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Abstract. This work focuses on training machine learning models to recognize
gestures during robot-assisted surgical procedures in real-time, using exclusively
kinematic data from the patient-side manipulators. The JIGSAWS dataset, specifi-
cally the suturing tasks, serves as the evaluation benchmark. We experimented with
various neural network architectures, using an LSTM architecture as the baseline
approach. To further enhance performance, two hybrid approaches are proposed
in this work: the first one combining an LSTM with a Conditional Random Field
(CRF) and the second one integrating an attention layer. An extensive experimen-
tal study was conducted to evaluate and optimize the performance of the different
approaches, and identify areas for improvement. A thorough comparative analy-
sis of the results shows that the proposed hybrid approaches, in particular the one
combining an attention layer, can improve recognition rate, as compared to relevant
state-of-the-art, with accuracy of 81.56%. This study lays the foundation for further
research in the field, focusing on advancing real-time surgical gesture recognition
as a means to develop tools that can provide intraoperative monitoring and assis-
tance to the surgeon.
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1. Introduction

The remarkable progress in the development of artificial intelligence and machine learn-
ing techniques has fostered a deeper integration of technology across diverse sectors,
driving significant advancements. The recent surge in data science and deep learning has
not gone unnoticed by the healthcare industry. Medical experts increasingly recognize
the potential for a wider incorporation of robotics and machine learning in healthcare
[1], which could considerably improve patient care and streamline surgical workflows.
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Clinical evidence has indicated that increased precision and accuracy of surgical
robots can enhance the operative outcomes of surgery, showing improvements like re-
duced blood loss and shortest operation duration [2]. Moreover, surgical robots enable
teleoperation, allowing surgeons to perform procedures remotely, expanding access to
specialized care. The usage of surgical robots can provide a variety of valuable data,
which can be utilized by deep learning models and contribute to our understanding of
surgical tasks, assess the execution, provide assistance during the procedure, and gener-
ally advance towards the automation of surgery. Kinematic and visual data from surgi-
cal robots have been harvested and organized in datasets, such as JIGSAWS [3], which
contains recordings of surgical tasks performed on benchtop models using the da Vinci
Surgical System, MISAW [4], which includes sequences of micro-surgical anastomosis
on artificial blood vessels using a master-slave robotic platform [5] and RARP-45 [6],
which leverages data from in-vivo Radical Prostatectomies, also from the da Vinci sys-
tem. The development of such datasets facilitates systematic training, evaluation, and
benchmarking of diverse methodologies, thereby advancing the field of surgical robotics.
An integral part of this process is the segmentation of surgical tasks in atomic gestures
and the ability to recognize them.

Automated surgical gesture recognition seeks to identify and categorize meaning-
ful, fundamental, atomic action units within surgical tasks that comprise a surgical in-
tervention [7], and it is a crucial component of analysis of surgical tasks, technical skill
assessment, intraoperative assistance and, ultimately, robotic automation.

Surgical activity is a complex interplay of dexterous human actions and as such,
is susceptible to variability arising from factors like different surgical styles, patient
anatomy or the occurrence of unexpected intra-operative events. This inherent variability
in surgical procedures, coupled with the intricacy of the end-effector trajectories further
compound the challenge of analyzing and segmenting surgical motion patterns [6]. The
integration of multiple data sources, including kinematic data and video recordings, can
provide valuable contextual information, such as instrument interactions, to enhance the
understanding and analysis of surgical procedures. Recent advances in deep learning,
particularly in the domain of computer vision and sequential data processing, have en-
abled the development of sophisticated models capable of processing and interpreting
these multimodal data streams. One promising approach to address the challenges of sur-
gical gesture recognition involves the development of hybrid models that combine the
strengths of traditional machine learning techniques with the power of deep learning.

Although the clinical adoption of computer-assisted or autonomous robotic surgery
is still not widespread, a significant body of research has been published on gesture
recognition, presenting substantial results. In this work, we present a comprehensive
study on the application of machine learning techniques for surgical gesture recognition.
Theoretical foundations are laid out, discussing relevant machine learning concepts fo-
cusing on techniques suitable for sequential data. Various approaches are presented and
evaluated, aiming to delve deeper into the challenges and limitations of current models
and their underlying weaknesses.
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2. Theoretical Foundations of Machine Learning in Gesture Recognition

2.1. Deep Learning

Deep learning is a subfield of machine learning that leverages the power of artificial neu-
ral networks. These architectures typically feature a hierarchical arrangement of stacked
layers. Each layer processes the data through nonlinear transformations to generate an
abstract representation. The lower layers capture simpler, more fundamental, informa-
tion which the higher layers then use to construct increasingly complex representations.
These networks generally include an input layer, an output layer, and multiple hidden
layers in between.

An important method of performing deep learning is the Supervised Learning
paradigm. In supervised machine learning, models are trained on labeled datasets, where
the input’s set of measurable properties called features, is paired with their correspond-
ing target outputs. Given these input features, the model generates a probability distribu-
tion over the output space. The model’s parameters are learned through an iterative op-
timization process, typically using gradient-based methods, to minimize a specified loss
function that expresses the deviation between the predicted and actual outputs [8].

Optimization is a crucial part of deep learning, involving the process of searching
for an objective function’s optimal value [9]. Since the goal is to minimize the discrep-
ancy between model predictions and the ground truth labels, the training process can be
expressed as the optimization task of finding the minimum of the loss function. Gradi-
ent descent (GD) iteratively adjusts parameters in the direction of the negative gradient,
pointing towards the steepest descent.

2.2. Backpropagation

Each neuron receives input signals from other neurons, which are then weighted and
summed, along with a bias term. This weighted sum, known as the pre-activation, deter-
mines the neuron’s output:

zi(x) = bi +
n

∑
j=1

Wi jx j (1)

where:

zi(x) = preactivation
bi = bias term
Wi j = weight connecting neuron j to neuron i
x j = input

The weights and biases of the neurons are the trainable properties of the model, and
they are iteratively adjusted in order to improve the model’s overall performance [10].
Usually the weights and biases are initialized randomly and subsequently adjusted using
backpropagation, which optimizes model parameters by calculating the gradient of the
loss function with respect to these parameters.

During the forward pass, input data is conveyed through multiple layers, with each
neuron applying its weights and biases and passing the result through an activation func-
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tion. The loss function quantifies the difference between the final output and the ground
truth. Backpropagation algorithm, utilizing the chain rule, transmits the error backwards
through the network, layer by layer, and after calculating the gradient of the loss function,
the weights and biases are appropriately adjusted in order to minimize the loss.

2.3. Long Short Term Memory

Recurrent Neural Networks (RNNs) are distinguished by their architecture, which con-
tains feedback loops, enabling them to process sequential data effectively. These cycli-
cal connections give the network the ability to incorporate past information into the cal-
culations of the current outputs, creating a form of memory. This memory mechanism
empowers RNNs to learn and utilize temporal dependencies within the data.

Figure 1. Basic RNN architecture unfolded

By unfolding the RNN as presented in Figure 1, we can visualize its sequential
nature. The chain-like structure allows the network to capture temporal dependencies
within data sequences, making it well-suited for tasks like gesture recognition, where the
evolution of the feature values through time is crucial for accurate interpretation.

RNNs, due to their unique architecture, are susceptible to the vanishing and explod-
ing gradient problems. These issues arise from the repeated application of derivatives
during backpropagation, leading to either diminishing or amplifying gradients. This can
hinder the network’s ability to learn long-term dependencies, especially in deep architec-
tures.

Long Short Term Memory (LSTM) is an RNN variant, that was designed to ad-
dress the vanishing gradient problem [11]. It achieves this by employing a cell state and
three gates: the input, forget, and output gates. These gates collaboratively determine
which information to retain or discard from the cell state and which to output.

As illustrated in Figure 2, each LSTM cell receives data from three sources at each
time step:

• Input Vector (xt): The current input data
• Previous hidden state (ht−1): The output from the previous time step
• Previous cell state (ct−1): The long term memory

These inputs are processed by the three primary gates:

1. Forget Gate:

• Determines which information from the previous cell state should be discarded
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Figure 2. LSTM memory cell architecture

• Calculate a forget gate value (Ft ) using a sigmoid activation function:

ft = σ(Wf [ht−1,xt ]+b f ) (2)

2. Input Gate:

• Responsible for dictating which parts of the new input information should be
stored in the cell state.

• Calculates an input gate value (It ) using a sigmoid activation function:

it = σ(Wi[ht−1,xt ]+bi) (3)

• The potential new value for the cell state, which is evaluated by the input gate,
derives from the candidate memory, which applies a tanh activation function
to a combination of the current input and the previous hidden state.

c̃t = tanh(Wc[ht−1,xt ]+bc) (4)

3. Cell State Update:

• Updates the cell state (Ct ) based on the forget gate, input gate, and candidate
memory:

Ct = ft ⊙Ct−1 + it ⊙ c̃t (5)

where ⊙ represents element-wise multiplication.

4. Output Gate:

• Determines which parts of the cell state should be output as the current hidden
state.

• Calculates an output gate value (Ot ) using a sigmoid activation function:

ot = σ(Wo[ht−1,xt ]+bo) (6)
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• Using the gate’s result, the new hidden state (ht ) is calculated:

ht = ot ⊙ tanh(Ct) (7)

The gate mechanism in LSTM enables the network to selectively retain relevant
information and forget less useful parts, allowing it to learn complex patterns over large
datasets of sequential data. Additionally, by mitigating the gradient vanishing problem,
the LSTM network is able to store information over extended periods and identify longer
temporal dependencies, which is important in the gesture classification task where the
accuracy of the prediction depends on a sequence of movements over time.

2.4. Conditional Random Fields

Probabilistic Graphical Models (PGMs) use graph structures in order to represent com-
plex probabilistic relationships between variables. The nodes of the graph correspond
to random variables and the edges represent the probabilistic dependencies between the
variables they connect [12].

Markov Random Fields (MRFs), a subset of PGMs, are undirected graphical mod-
els that embody the Markov property. This property stipulates that a node’s conditional
probability distribution is solely dependent upon its immediate neighbors in the graph. In
other words, a node’s future state is independent of its past states, given its current state
and the states of its neighboring nodes. This characteristic enables MRFs to efficiently
model complex dependencies between random variables

Conditional Random Fields (CRFs) are a class of statistical modeling techniques
that have gained significant traction in machine learning, particularly for tasks involv-
ing sequential data processing. Built upon the foundation of MRFs, CRFs offer a robust
framework for modeling the conditional probability of a sequence of labels given a se-
quence of observations. Discriminative models are a broad category of statistical models
focused on modeling the conditional probability of the output given the input, P(y|x), in
contrast to generative models whose aim is to model the joint probability distribution of
the input and output variables, P(x,y). They are primarily concerned with predicting the
correct output category for a given input, rather than modeling the underlying probabil-
ity distribution of the data. Thus, discriminative models are well-suited for classification
tasks.

In the classification context, X represents a sequence of data points while Y repre-
sents the corresponding sequence of labels. Although X and Y are jointly distributed,
a discriminative modeling approach focuses on the conditional probability distribution
P(y|x). This model directly estimates the probability of a specific label sequence Y given
a particular data sequence X. Since CRFs are a variant or MRFs, they obey the Markov
property, which implies that a label is conditionally independent of other labels, given its
neighboring labels and the global input. Formally, this can be expressed as follows:

Let Y = {Yv : v∈V} be a set of random variables, where Yv is associated with vertex v
in the graph G = (V,E). (X ,Y ) is a CRF if, when conditioned on X , the random variables
Y satisfy the pairwise Markov property with respect to the graph G:

P(Yv|X ,{Yw : w ̸= v}) = P(Yv|X ,{Yw : w ∼ v})
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where w ∼ v denotes that vertices w and v are adjacent (i.e., there is an edge between
them in G). [13]

The conditional probability of the output sequence given the input sequence is de-
scribed by the following equation:

P(y|x) = exp(∑i wi fi(y,x))
Z(x)

where:

x,y = input and output sequences
fi(y,x) = feature functions that compute the contribution of each feature to the

overall score of the output sequence
wi = weights associated with feature functions
Z(X) = normalization factor

l

2.5. Attention Mechanisms

Attention mechanisms are a machine learning technique, that empowers neural networks
with the ability to selectively focus on relevant parts of the input data. Central to this ap-
proach is the identification and weighting of input features. By assigning higher weights
to relevant features, we are effectively guiding the model to concentrate on the most in-
formative aspects of the input. The versatility of attention mechanisms has led to their
widespread adoption in various domains, including natural language processing, image
recognition, and machine translation [14].

Although the attention mechanism has a similar purpose to the LSTM gate mecha-
nism, which is to isolate relevant information of the input sequence, they differ in their
approach of selective focus and memory management. LSTMs encode in fixed memory
cells all parts of past information that was chosen to be retained, while attention mech-
anisms dynamically assign weights to different parts of the input, based on the current
output and the entire sequence, ensuring that the model can adapt its focus to the specific
task. Additionally, while LSTM process data sequentially, attention mechanisms process
the entire sequence simultaneously, enabling parallel computation. This approach speeds
up the learning process and enhances its efficiency, especially when working with exten-
sive sequential data.

Self attention is a fundamental attention mechanism that attempts to discover and
model relationships between different parts of a single input sequence. It uses a unique
way of encoding information by using three vectors: Query(Q), which describes what
kind of information this element is seeking to acquire from other elements of the se-
quence, Key(K), which represents the relevance of this element to a given query and
Value(V), which contains the actual data that the element holds.

Multi-head attention extends the concept of self attention by applying the attention
mechanism concurrently in multiple instances. Instead of learning a single set of trans-
formations, multi-head attention has the ability to learn multiple, independent groups of
transformations called heads. The idea behind this implementation is that each head can
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focus on specific patterns and capture different kinds of relationships between data items.
These separate representations are combined in order to form the final output.

Let X be the input embedding matrix. Each head independently learns its own lin-
ear transformations to project input embeddings into different query, key, and value sub-
spaces (Eq. 8a, 8b, 8c). This allows each head to specialize in different aspects of the
input data.

Qi = Wi
Q ·X (8a)

Ki = Wi
K ·X (8b)

Vi = Wi
V ·X (8c)

where Wi
Q,W

i
K,W

i
V are projection matrices for the ith head. For each head, the attention

mechanism is applied as described in the standard self-attention, viz.

attention(Qi,Ki,Vi) = softmax
(

QiKi
T

√
dk

)
Vi (9)

The attention outputs from all heads are concatenated and are then projected back
to the original dimension. In matrix form, the entire multi-head attention operation is
represented as:

multi head(Q,K,V) = WO · concat(head1(Q,K,V), . . . ,headh(Q,K,V)) (10)

where WO is the final projection matrix and headi(Q,K,V) is the output of the ith atten-
tion head.

3. Related Work

3.1. Probabilistic Model approaches

The literature contains numerous works that present a range of approaches to gesture
classification. Earlier work focused on kinematic data and tried to tackle the problem
using probabilistic models. One of the first approaches for automatic gesture recognition
was presented in 2006 [15]. Kinematic data were collected from the da Vinci Surgical
System, including joint positions and velocities from the master-side and patient-side
manipulators (MSM and PSM). Following the observation that surgical motions change
gradually, feature vectors from neighboring time steps were concatenated to form a new
“super” feature vector in order to improve classification performance. Data were nor-
malized to ensure consistency cross different measurements, and their dimensionality
was reduced using Linear Discriminant Analysis. A Bayes classifier then determined the
most probable gesture at each time.

A subsequent study [16] utilized kinematic data from a bench-top surgical training
task to develop an automatic skill assessment model for minimally invasive surgery. A
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Hidden Markov Model (HMM) for automatic gesture recognition was trained with kine-
matic data from both the PSM and MSM of the da Vinci robotic system, captured dur-
ing suturing tasks performed by surgeons with varying levels of expertise. By grouping
consecutive frames into blocks and applying Linear Discriminant Analysis (LDA) high-
dimensional kinematic data were projected onto a lower-dimensional space. Each ges-
ture was represented by a separate HMM, which modeled the temporal sequence of kine-
matic features. The parameters of these HMMs were estimated using the Baum-Welch
algorithm. During recognition, the Viterbi algorithm found the most likely sequence of
gestures given the input sequence.

Tao et al. [17] gathered data from a similar experimental setup for skill evaluation
and proposed a sparse Hidden Markov Model (S-HMM) approach, which used a sparse
linear combination of elements from a dictionary of motion words to model the obser-
vations. The authors concluded that Gaussian distributions were insufficient for high-
dimensional data due to the large number of parameters that were needed to be learned.
To address this, they introduced an HMM variation that employed multiple subspaces
to model the observations from each gesture, enforcing sparsity constraints on the la-
tent variables. This approach allowed for a more robust parameter learning process and
a more accurate representation of the data.

In 2013, one of the few surgical gesture recognition models that could also uti-
lize visual data (alongside [18] and [19]) at the time was proposed [20]. It included a
combined Markov/semi-Markov conditional random field (MsM-CRF). This model inte-
grated Conditional Random Fields (CRFs) and Semi-Conditional Random Fields (Semi-
CRFs) for gesture recognition. CRFs modeled frame-level dependencies, assigning label
probabilities to individual frames. Semi-CRFs assigned labels to segments, which were
sequences of frames where a single gesture was executed. Both models were graphi-
cal and represented their fundamental time units (frames and segments, respectively) as
nodes, connected by edges to model dependencies. For the kinematic data, each model’s
output was generated using a Support Vector Machine (SVM) classifier, which classified
frames and segments. In the case of video data, spatio-temporal features were extracted
and organized into a visual dictionary through K-means clustering. Frame and segment
representations were then created using histograms of these visual words, which were
subsequently used to train SVMs.

3.2. Recurrent Neural Networks

A key limitation of many probabilistic model approaches is that they are restricted to
modeling frame-to-frame or segment-to-segment transitions [7]. In contrast, recent ef-
forts have sought to overcome this constraint by utilizing deep learning techniques that
have the inherent ability to capture complex long-term dependencies in sequential data.
Recurrent Neural Networks are known for their ability to learn temporal characteristics,
facilitating their widespread use. In most cases, the preferred RNN variant is the Long
Short Term Memory network.

DiPietro et al. [21] trained RNNs for joint segmentation and classification of surgical
activities using kinematic data from suturing trials of the JISGAWS [3] and MISTIC-SL
datasets. Previous research primarily concentrated only on recognizing discrete gestures.
In contrast, this study focused on recognizing maneuvers, which represent higher-level
activity segments such as knot-tying. The performance of a forward LSTM and a bidi-
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rectional LSTM model were compared, with the bidirectional LSTM showing significant
improvement in accuracy and edit distance. However, it is crucial to acknowledge that
the bidirectional nature of this model, necessitates access to the entire sequence before
generating a prediction, which limits their suitability for real-time applications. In an ex-
tension of this work [22] the usage of more RNN variants is explored. Following analy-
sis and optimization of the hyperparameters of each model, the performance was further
improved. The proposed architectures included gated recurrent units (GRUs), which are
a simpler alternative to LSTM and mixed history RNNs (MIST RNNs), a type of RNNs,
that incorporates an attention mechanism that selectively combines hidden states from
the distant past to maintain a long-term memory, instead of gates. Each of the examined
RNN was enhanced by techniques such as regularization, usage of multiple layers, and
bidirectional processing. Simple RNNs were outperformed by the more sophisticated
variants, probably due to their inherent vulnerability to the vanishing gradient problem.
While MIST RNNs mitigate vanishing gradients, their lack of an inherent bias towards
smooth predictions, unlike LSTMs and GRUs, leads to competitive error rates but infe-
rior edit distances. It is apparent from the results of these studies that RNNs can signif-
icantly outperform non-RNN methods in both maneuver and gesture recognition. Simi-
larly. The authors in [23] compared the performance of a traditional RNN with an LSTM
trained on data acquired by an instrumented obstetrical forceps coupled with the Birth-
SIM simulator. Although their examined task involved a much smaller number of possi-
ble gestures than a suturing task (namely four), the LSTM superiority once again high-
lighted the importance of capturing long term-relationships in surgical gesture recogni-
tion.

3.3. Temporal Convolution Networks

Several studies have focused on processing only video data, e.g. [24], where a unified
approach to action segmentation using Temporal Convolutional Networks (TCN) was
presented. The authors explored the usage of diverse techniques like adding skip con-
nections between layers, and using different patterns of convolutional layers, and evalu-
ated their methods in different datasets containing both surgical and non-surgical tasks.
TCNs leverage dilated convolutions to efficiently capture both short-term and long-term
dependencies in time series data. Their hierarchical structure with multiple layers of con-
volutions also enables them to learn complex temporal patterns from video data. The
authors observed that certain layers of convolutional filters within the TCN appear to
have learned to detect temporal shifts in the input data, demonstrating that TCNs, despite
their convolutional nature, can effectively capture temporal dependencies in a manner
similar to more traditional temporal models like RNNs or CRFs and, additionally, avoid
over-segmentation.

The idea of processing surgical video data through a TCN is extended in [25] with
TeCNO, a multi-stage TCN. In order to maintain temporal resolution and reduce the
number of parameters, it exclusively uses temporal convolutional layers instead of pool-
ing and fully connected ones. The raw video data were transformed into features in a
frame-by-frame fashion using the ResNet50 [26]. The proposed architecture consisted of
a 1×1 convolutional layer to match the input feature dimension, followed by a stack of
dilated residual layers with increasing dilation factor that widens the receptive field of
the model allowing it to capture long-range dependencies.
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3.4. Multi-modal architectures

Recently, some multi-modal architectures have been presented that utilize a combination
of vision and kinematics, yielding very promising results. The availability of datasets
like [3] and [27], with synchronized kinematic and video data, captured at the same rate,
proved crucial for many of these studies.

The unified model Fusion-KV [28] demonstrates robustness in complex and realistic
surgical scenarios, including dry-lab, cadaveric, and in-vivo experiments. The proposed
model consists of four single-source state estimation models based on vision, kinematics
and system events. These are combined using a fusion model to make comprehensive
inferences. The vision-based state estimation model uses a hybrid CNN-TCN approach.
The kinematic based estimator is also a hybrid model, combining LSTM and TCN mod-
els designed to capture both short-term and long-term data feature evolution. Lastly, the
event-based method evaluates multiple classification algorithms, including Adaboost,
decision trees, Random Forests (RF), SVM and others, with the top-scoring models av-
eraged for the final state estimation. Since different states are more easily recognized by
certain types of data, to leverage the strengths of all models a weighted voting method
was used to combine the prediction vectors from all three estimators.

Keshara Weerasinghe et al. [29] introduced a novel transformer-based framework
for real-time recognition and prediction of surgical gestures and trajectories, based on an
adaptation of the original transformer model presented in [14] for Natural Language Pro-
cessing. The model integrates multi-modal information, encompassing kinematic data
and video streams. The proposed pipeline comprises three distinct stages; feature extrac-
tion and transformation, gesture recognition, and gesture/trajectory prediction, receiving
input data through an observation window with one second width. Gesture recognition
is achieved through a dedicated transformer encoder, while a separate transformer model
is employed for simultaneous gesture and trajectory prediction. During the initial stage,
a range of feature subsets derived from the PSM captures in the JIGSAWS dataset were
evaluated for kinematic data input. For video data, widely used feature extractors, includ-
ing ResNet50, were explored, targeting not only phase recognition but also the extraction
of supplementary information, such as tool segmentation. The authors utilized the infor-
mation inferred from the video data by incorporating a state vector that represents sur-
gical context. This vector encodes interactions between surgical instruments and objects
within the surgical scene. This contextual information can help disambiguate gestures
which might appear similar.

The gesture recognition stage employs a multi-headed attention mechanism to gen-
erate a feature vector, which is subsequently processed by a fully connected layer to pro-
duce the gesture output vector. For predicting future gestures and trajectories, based on
recognized gestures and other input features, a multi-layer transformer decoder is uti-
lized. The decoder’s outputs are further refined through linear transformations to produce
precise trajectory coordinates..

Despite the numerous approaches and significant advancements in gesture recogni-
tion, there remains considerable room for improvement. Probabilistic models often strug-
gle with capturing complex temporal dependencies, and bidirectional variations are un-
suitable for real-time applications. Conversely, LSTM networks have proven to be robust
solutions. Our research focuses on examining the limitations of LSTM-based architec-
tures that leverage kinematic data and seeks to enhance their capabilities by incorporat-
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ing additional techniques. These innovations aim to provide more accurate and efficient
real-time surgical gesture recognition.

4. Data Collection and Preprocessing

4.1. Dataset

For the training and evaluation of our methods, we have utilized the JIGSAWS dataset.
The JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) is a prominent
benchmark dataset in the field of robotic surgery, extensively utilized for research in
robotics, computer vision and machine learning. This dataset is pivotal for analyzing
surgical activities, treating them as dexterous human motions, with the ultimate goal of
enhancing the effectiveness and safety of surgical procedures. JIGSAWS is primarily fo-
cused on two critical areas of study: surgical activity recognition and skill assessment.
This dataset was selected due to its widespread adoption, enabling direct comparison
with existing research and its rich feature set.

The dataset consists of annotated synchronized captures of kinematic and video data
from three basic surgical tasks performed using the Da Vinci Robotic Surgical System.
Each task is repeated 5 times by 8 surgeons with varying level of experience in the usage
of robotic surgical systems. The operators are index by letters “B”, “C”, “D”, “E”, “F”,
“G”, “H”. For gesture recognition, the suturing task is most commonly used, due to its
diverse range of gestures and its relevance to real life scenarios. The suturing activity is
simulated by sequentially inserting and withdrawing a needle through marked entry and
exit points on a soft material using two tooltips to manipulate the needle as shown in
Figure 3.

Figure 3. Suturing task footage from the JIGSAWS dataset

The set of kinematic data includes various variables from both the Master Tool Ma-
nipulators and Patient Side Manipulators captured at 30 Hz, though only the latter are
pertinent to our task. Each manipulator’s kinematic data comprises 19 variables, includ-
ing Cartesian positions, linear and angular velocities, the rotation matrix and the gripper
angle. A critical step of designing a gesture recognition model is exploring the optimal
subset of the available kinematic data to use as input.

4.2. Data annotation

Each time step in the captures is assigned a label, representing a corresponding gesture.
Although there is no standardized method for defining these gestures, they are gener-
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ally considered as fundamental, deliberate actions with meaningful outcomes, varying
depending on the context. The JIGSAWS dataset defines a vocabulary of 15 gestures.
Ten of those can be seen in Table 1, used during the suturing task. The annotation was
performed manually with the assistance of surgeons. As such, the task is subjective and
prone to misrepresentations. The annotation was further reviewed in [7], where 12 mis-
takes were identified and corrected. Consequently, we will be utilizing those revised an-
notations in our study.

Table 1. Suturing task gestures

Label Gesture Description

G1 Reaching for needle with right hand

G2 Positioning needle

G3 Pushing needle through tissue

G4 Transferring needle from left to right

G5 Moving to center with needle in grip

G6 Pulling suture with left hand

G8 Orienting needle

G9 Using right hand to help tighten suture

G10 Loosening more suture

G11 Dropping suture at the end and moving to end points

4.3. Prepocessing

Before being fed into a machine learning model, kinematic data is typically transformed
into a format that aligns with the model’s architecture, ensuring more effective utiliza-
tion. A crucial step in this process is normalization, the process of rescaling the features
to a common range, thereby ensuring that they have comparable magnitudes. This stan-
dardization facilitates the convergence of gradient-based optimization algorithms and en-
hances their efficiency. In this study, each trial was standardized independently by com-
puting the mean and standard deviation of each feature column. The normalized value zi
is obtained by Eq. 11.

zi =
xi −µ

σ
(11)

Another important step when incorporating categorical data into an RNN model,
such as gesture labels, involves one-hot encoding. This process entails assigning a unique
index to each label and subsequently transforming it into a binary vector. The length of
this vector corresponds to the total number of distinct labels, with a single element set to
1, representing the presence of the specific label, while all other elements are set to 0.

Due to the sequential nature of the data, each trial can have a different duration,
preventing direct input into the model. To address this, a sliding window approach is
employed. A fixed-width window is moved across the dataset with a fixed step, mimick-
ing real-time data arrival and processing. To handle the initial portions of the sequence,
padding values (-1) are introduced and should later be masked by the model.
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4.4. Training, Validation, and Test Set Division

Before starting the training of the model, the dataset is split in three parts: the training
set, the validation set and the test set. To ensure unbiased evaluation of the model’s per-
formance, a portion of the dataset should be initially isolated as the test set. It serves as a
benchmark to assess the model’s ability to generalize to new unseen data. The remaining
data is then partitioned into two subsets. The training set, which constitutes the majority,
at 85%, and consist of the data that the network is actually trained on, and the validation
set, which is used during the training but only to evaluate the loss and any other metrics
at the end of each epoch.

A significant challenge that is often observed during the preparation of the dataset,
is the presence of an imbalanced class distribution. As evident from Fig.4, which depicts
the frequency of each gesture within the dataset, some gestures like G10 (“Loosening
more suture”) are sparsely represented in the distribution.

Figure 4. Number of instances per label

To mitigate this issue, we employed stratified sampling during the dataset splitting
process. Stratification ensures that each class is proportionally represented in the training,
validation and test sets, thereby improving the model’s ability to learn, enhancing its
overall performance.

5. Machine Learning Models for Gesture Recognition

5.1. LSTM architecture

We begin by establishing a strong baseline using an LSTM-based network, a well-suited
architecture for sequential data, given its ability to capture long-term relationships.

The proposed architecture, as illustrated in Fig. 5, consists of multiple stacked layers,
starting with the input layer that receives data sequences through the sliding window,
followed by a masking layer, configured to exclude the value we used for padding the
sliding window at preprocess (see Section 4.3).

The first LSTM layer consists of 256 units and also applies L2 regularization, a
technique commonly used in machine learning in order to prevent over-fitting. This tech-
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Figure 5. LSTM based model architecture

nique, also known as “ridge regression”, penalizes large weights by adding a term pro-
portional to the squared sum of their coefficients, as shown in eq. 13. This encourages
smaller weights, leading to better generalization by reducing the model’s susceptibility
to noise in the training data. The second LSTM layer, with 32 units, similarly employs
L2 regularization.

Following each LSTM layer, a dropout layer is introduced. By randomly deactivat-
ing a subset of neurons, “dropout” further enhances generalization by preventing exces-
sive reliance on specific connections.

In multi-class classification problems, the network’s output typically takes the form
of a probability distribution vector, with a dimension equal to the number of classes.
Each element represents the model’s estimated probability assigned to each class, given
the current input. The output layer uses the softmax activation function (Eq. 12) to ensure
that all output probabilities are in the range [0,1] and sum to 1.

softmax(xi) =
exi

∑
K
j=1 ex j

(12)

where:

xi = input value for the i-th class (often the output of a linear layer)
K = total number of classes

Hyperband [30] was also utilized to optimize key hyperparameters for our LSTM
model, such as the number of units, L2 regularization, and dropout rate. Hyperband is a
sophisticated hyperparameter optimization technique that efficiently allocates computa-
tional resources by combining random search and successive halving. It effectively bal-
ances exploration (trying many different configurations) and exploitation (focusing on
promising configurations) , accelerating the discovery of optimal hyperparameters while
minimizing computational costs.

L2 = λ

n

∑
i=1

w2
i (13)
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where:

λ = regularization coefficient.
wi = i-th weight in the model
n = total number of weights in the model

The network’s loss function is the “Categorical Cross-Entropy”, commonly used
with the Softmax output activation function. This loss function measures the difference
between the predicted and actual probability distributions. The total loss is calculated by
summing the loss for each class as shown in Eq. 14.

L =−
10

∑
i=1

tilog(pi) (14)

where i is an iterator over the classes, ti is the ground truth and pi is the probability
distribution produced by the Softmax.

The optimization algorithm used is “AdamW”, a variant of the Adaptive Moment
Estimation (Adam) algorithm. Adam is an adaptive learning rate optimization algorithm
based on stochastic gradient descent and Root Mean Square Propagation (RMSProp).
It incorporates momentum, calculated as an exponentially weighted moving average of
past gradients, to accelerate convergence, assigning bigger weights to recent gradients
while still considering the history of past gradients.

5.2. Feature engineering

Building on the foundation provided by the LSTM network, we sought to further enhance
our model’s performance by integrating additional techniques. These enhancements aim
to capture more intricate patterns and dependencies within the sequential data.

One of the techniques considered to enhance the base model’s performance is fea-
ture engineering, which involves transforming raw data into meaningful features. As pre-
sented in [29], video data are used to extract a state vector representing the interactions
between surgical instruments and objects in the surgical scene. Since our work is focused
solely on kinematic data, a state variable was generated by the combination of two ex-
isting kinematic features; the left and right gripper angles. These created a categorical
context variable called the “Joint gripper state”, with four possible values, viz.:

1. “Both closed”
2. “Left open - Right closed”
3. “Left closed - Right open”
4. “Both open”

5.3. Hybrid LSTM-CRF

In many areas of machine learning, especially natural language processing, researchers
frequently attempt to improve the performance of RNNs by integrating them with sta-
tistical models. This has led to various hybrid models, such as those combining LSTM
with HMMs [31,32] or CRFs [33].
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Analysis of the dataset’s transition matrix revealed a sparse distribution, indicat-
ing limited permissible state transitions (Figure 6). Most state pairs have zero transition
probability, while a few allowed transitions exhibit a dominant probability compared to
others.

Figure 6. Transition probability matrix of the ground truth.

Since LSTMs excel at capturing long-term dependencies in sequential data, we com-
bined them with a CRF to potentially exploit these unique transition characteristics. This
combination allows the model to learn complementary patterns: LSTMs capture long-
term context while CRFs attempt to model local label dependencies.

Figure 7. LSTM-CRF model architecture

In our proposed architecture (Figure 7), the CRF follows the previously described
2-layer LSTM network (Figure 5). We concatenate the LSTM’s previous gesture pre-
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diction with the original input and feed it to the CRF. This aims to refine the LSTM’s
output by incorporating transition information. In order to refine the LSTM output with-
out compromising its reliability, we implemented a selective decision mechanism. This
mechanism utilizes the CRF exclusively when the LSTM’s prediction confidence falls
below a predefined threshold. Specifically, the maximum probability of the LSTM’s out-
put sequence is compared to the threshold. If this probability is below the threshold,
indicating low LSTM confidence, the CRF’s prediction is selected as the final output.
Through empirical evaluation, a threshold of 77% was determined to be adequate for this
approach.

The CRF employs both L1 and L2 regularization with a coefficient of 0.1 for each.
We utilize the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) opti-
mization algorithm for efficient minimization of the objective function. L-BFGS uses an
approximation of the inverse Hessian matrix of the objective function to find the search
direction. The CRF training process is limited to a maximum of 100 iterations.

5.4. Hybrid LSTM-Attention

The second approach considered in this work to extend the baseline LSTM model and
enhance its overall performance is based on the integration of of a MultiHead attention
mechanism. This mechanism can give the model the unique ability to focus simultane-
ously on different parts of the data sequence and to model an estimation of the impor-
tance of each part.

Figure 8. LSTM-Attention model architecture

Following a trial-and-error approach, we experimented with various configurations
of the model’s building blocks and found that placing the 4-head attention mechanism
between the two LSTM layers was the most effective, resulting in the model illustrated in
Fig. 8. The input sequence is processed by the first LSTM layer, which captures temporal
dependencies and generates a sequence of hidden states. These hidden states are then
refined by a multihead attention mechanism to model more complex dependencies within
the data. The same sequence is used as query and value vector, resulting in Self Attention.
The produced output is concatenated with the output of the LSTM, which is then fed into
the second LSTM layer for further processing.
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6. Experimental Results and Analysis

For model evaluation, we employed the Leave-One-Out Cross-Validation (LOOCV)
method. This approach is the standard evaluation protocol for the JIGSAWS dataset,
as its trials are pre-segmented by user. Given eight users, LOOCV provides an unbi-
ased estimate of model performance while facilitating comparisons with existing work.
In LOOCV, each user’s trial is sequentially withheld for evaluation, while the model is
trained on the remaining data. This process is repeated for all users, and the final perfor-
mance metrics are averaged across all iterations. An analysis of each model is presented
in the following.

6.1. LSTM Analysis

Our LSTM network was trained using exclusively kinematic data of the PSM. The dataset
provides a range of kinematic variables. We initially utilized 14 of these variables; seven
corresponding to each of the two tool tips:

• linear position (x, y, z)
• linear velocity (x’, y’, z’)
• gripper angle (θ )

Following, six more variables were then added; three for each tool tip:

• rotational velocity (α ′,β ′,γ ′)

Lastly, the ”Joint Gripper State” variable was added (see Section 5.2). The “Accuracy”
and “F1 Score” results of the three feature configurations of the LSTM model, is pre-
sented in Table 2. We notice that the inclusion of the angular velocities and the Joint
Gripper state plays a positive role in boosting the model’s performance.

Table 2. Feature selection ablation study on base LSTM model

Features Accuracy (%) F1 score

LSTM with 14 features 78.82 0.597

LSTM with 20 features 79.47 0.6

LSTM with 20 features + Joint Gripper State 80.58 0.606

We have also conducted a hyperparameter sensitivity analysis to understand how
sliding window size and delay influence our model’s behavior. The results are presented
in Tables 3 and 4 respectively. Varying the window size revealed a trade-off between
capturing sufficient context and increased complexity. A larger window improves ac-
curacy by providing more contextual information, but excessively large windows intro-
duce computational burden and might introduce noise. Similarly, a larger delay might
improve accuracy by allowing more thorough analysis but at the cost of responsiveness.
To balance accuracy and real-time requirements, we allowed a maximum delay of one
second.

Further analysis of the LSTM network performance revealed significant variations
in accuracy across different users. Notably, user-specific gestures such as “Using right
hand to help tighten the suture” (G9), posed a challenge. When G9 was prevalent in some
trials and underrepresented in others, the model struggled to generalize, exhibiting de-
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Table 3. Sliding window size analysis.

Sliding Window Size Accuracy (%) F1 score

3.2 sec 76.7 0.5855

6.4 sec 77.12 0.5891

12.8 sec 79.26 0.588

25.6 sec 75.99 0.5337

Table 4. Delay analysis.

Delay Accuracy (%) F1 score

0 sec 74.96 0.5697

0.2 sec 74.5 0.5738

0.5 sec 76.49 0.5867

1 sec 79.26 0.588

creased accuracy and confidence. See for example Fig. 9 where a trial of user B, with
multiple instances of gesture G9, is compared to a trial of user F, with no usage of gesture
G9. This suggests that class imbalance, particularly when concentrated within specific
evaluation folds, hinders the network’s ability to learn robust representations and accu-
rately recognize underrepresented gestures. Furthermore, reducing the feature set from
20 to 14 exacerbated this issue, further emphasizing the impact of data scarcity on model
performance.

Figure 9. Top: LSTM Results for a user B trial with frequent usage of G9. Bottom: LSTM Results for a user
F trial with high accuracy. Each subplot contains from top to bottom: LSTM output, ground truth , confidence
curve.

By directly comparing the accuracy per class to the number of instances per class
in Fig.(10) we can confirm that in most cases there is a strong correlation between the
representation of the class and its recognition rate.

Another insightful visualization of the network’s performance is the confusion ma-
trix, shown in Fig. 11. Notably, it does not reveal any pairs of gestures that are consis-
tently misclassified as each other in both directions. The minority classes (G9, G10, and
G11) display a high level of misclassification across all classes. This pattern suggests that
the network struggles to establish clear decision boundaries for these underrepresented
classes, leading to unpredictable and seemingly random outputs.
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Figure 10. Left Axis: Accuracy per class - Right Axis: number of instances per class side-by-side. Results
obtained from LSTM model on JIGSAWS dataset

Figure 11. Confusion matrix for the LSTM model on the JIGSAWS dataset

6.2. Hybrid LSTM-CRF analysis

The LSTM-CRF hybrid model was introduced to leverage the strong transition probabil-
ities observed in the dataset (see Section 5.3). The comparison to the corresponding ma-
trix of the LSTM output (Fig. 12) reveals a small number of illegal transitions. The ad-
dition of the CRF attempts to correct some of the LSTMs misclassifications by utilizing
the transition patterns between consecutive labels.

While the CRF model alone exhibited limitations, including over-segmentation (e.g.,
trial 1 in Fig. 13), using it in conjunction with an LSTM model such as the one introduced
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Figure 12. Left: Transition probability matrix of the ground truth. Right: Transition probability matrix of the
LSTM model

Table 5. Results on the JIGSAWS dataset with
kinematic data that can be used in real time

Method Accuracy (%) year

Skip-Chain CRF [34] 80.29 2015

Forward LSTM [21] 80.5 2016

Our work

Forward LSTM - 14 Features 78.82 2024

Forward LSTM - 20 Features 79.47 2024

Forward LSTM - 20 Features + Gripper State 80.58 2024

LSTM with self attention 81.56 2024

in Section 5.1, could potentially produce better results (e.g., trial 2 in Fig. 13). How-
ever, a simple threshold-based decision mechanism, as the one explained in 5.3, proved
insufficient.

6.3. Hybrid LSTM-Attention analysis

In our final effort to enhance the model, we incorporated an attention layer, as described
in Section 5.4. This addition improved the model’s generalization performance, including
its handling of trials featuring minority gestures. This architecture produced the best
results out of all three approaches we tried, bearing an average accuracy of 81.56%

6.4. Comparison with state of the art

Although numerous approaches have been proposed in the field of gesture recognition,
many of which are evaluated on the suturing task of the JIGSAWS dataset, not all align
with the criteria set in this work. Specifically, we focus on methods that rely exclusively
on kinematic data and propose an architecture suitable for online use. When considering
only studies that adhere to these constraints, our network outperforms the state of the art,
achieving an accuracy of 81.56%, as presented in Table 5.
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Figure 13. Results of “user B” using the Hybrid LSTM-CRF model. Each subplot contains from top to bottom:
LSTM output, CRF output, Hybrid LSMT-CRF, output, ground truth - confidence curve.

7. Conclusion and Future Directions

In this work, we investigated the task of real-time gesture recognition during surgical
procedures using machine learning techniques. We focused on suturing tasks within the
JIGSAWS dataset and aimed to achieve state-of-the-art performance under specific con-
straints; (a) the model operated with a maximum 1-second delay using a sliding window,
and (b) it was trained exclusively on kinematic data. Our initial approach employed an
LSTM network, exploring variations such as single and double layers. We systematically
enhanced the model through techniques like hyperparameter tuning, dropout and L1/L2
regularization. Recognizing the underperformance of classes with limited representation,
we implemented stratification in the data splitting and introduced a higher penalty for
misclassifying the underrepresented classes. We also enriched the feature set by incorpo-
rating appropriate variables and engineering a new feature based on the discrete gripper
angle states.

To further boost performance, we explored two hybrid approaches: (i) combining
LSTM predictions with kinematic data as input to a Conditional Random Field, lever-
aging the sparse transition structure of the data, and (ii) integrating a multi-head self at-
tention mechanism at different points within the LSTM architecture (LSTM-Attention).
Under the constraints imposed in this work, this hybrid LSTM-Attention architecture
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achieved an accuracy of 81.56%, slightly outperforming relevant state-of-the-art ap-
proaches.

Building on the work presented in this study, several directions for future research
can be proposed. Although we explored the idea of combining LSTM with CRF, there
is room for improvement in the way the two model outputs are merged. A potential
solution could be a more complex voting mechanism with separate class weights, based
on the success rate for each class prediction by each model. This idea could be expanded
in other hybrid models that might further enhance the LSTM abilities, such as models
based on Transformers. Even though our model relied exclusively on kinematic data,
future research could extend this work by incorporating visual information. This addition
would enable the exploration and evaluation of a broader range of machine learning
models. Additionally, the performance of the examined models can be assessed in a wider
range of publicly available surgical datasets (see [1] for a comprehensive list) . Finally,
the gesture recognition network could be integrated into a larger system that monitors
surgical procedures and provides relevant information or assistance.

In conclusion, the work presented in this study lays a solid foundation for advancing
real-time gesture recognition in surgical procedures. While several improvements and
extensions have been proposed, the potential for enhancing model accuracy and applica-
bility remains vast. The integration of the gesture recognition network into comprehen-
sive surgical monitoring systems will constitute key steps in bringing this research closer
to real-world applications. We envision that such advancements will make a significant
contribution towards shaping the future of surgical robotics and assistive technologies.
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