory bank.

3.1 Registration-Induced Feature Learning

Point sampling & Ground-truth matches generation. In the feature learning stage, we first generate transformed pairs $(\mathcal{P}, \mathcal{Q})$ by applying random rigid transformations T_{gt} to each $\mathcal{P} \in \mathcal{D}_{\text{train}}$, yielding \mathcal{Q} . Since both point cloud registration and anomaly detection benefit from reduced data complexity, and dense point clouds lead to redundant or invalid point-wise alignments, we employ multi-scale voxel downsampling on both \mathcal{P} and \mathcal{Q} , obtaining the first level points $\tilde{\mathcal{P}}$, $\tilde{\mathcal{Q}}$ and the coarsest level points $\hat{\mathcal{P}}$, $\hat{\mathcal{Q}}$. Notably, $\hat{\mathcal{P}}$ and $\hat{\mathcal{Q}}$ are voxel downsampled from $\tilde{\mathcal{P}}$ and $\tilde{\mathcal{Q}}$, their relationships can be captured via a point-to-node grouping strategy [36–38]. Specifically, each $\tilde{p} \in \tilde{\mathcal{P}}$ is associated with its nearest coarsest-level point $\hat{p} \in \hat{\mathcal{P}}$, forming patches $\mathcal{G}^{\mathcal{P}}$. The construction of $\mathcal{G}^{\mathcal{Q}}$ follows the same procedure applied to $\tilde{\mathcal{Q}}$ and $\hat{\mathcal{Q}}$. Formally, the patch $\mathcal{G}^{\mathcal{P}}$ is defined as:

$$\mathcal{G}_i^{\mathcal{P}} = \{\tilde{p} \in \tilde{\mathcal{P}} \mid i = \text{argmin}_j (\|\tilde{p} - \hat{p}_j\|_2), \hat{p}_j \in \hat{\mathcal{P}}\}. \quad (1)$$

Given the $\mathcal{G}^{\mathcal{P}}$ and $\mathcal{G}^{\mathcal{Q}}$, we construct two types of ground-truth matches between them to enable supervised loss computation. Specifically, under the known rigid transformation T_{gt} , we compute the

overlap ratio between patch pairs $(\mathcal{G}_i^P, \mathcal{G}_j^Q)$. Patch pairs with an overlap ratio > 0.1 are selected as ground-truth patch matches:

$$\hat{\mathcal{M}}^{\text{gt}} = \{(\mathcal{G}_i^P, \mathcal{G}_j^Q) \mid \text{Overlap}(T_{\text{gt}}(\mathcal{G}_i^P), \mathcal{G}_j^Q) > 0.1\}. \quad (2)$$

In addition, we randomly sample N_g patch pairs from $\hat{\mathcal{M}}^{\text{gt}}$ and establish ground-truth point matches by confidence threshold t as follows:

$$\tilde{\mathcal{M}}_i^{\text{gt}} = \{(\tilde{p}, \tilde{q}) \mid \|T_{\text{gt}}(\tilde{p}) - \tilde{q}\|_2 < t, \tilde{p} \in \mathcal{G}_{x_i}^P, \tilde{q} \in \mathcal{G}_{y_i}^Q\}, \quad (3)$$

where $(\mathcal{G}_{x_i}^P, \mathcal{G}_{y_i}^Q) \in \hat{\mathcal{M}}^{\text{gt}}$ and $|\tilde{\mathcal{M}}^{\text{gt}}| = N_g$.

Features extraction. To leverage registration guidance for extracting discriminative and rotation-invariant features tailored to anomaly detection, we design a feature extractor comprising three components: RICConv++ [39], a KPConv-FPN backbone [40, 41], and a Geometric Transformer module [37] with layer normalization. To capture fine-grained geometric details from $\tilde{\mathcal{P}}$ and $\tilde{\mathcal{Q}}$, we apply RICConv++ to extract dense local features features $\mathbf{F}''^{\tilde{\mathcal{P}}} \in \mathbb{R}^{|\tilde{\mathcal{P}}| \times d''}$ and $\mathbf{F}''^{\tilde{\mathcal{Q}}} \in \mathbb{R}^{|\tilde{\mathcal{Q}}| \times d''}$, where d'' denotes the local feature dimension. These features encode rotation-invariant and geometrically coherent local structures, which are essential for anomaly detection. To encode hierarchical information across multiple resolutions, we employ the KPConv-FPN to process multi-scale point clouds and generate multi-level point-wise features. The corresponding outputs for $\tilde{\mathcal{P}}$ and $\tilde{\mathcal{Q}}$ are denoted as $\mathbf{F}'^{\tilde{\mathcal{P}}} \in \mathbb{R}^{|\tilde{\mathcal{P}}| \times d'}$ and $\mathbf{F}'^{\tilde{\mathcal{Q}}} \in \mathbb{R}^{|\tilde{\mathcal{Q}}| \times d'}$, where d' denotes the point feature dimension. These features capture discriminative contextual patterns at the point level, enabling accurate and robust spatial alignment. Finally, $\tilde{\mathcal{P}}$ and $\tilde{\mathcal{Q}}$ are processed using the Geometric Transformer module with layer normalization, yielding patch-wise features $\mathbf{F}^{\tilde{\mathcal{P}}} \in \mathbb{R}^{|\tilde{\mathcal{P}}| \times d}$ and $\mathbf{F}^{\tilde{\mathcal{Q}}} \in \mathbb{R}^{|\tilde{\mathcal{Q}}| \times d}$, where d is the final patch feature dimension. These features represent global structural priors that facilitate reliable registration under partial overlap or sparsity.

Given these extracted features, for each patch \mathcal{G}_i^P , we use $\hat{\mathcal{M}}^{\text{gt}}$ to define its local feature matrix and point feature matrix as $\mathbf{F}''_i^{\tilde{\mathcal{P}}} \subset \mathbf{F}''^{\tilde{\mathcal{P}}}$ and $\mathbf{F}'_i^{\tilde{\mathcal{P}}} \subset \mathbf{F}'^{\tilde{\mathcal{P}}}$, respectively. The local feature matrix $\mathbf{F}''_j^{\tilde{\mathcal{Q}}}$ and point feature matrix $\mathbf{F}'_j^{\tilde{\mathcal{Q}}}$ for each patch \mathcal{G}_j^Q are computed and denoted in a similar way.

Training objective To achieve accurate point cloud registration while simultaneously leveraging the registration process to extract rotation-invariant features suitable for anomaly detection, our overall training objective is formulated as a combination of three complementary components:

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_p + \mathcal{L}_{oc}. \quad (4)$$

Here, \mathcal{L}_f is a **negative log-likelihood loss** [42] used for aligning local features. This loss is key in encouraging the network to learn geometrically coherent and rotation-invariant representations, which are crucial for effective anomaly detection. For each ground-truth patch match $(\mathcal{G}_{x_i}^P, \mathcal{G}_{y_i}^Q) \in \hat{\mathcal{M}}^{\text{gt}}$, we first employ the optimal transport layer [42] to extract a local feature assignment matrix, from which we then compute the corresponding cost matrix \mathcal{C}''_i . Subsequently, we augment each cost matrix \mathcal{C}''_i by adding one row and one column filled with a learnable dustbin parameter α , forming \mathcal{C}''_i^* . We then utilize the Sinkhorn [43] algorithm on \mathcal{C}''_i^* to obtain a soft local feature assignment matrix Z''_i^* . The Z''_i^* is used to compute the $\mathcal{L}_{f,i}$ defined as:

$$\mathcal{L}_{f,i} = - \sum_{(x,y) \in \tilde{\mathcal{M}}_i^{\text{gt}}} \log z''_{i,x,y}^* - \sum_{x \in \mathcal{I}_i} \log z''_{i,x,m_i+1}^* - \sum_{y \in \mathcal{J}_i} \log z''_{i,n_i+1,y}^*. \quad (5)$$

where $\tilde{\mathcal{M}}_i^{\text{gt}}$ represents the set of matched points, while \mathcal{I}_i and \mathcal{J}_i denote the sets of unmatched points in $\mathcal{G}_{x_i}^P$ and $\mathcal{G}_{y_i}^Q$. The \mathcal{L}_f is computed by averaging the individual loss: $\mathcal{L}_f = \frac{1}{N_g} \sum_{i=1}^{N_g} \mathcal{L}_{f,i}$.

\mathcal{L}_p and \mathcal{L}_{oc} are used to supervise point cloud registration at different levels of granularity. \mathcal{L}_p follows a negative log-likelihood loss and shares a similar computation process with \mathcal{L}_f . It is tailored for point matching, refining point-level alignment, and enforcing accurate correspondences between individual points, which improves cross-cloud matching accuracy and enhances registration robustness.

\mathcal{L}_{oc} denotes the **overlap-aware circle loss** [37, 44], which prioritizes correspondences in regions with significant overlap. This helps improve the reliability of registration under partial overlap or sparse input by focusing on structurally consistent patches. Its definition is as follows:

$$\mathcal{L}_{oc}^{\mathcal{P}} = \frac{1}{|\mathcal{A}|} \sum_{\mathcal{G}_i^{\mathcal{P}} \in \mathcal{A}} \log \left[1 + \sum_{\mathcal{G}_j^{\mathcal{Q}} \in \mathcal{E}_p^i} e^{\lambda_i^j \beta_p^{i,j} (d_i^j - \Delta_p)} \cdot \sum_{\mathcal{G}_k^{\mathcal{Q}} \in \mathcal{E}_n^i} e^{\beta_n^{i,k} (\Delta_n - d_i^k)} \right]. \quad (6)$$

The synergy among these losses ensures accurate and robust registration, while promoting rotation-invariant and geometrically coherent representations, which are crucial for reliable anomaly detection. Further details on the loss formulations are provided in the appendix.

3.2 Registration-Induced Anomaly Detection

Point alignment. During the inference phase, a sample from $\mathcal{D}_{\text{train}}$ is selected as the template \mathcal{Q} , and all samples in both $\mathcal{D}_{\text{train}}$ and $\mathcal{D}_{\text{test}}$ must undergo registration to align with this template. The same point sampling and feature extraction from training were applied to all samples. To find patch matches of each sample pair $(\mathcal{P}, \mathcal{Q})$, we compute a Gaussian correlation matrix $\mathcal{H} \in \mathbb{R}^{|\tilde{\mathcal{P}}| \times |\tilde{\mathcal{Q}}|}$ with $h_{i,j} = \exp(-\|\mathbf{F}_i^{\tilde{\mathcal{P}}} - \mathbf{F}_j^{\tilde{\mathcal{Q}}}\|_2^2)$ as in [37]. We then perform a dual-normalization operation [35, 45] on \mathcal{H} to obtain an augmented correlation matrix $\bar{\mathcal{H}}$. Finally, we select the largest N_c entries in $\bar{\mathcal{H}}$ as the patch matches:

$$\hat{\mathcal{M}} = \{(\hat{\mathbf{p}}_{x_i}, \hat{\mathbf{q}}_{y_i}) \mid (x_i, y_i) \in \text{topk}_{x,y}(\bar{h}_{x,y})\}. \quad (7)$$

For each match $(\mathcal{G}_{x_i}^{\mathcal{P}}, \mathcal{G}_{y_i}^{\mathcal{Q}}) \in \hat{\mathcal{M}}$, we compute its point assignment matrix Z'_i which is then recovered to Z'_i by dropping the last row and the last column. We select the largest k entries in Z'_i as the point matches:

$$\tilde{\mathcal{M}}_i = \{(\mathcal{G}_{x_i}^{\mathcal{P}}(x_j), \mathcal{G}_{y_i}^{\mathcal{Q}}(y_j)) \mid (x_j, y_j) \in \text{mutual_topk}_{x,y}(z'_{i,x,y})\}. \quad (8)$$

The point matches computed from each patch match are then collected together to estimate the rigid transformation T by RANSAC [9]. Subsequently, the estimated transformation T is applied to align $\tilde{\mathcal{P}}$ with $\tilde{\mathcal{Q}}$:

$$\tilde{\mathcal{P}}^{\text{align}} = T(\tilde{\mathcal{P}}). \quad (9)$$

Feature normalization and memory bank construction. For each train sample $\mathcal{P} \in \mathcal{D}_{\text{train}}$, we derive local features $\mathbf{F}''^{\tilde{\mathcal{P}}} \in \mathbb{R}^{|\tilde{\mathcal{P}}| \times d''}$ and the corresponding alignment coordinates $\tilde{\mathcal{P}}^{\text{align}} \in \mathbb{R}^{|\tilde{\mathcal{P}}| \times 3}$. These are then aggregated across all training samples in $\mathcal{D}_{\text{train}}$ to form collections of feature vectors \mathbf{F}_f and coordinate vectors \mathbf{F}_c , from which we compute the normalization parameters γ_f and γ_c , respectively. The final representation \mathbf{F} is obtained by normalizing \mathbf{F}_f and \mathbf{F}_c using γ_f and γ_c , and then fusing them via a concatenation-based operator, that is $\mathbf{F} = \Phi(\mathbf{F}_f/\gamma_f, \mathbf{F}_c/\gamma_c)$. Finally, we apply the Coreset sampling technique [1, 15, 46] to construct the memory bank \mathcal{B} .

Feature filtering and anomaly detection. For each test sample $\mathcal{P} \in \mathcal{D}_{\text{test}}$, we compute the final representation \mathbf{F} in the same way. Feature filtering is performed to eliminate edge artifacts and ensure enhanced feature normalization across test samples. Specifically, we construct local neighborhoods around the feature-corresponding points by computing $\mathcal{N}_i = \text{KNN}(p_i, k)$, where $p_i \in \mathcal{P}$. We then calculate the centroid of each local neighborhood:

$$\mu_i = \frac{1}{|\mathcal{N}_i|} \sum_{p_j \in \mathcal{N}_i} p_j. \quad (10)$$

The feature filtering process can be summarized by the following equation:

$$\text{Filter}(i) = \begin{cases} 1 & \text{if } \|p_i - \mu_i\| = \min_{p \in \mathcal{N}_i} \|p - \mu_i\| \\ 0 & \text{otherwise} \end{cases}. \quad (11)$$

The filtered feature set $\mathbf{F}_{\text{fil}} = \{f_i \mid \text{Filter}(i) = 1\}$ is subsequently employed for anomaly detection. The point-level anomaly score s_i is defined as:

$$s_i = \min_{f^{\text{bank}} \in \mathcal{B}} \|f_i - f^{\text{bank}}\|_2, \quad (12)$$

where $f_i \in \mathbf{F}_{\text{fil}}$. The object-level anomaly score \mathcal{S} is computed by aggregating all point-level scores into a score mask and taking the maximum value after smoothing: $\mathcal{S} = \max(\{s_i\} * f_n)$, where f_n is a mean filter of size n and $*$ is the point-wise convolution operator.

Table 1: Comparison of AUROC results at the object and point levels (%) of various methods on Real3D-AD. The best result in **red** and the second-best in **blue** for each category. (Raw) denotes the raw point coordinates used as input to the method. (FPFH) and (PMAE) denote configurations using Fast Point Feature Histograms [8] and PointMAE [10] as feature extractors. The top three methods are reconstruction-based, while the remaining ones are memory bank-based.

Method	O-AUROC(\uparrow) / P-AUROC(\uparrow)						
	Airplane	Car	Candy	Chicken	Diamond	Duck	Fish
IMRNet	76.2 /	71.1 /	75.5 /	78.0 /	90.5 /	51.7 /	88.0 /
R3D-AD	77.2 /	69.3 /	71.3 /	71.4 /	68.5 /	90.9 /	69.2 /
PO3AD	80.4 /	65.4 /	78.5 /	68.6 /	80.1 /	82.0 /	85.9 /
BTF(RAW)	73.0 / 56.4	64.7 / 64.7	53.9 / 73.5	78.9 / 60.9	70.7 / 56.3	69.1 / 60.1	60.2 / 51.4
BTF(FPFH)	52.0 / 73.8	56.0 / 70.8	63.0 / 86.4	43.2 / 73.5	54.5 / 88.2	78.4 / 87.5	54.9 / 70.9
M3DM	43.4 / 54.7	54.1 / 60.2	55.2 / 67.9	68.3 / 67.8	60.2 / 60.8	43.3 / 66.7	54.0 / 60.6
PatchCore(FPFH)	88.2 / 56.2	59.0 / 75.4	54.1 / 78.0	83.7 / 42.9	57.4 / 82.8	54.6 / 26.4	67.5 / 82.9
PatchCore(PMAE)	72.6 / 56.9	49.8 / 60.9	66.3 / 62.7	82.7 / 72.9	78.3 / 71.8	48.9 / 52.8	63.0 / 71.7
CPMF	70.1 / 61.8	55.1 / 83.6	55.2 / 73.4	50.4 / 55.9	52.3 / 75.3	58.2 / 71.9	55.8 / 98.8
Reg3D-AD	71.6 / 63.1	69.7 / 71.8	68.5 / 72.4	85.2 / 67.6	90.0 / 83.5	58.4 / 50.3	91.5 / 82.6
Group3AD	74.4 / 63.6	72.8 / 74.5	84.7 / 73.8	78.6 / 75.9	93.2 / 86.2	67.9 / 63.1	97.6 / 83.6
ISMP	85.8 / 75.3	73.1 / 83.6	85.2 / 90.7	71.4 / 79.8	94.8 / 92.6	71.2 / 87.6	94.5 / 88.6
Ours	81.8 / 92.3	75.8 / 94.4	100. / 96.9	94.4 / 91.0	100. / 97.9	75.0 / 93.7	67.2 / 84.6
Method	Gemstone Seahorse Shell Starfish Toffees					Average	
	67.4 /	60.4 /	66.5 /	67.4 /	77.4 /	72.5 /	
IMRNet	66.5 /	72.0 /	84.0 /	70.1 /	70.3 /	73.4 /	
PO3AD	69.3 /	75.6 /	80.0 /	75.8 /	77.1 /	76.5 /	
BTF(RAW)	68.6 / 59.7	59.6 / 52.0	39.6 / 48.9	53.0 / 39.2	70.3 / 62.3	63.5 / 57.1	
BTF(FPFH)	64.8 / 89.1	77.9 / 51.2	75.4 / 57.1	57.5 / 50.1	46.2 / 81.5	60.3 / 73.3	
M3DM	64.4 / 67.4	49.5 / 56.0	69.4 / 73.8	55.1 / 53.2	45.0 / 68.2	55.2 / 63.1	
PatchCore(FPFH)	37.0 / 91.0	50.5 / 73.9	58.9 / 73.9	44.1 / 60.6	56.5 / 74.7	59.3 / 68.2	
PatchCore(PMAE)	37.4 / 44.4	53.9 / 63.3	50.1 / 70.9	51.9 / 58.0	58.5 / 58.0	59.4 / 62.0	
CPMF	58.9 / 44.9	72.9 / 96.2	65.3 / 72.5	70.0 / 80.0	39.0 / 95.9	58.6 / 75.8	
Reg3D-AD	41.7 / 54.5	76.2 / 81.7	58.3 / 81.1	50.6 / 61.7	82.7 / 75.9	70.4 / 70.5	
Group3AD	53.9 / 56.4	84.1 / 82.7	58.5 / 79.8	56.2 / 62.5	79.6 / 80.3	75.1 / 73.5	
ISMP	46.8 / 85.7	72.9 / 81.3	62.3 / 83.9	66.0 / 64.1	84.2 / 89.5	75.7 / 83.6	
Ours	73.5 / 90.7	53.2 / 64.5	69.2 / 90.6	84.1 / 84.0	62.6 / 73.7	78.0 / 87.8	

4 Experiments

4.1 Experimental Settings

Datasets. Evaluation is conducted on Anomaly-ShapeNet [2] and Real3D-AD [1]. Anomaly-ShapeNet is a synthetic 3D anomaly detection dataset with 1,600 samples across 40 categories, each containing 4 normal samples in the training set. Real3D-AD is a real-world high-resolution dataset with 12 object categories, each category has 4 normal training samples and 100 test instances. To simulate practical scenarios, training samples in Real3D-AD are captured via full 360° scans, while test samples are collected from single-view perspectives.

Evaluation metrics. We evaluate anomaly detection performance at both the object and point levels using the Area Under the Receiver Operating Characteristic Curve (AUROC). Object-level AUROC (O-AUROC) measures the effectiveness of anomaly detection, while Point-level AUROC (P-AUROC) assesses localization accuracy. Higher values in both metrics indicate stronger anomaly detection and localization capabilities.

Details. We set the local feature dimension to 32. For adaptive voxelization, the voxel size is dynamically determined via binary search to maintain 8,192 sampled points on Real3D-AD and 4,096 on Anomaly-ShapeNet. The model is trained for 100k iterations using the Adam optimizer with an initial learning rate of 1e-4. The learning rate is first linearly warmed up for 10k steps, then decayed following a cosine schedule to 10% of the initial value. Experiments are conducted on a single RTX 4090D GPU.

Baselines. Our method is evaluated against two categories of state-of-the-art 3D anomaly detection approaches on Anomaly-ShapeNet: (1) **Reconstruction-based methods**, including IMRNet [2], R3D-AD [29], and PO3AD [30]; and (2) **Memory bank-based methods**, including BTF [47],

Table 2: Comparison of AUROC results at the object and point levels (%) of various methods on Anomaly-ShapeNet.

O-AUROC(\uparrow) / P-AUROC(\uparrow)											
Method	ashtray0	bag0	bottle0	bottle1	bottle3	bowl0	bowl1	bowl2	bowl3	bowl4	bowl5
IMRNet	67.1 / 67.1	66.0 / 66.8	55.2 / 55.6	70.0 / 70.2	64.0 / 64.1	68.1 / 78.1	70.2 / 70.5	68.5 / 68.4	59.9 / 59.9	67.6 / 57.6	71.0 / 71.5
R3D-AD	83.3 /	72.0 /	73.3 /	73.7 /	78.1 /	81.9 /	77.8 /	74.1 /	76.7 /	74.4 /	65.6 /
PO3AD	100. / 96.2	83.3 / 49.9	90.0 / 91.2	93.3 / 84.4	92.6 / 88.0	92.2 / 97.8	82.9 / 91.4	83.3 / 91.8	88.1 / 93.5	98.1 / 96.7	84.9 / 94.1
BTF(RAW)	57.8 / 51.2	41.0 / 43.0	59.7 / 55.1	51.0 / 49.1	56.8 / 72.0	56.4 / 52.4	26.4 / 46.4	52.5 / 42.6	38.5 / 68.5	66.4 / 56.3	41.7 / 51.7
BTF(FPFH)	42.0 / 62.4	54.6 / 74.6	34.4 / 64.1	54.6 / 54.9	32.2 / 62.2	50.9 / 71.0	66.8 / 76.8	51.0 / 51.8	49.0 / 59.0	60.9 / 67.9	69.9 / 69.9
M3DM	57.7 / 57.7	53.7 / 63.7	57.4 / 66.3	63.7 / 63.7	54.1 / 53.2	63.4 / 65.8	66.3 / 66.3	68.4 / 69.4	61.7 / 65.7	46.4 / 62.4	40.9 / 48.9
PatchCore(FPFH)	58.7 / 59.7	57.1 / 57.4	60.4 / 65.4	66.7 / 68.7	57.2 / 51.2	50.4 / 52.4	63.9 / 53.1	61.5 / 62.5	53.7 / 32.7	49.4 / 72.0	55.8 / 35.8
PatchCore(PMAE)	59.1 / 49.5	60.1 / 67.4	51.3 / 55.3	60.1 / 60.6	65.0 / 65.3	52.3 / 52.7	62.9 / 52.4	45.8 / 51.5	57.9 / 58.1	50.1 / 50.1	59.3 / 56.2
CPMF	35.3 / 61.5	64.3 / 65.5	52.0 / 52.1	48.2 / 57.1	40.5 / 43.5	78.3 / 74.5	63.9 / 48.8	62.5 / 63.5	65.8 / 64.1	68.3 / 68.3	68.5 / 68.4
Reg3D-AD	59.7 / 69.8	70.6 / 71.5	48.6 / 88.6	69.5 / 69.6	52.5 / 52.5	67.1 / 77.5	52.5 / 61.5	49.0 / 59.3	34.8 / 65.4	66.3 / 80.0	59.3 / 69.1
ISMP	/ 60.3	/ 74.7	/ 77.0	/ 56.8	/ 77.5	/ 85.1	/ 54.6	/ 73.6	/ 17.3	/ 74.0	/ 53.4
Ours	90.0 / 78.5	100. / 99.1	100. / 99.5	100. / 84.9	100. / 81.7	100. / 98.3	80.7 / 82.8	65.6 / 82.2	58.5 / 76.1	85.2 / 78.8	81.8 / 82.4
Method	bucket0	bucket1	cap0	cap3	cap4	cap5	cup0	cup1	eraser0	headset0	headset1
IMRNet	58.0 / 58.5	77.1 / 77.4	73.7 / 71.5	77.5 / 70.6	65.2 / 75.3	65.2 / 74.2	64.3 / 64.3	75.7 / 68.8	54.8 / 54.8	72.0 / 70.5	67.6 / 47.6
R3D-AD	68.3 /	75.6 /	82.2 /	73.0 /	68.1 /	67.0 /	77.6 /	75.7 /	89.0 /	73.8 /	79.5 /
PO3AD	85.3 / 75.5	78.7 / 89.9	87.7 / 95.7	85.9 / 94.8	79.2 / 94.0	67.0 / 86.4	87.1 / 90.9	83.3 / 93.2	99.5 / 97.4	80.8 / 82.3	92.3 / 90.7
BTF(RAW)	61.7 / 61.7	32.1 / 68.6	66.8 / 52.4	52.7 / 68.7	46.8 / 46.9	37.3 / 37.3	40.3 / 63.2	52.1 / 56.1	52.5 / 63.7	37.8 / 57.8	51.5 / 47.5
BTF(FPFH)	40.1 / 40.1	63.3 / 63.3	61.8 / 73.0	52.2 / 65.8	52.0 / 52.4	58.6 / 58.6	58.6 / 79.0	61.0 / 61.9	71.9 / 71.9	52.0 / 62.0	49.0 / 59.1
M3DM	30.9 / 69.8	50.1 / 69.9	55.7 / 53.1	42.3 / 60.5	77.7 / 71.8	63.9 / 65.5	53.9 / 71.5	55.6 / 55.6	62.7 / 71.0	57.7 / 58.1	61.7 / 58.5
PatchCore(FPFH)	46.9 / 45.9	55.1 / 57.1	58.0 / 47.2	45.3 / 65.3	75.7 / 59.5	79.0 / 79.5	60.0 / 65.5	58.6 / 59.6	65.7 / 81.0	58.3 / 58.3	63.7 / 46.4
PatchCore(PMAE)	59.3 / 58.6	56.1 / 57.4	58.9 / 54.4	47.6 / 48.8	72.7 / 72.5	53.8 / 54.5	61.0 / 51.0	55.6 / 85.6	67.7 / 37.8	59.1 / 57.5	62.7 / 42.3
CPMF	48.2 / 48.6	60.1 / 60.1	60.1 / 60.1	55.1 / 55.1	55.3 / 55.3	69.7 / 55.1	49.7 / 49.7	49.9 / 50.9	68.9 / 68.9	64.3 / 69.9	45.8 / 45.8
Reg3D-AD	61.0 / 61.9	75.2 / 75.2	69.3 / 63.2	72.5 / 71.8	64.3 / 81.5	46.7 / 46.7	51.0 / 68.5	53.8 / 69.8	34.3 / 75.5	53.7 / 58.0	61.0 / 62.6
ISMP	/ 52.4	/ 67.2	/ 86.5	/ 73.4	/ 75.3	/ 67.8	/ 86.9	/ 60.0	/ 70.6	/ 58.0	/ 70.2
Ours	81.3 / 61.0	90.2 / 85.5	65.9 / 86.1	86.3 / 94.5	68.1 / 86.4	90.2 / 97.0	73.3 / 79.8	93.3 / 88.1	100. / 98.0	100. / 94.6	84.3 / 97.0
Method	helmet0	helmet1	helmet2	helmet3	jar0	phone	shelf0	tap0	tap1	vase0	vase1
IMRNet	59.7 / 59.8	60.0 / 60.4	64.1 / 64.4	57.3 / 66.3	78.0 / 76.5	75.5 / 74.2	60.3 / 60.5	67.6 / 68.1	69.6 / 69.9	53.3 / 53.5	75.7 / 68.5
R3D-AD	75.7 /	72.0 /	63.3 /	70.7 /	83.8 /	76.2 /	69.6 /	73.6 /	90.0 /	78.8 /	72.9 /
PO3AD	76.2 / 87.8	96.1 / 94.8	86.9 / 93.2	75.4 / 84.6	86.6 / 87.1	77.6 / 81.0	57.3 / 66.3	74.5 / 78.3	68.1 / 69.2	85.8 / 95.5	74.2 / 88.2
BTF(RAW)	55.3 / 50.4	34.9 / 44.9	60.2 / 60.5	52.6 / 70.0	42.0 / 42.3	56.3 / 58.3	16.4 / 46.4	52.5 / 52.7	57.3 / 56.4	53.1 / 61.8	54.9 / 54.9
BTF(FPFH)	57.1 / 57.5	71.9 / 74.9	54.2 / 64.3	44.4 / 72.4	42.4 / 42.7	67.1 / 67.5	60.9 / 61.9	56.0 / 56.8	54.6 / 59.6	34.2 / 64.2	21.9 / 61.9
M3DM	52.6 / 59.9	42.7 / 42.7	62.3 / 62.3	37.4 / 65.5	44.1 / 54.1	35.7 / 35.8	56.4 / 55.4	75.4 / 65.4	73.9 / 71.2	42.3 / 60.8	42.7 / 60.2
PatchCore(FPFH)	54.6 / 54.8	48.4 / 48.9	42.5 / 45.5	40.4 / 73.7	47.2 / 47.8	38.8 / 48.8	49.4 / 61.3	75.3 / 73.3	76.6 / 76.8	45.5 / 65.5	42.3 / 45.3
PatchCore(PMAE)	55.6 / 58.0	55.2 / 56.2	44.7 / 65.1	42.4 / 61.5	48.3 / 48.7	48.8 / 88.6	52.3 / 54.3	45.8 / 85.8	53.8 / 54.1	44.7 / 67.7	55.2 / 55.1
CPMF	55.5 / 55.5	58.9 / 54.2	46.2 / 51.5	52.0 / 52.0	61.0 / 61.1	50.9 / 54.5	68.5 / 78.3	35.9 / 45.8	69.7 / 65.7	45.1 / 45.8	34.5 / 48.6
Reg3D-AD	60.0 / 60.0	38.1 / 62.4	61.4 / 82.5	36.7 / 62.0	59.2 / 59.9	41.4 / 59.9	68.8 / 68.8	67.6 / 58.9	64.1 / 74.1	53.3 / 54.8	70.2 / 60.2
ISMP	/ 68.3	/ 62.2	/ 84.4	/ 72.2	/ 82.3	/ 66.1	/ 68.7	/ 52.2	/ 55.2	/ 66.1	/ 84.3
Ours	81.7 / 92.5	98.6 / 90.6	87.5 / 89.1	87.6 / 95.6	100. / 98.2	100. / 99.2	57.7 / 63.2	94.8 / 91.8	80.4 / 86.9	99.6 / 98.0	60.5 / 70.5
Method	vase2	vase3	vase4	vase5	vase7	vase8	vase9	Average			
IMRNet	61.4 / 61.4	70.0 / 40.1	52.4 / 52.4	67.6 / 68.2	63.5 / 59.3	63.0 / 63.5	59.4 / 69.1	66.1 / 65.0			
R3D-AD	75.2 /	74.2 /	63.0 /	75.7 /	77.1 /	72.1 /	71.8 /	74.9 /			
PO3AD	95.2 / 97.8	82.1 / 88.4	67.5 / 90.2	85.2 / 93.7	96.6 / 98.2	73.9 / 95.0	83.0 / 95.2	83.9 / 89.8			
BTF(RAW)	41.0 / 40.3	71.7 / 60.2	42.5 / 61.3	58.5 / 58.5	44.8 / 57.8	42.4 / 55.0	56.4 / 56.4	49.3 / 55.0			
BTF(FPFH)	54.6 / 64.6	69.9 / 69.9	51.0 / 71.0	40.9 / 42.9	51.8 / 54.0	66.8 / 66.2	26.8 / 56.8	52.8 / 62.8			
M3DM	73.7 / 73.7	43.9 / 65.8	47.6 / 65.5	31.7 / 64.2	65.7 / 51.7	66.3 / 55.1	66.3 / 66.3	55.2 / 61.6			
PatchCore(FPFH)	72.1 / 72.1	44.9 / 43.0	50.6 / 50.5	41.7 / 44.7	69.3 / 69.3	66.2 / 57.5	66.0 / 66.3	56.8 / 58.0			
PatchCore(PMAE)	74.1 / 74.2	46.0 / 46.5	51.6 / 52.3	57.9 / 57.2	65.0 / 65.1	66.3 / 36.4	62.9 / 42.3	56.2 / 57.7			
CPMF	58.2 / 58.2	58.2 / 58.2	51.4 / 51.4	61.8 / 65.1	39.7 / 50.4	52.9 / 52.9	60.9 / 54.5	55.9 / 57.3			
Reg3D-AD	60.5 / 40.5	65.0 / 51.1	50.0 / 75.5	52.0 / 62.4	46.2 / 88.1	62.0 / 81.1	59.4 / 69.4	57.2 / 66.8			
ISMP	/ 73.3	/ 76.2	/ 54.5	/ 47.2	/ 70.1	/ 85.1	/ 61.5	/ 69.1			
Ours	100. / 99.7	84.5 / 84.4	81.8 / 92.7	100. / 87.9	64.3 / 86.3	81.8 / 93.4	87.3 / 97.1	86.1 / 88.2			

M3DM [48], PatchCore [15], CPMF [49], Reg3D-AD [1], and ISMP [7]. On Real3D-AD, we additionally compare with Group3AD [6]. Performance metrics for all compared methods are obtained from their original publications or publicly available implementations.

4.2 Quantitative results

4.2.1 Results on Real3D-AD

Table 1 presents the comparison of object-level and point-level anomaly detection performance on Real3D-AD. According to the average scores, our method achieves the best results on both metrics, outperforming the second-best method by 1.5% in O-AUROC and 4.2% in P-AUROC. Notably, our method attains the highest P-AUROC score in 8 categories and ranks second in one category, demonstrating its strong localization capability and confirming that the features learned by our model are highly discriminative.

4.2.2 Results on Anomaly-ShapeNet

Table 2 summarizes the results of anomaly detection and localization on Anomaly-ShapeNet. Our method achieves the best performance on O-AUROC, outperforming the second-best by 2.2%, and ranks second on P-AUROC with only a 1.6% gap to the top. Notably, Our approach significantly outperforms all memory bank-based methods, including Reg3D-AD and ISMP, on both O-AUROC (by 28.9%) and P-AUROC (by 19.1%), and achieves the best performance across 30 object categories.

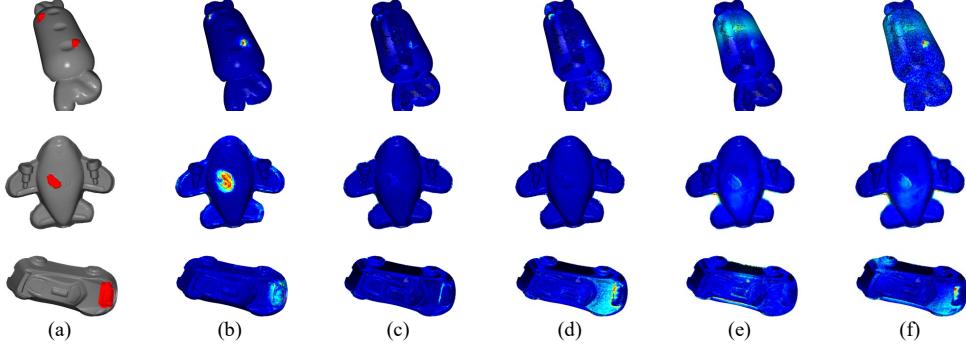


Figure 3: Visualization comparison of localization results on Real3D-AD. (a) Ground truth. (b) Ours. (c)&(e) PatchCore using FPFH and PointMAE, respectively. (d) ISMP. (f) Reg3D-AD.

These results show that our method learns rotation-invariant features with strong robustness and local discriminability, leading to more reliable 3D anomaly detection. The comparisons confirm its effectiveness and superiority, especially within memory bank-based frameworks.

4.3 Qualitative Results

As shown in Figure 3, our method generates sharper and more accurate anomaly maps on Real3D-AD, with detected anomalies closely aligning to the ground-truth defect regions. This leads to a significant improvement in P-AUROC compared to alternative approaches. Additional qualitative results are provided in the appendix.

4.4 Ablation Study

We conduct ablation studies on the registration strategy, training objective, memory bank feature composition, and performance under noisy point clouds to evaluate their respective effects. Additional ablation results are provided in the appendix.

Evaluation on registration. We evaluate the impact of different registration methods on anomaly detection performance using the Real3D-AD dataset. As shown in Table 3, two key insights emerge. First, when our registration method is applied, all downstream approaches achieve improved P-AUROC scores, demonstrating that it provides

more accurate and stable alignment for anomaly localization compared to the commonly used FPFH+RANSAC. Second, even when using FPFH+RANSAC for registration, our method still outperforms competing approaches, indicating that our feature representations possess stronger rotation invariance and robustness properties essential for reliable 3D anomaly detection.

Evaluation on training objective. To assess the roles of \mathcal{L}_{oc} , \mathcal{L}_f , and \mathcal{L}_p , we performed a detailed ablation study on the Real3D-AD dataset. As shown in Table 4, \mathcal{L}_{oc} is crucial for accurate registration, effectively aligning local patches even under partial overlap or sparsity, and its removal causes severe degradation. \mathcal{L}_f enhances feature robustness by strengthening rotation invariance and local discriminability, thereby improving overall anomaly localization accuracy. \mathcal{L}_p has limited effect on accuracy but ensures efficient and reliable point matching; without it, inference slows due to numerous spurious matches. Overall, \mathcal{L}_{oc} and \mathcal{L}_f enable accurate and stable detection, while \mathcal{L}_p improves efficiency, jointly balancing performance and computational cost.

Table 3: Ablation study on registration strategy.

Regis.	PatchCore (RAW)	PatchCore (PMAE)	Reg3D-AD	Ours
F+R	65.3	64.2	70.5	72.6
Our	66.6	75.6	79.6	87.8

Table 4: Ablation study on training objective.

loss	O-AUROC	P-AUROC
w/o \mathcal{L}_{oc}	58.1	68.1
w/o \mathcal{L}_p	76.9	87.0
w/o \mathcal{L}_f	73.4	86.0
$\mathcal{L}_{oc} + \mathcal{L}_f + \mathcal{L}_p$	78.0	87.8

Table 5: Ablation study on memory bank feature composition.

Real3D-AD				Anomaly ShapeNet			
Coord.	Feat.	O-AUROC	P-AUROC	Coord.	Feat.	O-AUROC	P-AUROC
✓		70.3%	66.2%	✓		80.5%	67.2%
	✓	76.4%	83.7%		✓	82.4%	85.0%
✓	✓	78.0%	87.8%	✓	✓	86.1%	88.2%

Table 6: Ablation study on noisy point clouds.

Setting 1			Setting 2		
Metric	O-AUROC	P-AUROC	Noise	O-AUROC	P-AUROC
Clean	78.0	87.8	Clean	78.0	87.8
SD=0.001	76.7	87.5	SD=0.001	76.9	86.5
SD=0.003	77.7	86.4	SD=0.003	63.0	69.1
SD=0.005	76.8	83.1	SD=0.005	56.6	56.5

Evaluation on memory bank feature composition. We evaluate the contribution of each memory bank feature component on Real3D-AD and Anomaly-ShapeNet. As shown in Table 5, coordinates (**Coord.**) and local features (**Feat.**) play complementary roles. **Coord.** provides global spatial cues, while **Feat.** captures fine-grained geometric details. Their combination achieves the best performance, showing strong synergy: **Coord.** locates anomalies globally, and **Feat.** enhances local discrimination. This is especially evident in geometric anomaly detection, where the combined use improves P-AUROC by 21.6% (Real3D-AD) and 21.0% (Anomaly-ShapeNet) over **Coord.**-only baselines.

Evaluation on noisy point clouds. We evaluate the robustness of our method to noisy point clouds on the Real3D-AD dataset under two settings. In **Setting 1**, Gaussian noise ($SD = 0.005$) is injected during training, with varying noise levels applied during testing. In **Setting 2**, noise is introduced only at test time. As shown in Tables 6, the model trained without noise augmentation (**Setting 2**) exhibits a clear performance drop at higher noise levels ($SD \geq 0.003$), revealing its sensitivity to input perturbations. In contrast, noise-based augmentation during training (**Setting 1**) allows the model to maintain stable performance across different noise intensities.

5 Conclusion

In this paper, we propose Reg2Inv, a unified framework that leverages registration to learn rotation-invariant features for 3D anomaly detection. We identify key limitations in existing encoders, such as their poor preservation of fine-grained local geometry and lack of rotation invariance. To address these issues, we integrate registration into the feature learning process, enabling the extraction of structurally discriminative and transformation-robust representations. By jointly optimizing geometric alignment and multi-scale feature consistency within a unified training objective, our method produces features suitable for both registration and anomaly detection. Extensive experiments validate the effectiveness of Reg2Inv in achieving accurate registration and reliable anomaly detection.

Limitation. Despite promising results, our approach has several limitations. Training a model per class increases computational and storage costs. In less discriminative classes, the rotation-invariant feature extractor shows limited generalization. In addition, registration is not always accurate for anomaly detection. We plan to address these issues in future work to improve the method’s efficiency and practicality.

Acknowledgement. This research is supported by the “Leading Talent” under Guangdong Special Support Program (2024TX08X048), China National Key R&D Program (2024YFB4709200), Key-Area Research and Development Program of Guangzhou City (No.2023B01J0022), Guangdong Provincial Natural Science Foundation for Outstanding Youth Team Project (No. 2024B1515040010), NSFC Key Project (No. U23A20391), Guangdong Natural Science Funds for Distinguished Young Scholars (Grant 2023B1515020097), the Singapore Ministry of Education AcRF Tier 1 Grant (Grant No.: MSS25C004), and the Lee Kong Chian Fellowships.

References

- [1] Liu, J., G. Xie, R. Chen, et al. Real3d-ad: A dataset of point cloud anomaly detection. *Advances in Neural Information Processing Systems*, 36:30402–30415, 2023.
- [2] Li, W., X. Xu, Y. Gu, et al. Towards scalable 3d anomaly detection and localization: A benchmark via 3d anomaly synthesis and a self-supervised learning network. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 22207–22216. 2024.
- [3] Liu, B., C. Zheng, X. Xu, et al. Rotation-adaptive point cloud domain generalization via intricate orientation learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
- [4] Chen, Y., L. Duan, S. Zhao, et al. Local-consistent transformation learning for rotation-invariant point cloud analysis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5418–5427. 2024.
- [5] Pang, X., F. Li, H. Zhuang, et al. Upright-net+: Enhanced learning of upright orientation for 3d point clouds. *IEEE Transactions on Visualization and Computer Graphics*, 2025.
- [6] Zhu, H., G. Xie, C. Hou, et al. Towards high-resolution 3d anomaly detection via group-level feature contrastive learning. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 4680–4689. 2024.
- [7] Liang, H., G. Xie, C. Hou, et al. Look inside for more: Internal spatial modality perception for 3d anomaly detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 39, pages 5146–5154. 2025.
- [8] Rusu, R. B., N. Blodow, M. Beetz. Fast point feature histograms (fpfh) for 3d registration. In *2009 IEEE international conference on robotics and automation*, pages 3212–3217. IEEE, 2009.
- [9] Fischler, M. A., R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. *Communications of the ACM*, 24(6):381–395, 1981.
- [10] Pang, Y., W. Wang, F. E. Tay, et al. Masked autoencoders for point cloud self-supervised learning. In *European conference on computer vision*, pages 604–621. Springer, 2022.
- [11] Rudolph, M., B. Wandt, B. Rosenhahn. Same same but differnet: Semi-supervised defect detection with normalizing flows. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pages 1907–1916. 2021.
- [12] Gudovskiy, D., S. Ishizaka, K. Kozuka. Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pages 98–107. 2022.
- [13] Rudolph, M., T. Wehrbein, B. Rosenhahn, et al. Fully convolutional cross-scale-flows for image-based defect detection. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pages 1088–1097. 2022.
- [14] Lei, J., X. Hu, Y. Wang, et al. Pyramidflow: High-resolution defect contrastive localization using pyramid normalizing flow. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 14143–14152. 2023.
- [15] Roth, K., L. Pemula, J. Zepeda, et al. Towards total recall in industrial anomaly detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 14318–14328. 2022.
- [16] Bae, J., J.-H. Lee, S. Kim. Pni: industrial anomaly detection using position and neighborhood information. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 6373–6383. 2023.

[17] McIntosh, D., A. B. Albu. Inter-realization channels: Unsupervised anomaly detection beyond one-class classification. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 6285–6295. 2023.

[18] Zou, Y., J. Jeong, L. Pemula, et al. Spot-the-difference self-supervised pre-training for anomaly detection and segmentation. In *European Conference on Computer Vision*, pages 392–408. Springer, 2022.

[19] Liu, W., H. Chang, B. Ma, et al. Diversity-measurable anomaly detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 12147–12156. 2023.

[20] Tian, L., H. Zhao, R. Lu, et al. Focf: Few-shot industrial anomaly detection with foreground-aware online conditional transport. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 6241–6249. 2024.

[21] Yan, X., H. Zhang, X. Xu, et al. Learning semantic context from normal samples for unsupervised anomaly detection. In *Proceedings of the AAAI conference on artificial intelligence*, vol. 35, pages 3110–3118. 2021.

[22] Fang, Q., Q. Su, W. Lv, et al. Boosting fine-grained visual anomaly detection with coarse-knowledge-aware adversarial learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 39, pages 16532–16540. 2025.

[23] Yao, H., M. Liu, Z. Yin, et al. Glad: towards better reconstruction with global and local adaptive diffusion models for unsupervised anomaly detection. In *European Conference on Computer Vision*, pages 1–17. Springer, 2024.

[24] Fučka, M., V. Zavrtanik, D. Skočaj. Transfusion—a transparency-based diffusion model for anomaly detection. In *European conference on computer vision*, pages 91–108. Springer, 2024.

[25] Iqbal, E., S. U. Khan, S. Javed, et al. Multi-scale feature reconstruction network for industrial anomaly detection. *Knowledge-Based Systems*, 305:112650, 2024.

[26] Ristea, N.-C., N. Madan, R. T. Ionescu, et al. Self-supervised predictive convolutional attentive block for anomaly detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 13576–13586. 2022.

[27] Xiang, T., X. Xu, B. Liu, et al. Seeing 3d through 2d lenses: 3d few-shot class-incremental learning via cross-modal geometric rectification. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2025.

[28] Kolodiaznyi, M., A. Vorontsova, A. Konushin, et al. Oneformer3d: One transformer for unified point cloud segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20943–20953. 2024.

[29] Zhou, Z., L. Wang, N. Fang, et al. R3d-ad: Reconstruction via diffusion for 3d anomaly detection. In *European Conference on Computer Vision (ECCV)*. 2024.

[30] Ye, J., W. Zhao, X. Yang, et al. Po3ad: Predicting point offsets toward better 3d point cloud anomaly detection. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2025.

[31] Liu, B., Y. Yu, X. Xu, et al. Genpoly: Learning generalized and tessellated shape priors via 3d polymorphic evolving. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

[32] Kerbl, B., A. Meuleman, G. Kopanas, et al. A hierarchical 3d gaussian representation for real-time rendering of very large datasets. *ACM Transactions on Graphics (TOG)*, 43(4):1–15, 2024.

[33] Li, X., K. Han, S. Li, et al. Dual-resolution correspondence networks. *Advances in Neural Information Processing Systems*, 33:17346–17357, 2020.

[34] Zhou, Q., T. Sattler, L. Leal-Taixe. Patch2pix: Epipolar-guided pixel-level correspondences. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 4669–4678. 2021.

[35] Sun, J., Z. Shen, Y. Wang, et al. Loftr: Detector-free local feature matching with transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 8922–8931. 2021.

[36] Yu, H., F. Li, M. Saleh, et al. Cofinet: Reliable coarse-to-fine correspondences for robust pointcloud registration. *Advances in Neural Information Processing Systems*, 34:23872–23884, 2021.

[37] Qin, Z., H. Yu, C. Wang, et al. Geometric transformer for fast and robust point cloud registration. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 11143–11152. 2022.

[38] Li, J., B. M. Chen, G. H. Lee. So-net: Self-organizing network for point cloud analysis. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 9397–9406. 2018.

[39] Zhang, Z., B.-S. Hua, S.-K. Yeung. Riconv++: Effective rotation invariant convolutions for 3d point clouds deep learning. *International Journal of Computer Vision*, 130(5):1228–1243, 2022.

[40] Lin, T.-Y., P. Dollár, R. Girshick, et al. Feature pyramid networks for object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 2117–2125. 2017.

[41] Thomas, H., C. R. Qi, J.-E. Deschaud, et al. Kpconv: Flexible and deformable convolution for point clouds. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 6411–6420. 2019.

[42] Sarlin, P.-E., D. DeTone, T. Malisiewicz, et al. Superglue: Learning feature matching with graph neural networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 4938–4947. 2020.

[43] Sinkhorn, R., P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices. *Pacific Journal of Mathematics*, 21(2):343–348, 1967.

[44] Sun, Y., C. Cheng, Y. Zhang, et al. Circle loss: A unified perspective of pair similarity optimization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 6398–6407. 2020.

[45] Rocco, I., M. Cimpoi, R. Arandjelović, et al. Neighbourhood consensus networks. *Advances in neural information processing systems*, 31, 2018.

[46] Sener, O., S. Savarese. Active learning for convolutional neural networks: A core-set approach. *arXiv preprint arXiv:1708.00489*, 2017.

[47] Horwitz, E., Y. Hoshen. Back to the feature: classical 3d features are (almost) all you need for 3d anomaly detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2968–2977. 2023.

[48] Wang, Y., J. Peng, J. Zhang, et al. Multimodal industrial anomaly detection via hybrid fusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8032–8041. 2023.

[49] Cao, Y., X. Xu, W. Shen. Complementary pseudo multimodal feature for point cloud anomaly detection. *Pattern Recognition*, 156:110761, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract and introduction clearly state the contributions made in the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: The limitations are discussed in the Conclusion.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[NA\]](#)

Justification: This paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes the reproduction details and the code will be released after the paper is accepted.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: The code is available at <https://github.com/CHen-ZH-W/Reg2Inv>.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: The paper presents detailed experimental details.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[No\]](#)

Justification: The paper does not report the statistical significance of the experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: The paper introduces the hardware platform and training steps of the experiment.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: The paper complies with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[NA\]](#)

Justification: The paper does not involve potential positive societal impacts and negative societal impacts.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The paper has appropriate citations to the models and data sources used.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorosity, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

Appendix

A Method Details

A.1 RICConv++

RICConv++ [39] is a rotation-invariant convolution method designed for deep learning on 3D point clouds. It proposes an Information-Rich Invariant Feature (IRIF) formulation that not only captures the relationship between the central point and its neighbors but also encodes the internal geometric relations among the neighboring points, thereby enhancing feature discriminability.

A.2 Training objective details

\mathcal{L}_f for local feature alignment and \mathcal{L}_p for point matching. For each ground-truth patch match $(\mathcal{G}_{x_i}^{\mathcal{P}}, \mathcal{G}_{y_i}^{\mathcal{Q}}) \in \hat{\mathcal{M}}^{\text{gt}}$, two parallel optimal transport layers [42] are used to extract local feature assignment matrix and point assignment matrix, respectively. Specifically, we first compute cost matrices:

$$\begin{aligned} \mathcal{C}''_i &= \mathbf{F}''_{x_i}^{\tilde{\mathcal{P}}} (\mathbf{F}''_{y_i}^{\tilde{\mathcal{Q}}})^T / d'', \\ \mathcal{C}'_i &= \mathbf{F}'_{x_i}^{\tilde{\mathcal{P}}} (\mathbf{F}'_{y_i}^{\tilde{\mathcal{Q}}})^T / d', \end{aligned} \quad (13)$$

where \mathcal{C}''_i and $\mathcal{C}'_i \in \mathbb{R}^{n_i \times m_i}$, $n_i = |\mathcal{G}_{x_i}^{\mathcal{P}}|$, $m_i = |\mathcal{G}_{y_i}^{\mathcal{Q}}|$. The cost matrices \mathcal{C}''_i are then augmented to \mathcal{C}''^*_i by appending a new row and a new column, filled with a learnable dustbin parameter α . We then utilize the Sinkhorn [43] algorithm on \mathcal{C}''^*_i to compute a soft local feature assignment matrix Z''^*_i . The point assignment matrix Z'^*_i is computed similarly. To prioritize local feature alignment and point matching, we apply separate **negative log-likelihood losses** [42] to the assignment matrices Z''^*_i and Z'^*_i . The set of matched points is $\tilde{\mathcal{M}}_i^{\text{gt}}$. The sets of unmatched points in the two patches are denoted as \mathcal{I}_i and \mathcal{J}_i . The individual local feature aligning loss $\mathcal{L}_{f,i}$ and point matching loss $\mathcal{L}_{p,i}$ are computed as:

$$\mathcal{L}_{f,i} = - \sum_{(x,y) \in \tilde{\mathcal{M}}_i^{\text{gt}}} \log z''^*_{i,x,y} - \sum_{x \in \mathcal{I}_i} \log z''^*_{i,x,m_i+1} - \sum_{y \in \mathcal{J}_i} \log z''^*_{i,n_i+1,y}, \quad (14)$$

$$\mathcal{L}_{p,i} = - \sum_{(x,y) \in \tilde{\mathcal{M}}_i^{\text{gt}}} \log z'^*_{i,x,y} - \sum_{x \in \mathcal{I}_i} \log z'^*_{i,x,m_i+1} - \sum_{y \in \mathcal{J}_i} \log z'^*_{i,n_i+1,y}, \quad (15)$$

The final losses are computed by averaging the individual loss: $\mathcal{L}_f = \frac{1}{N_g} \sum_{i=1}^{N_g} \mathcal{L}_{f,i}$, $\mathcal{L}_p = \frac{1}{N_g} \sum_{i=1}^{N_g} \mathcal{L}_{p,i}$.

\mathcal{L}_{oc} for patch matching. To prioritize high-overlap matches for point cloud registration, we compute the **overlap-aware circle loss** [37, 44] on \mathcal{P} ,

$$\mathcal{L}_{oc}^{\mathcal{P}} = \frac{1}{|\mathcal{A}|} \sum_{\mathcal{G}_i^{\mathcal{P}} \in \mathcal{A}} \log \left[1 + \sum_{\mathcal{G}_j^{\mathcal{Q}} \in \varepsilon_p^i} e^{\lambda_i^j \beta_p^{i,j} (d_i^j - \Delta_p)} \cdot \sum_{\mathcal{G}_k^{\mathcal{Q}} \in \varepsilon_n^i} e^{\beta_n^{i,k} (\Delta_n - d_i^k)} \right]. \quad (16)$$

Where \mathcal{A} is the set of anchor patches in \mathcal{P} that have at least one patch pair in $\hat{\mathcal{M}}^{\text{gt}}$. For each anchor patch $\mathcal{G}_i^{\mathcal{P}} \in \mathcal{A}$, ε_p^i and ε_n^i denote the sets of its positive and negative patches in \mathcal{Q} . $d_i^j = \|\mathbf{F}_i^{\tilde{\mathcal{P}}} - \mathbf{F}_j^{\tilde{\mathcal{Q}}}\|_2$ is the feature distance, and $\lambda_i^j = (d_i^j)^{\frac{1}{2}}$ and ε_i^j represents the overlap ratio between $\mathcal{G}_i^{\mathcal{P}}$ and $\mathcal{G}_j^{\mathcal{Q}}$. $\beta_p^{i,j} = \gamma(d_i^j - \Delta_p)$ and $\beta_n^{i,k} = \gamma(\Delta_n - d_i^k)$ are the positive and negative weights, respectively. We set the margins $\Delta_p = 0.1$ and $\Delta_n = 1.4$. The same applies to the loss $\mathcal{L}_{oc}^{\mathcal{Q}}$ in \mathcal{Q} and the overall loss of the circle based on overlap is $\mathcal{L}_{oc} = (\mathcal{L}_{oc}^{\mathcal{P}} + \mathcal{L}_{oc}^{\mathcal{Q}})/2$.

The loss function $\mathcal{L} = \mathcal{L}_f + \mathcal{L}_p + \mathcal{L}_{oc}$ is composed of a feature aligning loss \mathcal{L}_f for local feature aligning, a point matching loss \mathcal{L}_p for point matching, and an overlap-aware circle loss \mathcal{L}_{oc} for patch matching.

Table 7: Comparison of inference speed.

Metric	RegAD	M3DM	ISMP	Ours
AITPS	7.71	6.43	4.37	2.53

A.3 Normalization parameters compute

For each train sample $\mathcal{P} \in \mathcal{D}_{\text{train}}$, we derive local features $\mathbf{F}''^{\tilde{\mathcal{P}}} \in \mathbb{R}^{|\tilde{\mathcal{P}}| \times d''}$ and the corresponding alignment coordinates $\tilde{\mathcal{P}}^{\text{align}} \in \mathbb{R}^{|\tilde{\mathcal{P}}| \times 3}$. These are then aggregated across all training samples in $\mathcal{D}_{\text{train}}$ to form collections of feature vectors \mathbf{F}_f and coordinate vectors \mathbf{F}_c , from which we compute the normalization parameters γ_f and γ_c , respectively:

$$\begin{cases} \gamma_f = \max_{i \in \{1, \dots, N\}} \|\mathbf{F}_f^{(i)}\|_2, \mathbf{F}_f = \bigcup_{i=1}^M \mathbf{F}_f^{(i)}, \\ \gamma_c = \max_{i \in \{1, \dots, N\}} \|\mathbf{F}_c^{(i)}\|_2, \mathbf{F}_c = \bigcup_{i=1}^M \tilde{\mathcal{P}}_i^{\text{align}}, \end{cases} \quad (17)$$

where M denotes the total number of samples in $\mathcal{D}_{\text{train}}$ and N represents the dimensionality of the feature vectors.

A.4 AUROC

We evaluate anomaly detection performance at both the object and point levels using the Area Under the Receiver Operating Characteristic Curve (AUROC). The AUROC quantifies the overall discriminative capability of a model. Given prediction scores $s(x)$ for samples x , the true positive rate (TPR) and false positive rate (FPR) at a decision threshold τ are defined as

$$\text{TPR}(\tau) = \frac{\text{TP}(\tau)}{\text{TP}(\tau) + \text{FN}(\tau)}, \quad \text{FPR}(\tau) = \frac{\text{FP}(\tau)}{\text{FP}(\tau) + \text{TN}(\tau)}. \quad (18)$$

The Receiver Operating Characteristic (ROC) curve plots $\text{TPR}(\tau)$ against $\text{FPR}(\tau)$ over all thresholds $\tau \in [0, 1]$. The AUROC is defined as the area under this curve:

$$\text{AUROC} = \int_0^1 \text{TPR}(\text{FPR}) d(\text{FPR}). \quad (19)$$

In discrete form, the AUROC can be approximated as

$$\text{AUROC} = \frac{1}{N_+ N_-} \sum_{i=1}^{N_+} \sum_{j=1}^{N_-} \mathbb{I}(s(x_i^+) > s(x_j^-)), \quad (20)$$

where N_+ and N_- denote the number of positive and negative samples, and $\mathbb{I}(\cdot)$ is the indicator function.

A.5 Training Efficiency

Our method learns features via a registration task that enforces geometric alignment and multi-scale consistency between source and target point clouds. As it does not rely on category-specific supervision, it is inherently category-agnostic and can be trained jointly across the entire dataset. Under our experimental setup (RTX 3090 GPU, batch size 1), full training takes approximately 27 hours on Anomaly-ShapeNet (40 categories) and about 34 hours on Real3D-AD (12 categories). In contrast, methods like R3D-AD and PO3D-AD require 1 hour and 7 hours per category, respectively. While our single training run is longer, it eliminates the need for category-wise training, resulting in significantly greater overall efficiency.

A.6 Inference Efficiency

To assess runtime efficiency, we report the **average inference time per sample** (AITPS, measured in seconds). Using an RTX 3090 GPU with a batch size of 1, our method achieves an average processing time of 2.53 seconds per Real3D-AD sample, which is faster than other memory bank-based approaches, as shown in Tables 7.

B More Ablation Studies

To better understand the role of different design choices in our framework, we perform ablation studies on four critical components: (i) the computation method for object-level anomaly scoring; (ii) the neighborhood size in RICConv++; (iii) normalization and filtering of features during inference; (iv) using alternative extracted features for memory bank construction. These ablations provide insights into how each component contributes to overall performance and robustness. Additionally, to evaluate the robustness of our method, we conduct an experiment with varying rotation angles of point clouds, demonstrating its stability under different geometric transformations.

B.1 Evaluation on the calculation method of object-level anomaly score.

We evaluate the impact of different strategies for computing the object-level anomaly score(%) on the Anomaly-ShapeNet dataset. We compare two standard aggregation methods: **mean**, defined as $\mathcal{S} = \text{mean}(\{s_i\})$, and **max**, defined as $\mathcal{S} = \max(\{s_i\})$. Our proposed method, denoted as **ours**, is formulated as $\mathcal{S} = \max(\{s_i\} * f_n)$, where s_i is the point-level anomaly score, f_n is a mean filter of size n , and $*$ is the point-wise convolution operator. As shown in Table 8, our method achieves the highest O-AUROC score among all aggregation strategies. Unlike conventional mean or max operations, our approach first applies local smoothing followed by a max operation, which effectively highlights true anomalous regions while reducing the impact of noise and unreliable point-level predictions.

B.2 Evaluation on neighborhood size in RICConv++.

Figure 4 shows object-level and point-level AUROC results with varying neighborhood sizes in RICConv++, evaluated on the Real3D-AD dataset. Selecting an appropriate neighborhood size is critical: an excessively large size may dilute geometric patterns by aggregating diverse points, weakening local feature discrimination; conversely, an overly small size may limit contextual coverage, reducing the expressiveness of local structures. Despite these effects, our method remains relatively robust to neighborhood size choices. As shown in Figure 4, detection and localization performance peak at patch numbers 32 and 64, respectively. We set the patch number to 32 in our implementation to prioritize detection performance, with only a minor trade-off in localization accuracy.

B.3 Evaluation on Normalization & Filter in inference phase.

We evaluate the impact of feature normalization and filtering strategies during the inference phase on both object-level and point-level anomaly detection performance(%) using the Real3D-AD dataset. As shown in Table 9, normalization emerges as the key component driving performance improvement. Feature normalization alone improves O-AUROC by 10.5% and P-AUROC by 21.6%. In contrast, filtering plays a more auxiliary role. Applying filtering alone results in only marginal gains, but when combined with normalization, it significantly enhances performance, achieving an O-AUROC improvement of 17.9% and a P-AUROC improvement of 22.5%. These results highlight the importance of proper feature conditioning during inference and suggest a synergistic effect between normalization and filtering in improving model reliability and sensitivity.

Table 8: Ablation study on calculation method.

Method	mean	max	ours
O-AUROC	81.6	82.8	86.1

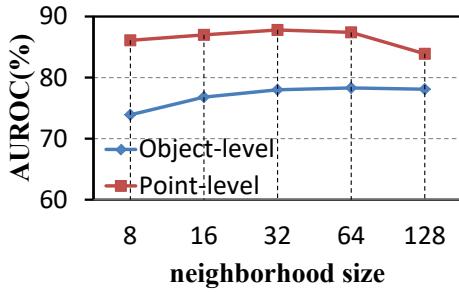


Figure 4: Ablation study on neighborhood sizes.

Table 9: Ablation study on Normalization & Filter.

Normalization	Filter	O-AUROC	P-AUROC
		60.1	65.3
	✓	62.9	65.7
✓		70.6	86.9
✓	✓	78.0	87.8

B.4 Evaluation on alternative feature sources for memory bank construction

We conducted an ablation study on alternative feature representations for memory bank construction using the Real3D-AD dataset. As shown in Table 10, KPConv-FPN features \mathbf{F}' are suboptimal due to limited receptive fields and weaker semantics.

Table 10: Ablation study on the memory bank construction.

Memory Bank Construction	O-AUROC	P-AUROC
\mathbf{F}'	51.1	43.8
$\mathcal{P}^{align} + \mathbf{F}'$	54.0	56.1
\mathbf{F}''	76.4	83.7
$\mathcal{P}^{align} + \mathbf{F}''$	78.0	87.8

B.5 Evaluation on rotated point clouds

We conducted a rotation experiment on the Real3D-AD dataset to directly demonstrate the enhanced rotation invariance and robustness of our learned features. At test time, each point cloud is randomly rotated around one of the X, Y, or Z axes by 90° , 180° , or 270° . We then evaluate the performance of the model using only the features learned in these rotations. As shown in Table 11, the model achieves consistent performance at all angles, confirming that the learned features possess strong rotation invariance and generalizability.

Table 11: Results under varying levels of rotation.

Rotation Angle	O-AUROC	P-AUROC
0°	76.4	83.7
90°	76.3	83.9
180°	76.2	83.6
270°	76.6	84.3

C More Qualitative Results

We present additional qualitative results to further demonstrate the anomaly localization capability of our method. Figure 5 shows the results on the Real3D-AD dataset, while Figures 6 and 7 display the results on the Anomaly-ShapeNet dataset. These visualizations highlight that our method not only accurately identifies anomalous regions but also produces spatially coherent anomaly scores, effectively distinguishing between normal and defective structures in 3D point clouds.

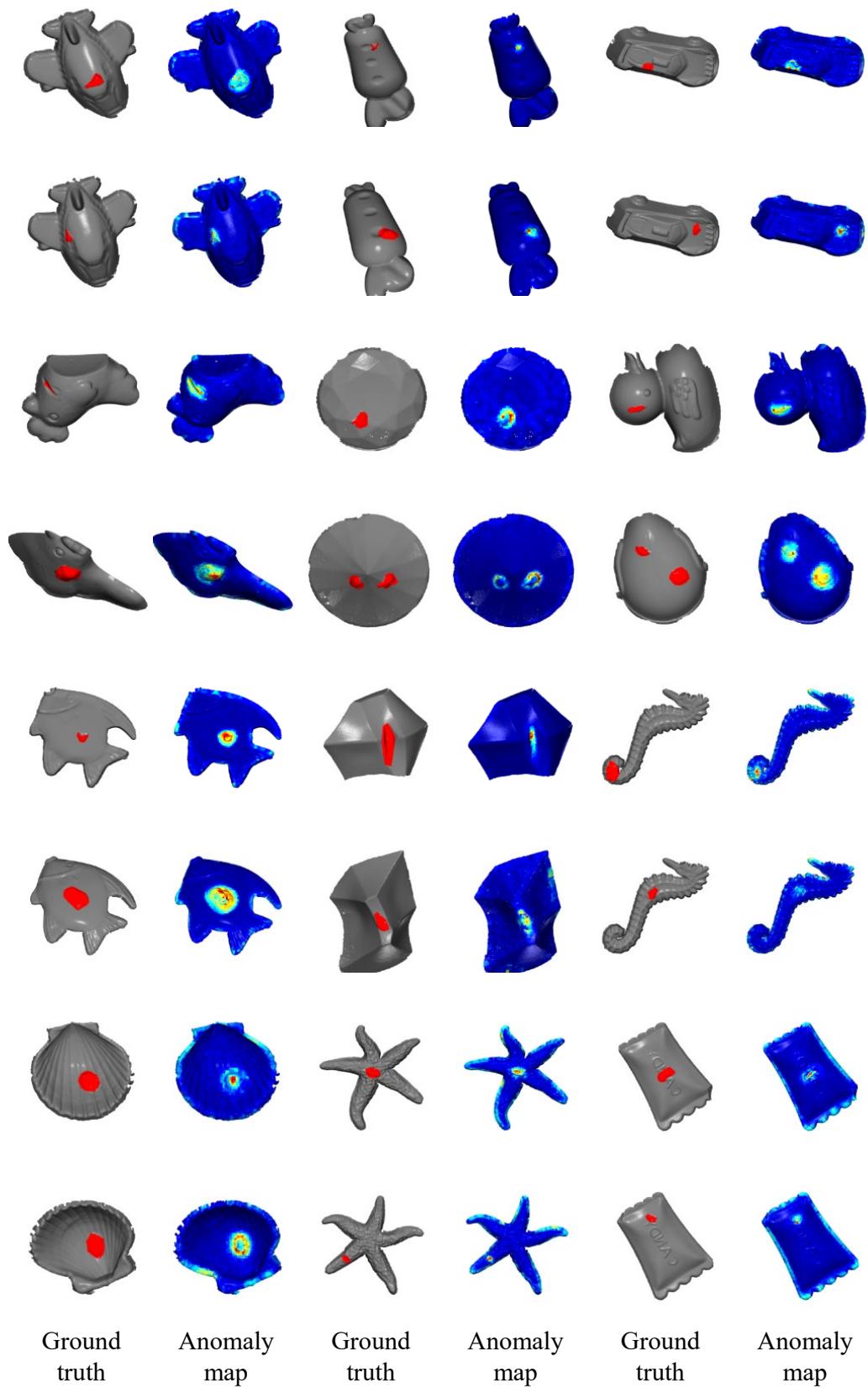


Figure 5: More qualitative results of localization on the Real3D-AD dataset.

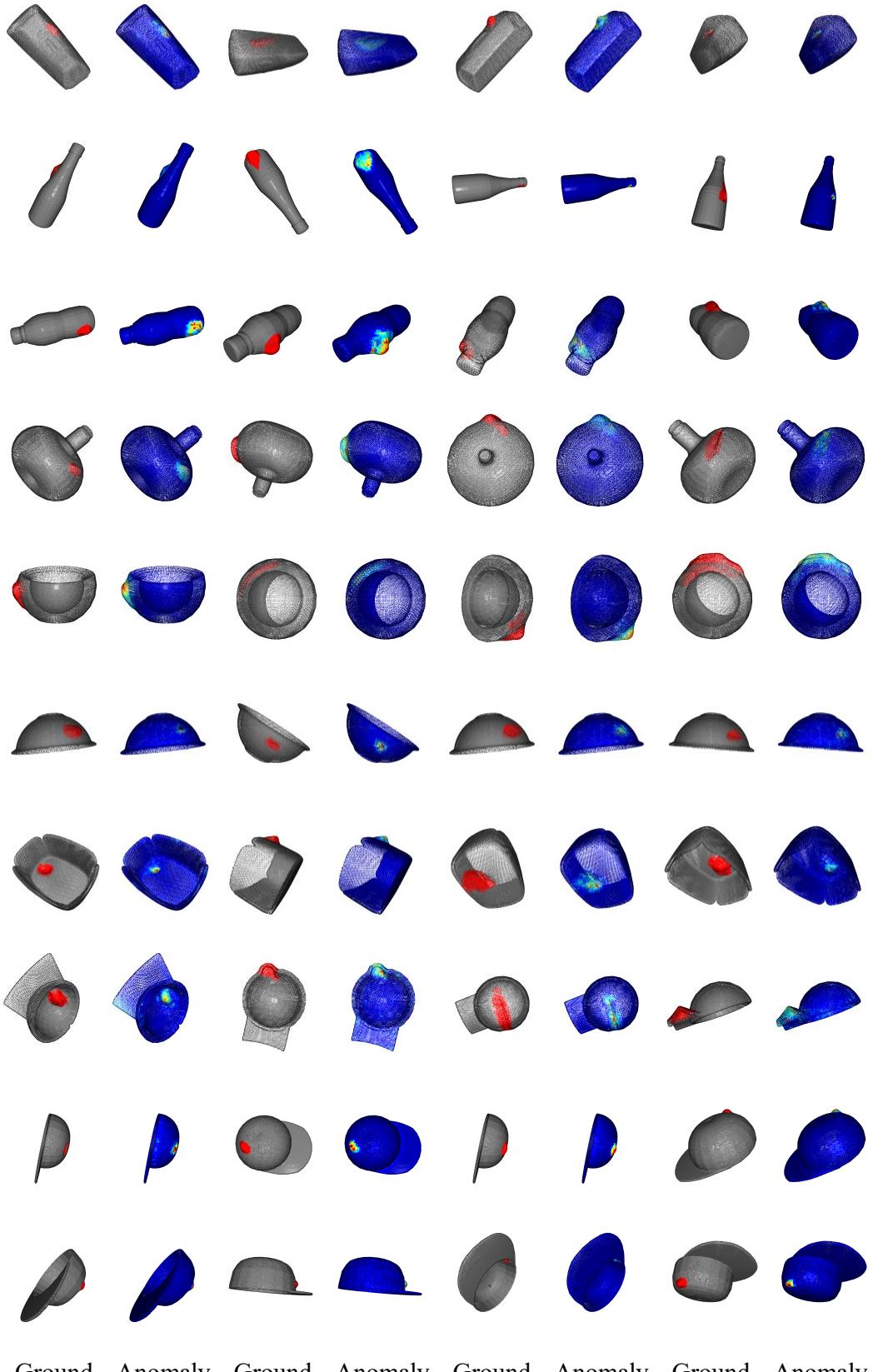


Figure 6: More qualitative results of localization on the Anomaly-Shapenet dataset.

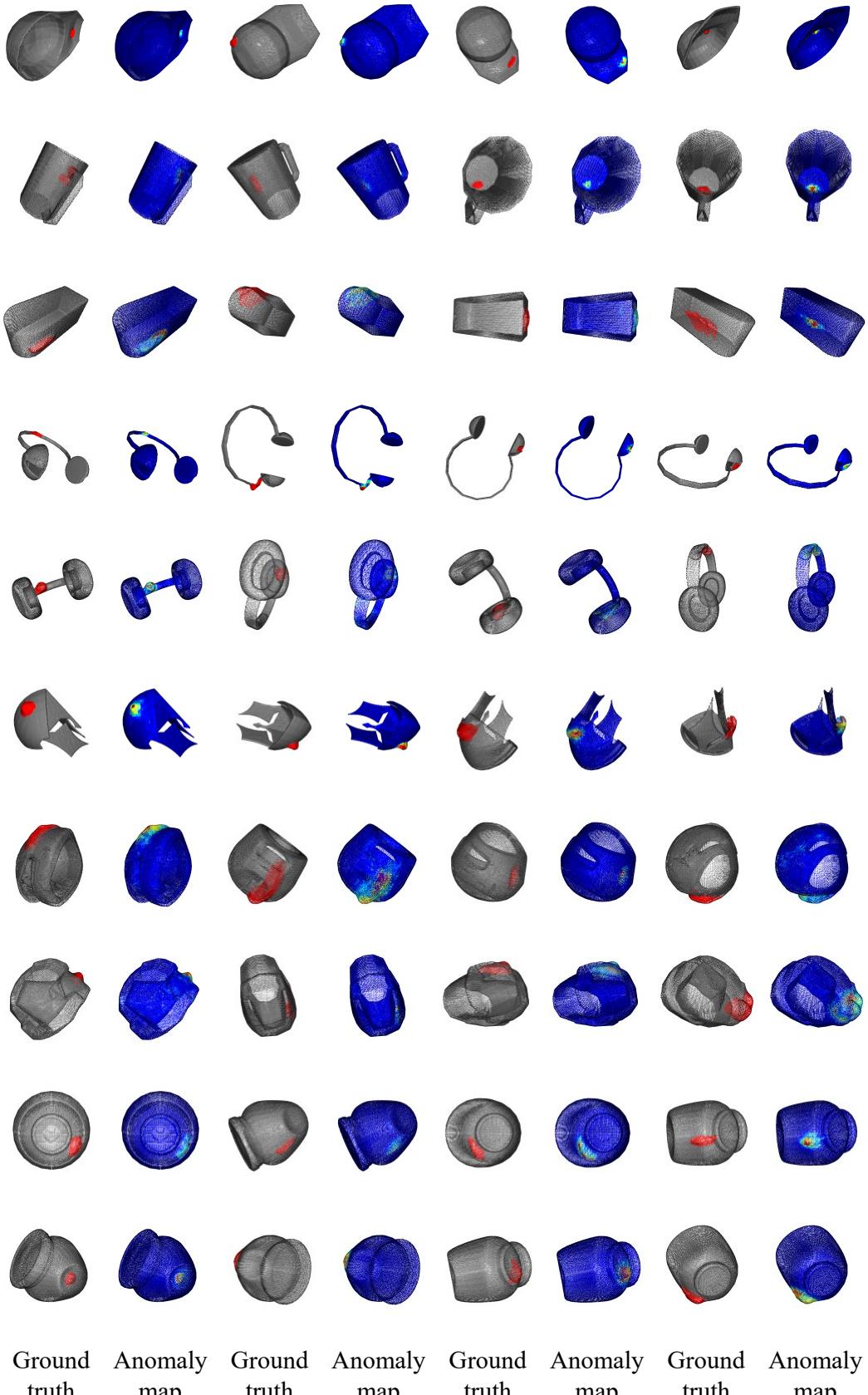


Figure 7: More qualitative results of localization on the Anomaly-Shapenet dataset.