

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POLYNOMIAL, TRIGONOMETRIC, AND TROPICAL ACTIVATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Which functions can be used as activations in deep neural networks? This article explores families of functions based on orthonormal bases, including the Hermite polynomial basis and the Fourier trigonometric basis, as well as a basis resulting from the tropicalization of a polynomial basis. Our study shows that, through simple variance-preserving initialization and without additional clamping mechanisms, these activations can successfully be used to train deep models, such as GPT-2 for next-token prediction on OpenWebText and ConvNeXt for image classification on ImageNet. Our work addresses the issue of exploding and vanishing activations and gradients, particularly prevalent with polynomial activations, and opens the door for improving the efficiency of large-scale learning tasks. Furthermore, our approach provides insight into the structure of neural networks, revealing that networks with polynomial activations can be interpreted as multivariate polynomial mappings. Finally, using Hermite interpolation, we show that our activations can closely approximate classical ones in pre-trained models by matching both the function and its derivative, making them especially useful for fine-tuning tasks. These activations are available in the `torchortho`¹ library.

1 INTRODUCTION

Modern deep learning is largely built upon the Multi-Layer Perceptron (MLP) McCulloch & Pitts (1943); Rosenblatt (1958) and the gradient backpropagation algorithm Rumelhart et al. (1986). The MLP can be described as a combination of a multiplication by a matrix of learnable weights and the application of a nonlinear activation function. Gradient backpropagation, on the other hand, relies on the chain rule to compute partial derivatives necessary for optimizing weights through gradient descent. In a deep neural network, *preserving variance across layers* is critical to ensure stable training dynamics. Glorot & Bengio (2010); He et al. (2015) were the first to consider a variance-preserving analysis for deep neural networks.

The analysis shown in He et al. (2015) could be stated as *the output signal of each MLP block should have the same variance as the input signal*. And since learning is performed with backpropagation, this same rule should apply to the gradients as well, meaning that *the variance of the gradient of the input should also be equal to the variance of the gradient of the output of the MLP*.

In this manner, He et al. (2015) demonstrated the methodology for initializing the weights of a deep neural network, thereby attaining performance on ImageNet classification that exceeds that of humans. This process entails the calculation of the ratio between the variance pre- and post-activation called forward gain, as well as the ratio of variance with respect to the derivative of the activation, called backward gain. Remarkably, for the ReLU function, both forward and backward gains are equal to 2.

Recently, Yang & Wang (2024) employed the same principle to train learnable rational activations. However, they encountered a challenge: the second-order moment has no closed formulation in the case of rational fractions. The authors' solution for ensuring the convergence of such rational activation networks consisted in initializing them by fitting the polynomial coefficients to a classical activation such as ReLU or SiLU Ramachandran et al. (2017); Elfwing et al. (2018). Here, we propose a solution to the aforementioned problem by employing orthogonal basis functions (Fig. 4), specifically polynomial and trigonometric functions. Orthogonal basis functions in a chosen L^2 space,

¹<https://anonymous.4open.science/r/torchortho-D76A/>

as will be elucidated in the subsequent sections, facilitate the calculation of the second-order moment integral, thereby yielding a closed and straightforward formula. Additionally, we demonstrate that rational functions are unnecessary, asserting that polynomial activation functions are sufficient.

More generally, the convergence of polynomial networks shown in this work proves that deep neural networks can be seen as multivariate polynomial mappings. Indeed, the successive layers of a feed-forward network activated by a polynomial activation can be seen as a composition of weighted sums of multivariate polynomials, ultimately resulting in a polynomial mapping. A parallel representation was made by Zhang et al. (2018) for ReLU-activated networks, demonstrating that they are tropical rational mappings. In a later section, we also explore tropical polynomial functions as activation functions. We demonstrate that these can be interpreted as the discrete convex conjugate of a learnable function, thus encoding the convex hull of its epigraph (the set of points lying on or above the function’s graph). The contributions of this paper span theoretical proofs, technical developments, and empirical confirmations, and can be summarized in the following list:

- A novel variance-preserving initialization method is introduced for orthogonal learnable activations in neural networks. Assuming an orthonormal function basis, this method ensures that the output variances are unitary and match those of the derivative, leading to stable training.
- Empirically showing that deep neural networks like ConvNeXt (Liu et al., 2022) and GPT-2 (Radford et al., 2019) can be trained using orthogonal learnable activations for tasks like image classification on ImageNet1k (Deng et al., 2009) and language modeling on OpenWebText (Gokaslan & Cohen, 2019). The innovation eliminates the need for additional mechanisms (e.g., ReLU, SoftSign...) to maintain training stability.
- Proving in Appendix F that polynomially activated neural networks are polynomial mappings.
- Developing Hermite, Fourier, and Tropical activations, addressing finite-precision floating-point issues, and designing efficient parallel algorithms and kernels for their implementation.

2 RELATED WORK

The use of polynomial activations has long been denigrated, probably by the rise of works such as Pinkus (1999) and Leshno et al. (1993) which have mathematically demonstrated that the universal approximation property is equivalent to the use of a non-polynomial activation function. The Universal Approximation Theorem Cybenko (1989); Hornik et al. (1990) holds for neural networks of arbitrary width and bounded depth. However, recent work such as Kidger & Lyons (2020); Gao et al. (2025) show that in the framework of bounded width and arbitrary depth, every nonaffine continuous function is possible to use in practice, including polynomial activation functions. We show empirically in this work that polynomial activations can converge in the context of large-scale deep networks and datasets, provided coefficients are learnable and initialization is suitable. The empirical demonstration of the effectiveness of polynomial activations made here was achieved without the use of other functions intended to regularize convergence, such as the SoftSign function borrowed from Turian et al. (2009) and used in Lokhande et al. (2020) for Hermite activations, or a ReLU function, or any normalization, as recently done in Zhuo et al. (2024). This confirmation that polynomial activations are practicable opens the way to representing deep neural networks as multivariate polynomial mappings. As in Kileel et al. (2019) and Kubjas et al. (2024), which see that these types of networks have greater expressive potential, we show in Appendix F that deep polynomially activated neural networks are indeed multivariate polynomial mappings. The subject of learnable activations has seen a resurgence thanks to the popularity enjoyed by the KAN article Liu et al. (2024). In Appendix J, we’ll digress for a while to explain how these are inspired by the Kolmogorov-Arnold theorem Kolmogorov (1957). Further related work appears in Appendix K.

3 METHODS

3.1 VARIANCE PRESERVING INITIALIZATION

The variance-preserving principle He et al. (2015) mentioned in the introduction is expressed in the following. Consider an input vector $x = (x_0, \dots, x_i, \dots, x_{C_{in}}) \in \mathbb{R}^{C_{in}}$, $C_{in} \in \mathbb{N}^*$, where all x_i are mutually independent and uniformly distributed. Preserving the variance in an MLP layer with a learnable weight tensor W of inner dimension C_{in} and an activation function F amounts to:

$$\text{Var}[x] = C_{in} \text{Var}[WF(x)] \quad (1)$$

108 If we suppose that x and W are independent and of finite variance, we have:
 109

$$110 \quad \text{Var}[x] = C_{in} \left(\text{Var}[W] \cdot \mathbb{E} [F(x)^2] + \text{Var}[F(x)] \cdot \mathbb{E} [W]^2 \right) \quad (2)$$

112 **Assumption 3.1.** We initialize W such as $\mathbb{E} [W] = 0$.
 113

114 Since we always assume that W is initialized with a zero mean, Eq. 2 simplifies into:
 115

$$116 \quad \text{Var}[x] = C_{in} \text{Var}[W] \cdot \mathbb{E} [F(x)^2] \quad (3)$$

117 Thus, to calculate the variance of the weights, we should calculate the following ratios:
 118

119 **Definition 3.2.** The forward gain of the MLP layer is defined by:
 120

$$121 \quad \alpha = \text{Var}[x] \cdot \mathbb{E} [F(x)^2]^{-1} \quad (4)$$

122 Similarly, and in a backward manner,
 123

124 **Definition 3.3.** The backward gain is the gain of the derivative of the activation with respect to x and
 125 is defined as:
 126

$$127 \quad \alpha' = \text{Var}[x] \cdot \mathbb{E} [F'(x)^2]^{-1} \quad (5)$$

128 Since a deep neural network is essentially a composition of MLP layers, an appropriate initialization
 129 method must avoid reducing or amplifying the input signals He et al. (2015).
 130

131 **Assumption 3.4.** From now on, we assume that both the input signal x and its gradient Δx follow a
 132 distribution of mean 0 and variance 1.
 133

134 Therefore, calculating the gains α and α' in an MLP (or equivalently a convolution layer) involves
 135 calculating only the inverse of the second-order moments of the activation functions and their
 136 derivatives. Interestingly, for the ReLU function, we have $\alpha = \alpha' = 2$. Hence the scaling of the
 137 standard deviation of the weights W in He et al. (2015) by a factor $\sqrt{2}/C_{in}$, more details can be
 138 found in Appendix B.
 139

140 Given an arbitrary activation, equality of forward and backward gains is not always achieved by
 141 default as in ReLU. In the next section, we show the conditions for an activation function written in
 142 an orthonormal coordinate system to verify the forward-backward gain equality. To illustrate this
 143 point, we will calculate the second moment for Hermite and Fourier basis decompositions, given
 144 their compatibility with the normal and uniform distributions, respectively.
 145

146 3.2 VARIANCE PRESERVING INITIALIZATION FOR THE HERMITE ACTIVATION FUNCTION

147 **Definition 3.5.** $\forall n \in \mathbb{N}$, the probabilist Hermite polynomials can be defined as follows:
 148

$$149 \quad \text{He}_n(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{-\frac{x^2}{2}} \quad (6)$$

150 n is called the degree of the Hermite polynomial and we have the first terms:
 151

$$152 \quad \text{He}_0(x) = 1 \quad \text{He}_1(x) = x \quad \text{He}_2(x) = x^2 - 1 \quad \text{He}_3(x) = x^3 - 3x$$

153 Hermite polynomials constitute a suitable choice for calculating the moment of order 2 when x
 154 follows a standard normal distribution $\mathcal{N}(0, 1)$ as evidenced by the following property 3.6.
 155

156 **Property 3.6.** $\forall m, n \in \mathbb{N}^2$, we have:
 157

$$158 \quad \int_{-\infty}^{\infty} \text{He}_m(x) \text{He}_n(x) e^{-\frac{x^2}{2}} dx = \sqrt{2\pi} n! \delta_{nm} \quad (7)$$

159 With δ_{nm} the Kronecker delta.
 160

161 **Definition 3.7.** We define the Hermite activation $F: \mathbb{R} \rightarrow \mathbb{R}$ with its learnable coefficients $\forall k \in$
 162 $\llbracket 0, n \rrbracket$ $a_k \in \mathbb{R}$ as:
 163

$$164 \quad x \mapsto F(x) = \sum_{k=0}^n \frac{a_k}{k!} \text{He}_k(x) \quad (8)$$

162 **Theorem 3.8.** *Variance-preserving coefficient initialization of Hermite activation. Let*

$$164 \quad \forall k \in \llbracket 1, n \rrbracket \text{ } a_k = 1 \text{ and } a_0 = \sqrt{1 - \frac{1}{n!}} \quad (9)$$

166 *Then using this initialization, the forward and backward gains become the same and are equal to:*

$$167 \quad \alpha = \alpha' = \left(\sum_{k=0}^{n-1} \frac{1}{k!} \right)^{-1} \quad (10)$$

170 *Proof.* The proof is provided in Appendix C. \square

172 **Corollary 3.9.** *In the limit case $n \rightarrow +\infty$, the coefficient initialization in Theorem 3.8 could be*
 173 *divided by a factor \sqrt{e} , with $e \approx 2.7182 \dots$, in order to have unitary forward and backward gains.*
 174 $\forall k \in \llbracket 1, n \rrbracket :$

$$175 \quad a_k = \frac{1}{\sqrt{e}} \text{ and } a_0 = \frac{1}{\sqrt{e}} \sqrt{1 - \frac{1}{n!}} \quad (11)$$

177 *Remark 3.10.* The choice of an orthonormal family of functions depends on the input's probability
 178 distribution. For a normally distributed input, Hermite polynomials simplify the computation of
 179 second-order moments and related gains. For a uniform distribution over $[-\pi, \pi]$, trigonometric
 180 functions (Fourier series) are appropriate. If the input follows a Wigner semi-circle distribution (of
 181 measure $\sqrt{1 - x^2} dx$), then the Chebyshev polynomials of the second kind are the suitable choice.

183 3.3 VARIANCE PRESERVING INITIALIZATION FOR THE FOURIER ACTIVATION FUNCTION

185 The forward and backward gains for a Hermite activation have been calculated under the assumption
 186 that the input x follows a normal distribution, such that the initial coefficients provide equal gains.
 187 The subsequent analysis will establish the same result for a truncated Fourier series expansion of
 188 order $n \in \mathbb{N}$.

189 **Assumption 3.11.** The input x is assumed now to follow a uniform distribution on the interval
 190 $[-\pi, \pi]$, denoted as $x \sim \mathcal{U}(-\pi, \pi)$.

191 **Definition 3.12.** We consider the following Fourier activation $F: \mathbb{R} \rightarrow \mathbb{R}$:

$$192 \quad x \mapsto F(x) = a_0 + \sum_{k=1}^n \frac{(a_k \cos(kx) + b_k \sin(kx))}{k!} \quad (12)$$

195 where $(a_k)_{k \in \mathbb{N}}$ and $(b_k)_{k \in \mathbb{N}^*}$ are real learnable coefficients.

196 **Theorem 3.13.** *Variance-preserving coefficient initialization of Fourier activation. Let*

$$197 \quad \forall k \in \llbracket 1, n \rrbracket \text{ } a_k = 1 \text{ and } a_0 = \sqrt{1 - \frac{1}{(n!)^2}} \quad (13)$$

200 *Then, using this initialization, the forward and backward gains become the same and are equal to:*

$$201 \quad \alpha = \alpha' = \left(\sum_{k=0}^{n-1} \frac{1}{(k!)^2} \right)^{-1} \quad (14)$$

204 *Proof.* The proof is provided in Appendix D. \square

206 **Corollary 3.14.** *In the limit case $n \rightarrow +\infty$, in order to have unitary forward and backward gains,*
 207 *the coefficient initialization in Theorem 3.13 could be divided by a factor $\sqrt{I_0(2)}$, with $I_\alpha(x)$ is the*
 208 *modified Bessel function of the first kind of order α , and we have $I_0(2) \approx 2.2795 \dots \forall k \in \llbracket 1, n \rrbracket :$*

$$210 \quad a_k = \frac{1}{\sqrt{I_0(2)}} \text{ and } a_0 = \frac{1}{\sqrt{I_0(2)}} \sqrt{1 - \frac{1}{(n!)^2}} \quad (15)$$

212 *Remark 3.15.* In both Definitions 3.7 and 3.12, the terms inside the sum are scaled by a factor of
 213 $k!$, yielding exponential series. In practice, it is possible to scale the terms using other converging
 214 series such as k^p with $p > 1$. We experimented with this last alternative and observed no statistically
 215 significant impact on loss convergence, though we did observe better stability for higher polynomial
 degrees in the exponential variant.

216 3.4 VARIANCE PRESERVING INITIALIZATION FOR THE TROPICAL ACTIVATION FUNCTION
217218 **Definition 3.16.** The max-tropical semiring \mathbb{T} is the semiring $\mathbb{T} = (\mathbb{R} \cup \{+\infty\}, \oplus, \otimes)$, with the
219 operations, $\forall x, y \in \mathbb{R} \cup \{+\infty\}$ ²:

220
$$x \oplus y := \max\{x, y\} \quad \text{and} \quad x \otimes y := x + y \quad (16)$$

222 Equivalently, we could define the min-tropical semiring by substituting the max operation in \oplus
223 with a min operation. By extension, we define for all $a \in \mathbb{N}$ the tropical power of x raised to a as
224 multiplying x to itself a times:

225
$$x^{\otimes a} := x \otimes \cdots \otimes x = a \cdot x \quad (17)$$

226 **Definition 3.17.** The *tropicalization* of a polynomial of degree $n \in \mathbb{N}$ is defined as $F: \mathbb{R} \mapsto \mathbb{R}$, with
227 $\forall k \in \llbracket 0, n \rrbracket a_k \in \mathbb{R}$ are the polynomial learnable coefficients:

228
$$x \mapsto F(x) = \bigoplus_{k=0}^n a_k \otimes x^{\otimes k} := \max_{k=0}^n \{a_k + kx\} \quad (18)$$

229 With $\max_{k=0}^n \{a_k + kx\} := \max(a_0, a_1 + x, \dots, a_n + nx)$.
230231 **Definition 3.18.** *Convex conjugate (Legendre-Fenchel).* Let $x \in \mathbb{R}$, $f^*: \mathbb{R} \rightarrow \mathbb{R}$ is the convex
232 conjugate of $f: \mathbb{R} \rightarrow \mathbb{R}$ if and only if:

233
$$f^*(x) = \sup_{k \in \mathbb{R}} \{kx - f(k)\} \quad (19)$$

234 **Theorem 3.19.** *Variance-preserving coefficient initialization of Tropical activation.* Let
235

236
$$\forall k \in \llbracket 0, n \rrbracket a_k = 1 \quad (20)$$

237 *Then, applying this initialization to the limit case of $n \rightarrow \infty$ yields an equal unitary gain both
238 forward and backward for the following "scaled" definition of the tropical activation:*

239
$$x \mapsto F(x) = \frac{\sqrt{2}}{n} \max_{k=0}^n \{a_k + kx\} \quad (21)$$

240 *Proof.* The proof is provided in Appendix E . □
241242 The tropical polynomial activation can be viewed as a generalization of the ReLU activation. Furthermore,
243 it can be interpreted as a discrete version of the convex conjugate of a function f whose values
244 at the natural integers $k \in \mathbb{N}$ are $f(k) = -a_k$ effectively encoding the convex hull of the epigraph of
245 f , as illustrated in Figures 5 and 6.246 3.5 PRACTICAL IMPLEMENTATION
247248 In what follows, we outline the considerations we have taken in order to implement Hermite, Fourier,
249 and Tropical polynomial activations efficiently in PyTorch.
250251 **Weight decay.** An important aspect of training learnable activations is that their learnable coefficients
252 should be trained without weight decay, as it could bias them toward zero.
253254 **Explicit Hermite formula.** We can show by induction that the following definition is equivalent to
255 the one in Eq. 6:

256
$$\frac{\text{He}_n(x)}{n!} = \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^m}{m!(n-2m)!} \frac{x^{n-2m}}{2^m} \quad (22)$$

257 We can see that the formula 22 can be parallelized, and is, therefore, the core of the algorithm we
258 have developed in native PyTorch to compute Hermite activations (see Algorithm 2).
259260 **A dedicated Hermite kernel.** Along with the parallel implementation of the Hermite activation,
261 we developed a dedicated kernel that leverages the derivation established in C.5 for the backward
262 pass exploiting the fact that the derivative of a polynomial is a polynomial of lower degree and the
263

270 following recurrence formula in the forward pass to optimize performance and memory usage (see
 271 Algorithm 3):
 272

$$\text{He}_{n+1}(x) = x \text{He}_n(x) - n \text{He}_{n-1}(x) \quad (23)$$

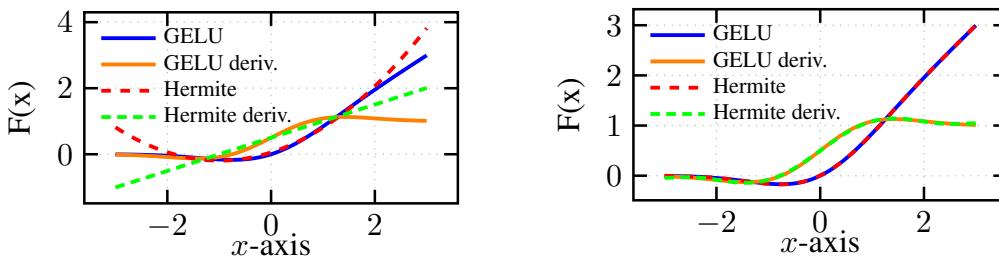
275 **Alternative Fourier formula.** The definition of Fourier activation given in 3.12 is under the
 276 Sine-Cosine form. In practice, we use the following equivalent Amplitude-Phase formulation (see
 277 Algorithm 5):
 278

$$x \mapsto F(x) = a_0 + \sqrt{2} \sum_{k=1}^n \frac{a_k \cos(f_k x - \phi_k)}{k!} \quad (24)$$

281 as it is less expensive in terms of FLOP. The learnable parameters here are initialized as follows:
 282 $\forall k \in \mathbb{N}^* f_k = k, \phi_k = \frac{\pi}{4}$ and a_k and a_0 initialized as in 3.14. In our implementation of Fourier
 283 activation, not only were the coefficients learnable, but also the frequencies, yielding to what is
 284 known as “cosine basis” Mallat (2009) rather than Fourier series.
 285

286 **Initializing by fitting a classical activation Function.** Using a family of orthonormal functions
 287 permits an easy calculation of the initialization gain without resorting to the trick of fitting a function
 288 to an activation whose gain is known or easy to calculate, as in Yang & Wang (2024) with Safe Padé
 289 activation Molina et al. (2019). However, in some cases, such as continuing or fine-tuning a model that
 290 was pretrained with a classical activation, using one of the learnable activations presented here to fit a
 291 classical activation could still be relevant. By *fitting* we mean performing a Lagrange interpolation.
 292 This could be accomplished via a direct method involving the inversion of a Vandermonde matrix
 293 (Lagrange, or Newton’s methods), or by an iterated gradient descent method (Gauss-Jordan method).
 294

295 Two precautions need to be taken, however, when performing such interpolation. The first concerns
 296 the maximum degree that should be considered in order to fit the function on a given interval. Figure 1
 297 (left) shows how far a Hermite activation of degree 3 can be accurately fitted, while Figure 1 (right)
 298 shows the extent to which a Hermite activation of degree 8 can be accurately fitted. The second
 299 precaution concerns the derivative of the activation with respect to the derivative of the target function
 300 to be interpolated. A Lagrange interpolation of a function is not always sufficient to fit its k -th
 301 derivatives. If we want to interpolate a function and its derivative(s) simultaneously, we refer to this
 302 as a Hermite interpolation.
 303



311 Figure 1: Fitting a GELU with a Hermite Activation of degree 3 (left) and of degree 8 (right).
 312

313 In the case of the Fourier activation, we observe in Figure 2 (left) that a Lagrange interpolation is not
 314 sufficient and that higher-order frequencies occur in the derivative approximation. This phenomenon
 315 can be likened to aliasing and can be circumvented by performing a simple Hermite interpolation
 316 instead of a Lagrange interpolation, as shown in Figure 2 (right). Berrut & Welscher (2007) examined
 317 the solutions to this last problem.
 318

319 The success in fitting classical activations with Padé approximants in Yang & Wang (2024) could
 320 be attributed to the fact that a Padé approximant is by definition the rational function that coincides
 321 with a function to be interpolated to the highest possible order, thus naturally achieving a Hermite
 322 interpolation. A good fit of a non-convex function by a tropical polynomial activation is impossible
 323 since tropical polynomials are convex by definition. Therefore, in Appendix H we show how rational
 324 tropical activations (an extension of tropical polynomials) could, in principle, achieve this fitting.
 325

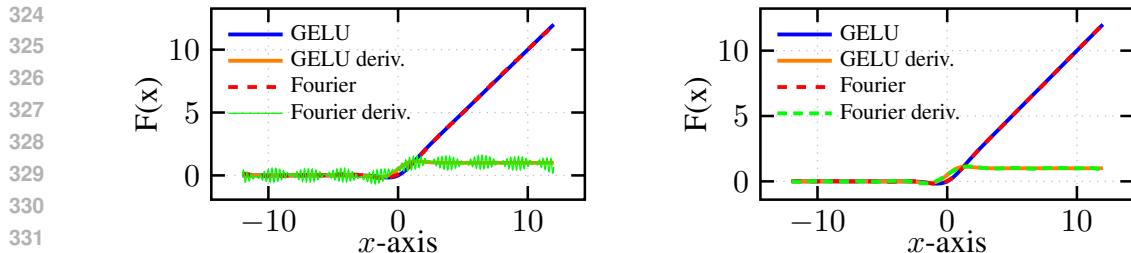


Figure 2: Lagrange interpolation (left) and Hermite interpolation (right) of a GELU with a Fourier Activation of degree 6.

4 EXPERIMENTS

4.1 PRELIMINARY IMAGE CLASSIFICATION RESULTS ON CIFAR10

We trained ConvNeXt-T (Liu et al., 2022) on CIFAR-10 (Krizhevsky et al., 2009) for 300 epochs, averaging results over 10 random seeds. The experimental setup and results for CIFAR10 classification can be found in Appendix L. The three proposed learnable activations consistently outperformed baseline activations on test metrics. Results are shown in Table 7 and Figures 9, 7, and 8.

4.2 DECISION BOUNDARIES ON NOISY CLASSIFICATION DATASETS

We compared the decision boundaries of four single-layer neural networks trained on a simple noisy classification dataset, each using a different activation function to evaluate how activation choice affects classification behavior and boundary smoothness. Details of the visualizations of decision boundaries on multiple noisy datasets are provided in Appendix M.

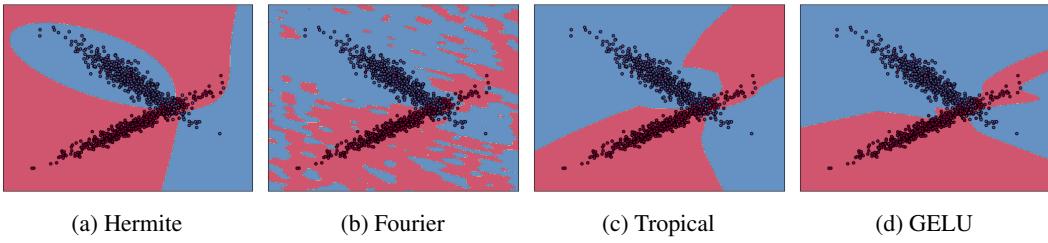


Figure 3: Decision boundaries for different activation functions

4.3 VISION TASK: CONVNeXt-T IMAGE CLASSIFICATION ON IMAGENET1K

We evaluated the ConvNeXt-T model on the ImageNet1k dataset Deng et al. (2009) for single-class image classification. The baseline ConvNeXt-T model employed GELU as the activation function in its MLP blocks. To analyze the impact of our learnable activations, we replaced GELU with Hermite polynomial, Fourier trigonometric, and Tropical polynomial activation functions under our proposed initialization scheme. Each model was trained under identical conditions with fixed random seeds to ensure reproducibility and comparability. The evaluation metrics included: training loss, Top-1 and Top-5 validation accuracy. Table 1 and Figures 11, 12, and 13 summarize our results. We reproduced all experiments using five different random seeds. For each trial, we report the mean \pm standard deviation at a fixed epoch. The experimental setup followed the approach and hyperparameter configuration detailed in Liu et al. (2022).

Ablation Studies. Additionally, ablation studies were performed on this vision task to establish the impact of the degree for the learnable activations (Table 3), the impact of our proposed initialization scheme (Table 4), and if making the activation coefficients learnable was useful (Table 5). Higher degrees generally improved performance, with all proposed activations showing consistent

improvements in Top-1 and Top-5 accuracy as the degree increased. Furthermore, making activation coefficients learnable consistently resulted in better performance across all activation functions. Initialization with the proposed method led to improvements, especially for Hermite activation, where our derived initialization scheme outperformed GELU-based initialization.

Table 1: Training and validation results of ConvNeXt-T (28M) model on ImageNet-1k classification. Values are reported as mean \pm standard deviation over 5 seeds. p-values (two-tailed Student’s t-test assuming equal variances) are for Val Top-1 accuracy compared to GELU.

Act.	Deg.	Train Loss \downarrow	Val Top-1(%) \uparrow	Val Top-5(%) \uparrow	FLOP	FLOP/Act.	p-value (Top-1)
GELU	-	2.824 \pm 0.0051	82.06 \pm 0.072	95.92 \pm 0.038	4.57G	12	-
Tropical	6	2.854 \pm 0.0080	82.17 \pm 0.063	95.95 \pm 0.072	4.62G	3d + 1 = 19	0.0345 (*)
Fourier	6	2.759 \pm 0.0167	81.64 \pm 0.153	95.47 \pm 0.049	4.83G	7d + 1 = 43	0.0005 (***)
Hermite	3	2.788 \pm 0.0072	82.22 \pm 0.064	95.97 \pm 0.045	4.58G	4d + 1 = 13	0.0062 (**)

4.4 LANGUAGE TASK: GPT-2 (124M) NEXT TOKEN PREDICTION ON OPENWEBTEXT

For the language modeling task, we trained the GPT-2 model Radford et al. (2019) on the OpenWebText dataset Gokaslan & Cohen (2019) for next-token prediction. The baseline GPT-2 used GELU activation, and we compared it against SiLU (Elfwing et al., 2018), Hermite, Fourier, and Tropical activations under our proposed initialization scheme. All models were trained with identical hyperparameters and initialization seeds to ensure consistent and reproducible comparisons. The evaluation metrics included: training and test losses and perplexities (which are simply the exponential of the loss). Table 2 and Figures 15 and 14 summarize our results. We reproduced all experiments using five different seeds. For each trial, we report the mean \pm standard deviation at a fixed iteration. The experimental design followed the guidelines established in Radford et al. (2019) and the open source reproduction available at Karpathy (2022). We used a total batch size of 786,432 of which a context length of 1024 tokens for a total of 210,000 iterations.

Table 2: Training and validation results for next-token prediction using GPT-2 (124M) model with different activations. Values are reported as mean \pm standard deviation over 5 different seeds. Perplexity is computed as $\exp(\text{loss})$. p-values (two-tailed Student’s t-test assuming equal variances) compare each activation’s validation loss against GELU.

Act.	Deg.	Train PPL \downarrow	Train Loss \downarrow	Val PPL \downarrow	Val Loss \downarrow	FLOP	p-value (Val Loss)
GELU	-	19.003 \pm 0.156	2.944 \pm 0.0082	19.319 \pm 0.076	2.961 \pm 0.0039	87.52G	-
SiLU	-	19.324 \pm 0.106	2.962 \pm 0.0055	19.664 \pm 0.088	2.979 \pm 0.0045	87.37G	0.0001 (***)
Tropical	6	18.840 \pm 0.107	2.936 \pm 0.0057	19.027 \pm 0.055	2.946 \pm 0.0029	87.75G	0.0001 (***)
Fourier	6	18.761 \pm 0.071	2.930 \pm 0.0038	18.965 \pm 0.154	2.941 \pm 0.0086	88.69G	0.0014 (**)
Hermite	3	18.678 \pm 0.093	2.926 \pm 0.0049	18.821 \pm 0.293	2.932 \pm 0.0175	87.56G	0.0067 (**)

All experiments were conducted under fixed configurations to ensure that any observed differences were solely due to the choice of activation function, allowing for fair and reproducible comparisons².

4.5 FINETUNING EXPERIMENT ON CIFAR10

Using the insights from Sec. 3.5, we conducted a fine-tuning experiment in a transfer learning setting. Specifically, we investigated whether initializing a learnable activation by fitting a classical one, using Hermite interpolation, can improve performance when adapting a pretrained model to a new dataset. This experiment complements our theoretical analysis by demonstrating how fitting classical activations can serve as an effective initialization strategy. The experimental procedure and results for activation finetuning are available in Appendix O.

²The code to reproduce the experiments is available at: <https://anonymous.4open.science/r/torchortho-D76A/>

432 **5 PARAMETERS, MEMORY, FLOP COUNT, AND EXECUTION TIME**
433

434 The proposed activation functions introduce a negligible number of additional parameters. For
435 example, Hermite activations of degree $d = 3$ add only 72 parameters to ConvNeXt-Tiny (28M total),
436 corresponding to 0.0002%, with similarly minimal overheads for Tropical and Fourier activations.
437 Hermite activations leverage a recursive formulation (Alg. 3) that reduces both FLOP and required
438 memory (vRAM) complexity from $\mathcal{O}(d^2)$ to $\mathcal{O}(d)$, requiring only simple arithmetic per term. Fourier
439 and Tropical activations also scale linearly with degree ($\mathcal{O}(d)$), as illustrated in Figure 17 and Table 9,
440 measured on CPU. On GPUs, smaller degrees benefit from vectorized computation, leading to
441 reduced runtime and near-constant $\mathcal{O}(1)$ scaling for low degrees (Figure 18, Table 10).
442

443 We further evaluated average training times per epoch across varying MLP widths and depths
444 (Table 11). The proposed activations can incur higher latency compared to GELU in deep networks,
445 but are often faster in shallower ones. Slowdowns relative to GELU were analyzed across widths
446 (Figure 20) and depths (Figure 19). Slowdowns are largely independent of width but increase
447 approximately linearly with depth, with Hermite activations showing the largest slope, followed by
448 Fourier and Tropical. This suggests that the proposed activations are more suitable for shallow, wide
449 MLPs. This observation aligns with Appendix F, where a polynomially activated MLP of arbitrary
450 depth is shown to be equivalent to a high-degree single-layer multivariate polynomial.
451

452 **6 DISCUSSION**
453

454 The results presented in this paper demonstrate the potential of using learnable activation functions
455 based on orthogonal function bases and tropical polynomials in large-scale neural network tasks. Our
456 experiments on ImageNet-1K and OpenWebText with deep models such as ConvNeXt and GPT-2
457 show for the first time that such activations can lead to improvements over traditional static functions
458 like ReLU and GELU, both in terms of image classification and language modeling.
459

460 This challenges the long-standing notion that polynomial activations are inherently unsuitable for
461 deep learning, as demonstrated by prior work. Our approach provides empirical evidence that, with
462 appropriate initialization, polynomial activations can indeed be competitive. One of the key takeaways
463 from our findings is the effectiveness of our proposed variance-preserving initialization scheme. The
464 choice of orthogonal functions plays an essential role in achieving a closed-form expression for
465 the second-order moment. Furthermore, the use of tropical polynomials, which are not orthogonal,
466 introduces a FLOP-light alternative approach to polynomial activations.
467

468 While our approach shows promise, there are several avenues for future exploration. Extending the
469 framework to other activation families, such as wavelets is straightforward. Multiplying the Hermite
470 activation presented in this work by the term $\exp(-x^2/2)$ gives what is known as Hermitian wavelets
471 Brackx et al. (2008), and applying the same to the Fourier activation yields the Morlet wavelet
472 Grossmann & Morlet (1984) (or Gabor wavelet Gabor (1946)). Wavelets retain good orthogonal
473 properties with respect to the adequate scalar product and the calculation of the second moment
474 is slightly modified to take account of the additional decaying exponential term. Using wavelet
475 activations instead of polynomials could enhance variance stability by providing finite function
476 support, with potential bio-plausibility implications. By expressing a Fourier series in its complex
477 form, a network with Fourier activation can be viewed as a complex-valued neural network, offering
478 a framework for modeling neuronal synchronization through the phase and amplitude relationships
479 of oscillatory brain activity. Extension to other non-orthogonal functions, such as rational functions,
480 could be done for example by means of a Laplace transform of the Fourier activation.
481

482 **7 CONCLUSION**
483

484 In this work, we introduced a novel framework for integrating learnable activation functions based on
485 orthogonal function bases and tropical polynomials into deep neural networks, addressing challenges
486 like variance preservation and stable gradient flow. Extensive experiments with the ConvNeXt model
487 on ImageNet1k and the GPT-2 model on OpenWebText showed that learnable polynomial activations
488 match or exceed traditional activation functions during large-scale training and fine-tuning on smaller
489 tasks, demonstrating their practical viability and challenging conventional beliefs about polynomial
490 activations in neural networks. Our results pave the way for representing deep neural networks as
491 polynomial mappings, with future work focused on exploring a careful relaxation of these last.
492

486 REFERENCES
487

488 Alireza Afzal Aghaei. fkan: Fractional kolmogorov-arnold networks with trainable jacobi basis
489 functions. *arXiv preprint arXiv:2406.07456*, 2024a.

490 Alireza Afzal Aghaei. rkan: Rational kolmogorov-arnold networks. *arXiv preprint arXiv:2406.14495*,
491 2024b.

492 Javad Alavi and Hossein Aminikhah. Orthogonal cubic splines for the numerical solution of nonlinear
493 parabolic partial differential equations. *MethodsX*, 10:102190, 2023.

494 VI Arnold. On the presentation of continuous functions of three variables by superpositions of
495 continuous functions of two variables. *Sbornik: Mathematics*, 48(90):3–74, 1959.

496 Vladimir I Arnold. On functions of three variables. *Collected Works: Representations of Functions,*
497 *Celestial Mechanics and KAM Theory, 1957–1965*, pp. 5–8, 2009a.

498 Vladimir I Arnold. On the representation of functions of several variables as a superposition of
499 functions of a smaller number of variables. *Collected works: Representations of functions, celestial*
500 *mechanics and KAM theory, 1957–1965*, pp. 25–46, 2009b.

501 Jean-Paul Berrut and Annick Welscher. Fourier and barycentric formulae for equidistant hermite
502 trigonometric interpolation. *Applied and Computational Harmonic Analysis*, 23(3):307–320, 2007.

503 Koushik Biswas, Shilpak Banerjee, and Ashish Kumar Pandey. Orthogonal-padé activation functions:
504 Trainable activation functions for smooth and faster convergence in deep networks. *arXiv preprint*
505 *arXiv:2106.09693*, 2021.

506 YEVGENIY Bodyanskiy and SERHII Kostiuk. Learnable extended activation function for deep
507 neural networks. *International Journal of Computing (Oct. 2023)*, pp. 311–318, 2023.

508 Pakshal Bohra, Joaquim Campos, Harshit Gupta, Shayan Aziznejad, and Michael Unser. Learning
509 activation functions in deep (spline) neural networks. *IEEE Open Journal of Signal Processing*, 1:
510 295–309, 2020.

511 Fred Brackx, Hennie De Schepper, Nele De Schepper, and Franciscus Sommen. Hermitian clifford-
512 hermite wavelets: an alternative approach. *Bulletin of the Belgian mathematical Society-Simon*
513 *Stevin*, 15(1):87–107, 2008.

514 Jürgen Braun. *An application of Kolmogorov's superposition theorem to function reconstruction in*
515 *higher dimensions*. PhD thesis, Universitäts-und Landesbibliothek Bonn, 2009.

516 Jürgen Braun and Michael Griebel. On a constructive proof of kolmogorov's superposition theorem.
517 *Constructive approximation*, 30:653–675, 2009.

518 Adhemar Bultheel, Pablo Gonzalez-Vera, Erik Hendriksen, and Olav Njåstad. Orthogonal rational
519 functions and continued fractions. *Special Functions 2000: Current Perspective and Future*
520 *Directions*, pp. 87–109, 2001.

521 Yueyang Cang, Li Shi, et al. Can kan work? exploring the potential of kolmogorov-arnold networks
522 in computer vision. *arXiv preprint arXiv:2411.06727*, 2024.

523 D Castellanos and William E Rosenthal. Rational chebyshev approximations of analytic functions.
524 *The Fibonacci Quarterly*, 31(3):205–215, 1993.

525 Ghinwa F Choueiter and James R Glass. An implementation of rational wavelets and filter design for
526 phonetic classification. *IEEE Transactions on Audio, Speech, and Language Processing*, 15(3):
527 939–948, 2007.

528 Grigorios G Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Yannis Panagakis, Jiankang Deng,
529 and Stefanos Zafeiriou. P-nets: Deep polynomial neural networks. In *Proceedings of the IEEE/CVF*
530 *Conference on Computer Vision and Pattern Recognition*, pp. 7325–7335, 2020.

540 Grigorios G Chrysos, Bohan Wang, Jiankang Deng, and Volkan Cevher. Regularization of polynomial
 541 networks for image recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 542 and *Pattern Recognition*, pp. 16123–16132, 2023.

543

544 Charles K Chui and Jian-zhong Wang. A cardinal spline approach to wavelets. *Proceedings of the*
 545 *American Mathematical Society*, 113(3):785–793, 1991.

546 Madison Cooley, Shandian Zhe, Robert M Kirby, and Varun Shankar. Polynomial-augmented neural
 547 networks (panns) with weak orthogonality constraints for enhanced function and pde approximation.
 548 *arXiv preprint arXiv:2406.02336*, 2024.

549

550 George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control,*
 551 *signals and systems*, 2(4):303–314, 1989.

552 M Deepthi, GNVR Vikram, and P Venkatappareddy. Development of a novel activation function
 553 based on chebyshev polynomials: an aid for classification and denoising of images. *The Journal of*
 554 *Supercomputing*, 79(18):20515–20531, 2023.

555 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 556 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 557 pp. 248–255. Ieee, 2009.

558 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
 559 function approximation in reinforcement learning. *Neural networks*, 107:3–11, 2018.

560

561 Daniele Fakhouri, Emanuele Fakhouri, and Hendrik Speleers. Exsplinet: An interpretable and
 562 expressive spline-based neural network. *Neural Networks*, 152:332–346, 2022.

563

564 Haishuo Fang, Ji-Ung Lee, Nafise Sadat Moosavi, and Iryna Gurevych. Transformers with learnable
 565 activation functions. *arXiv preprint arXiv:2208.14111*, 2022.

566

567 Dennis Gabor. Theory of communication. part 1: The analysis of information. *Journal of the*
 568 *Institution of Electrical Engineers-part III: radio and communication engineering*, 93(26):429–
 441, 1946.

569

570 Tianxiang Gao, Siyuan Sun, Hailiang Liu, and Hongyang Gao. Global convergence in neural
 571 odes: Impact of activation functions. In *The Thirteenth International Conference on Learning*
 572 *Representations*, 2025.

573

574 James F Geer. Rational trigonometric approximations using fourier series partial sums. *Journal of*
 575 *Scientific Computing*, 10:325–356, 1995.

576

577 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
 578 networks. In *Proceedings of the thirteenth international conference on artificial intelligence and*
 579 *statistics*, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

580

581 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus, 2019. URL <http://Skylion007.github.io/OpenWebTextCorpus>.

582

583 Mohit Goyal, Rajan Goyal, and Brejesh Lall. Learning activation functions: a new paradigm of
 584 understanding neural networks. arxiv 2019. *arXiv preprint arXiv:1906.09529*, 2019.

585

586 Alexander Grossmann and Jean Morlet. Decomposition of hardy functions into square integrable
 587 wavelets of constant shape. *SIAM journal on mathematical analysis*, 15(4):723–736, 1984.

588

589 Baran Hashemi, Roderic G Corominas, and Alessandro Giacchetto. Can transformers do enumerative
 590 geometry? *arXiv preprint arXiv:2408.14915*, 2024.

591

592 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
 593 human-level performance on imagenet classification. In *Proceedings of the IEEE international*
 594 *conference on computer vision*, pp. 1026–1034, 2015.

595

596 Robert Hecht-Nielsen. Kolmogorov’s mapping neural network existence theorem. In *Proceedings of*
 597 *the international conference on Neural Networks*, volume 3, pp. 11–14. IEEE press New York, NY,
 598 USA, 1987.

594 Moein Heidari, Reza Rezaeian, Reza Azad, Dorit Merhof, Hamid Soltanian-Zadeh, and Ilker Haci-
 595 haliloglu. Single-layer learnable activation for implicit neural representation (SL² A-INR). *arXiv*
 596 *preprint arXiv:2409.10836*, 2024.

597

598 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation of an unknown
 599 mapping and its derivatives using multilayer feedforward networks. *Neural networks*, 3(5):551–560,
 600 1990.

601 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
 602 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 603 nlp. In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

604

605 Boris Igelnik and Neel Parikh. Kolmogorov’s spline network. *IEEE transactions on neural networks*,
 606 14(4):725–733, 2003.

607

608 Vugar Ismailov. Addressing common misinterpretations of kart and uat in neural network literature.
 609 *arXiv preprint arXiv:2408.16389*, 2024.

610

611 Jean-Pierre Kahane. Sur le théorème de superposition de kolmogorov. *Journal of Approximation
 Theory*, 1975.

612

613 Andrej Karpathy. NanoGPT, 2022. URL <https://github.com/karpathy/nanoGPT>.

614

615 Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In *Conference
 on learning theory*, pp. 2306–2327. PMLR, 2020.

616

617 Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial neural
 618 networks. *Advances in neural information processing systems*, 32, 2019.

619

620 Andrei Nikolaevich Kolmogorov. On the representation of continuous functions of many variables by
 621 superposition of continuous functions of one variable and addition. In *Doklady Akademii Nauk*,
 622 volume 114, pp. 953–956. Russian Academy of Sciences, 1957.

623

624 Mario Köppen. On the training of a kolmogorov network. In *Artificial Neural Networks—ICANN
 2002: International Conference Madrid, Spain, August 28–30, 2002 Proceedings 12*, pp. 474–479.
 625 Springer, 2002.

626

627 Alex Krizhevsky et al. Learning multiple layers of features from tiny images. *Technical report*, 2009.

628

629 Kaie Kubjas, Jiayi Li, and Maximilian Wiesmann. Geometry of polynomial neural networks. *arXiv
 preprint arXiv:2402.00949*, 2024.

630

631 Věra Kůrková. Kolmogorov’s theorem and multilayer neural networks. *Neural Networks*, 5(3):501–
 632 506, 1992. ISSN 0893-6080. doi: [https://doi.org/10.1016/0893-6080\(92\)90012-8](https://doi.org/10.1016/0893-6080(92)90012-8). URL <https://www.sciencedirect.com/science/article/pii/0893608092900128>.

633

634 Miklós Laczkovich. A superposition theorem of kolmogorov type for bounded continuous functions.
 635 *Journal of Approximation Theory*, 269:105609, 2021.

636

637 Ming-Jun Lai and Zhaiming Shen. The kolmogorov superposition theorem can break the curse of
 638 dimensionality when approximating high dimensional functions. *arXiv preprint arXiv:2112.09963*,
 639 2021.

640

641 Yann LeCun, Corinna Cortes, and Christopher Burges. The mnist database of handwritten digits,
 1998.

642

643 Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
 644 networks with a nonpolynomial activation function can approximate any function. *Neural networks*,
 645 6(6):861–867, 1993.

646

647 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 648 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and
 pattern recognition*, pp. 11976–11986, 2022.

648 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
 649 Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. *arXiv preprint*
 650 *arXiv:2404.19756*, 2024.

651

652 Vishnu Suresh Lokhande, Songwong Tasneeyapant, Abhay Venkatesh, Sathya N Ravi, and Vikas
 653 Singh. Generating accurate pseudo-labels in semi-supervised learning and avoiding overconfident
 654 predictions via hermite polynomial activations. In *Proceedings of the IEEE/CVF Conference on*
 655 *Computer Vision and Pattern Recognition*, pp. 11435–11443, 2020.

656

657 GG Lorentz. Approximation of functions, athena series. *Selected Topics in Mathematics*, 1966.

658

659 Stéphane Mallat. Chapter 4 - time meets frequency. In Mallat Stéphane (ed.), *A Wavelet Tour of Signal*
 660 *Processing (Third Edition)*, pp. 89–153. Academic Press, Boston, third edition edition, 2009. ISBN
 661 978-0-12-374370-1. doi: <https://doi.org/10.1016/B978-0-12-374370-1.00008-2>. URL <https://www.sciencedirect.com/science/article/pii/B9780123743701000082>.

662

663 Marc Martinez-Gost, Ana Pérez-Neira, and Miguel Ángel Lagunas. Enn: A neural network with dct
 664 adaptive activation functions. *IEEE Journal of Selected Topics in Signal Processing*, 2024.

665

666 JC Mason, Giuseppe Rodriguez, and Sebastiano Seatzu. Orthogonal splines based on b-splines—with
 667 applications to least squares, smoothing and regularisation problems. *Numerical Algorithms*, 5: 25–40, 1993.

668

669 Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
 670 *The bulletin of mathematical biophysics*, 5:115–133, 1943.

671

672 Ali Mehrabian, Parsa Mojarrad Adi, Moein Heidari, and Ilker Hacihaliloglu. Implicit neural represen-
 673 tations with fourier kolmogorov-arnold networks. *arXiv preprint arXiv:2409.09323*, 2024.

674

675 Alejandro Molina, Patrick Schramowski, and Kristian Kersting. Pad\`e activation units: End-to-end
 676 learning of flexible activation functions in deep networks. *arXiv preprint arXiv:1907.06732*, 2019.

677

678 Hadrien Montanelli, Haizhao Yang, and Qiang Du. Deep relu networks overcome the curse of
 679 dimensionality for bandlimited functions. *arXiv preprint arXiv:1903.00735*, 2019.

680

681 Nafise Sadat Moosavi, Quentin Delfosse, Kristian Kersting, and Iryna Gurevych. Adaptable adapters.
 682 *arXiv preprint arXiv:2205.01549*, 2022.

683

684 Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
 685 *Proceedings of the 27th international conference on machine learning (ICML-10)*, pp. 807–814,
 686 2010.

687

688 Burak Nebioglu and Alexander I Iliev. Higher order orthogonal polynomials as activation functions
 689 in artificial neural networks. *Serdica Journal of Computing*, 17(1):1–16, 2023.

690

691 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 692 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep*
 693 *learning and unsupervised feature learning*, pp. 7. Granada, 2011.

694

695 Kurt Pasque, Christopher Teska, Ruriko Yoshida, Keiji Miura, and Jefferson Huang. Tropical
 696 decision boundaries for neural networks are robust against adversarial attacks. *arXiv preprint*
 697 *arXiv:2402.00576*, 2024.

698

699 Allan Pinkus. Approximation theory of the mlp model in neural networks. *Acta numerica*, 8:143–195,
 700 1999.

701

702 Evgenii Pishchik. Trainable activations for image classification. *Preprints*, 2023.

703

704 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 705 models are unsupervised multitask learners. *OpenAI Blog*, 2019.

706

707 Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. *arXiv preprint*
 708 *arXiv:1710.05941*, 2017.

702 Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
 703 the brain. *Psychological review*, 65(6):386, 1958.

704

705 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
 706 back-propagating errors. *nature*, 323(6088):533–536, 1986.

707

708 Seyd Teymoor Seydi. Exploring the potential of polynomial basis functions in kolmogorov-arnold net-
 709 works: A comparative study of different groups of polynomials. *arXiv preprint arXiv:2406.02583*,
 2024.

710

711 Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
 712 plicit neural representations with periodic activation functions. *Advances in neural information*

713

714 *processing systems*, 33:7462–7473, 2020.

715

716 Georgios Smyrnis and Petros Maragos. Tropical polynomial division and neural networks. *arXiv*
 717 *preprint arXiv:1911.12922*, 2019.

718

719 David A Sprecher. On the structure of continuous functions of several variables. *Transactions of the*
 720 *American Mathematical Society*, 115:340–355, 1965.

721

722 David A Sprecher. A numerical implementation of kolmogorov’s superpositions. *Neural networks*, 9
 723 (5):765–772, 1996.

724

725 David A Sprecher. A numerical implementation of kolmogorov’s superpositions ii. *Neural networks*,
 10(3):447–457, 1997.

726

727 Mohammadamin Tavakoli, Forest Agostinelli, and Pierre Baldi. Splash: Learnable activation
 728 functions for improving accuracy and adversarial robustness. *Neural Networks*, 140:1–12, 2021.

729

730 L. N. Trefethen and M. H. Gutknecht. *Padé, stable Padé, and Chebyshev-Padé approximation*, pp.
 731 227–264. Clarendon Press, USA, 1987. ISBN 0198536127.

732

733 Joseph Turian, James Bergstra, and Yoshua Bengio. Quadratic features and deep architectures for
 734 chunking. In *Proceedings of Human Language Technologies: The 2009 Annual Conference of the*

735

736 *North American Chapter of the Association for Computational Linguistics, Companion Volume:*
 737 *Short Papers*, pp. 245–248, 2009.

738

739 Ross Wightman. Pytorch image models. <https://github.com/rwightman/pytorch-image-models>, 2019.

740

741 Tingxiong Xiao, Weihang Zhang, Yuxiao Cheng, and Jinli Suo. Hope: High-order polynomial
 742 expansion of black-box neural networks. *IEEE Transactions on Pattern Analysis and Machine*

743

744 *Intelligence*, 2024.

745

746 Xingyi Yang and Xinchao Wang. Kolmogorov-arnold transformer. *arXiv preprint arXiv:2409.10594*,
 747 2024.

748

749 Ruriko Yoshida, Georgios Aliatimis, and Keiji Miura. Tropical neural networks and its applications
 750 to classifying phylogenetic trees. In *2024 International Joint Conference on Neural Networks*
 751 (*IJCNN*), pp. 1–9. IEEE, 2024.

752

753 Runpeng Yu, Weihao Yu, and Xinchao Wang. Kan or mlp: A fairer comparison. *arXiv preprint*
 754 *arXiv:2407.16674*, 2024.

755

756 Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. In
 757 *International Conference on Machine Learning*, pp. 5824–5832. PMLR, 2018.

758

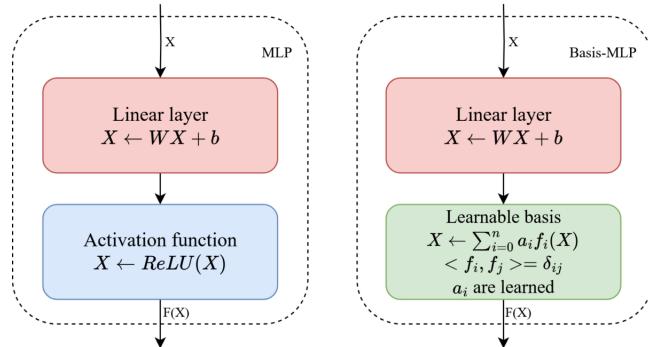
759 Kuang Zheng and Cui Minggen. Rational filter wavelets. *Journal of mathematical analysis and*
 760 *applications*, 239(2):227–244, 1999.

761

762 Jun Zhou, Huimin Qian, Xinbiao Lu, Zhaoxia Duan, Haoqian Huang, and Zhen Shao. Polynomial
 763 activation neural networks: Modeling, stability analysis and coverage bp-training. *Neurocomputing*,
 359:227–240, 2019.

764

765 Zhijian Zhuo, Ya Wang, Yutao Zeng, Xiaoqing Li, Xun Zhou, and Jinwen Ma. Polynomial
 766 composition activations: Unleashing the dynamics of large language models. *arXiv preprint*
 767 *arXiv:2411.03884*, 2024.

756 A SCHEMATIC OF BASIS-MLP
757770 Figure 4: A classical MLP (linear + ReLU) vs Basis-MLP (linear + learnable basis function) blocks.
771772 B FORWARD AND BACKWARD SECOND MOMENT CALCULATION FOR THE
773 RELU ACTIVATION FUNCTION
774775 B.1 SECOND MOMENT OF THE RELU ACTIVATION FUNCTION
776777 The Rectified Linear Unit (ReLU) activation function Nair & Hinton (2010), defined as:
778

779
$$\text{ReLU}(x) = \max(0, x) \quad (25)$$

780 is commonly used in neural networks due to its simplicity and effective gradient propagation. When x
781 is drawn from a standard normal distribution $x \sim \mathcal{N}(0, 1)$, the second moment of the ReLU function
782 is:
783

784
$$\mathbb{E}[\text{ReLU}(x)^2] = \int_0^\infty x^2 \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \frac{1}{2} \quad (26)$$

785

786 B.2 SECOND MOMENT OF THE DERIVATIVE OF RELU
787788 The derivative of ReLU, given by:
789

790
$$\frac{d}{dx} \text{ReLU}(x) = \begin{cases} 1, & x > 0, \\ 0, & x \leq 0, \end{cases} \quad (27)$$

791

792 acts as a binary indicator of positive inputs. The second moment of this derivative when $x \sim \mathcal{N}(0, 1)$
793 is:
794

795
$$\mathbb{E} \left[\left(\frac{d}{dx} \text{ReLU}(x) \right)^2 \right] = \int_0^\infty \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \frac{1}{2} \quad (28)$$

796 This result matches the variance of the ReLU function itself and validates the gain of 2 for variance-
797 preserving weight initialization with ReLU activations.
798799 C PROOF OF THE THEOREM 3.8
800801 **Definition C.1.** We define the Hermite activation $F: \mathbb{R} \rightarrow \mathbb{R}$ with its learnable coefficients $\forall k \in$
802 $\llbracket 0, n \rrbracket$ $a_k \in \mathbb{R}$ as:
803

804
$$x \mapsto F(x) = \sum_{k=0}^n \frac{a_k}{k!} \text{He}_k(x) \quad (29)$$

805

806 **Property C.2.** $\forall m, n \in \mathbb{N}^2$, we have:
807

808
$$\int_{-\infty}^{\infty} \text{He}_m(x) \text{He}_n(x) e^{-\frac{x^2}{2}} dx = \sqrt{2\pi} n! \delta_{nm} \quad (30)$$

809

With δ_{nm} the Kronecker delta.

810 **Proposition C.3.** *The second moment of this activation with respect to $\mathcal{N}(0, 1)$ is:*

$$812 \quad 813 \quad 814 \quad \mathbb{E}[F(x)^2] = \sum_{k=0}^n \frac{a_k^2}{k!} \quad (31)$$

815 *Proof.* The proof relies on the orthonormality property C.2.

816 The orthonormality property C.2 means that: $\forall m, n \in \mathbb{N}^2$,

$$818 \quad 819 \quad 820 \quad \int_{-\infty}^{\infty} \frac{\text{He}_n(x)^2}{n!} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx = 1 \quad (32)$$

821 and if $m \neq n$

$$822 \quad 823 \quad \int_{-\infty}^{\infty} \text{He}_m(x) \text{He}_n(x) \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx = 0 \quad (33)$$

824 Given the definition (Def. C.1) of a Hermite activation F , we have:

$$826 \quad 827 \quad \mathbb{E}[F(x)^2] = \int_{-\infty}^{+\infty} F^2(x) \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \quad (34)$$

$$828 \quad 829 \quad 830 \quad = \int_{-\infty}^{+\infty} \left(\sum_{k=0}^n \frac{a_k}{k!} \text{He}_k(x) \right)^2 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \quad (35)$$

831 Using the orthogonal property Eq. 33, the cross terms cancel out, and we have:

$$833 \quad 834 \quad \mathbb{E}[F(x)^2] = \int_{-\infty}^{+\infty} \sum_{k=0}^n \frac{a_k^2}{(k!)^2} \text{He}_k(x)^2 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \quad (36)$$

$$836 \quad 837 \quad = \sum_{k=0}^n \frac{a_k^2}{(k!)^2} \int_{-\infty}^{+\infty} \text{He}_k(x)^2 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \quad (37)$$

839 Given the normality property Eq. 32, we have

$$840 \quad 841 \quad \mathbb{E}[F(x)^2] = \sum_{k=0}^n \frac{a_k^2}{k!} \int_{-\infty}^{+\infty} \frac{\text{He}_k(x)^2}{k!} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \quad (38)$$

$$843 \quad 844 \quad 845 \quad = \sum_{k=0}^n \frac{a_k^2}{k!} \quad (39)$$

846 \square

847 Having designed the initialization gain for the activation F (Eq. 8) so as it equals 1, we now need to
848 enforce this same gain for its derivative. Indeed, we are going to use the gradient descent algorithm to
849 train our learnable activation networks, and having an activation gradient of high (respectively low)
850 variance could lead to exploding (respectively vanishing) gradients, a nondesirable property for deep
851 neural networks trained with gradient backpropagation.

853 **Property C.4.** *The following recurrence property is derived directly from the equation 6. $\forall k \in \mathbb{N}$
854 $\forall x \in \mathbb{R}$:*

$$855 \quad \text{He}'_k(x) = x \text{He}_k(x) - \text{He}_{k+1}(x) \quad (40)$$

856 **Property C.5.** *The following property is shown by induction and by using the previous property C.4.
857 $\forall k \in \mathbb{N}^* \forall x \in \mathbb{R}$:*

$$859 \quad \text{He}'_k(x) = k \text{He}_{k-1}(x) \quad (41)$$

860 **Proposition C.6.** *Using the last property and by the linearity of the integral, the derivative of F
861 (Def. C.1), $F' : \mathbb{R} \rightarrow \mathbb{R}$ is written as follows:*

$$862 \quad 863 \quad x \mapsto F'(x) = \sum_{k=1}^n \frac{a_k}{(k-1)!} \text{He}_{k-1}(x) \quad (42)$$

864
 865 Remark C.7. A first remark here is that $\forall n > 2$: F' is unbounded ($\lim_{x \rightarrow \infty} F'(x) \rightarrow \infty$). This means
 866 that F is not Lipschitz continuous. Lipschitz continuity is often desired (or even required) when
 867 training a deep neural network using gradient backpropagation. However, by a suitable initial choice
 868 of the coefficients $(a_k)_{k \in \llbracket 0, n \rrbracket}$ we can keep the Lipschitz constant under control.

869 **Proposition C.8.** *The second moment of the derivative of the Hermite activation is:*

870
 871
$$\mathbb{E}[F'(x)^2] = \sum_{k=1}^n \frac{a_k^2}{(k-1)!} \quad (43)$$

 872

873
 874 *Proof.* Knowing that $\forall k \in \mathbb{N}^* \forall x \in \mathbb{R}$:

875
$$\text{He}'_k(x) = k \text{He}_{k-1}(x) \quad (44)$$

 876

877 The definition of F' becomes:

878
$$\begin{aligned} F' : \mathbb{R} &\rightarrow \mathbb{R} \\ 879 \quad x &\mapsto F'(x) = \sum_{k=1}^n \frac{ka_k}{k!} \text{He}_{k-1}(x) \end{aligned} \quad (45)$$

 880
 881
 882

883 Thus, the second-order moment of F' is:

884
 885
$$\mathbb{E}[F'(x)^2] = \int_{-\infty}^{+\infty} \left(\sum_{k=1}^n \frac{a_k}{(k-1)!} \text{He}_{k-1}(x) \right)^2 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \quad (46)$$

 886

887 By the orthogonal property Eq. 33, the cross terms cancel out, and we have:

888
 889
$$\mathbb{E}[F'(x)^2] = \int_{-\infty}^{+\infty} \sum_{k=1}^n \frac{a_k^2}{((k-1)!)^2} \text{He}_{k-1}(x)^2 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \quad (47)$$

 890
 891

892
 893
$$= \sum_{k=1}^n \frac{a_k^2}{(k-1)!} \int_{-\infty}^{+\infty} \frac{\text{He}_{k-1}(x)^2}{(k-1)!} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \quad (48)$$

 894
 895

896 By the normality property Eq. 32, we finally have:

897
 898
$$\mathbb{E}[F'(x)^2] = \sum_{k=1}^n \frac{a_k^2}{(k-1)!} \quad (50)$$

 899
 900

901 □

902 **Proposition C.9.** *Equality between propositions C.3 and C.8 imposes that:*

903
 904
$$a_0^2 = \sum_{k=1}^n \frac{(k-1)}{k!} a_k^2 \quad (51)$$

 905
 906

907
 908
$$= \sum_{k=1}^n \left(\frac{1}{(k-1)!} - \frac{1}{k!} \right) a_k^2 \quad (52)$$

 909

910 To satisfy the forward-backward gain equality, we could initialize the coefficients $(a_k)_{k \in \llbracket 0, n \rrbracket}$ such
 911 as $\forall n \in \mathbb{N}^*$:

912
$$\forall k \in \llbracket 1, n \rrbracket a_k = 1 \quad \text{and} \quad a_0 = \sqrt{1 - \frac{1}{n!}} \quad (53)$$

 913

914 This initialization works in practice for all n . Furthermore, as the term $\frac{1}{n!}$ in a_0 vanishes quickly with
 915 $n \rightarrow +\infty$, for larger n we could initialize all the coefficients to 1 including a_0 .

916 In the limit case, by a simple injection of $a_k = 1$ in Prop. C.9 and then in Prop. C.8, we obtain the
 917 result.

918 **D PROOF OF THE THEOREM 3.13**
 919

920 **Definition D.1.** We consider the following Fourier activation $F: \mathbb{R} \rightarrow \mathbb{R}$:
 921

922
$$x \mapsto F(x) = a_0 + \sum_{k=1}^n \frac{(a_k \cos(kx) + b_k \sin(kx))}{k!} \quad (54)$$

 923

924 where $(a_k)_{k \in \mathbb{N}}$ and $(b_k)_{k \in \mathbb{N}^*}$ are real learnable coefficients.
 925

926 **Property D.2.** The equivalent of the C.2 property for trigonometric functions is given by $\forall m, n \in \mathbb{Z}^2$:
 927

928
$$\begin{cases} \int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \pi \delta_{nm} \\ \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \pi \delta_{nm} \\ \int_{-\pi}^{\pi} \cos(mx) \sin(nx) dx = 0 \end{cases} \quad (55)$$

 929
 930
 931
 932
 933
 934

935 With δ_{nm} the Kronecker delta function.
 936

937 **Proposition D.3.** The second moment of this activation is:
 938

939
$$\mathbb{E}[F(x)^2] = a_0^2 + \frac{1}{2} \sum_{k=1}^n \frac{(a_k^2 + b_k^2)}{(k!)^2} \quad (56)$$

 940

941 *Proof.* The proof relies on the orthonormality property D.2.
 942

943 The random variable x is assumed to follow a uniform distribution on the interval $[-\pi, \pi]$, denoted
 944 as:
 945

$$x \sim \mathcal{U}(-\pi, \pi) \quad (57)$$

946 To compute the second moment of the Fourier activation $F(x)$, we need to compute the expected
 947 value of $F(x)^2$:
 948

$$\mathbb{E}[F(x)^2] = \int_{-\pi}^{\pi} F(x)^2 p(x) dx \quad (58)$$

949 where $p(x)$ is the probability density function (PDF) of the uniform distribution:
 950

951
$$p(x) = \frac{1}{2\pi}, \quad x \in [-\pi, \pi] \quad (59)$$

 952

953 Taking the square of the definition in Eq. 54 gives:
 954

955
$$F(x)^2 = \left(a_0 + \sum_{k=1}^n \frac{(a_k \cos(kx) + b_k \sin(kx))}{k!} \right)^2 \quad (60)$$

 956

957 Using the orthogonal property D.2 and the linearity of the integral, we have:
 958

959
$$\mathbb{E}[F(x)^2] = a_0^2 + \frac{1}{2\pi} \sum_{k=1}^n \frac{1}{(k!)^2} \int_{-\pi}^{\pi} a_k^2 \cos^2(kx) + b_k^2 \sin^2(kx) dx \quad (61)$$

 960

961
$$= a_0^2 + \frac{1}{2\pi} \sum_{k=1}^n \frac{a_k^2}{(k!)^2} \left(\frac{\sin(2\pi k)}{2k} + \pi \right) + \frac{b_k^2}{(k!)^2} \left(\pi - \frac{\sin(2\pi k)}{2k} \right) \quad (62)$$

 962

963 The second moment simplifies to:
 964

965
$$\mathbb{E}[F(x)^2] = a_0^2 + \frac{1}{2} \sum_{k=1}^n \frac{(a_k^2 + b_k^2)}{(k!)^2} \quad (63)$$

 966

967 \square

972 Next, we compute the second moment of the derivative of the Fourier activation F' . The derivative of
 973 F is given by:

974 **Proposition D.4.** *The derivative of the Fourier activation $F': \mathbb{R} \rightarrow \mathbb{R}$ is given by:*

$$976 \quad 977 \quad 978 \quad F'(x) = \sum_{k=1}^n \frac{1}{(k-1)!} (-a_k \sin(kx) + b_k \cos(kx)) \quad (64)$$

979 *Remark D.5.* Contrary to the remark in C.7, F' is bounded.

$$981 \quad 982 \quad 983 \quad \forall x \in \mathbb{R}: |F'(x)| \leq \max(|a_k|, |b_k|)_{k \in \llbracket 1, n \rrbracket} \sum_{k=1}^n \frac{1}{(k-1)!} \leq e \max(|a_k|, |b_k|)_{k \in \llbracket 1, n \rrbracket} \quad (65)$$

984 This means that in the case of a Fourier activation, F is Lipschitz continuous.

985 **Proposition D.6.** *The second moment of the derivative of the Fourier activation is:*

$$986 \quad 987 \quad 988 \quad \mathbb{E}[F'(x)^2] = \frac{1}{2} \sum_{k=1}^n \frac{1}{((k-1)!)^2} (a_k^2 + b_k^2) \quad (66)$$

990 *Proof.* An orthonormality argument as for the proof in the forward case suffices. \square

991 **Proposition D.7.** *Equality between D.3 and D.6 imposes that:*

$$993 \quad 994 \quad 995 \quad a_0^2 = \sum_{k=1}^n \frac{(k^2 - 1)}{(k!)^2} (a_k^2 + b_k^2) \quad (67)$$

996 To satisfy the forward-backward gain equality, we could again initialize the coefficients such as
 997 $\forall n \in \mathbb{N}^*$:

$$998 \quad 999 \quad 1000 \quad \forall k \in \llbracket 1, n \rrbracket \ a_k = b_k = 1 \text{ and } a_0 = \sqrt{1 - \frac{1}{(n!)^2}} \quad (68)$$

1001 This initialization works in practice for all n . Furthermore, as the term $\frac{1}{(n!)^2}$ in a_0 vanishes quickly
 1002 with $n \rightarrow +\infty$, for larger n we could initialize all the coefficients to 1 including a_0 .

1003 In the limit case, by a simple injection of $a_k = 1$ in Prop. D.7 and then in Prop. D.6, we obtain the
 1004 result.

1005 *Remark D.8.* For an input x of distribution $x \sim \mathcal{U}(-\sqrt{3}, \sqrt{3})$, which has a variance of $\text{Var}[x] = 1$
 1006 and which is more in line with deep neural networks that seek a unitary variance preserving property
 1007 across layers, we could rescale the fundamental frequency given in the definition of F in Def. D.1 by
 1008 redefining it as:

$$1009 \quad 1010 \quad 1011 \quad x \mapsto F(x) = a_0 + \sum_{k=1}^n \frac{1}{k!} \left(a_k \cos(k \frac{\pi}{\sqrt{3}} x) + b_k \sin(k \frac{\pi}{\sqrt{3}} x) \right) \quad (69)$$

1012 The computation of the second moment stays the same except for a factor $\frac{\pi}{\sqrt{3}}$. In general if
 1013 $x \sim \mathcal{U}(-l, l)$, $l \in \mathbb{R}_+^*$, and if $\omega \in \mathbb{Z}$ is the fundamental frequency, this last should be scaled by
 1015 $\omega' = \frac{\pi}{l} \omega$.

1016 E PROOF OF THE THEOREM 3.19

1019 *Proof.* Consider the function:

$$1021 \quad 1022 \quad F(x) = \frac{\sqrt{2}}{n} \max_{k=0}^n \{1 + kx\} = \frac{\sqrt{2}}{n} \left(1 + \max_{k=0}^n kx \right) \quad (70)$$

1023 Note that since $x \in \mathbb{R}$, the maximum over k depends on the sign of x :

1025

- If $x > 0$, then $\max_{k=0}^n \{kx\} = nx$.
- If $x \leq 0$, then $\max_{k=0}^n \{kx\} = 0$ (achieved at $k = 0$).

1026 Thus, we can write

$$1027 \quad 1028 \quad 1029 \quad 1030 \quad 1031 \quad 1032 \quad 1033 \quad 1034 \quad 1035 \quad 1036 \quad 1037 \quad 1038 \quad 1039 \quad 1040 \quad 1041 \quad 1042 \quad 1043 \quad 1044 \quad 1045 \quad 1046 \quad 1047 \quad 1048 \quad 1049 \quad 1050 \quad 1051 \quad 1052 \quad 1053 \quad 1054 \quad 1055 \quad 1056 \quad 1057 \quad 1058 \quad 1059 \quad 1060 \quad 1061 \quad 1062 \quad 1063 \quad 1064 \quad 1065 \quad 1066 \quad 1067 \quad 1068 \quad 1069 \quad 1070 \quad 1071 \quad 1072 \quad 1073 \quad 1074 \quad 1075 \quad 1076 \quad 1077 \quad 1078 \quad 1079$$

$$F(x) = \begin{cases} \frac{\sqrt{2}}{n}(1 + nx) = \sqrt{2}x + \frac{\sqrt{2}}{n}, & x > 0 \\ \frac{\sqrt{2}}{n}, & x \leq 0 \end{cases} \quad (71)$$

We now analyze the variance of $F(x)$ under the assumption that $x \sim \mathcal{N}(0, 1)$ (standard normal input):

As $n \rightarrow \infty$, the function becomes approximately:

$$F(x) \approx \begin{cases} \sqrt{2}x, & x > 0 \\ 0, & x \leq 0 \end{cases} \quad (72)$$

This is similar to a scaled ReLU: $F(x) \approx \sqrt{2} \cdot \max(0, x)$, which we know from Appendix B has unitary forward and backward gains. \square

F DEEP POLYNOMIALLY ACTIVATED NEURAL NETWORKS ARE MULTIVARIATE POLYNOMIAL MAPPINGS

Deep MLPs are compositions of affine transformations and activation functions applied layer by layer. When the activation functions are polynomial, the entire network can be expressed as a polynomial mapping.

Definition F.1. Let $n, m \in \mathbb{N}$. A function $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is called a *polynomial mapping* if each component function $F_i : \mathbb{R}^n \rightarrow \mathbb{R}$, for $i = 1, \dots, m$, is a polynomial in n variables. Explicitly, this means that for each i , F_i has the form:

$$F_i(x_1, \dots, x_n) = \sum_{|\alpha| \leq d_i} c_{i,\alpha} x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}, \quad (73)$$

where the sum is taken over all multi-indices $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ such that $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n \leq d_i$, $c_{i,\alpha} \in \mathbb{R}$ are real coefficients, and $d_i \in \mathbb{N}$.

Definition F.2. A *deep neural network* with L layers, input dimension n , and output dimension m is a function $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$ of the form:

$$F(x) = W_L \sigma(W_{L-1} \sigma(\cdots \sigma(W_1 x + b_1) \cdots) + b_{L-1}) + b_L, \quad (74)$$

where $\forall i \in [1, L] C_i \in \mathbb{N}^*$. Each $W_i \in \mathbb{R}^{C_i \times C_{i-1}}$ is a weight matrix, $b_i \in \mathbb{R}^{C_i}$ is a bias vector, and σ is an activation function applied element-wise.

Proposition F.3. Let $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a deep neural network with polynomial activation functions of degree d . Then F is a polynomial mapping of degree at most d^L . Furthermore, any L -layer MLP could be collapsed into an equivalent 3-layer network with the middle layer being a polynomial mapping of degree at most d^L .

Proof. The proof proceeds by induction on the number of layers L and is detailed in what follows.

Base case: For $L = 1$, the network takes the form

$$F(x) = W_1 \sigma(W_0 x + b_0) + b_1.$$

Since σ is a polynomial of degree d , applying it to the affine transformation $W_0 x + b_0$ yields a polynomial mapping of degree at most d . Therefore, $F(x)$ is a polynomial mapping of degree at most d .

Inductive step: Assume the statement holds for $L - 1$ layers, meaning the network $F_{L-1}(x)$ is a polynomial mapping of degree at most d^{L-1} . For the L -layer case, we have

$$F(x) = W_L \sigma(F_{L-1}(x)) + b_L.$$

Since σ is a polynomial of degree d , applying it to $F_{L-1}(x)$ results in a polynomial of degree at most $d \cdot d^{L-1} = d^L$. Thus, by induction, the statement holds for all $L \geq 1$. \square

1080
 1081 **Corollary F.4.** Any deep neural network with polynomial activation functions realizes a polynomial
 1082 mapping whose degree grows exponentially with the number of layers.
 1083

1083 Remark F.5. The total number of monomial terms in this mapping is $\binom{d^L+n}{d^L}$.

1084 Remark F.6. An equivalent consideration for trigonometric polynomials can be established by
 1085 approximation, but will not be covered here.

1086
 1087 **G ALGORITHMS**
 1088

1090 **Algorithm 1** Initialization of Hermite Grid and Coefficients

1091 **Input:** Polynomial degree n
 1092 **Output:** Coefficients tensor coeffs, Grid of powers tensor grid
 1093
 1094 Initialize coeffs and grid as zero matrices of shape $[n + 1, n/2 + 1]$
 1095 **for** $i = 0$ **to** n **do**
 1096 **for** $j = 0$ **to** $\frac{n}{2}$ **do**
 1097 **if** $j \leq \frac{i}{2}$ **then**
 1098 coeffs $[i][j] \leftarrow (-1)^j e^{(-\log(j!) - \log((i-2j)!) - j \log(2))}$
 1099 grid $[i][j] \leftarrow i - 2j$
 1100 **else**
 1101 coeffs $[i][j] \leftarrow 0$
 1102 grid $[i][j] \leftarrow 0$
 1103 **end if**
 1104 **end for**
 1105 **end for**
 1106 **return** coeffs, grid

1107
 1108 **Algorithm 2** Hermite Activation Function Forward Pass

1109 **Input:** Input tensor x , polynomial degree n
 1110 **Parameters:** Learnable polynomial coefficients $A \in \mathbb{R}^n$
 1111 **Output:** Output tensor after applying Hermite activation function
 1112
 1113 coeffs, grid \leftarrow Initialize_coeffs_grid()
 1114 **Procedure** Forward(x):
 1115 $x \leftarrow x.\text{repeat}(n + 1).\text{repeat}(n/2 + 1)$
 1116 $x \leftarrow |x|^{\text{grid}} \odot \text{sign}(x)^{\text{grid}}$
 1117 $x \leftarrow x @ \text{coeffs}$
 1118 $x \leftarrow x @ A$
 1119 **return** x
 1120 **End Procedure**

1121
 1122 **Algorithm 3** Hermite Forward CUDA Kernel

1123 **Input:** Input tensor x , degree n , output tensor out
 1124 **Output:** Computed Hermite polynomials up to degree n
 1125
 1126 **Procedure** HermiteForwardCUDA(x, n, out):
 1127 **for** i in parallel index size(x):
 1128 out $[i \cdot n] \leftarrow 1.0$
 1129 **if** $n > 1$: out $[i \cdot n + 1] \leftarrow x[i]$
 1130 **for** $k = 2$ to n :
 1131 out $[i \cdot n + k] \leftarrow x[i] \cdot \text{out}[i \cdot n + k - 1] - (k - 1) \cdot \text{out}[i \cdot n + k - 2]$
 1132 **End Procedure**

1134

1135

1136

1137

Algorithm 4 Hermite Backward CUDA Kernel

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Input: Input tensor x , degree n , output tensor out, gradient tensor grad_out**Output:** Computed gradients for Hermite polynomials**Procedure** HermiteBackwardCUDA($x, n, \text{out}, \text{grad_out}$): **for** i in parallel index size(grad_out): grad $\leftarrow 0.0$ **for** $k = 1$ to n : grad $\leftarrow \text{grad} + x[i \cdot n + k] \cdot k \cdot \text{out}[i \cdot n + k - 1]$ grad_out[i] $\leftarrow \text{grad}$ **End Procedure**

1148

1149

1150

1151

1152

1153

1154

Algorithm 5 Fourier Activation Function Forward Pass

1155

Input: Input tensor x , degree n

1156

1157

1158

Parameters: Learnable coefficients $A \in \mathbb{R}^n$, fundamental $a \in \mathbb{R}$, phases $P \in \mathbb{R}^n$, frequencies $F \in \mathbb{R}^n$,**Output:** Output tensor after applying Fourier activation function**Procedure** FourierActivation(x): $x \leftarrow x.\text{repeat}(n + 1)$ $x \leftarrow F \odot x - P$ $x \leftarrow \sqrt{2} \cos(x)$ $x \leftarrow x @ A$ $x \leftarrow x + a$ **return** x **End Procedure**

1168

1169

1170

1171

1172

1173

1174

1175

Algorithm 6 Tropical Activation Function Forward Pass

1176

Input: Input tensor x , degree n

1177

Parameters: Learnable coefficients $A \in \mathbb{R}^n$

1178

Output: Output tensor after applying Tropical activation function

1179

1180

powers $\leftarrow \text{range}(0, n+1)$ **Procedure** Forward(x): $x \leftarrow x.\text{repeat}(n + 1)$ $x \leftarrow \sqrt{2}/n \cdot \max(x \odot \text{powers} + A, \text{dim} = -1)$ **return** x **End Procedure**

1185

1186

1187

1188

H RATIONAL TROPICAL ACTIVATION

1189

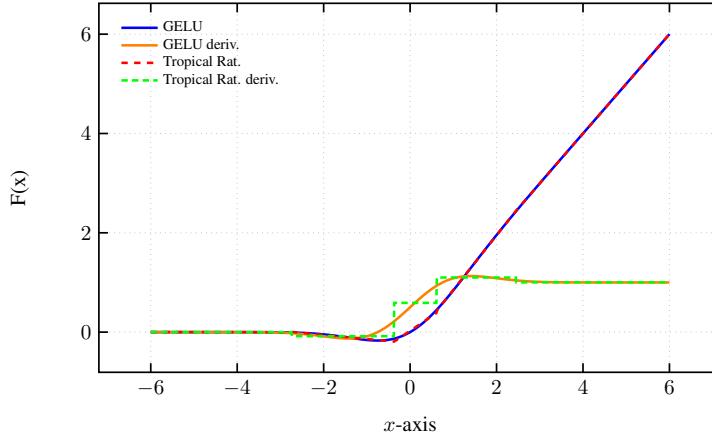
1190 **Definition H.1.** The tropical quotient \oslash of x over y is defined as:
1191

1192
$$x \oslash y := x - y \quad (75)$$
1193

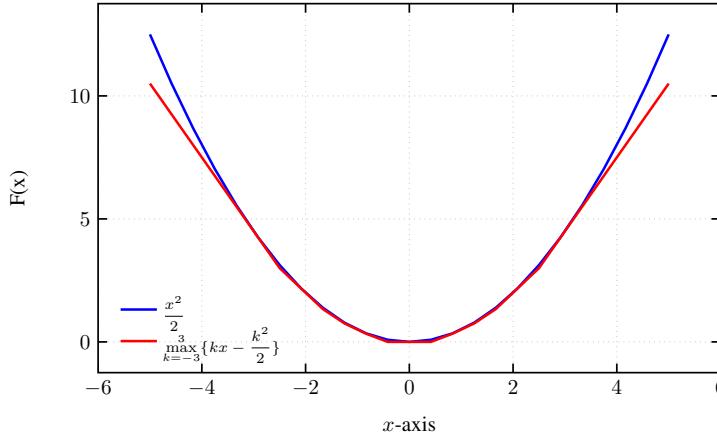
1194 **Definition H.2.** The *tropical rational activation* F is defined as the *quotient* of two tropical polynomials F_1 and F_2 of degree $m, n \in \mathbb{N}^2$ respectively.
1195

1196
$$F: \mathbb{R} \rightarrow \mathbb{R}$$
1197
$$F(x) \mapsto F_1(x) \oslash F_2(x) := F_1(x) - F_2(x) \quad (76)$$
1198

1199 An example of fitting a classical activation (GELU) with a rational tropical activation is shown in
1200 Figure 5. Rational tropical activation is understood here in the general sense, i.e., with real powers.
1201



1216 Figure 5: Hermite interpolation of a GELU with a Tropical Rational Activation of degree 6 in both
1217 the numerator and the denominator.
1218

1219 An example of fitting a convex function ($x \mapsto \frac{x^2}{2}$) with a polynomial tropical function (in the general
1220 sense) is shown in Figure 6.
1221

1237 Figure 6: Interpolation of $\frac{x^2}{2}$ function by the Tropical-Laurent polynomial (with potentially negative
1238 powers) $\max_{k=-3}^3 \{kx - \frac{k^2}{2}\}$ of degree 6.
1239

1242 **I ABLATION STUDIES**
12431244 Table 3: Ablation studies for the degree of the activation on ConvNeXt-T model.
1245

Activation	Degree	Train Loss	Val Top-1 (%)	Val Top-5 (%)
Tropical	1	2.925	81.60	95.73
Tropical	3	2.866	82.01	95.91
Tropical	5	2.863	82.18	96.00
Tropical	6	2.857	82.20	95.90
Fourier	1	2.872	80.29	95.03
Fourier	3	2.850	80.61	95.26
Fourier	5	2.844	80.69	95.41
Fourier	6	2.837	80.93	95.44
Hermite	2	2.833	81.66	95.71
Hermite	3	2.790	82.34	96.03

1259 Table 4: Ablation studies for the initialization of the activation on ConvNeXt-T model.
1260

Activation	Degree	Initialized from	Train Loss	Val Top-1 (%)	Val Top-5 (%)
Fourier	6	GELU	2.775	81.91	95.77
Fourier	6	Thrm. 3.13	2.837	80.93	95.44
Hermite	3	GELU	2.809	82.04	95.91
Hermite	3	Thrm. 3.8	2.790	82.34	96.03

1269 Table 5: Ablation studies for the learnability of the parameters of the activation on ConvNeXt-T
1270 model.
1271

Activation	Degree	Learnable?	Train Loss	Val Top-1 (%)	Val Top-5 (%)
Tropical	6	✗	3.560	76.31	93.09
Tropical	6	✓	2.857	82.20	95.90
Fourier	6	✗	3.181	79.51	94.60
Fourier	6	✓	2.837	80.93	95.44
Hermite	3	✗	3.411	78.48	94.20
Hermite	3	✓	2.790	82.34	96.03

1281 Table 6: Ablation studies for the clamping in the Hermite activation on ConvNeXt-T model.
1282

Activation	Degree	Clamped?	Train Loss	Val Top-1 (%)	Val Top-5 (%)
Hermite	3	✓	2.772	81.98	95.81
Hermite	3	✗	2.790	82.34	96.03

1290 **J A BRIEF DIGRESSION ON KOLMOGOROV ARNOLD NETWORKS (KANs)**
1291

1292 Kolmogorov-Arnold networks Liu et al. (2024) have been presented as a potential alternative to
1293 Multilayer-Perceptrons (MLPs), promoting several merits such as greater accuracy, fewer learnable
1294 parameters, and better interpretability. While the first two advantages could only be demonstrated
1295 for simple cases in the (Liu et al., 2024) article, the third benefit is more straightforward, as these
networks overcome the “black-box” aspect of traditional non-linear activations MLPs by allowing

1296 the activation to be polynomial, piece-wise polynomial, or rational, as in Yang & Wang (2024). From
 1297 there, having learned the weights of the network and those of the activation, it becomes clear what
 1298 approximation these functions (polynomial, rational, or trigonometric) have converged to.

1299 Rather than providing a direct application of the celebrated Kolmogorov–Arnold representation theo-
 1300 rem (KART) Kolmogorov (1957); Arnold (1959), the recent work on KAN Liu et al. (2024) appears to
 1301 take inspiration from it in a more figurative sense. For clarity, we recall that the Kolmogorov–Arnold
 1302 representation theorem, cited below, states that any continuous multivariate function $f: [0, 1]^n \rightarrow \mathbb{R}$
 1303 can be represented as a composition of addition and some functions of one variable denoted by $\psi_{q,p}$
 1304 and Φ_q :

1305 **Theorem J.1.** (Arnold (2009b;a)) *Let $f: \mathbb{I}^n := [0, 1]^n \rightarrow \mathbb{R}$ be an arbitrary multivariate continuous
 1306 function. Then it can be represented as follows:*

$$1308 \quad f(x_1, \dots, x_n) = \sum_{q=0}^{2n} \Phi_q \left(\sum_{p=1}^n \psi_{qp}(x_p) \right) \quad (77)$$

1311 with continuous one-dimensional functions $\Phi_q: \mathbb{R} \rightarrow \mathbb{R}$ and $\psi_{q,p}: [0, 1] \rightarrow \mathbb{R}$. Φ_q are called outer
 1312 functions and $\psi_{q,p}$ are called inner functions. The inner functions $\psi_{q,p}$ are independent of the function
 1313 f .

1314 This differs substantially from KAN’s formulation Liu et al. (2024), where the outer functions
 1315 disappear, the inner functions are replaced by a weighted sum of a SiLU MLP Elfwing et al. (2018)
 1316 and a B-spline, and the networks are a composition of multiple feed-forward layers to accommodate
 1317 recent neural network architectures.

1319 Since the KART proof is not constructive, and is essentially based on Baire’s theorem Kahane (1975),
 1320 the first efforts to implement a constructive proof of the KART were made by Sprecher in Sprecher
 1321 (1996; 1997). These latest works are based on a more economical variant of the KART in terms of
 1322 the number of outer and inner functions due to both Sprecher (1965) and Lorentz (1966).

1323 This was followed by the first article on the practical training of this type of network by Köppen
 1324 (2002), pointing out at the same time that the inner function ψ constructed in this theorem was
 1325 continuous but fractal! This limited its use in gradient-based learning algorithms. Braun & Griebel
 1326 (2009) gave rigorous proof of termination, continuity, and monotonicity for the construction of the
 1327 inner and the outer functions given by Sprecher (1997).

1328 As acknowledged by both Liu et al. (2024) and Yang & Wang (2024), the original “KAN” layer
 1329 defined in Liu et al. (2024) could be seen as a sum of a SiLU MLP and a weighted B-Spline
 1330 combination. Let us define a linear function $\mathcal{L}_W: x \mapsto Wx$, with W a learnable weight matrix. The
 1331 “KAN” layer Liu et al. (2024) is then defined as follows:

$$1332 \quad \text{KAN}_{\text{Liu}}(x) = \mathcal{L}_{W_b}(\text{SiLU}(x)) + \mathcal{L}_{W_s} \left(\sum_i c_i B_i(x) \right) \quad (78)$$

1335 With W_b and W_s two learnable weight matrices, $(B_i)_{i \in \llbracket 0, d \rrbracket}$ a family of B-spline functions of order
 1336 $d+1$, $(c_i)_{i \in \llbracket 0, d \rrbracket}$ the learnable spline weights and $\text{SiLU}: x \mapsto \frac{x}{1+e^{-x}}$.

1338 Indeed, if we follow the line of thought set out in KAN Liu et al. (2024), an MLP with learnable
 1339 activation, or equivalently a learnable activation network (LAN) would be a sort of KART formulation,
 1340 with the ψ_{qp} inner functions being a linear combination of ReLU functions. However, this is not what
 1341 the KART theorem suggests. Constructing a Kolmogorov–Arnold superposition requires a maximum
 1342 of two layers formulated by inner and outer functions as in theorem J.1 (Ismailov, 2024).

1343 It is worth noting that the concept of using splines to approximate inner functions in a Kolmogorov–
 1344 Arnold network or more generally as a representation of an activation function isn’t entirely new. The
 1345 analogy between KANs and MLPs has been noticed since Hecht-Nielsen (1987) and Kůrková (1992).
 1346 Earlier research, such as Igelnik & Parikh (2003), introduced Kolmogorov’s Spline Network, which
 1347 employed splines for flexible function approximation. In his PhD thesis, Braun (2009) corrected the
 1348 constructive proof of the KAT and gave practical examples using B-splines. Further developments in
 1349 this area include Bohra et al. (2020) and Fakhouri et al. (2022), who focused on learning adaptive
 activation functions through splines, thus enhancing the network’s expressiveness.

1350 Additionally, the use of the Kolmogorov superposition theorem to tackle high-dimensional problems
 1351 has been explored by Laczkovich (2021) and Lai & Shen (2021), who showed its potential in
 1352 overcoming the curse of dimensionality. Similarly, Montanelli et al. (2019) demonstrated how
 1353 structured networks like Deep ReLU models can efficiently approximate bandlimited functions, thus
 1354 expanding the practical applications of spline-based methodologies in neural networks.

1355 With an equivalent number of parameters or FLOP, Yu et al. (2024) observed that KAN surpasses
 1356 MLP solely in symbolic formula representation, while it falls short of MLP in other machine learning
 1357 tasks, including computer vision, NLP, and audio processing. Cang et al. (2024) confirmed the same
 1358 finding.

1359 Nevertheless, KANs have had the merit of rekindling interest in learnable activations in neural
 1360 networks, among them polynomial and trigonometric activations.

1362 Since the interest in KANs began, numerous researchers have proposed a multitude of learnable
 1363 functions for activations, spanning a diverse range of mathematical functions, including splines,
 1364 classical orthogonal polynomials, rational functions, Fourier bases, and wavelets... Despite this, in
 1365 some instances, the safety of these operations, the boundedness of their gradients, their initialization,
 1366 and their computational properties in the context of gradient descent have sometimes received less
 1367 emphasis. Instead, many studies have highlighted proof-of-concept results, often demonstrating
 1368 that such functions can achieve strong performance on benchmark datasets like MNIST LeCun
 1369 et al. (1998). This line of work has produced a rich body of literature. A common observation,
 1370 however, is that much of it focuses on adapting a specific interpolation function within relatively
 1371 shallow architectures and evaluating on small-scale datasets (such as the MNIST dataset, for example).
 1372 Because a wide variety of functions can achieve test accuracies exceeding 97% on MNIST with
 1373 networks of depth three or less, it becomes challenging to distinguish which approaches provide the
 1374 most robust or generalizable benefits.

1375 K EXTENDED RELATED WORK

1378 The subject of learnable activation is a well-known one, but it has seen a resurgence thanks to the
 1379 popularity enjoyed by the KAN article Liu et al. (2024). Examples of works in which the main theme
 1380 is learning the activation function include Houlsby et al. (2019); Goyal et al. (2019); Tavakoli et al.
 1381 (2021); Moosavi et al. (2022); Fang et al. (2022); Bodyanskiy & Kostiuk (2023); Pishchik (2023).

1382 Earlier works exploring polynomial activations in deep neural networks trained using the backpropagation
 1383 algorithm include Zhou et al. (2019) and Chrysos et al. (2020), which empirically demonstrate
 1384 that polynomially activated neural networks, even without non-linear activation functions, can per-
 1385 form well across multiple tasks. Building on this, Chrysos et al. (2023) sought to regularize such
 1386 networks to compete with deep ReLU networks.

1387 More recently, Nebioglu & Iliev (2023) investigated the use of Chebyshev and Hermite orthogonal
 1388 polynomials as activation functions, demonstrating that Chebyshev activations are computationally
 1389 efficient but sensitive to problem types, while Hermite activations exhibit greater robustness and
 1390 generalization. Additionally, Xiao et al. (2024) introduced HOPE (High-order Polynomial Expansion),
 1391 a novel method that represents neural networks as high-order Taylor polynomials, enabling improved
 1392 interpretability, low computational complexity, and applications such as function discovery, fast
 1393 inference, and feature selection.

1394 Other recent works utilizing Chebyshev activation include Deepthi et al. (2023) and Heidari et al.
 1395 (2024), which employed single-layer shallow networks. Seydi (2024) conducted a comparative
 1396 study of exotic polynomial activations on the MNIST dataset, while Cooley et al. (2024) applied
 1397 polynomial-augmented neural networks for approximating solutions to partial differential equations.

1398 On the rational activation front, notable works include Trefethen & Gutknecht (1987), which intro-
 1399 duced stable-Padé and Chebyshev-Padé approximators, and Molina et al. (2019), which proposed
 1400 the Safe-Padé activation by ensuring the denominator of the rational activation remains nonzero. An
 1401 orthogonal variant of the Padé approximant was presented in Biswas et al. (2021), while Chebyshev
 1402 rational functions Castellanos & Rosenthal (1993) and Fourier rational functions Geer (1995) were
 1403 explored in subsequent studies. More recently, advancements in rational activation using general
 1404 Jacobi functions were introduced in Aghaei (2024b;a).

1404 Polynomial piecewise functions (such as B-splines) and rational functions (such as the Padé approx-
 1405 imant) can exhibit finite support properties. On the other hand, these last lack the orthogonality
 1406 property. Several works have aimed to formulate orthogonal splines Mason et al. (1993); Alavi &
 1407 Aminikhah (2023) and orthogonal rational functions Bultheel et al. (2001), or even a theory of spline
 1408 wavelets Chui & Wang (1991) and rational wavelets Zheng & Minggen (1999); Choueiter & Glass
 1409 (2007).

1410 Learning with a periodic function or a Fourier series has also been the subject of many anterior works,
 1411 such as Sitzmann et al. (2020), and more recently Mehrabian et al. (2024), and Martinez-Gost et al.
 1412 (2024) using a Discrete Cosine Transform (DCT). Recently, Hashemi et al. (2024) introduced the
 1413 Dynamic Range Activator (DRA), an activation function that combines harmonic (trigonometric)
 1414 and hyperbolic components to capture the highly recursive and high-variance behavior within a deep
 1415 problem in enumerative algebraic geometry.

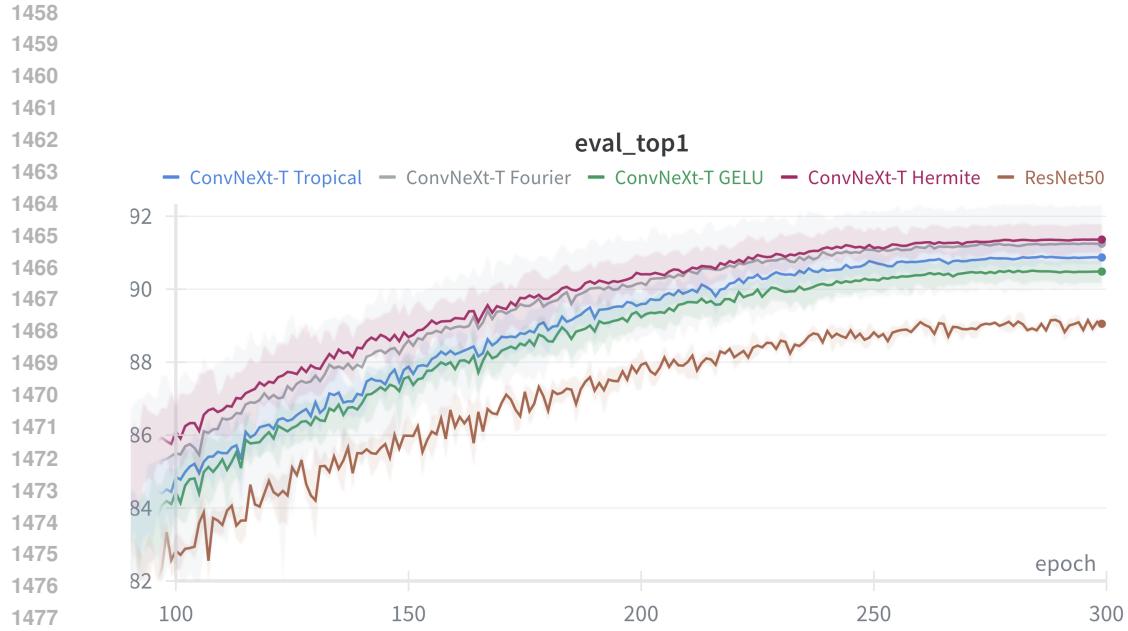
1416 In the context of tropical activations, prior work has been done to establish connections between
 1417 tropical geometry and neural networks. For instance, Zhang et al. (2018) demonstrated that feedfor-
 1418 ward neural networks with ReLU activation can be interpreted as tropical rational maps, relating their
 1419 decision boundaries to tropical hypersurfaces and showing how deeper networks leverage zonotopes
 1420 to achieve exponentially greater expressiveness. Building on this geometric foundation, Smyrnis
 1421 & Maragos (2019) introduced tropical polynomial division, an approach inspired by the max-plus
 1422 semiring, and applied it to neural networks with ReLU activation. Recent work also developed
 1423 tropical activation functions Yoshida et al. (2024), which were subsequently applied to convolutional
 1424 neural networks (CNNs) for image classification tasks on MNIST LeCun et al. (1998), CIFAR10
 1425 Krizhevsky et al. (2009), and SVHN Netzer et al. (2011) in Pasque et al. (2024).

L IMAGE CLASSIFICATION RESULTS ON CIFAR10

1429 We conducted an experiment using ConvNeXt-T on CIFAR10 for 300 epochs and averaged the
 1430 results over 10 different seeds. The experiment shows that Hermite, Fourier, and Tropical activations
 1431 are significantly above the GELU baseline in terms of test metrics. In addition, we added three
 1432 different seeds for ResNet50 with ReLU, and the results of the latter are clearly inferior to those of
 1433 ConvNeXt-T, ConvNeXt-T being a modernized version of ResNet50. The results, in table form, are
 1434 reported in Table 7 and in graphical form in Figures 9, 7, and 8.

1435 Table 7: Comparison of the proposed activation functions on ResNet50 and ConvNeXt-T models
 1436 for CIFAR-10 image classification task. Values are reported as mean \pm standard deviation over 10
 1437 different seeds (3 seeds for the ResNet50 case). p-values (two-tailed Student’s t-test assuming equal
 1438 variances) compare each activation’s Top-1-accuracy against GELU.

Model	Activation	Top-1 Acc. (%)	Top-5 Acc. (%)	p-value vs GELU (Top-1)
ResNet50	ReLU	88.9 ± 0.04	99.43 ± 0.47	< 0.0001 (****)
ConvNeXt-Tiny	Baseline (GELU)	90.47 ± 0.20	99.62 ± 0.06	—
ConvNeXt-Tiny	Tropical	90.87 ± 0.19	99.63 ± 0.04	0.0002 (***)
ConvNeXt-Tiny	Fourier	91.23 ± 0.65	99.60 ± 0.05	0.0023 (**)
ConvNeXt-Tiny	Hermite	91.35 ± 0.29	99.63 ± 0.05	< 0.0001 (****)



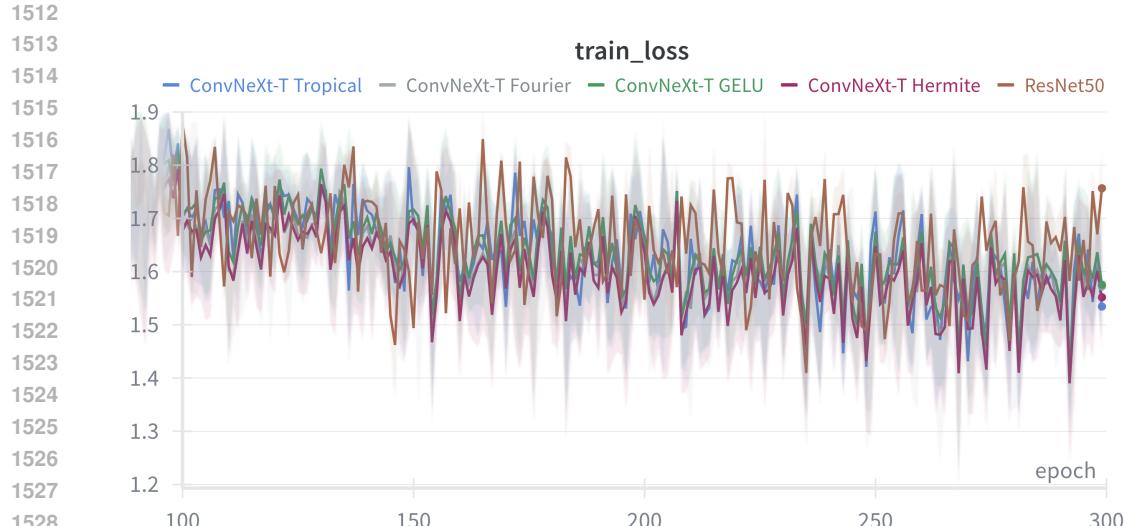


Figure 9: Training loss curves for ConvNeXt-T on CIFAR-10. The solid lines represent the mean of the metric over 10 different seeds (3 seeds for the ResNet50 case), and the shaded areas show the range (min to max).

For this experiment we used the TIMM library Wightman (2019) with the following configuration 8:

Table 8: Configuration for the pretraining experiment on CIFAR-10.

Hyperparameter	Value
Input Size	$3 \times 32 \times 32$
Number of Classes	10
Batch Size	128×4 GPUs
Optimizer	AdamW
Learning Rate	4e-3
Epochs	300
Scheduler	Cosine
Drop Path Rate	0.0
Mean	0.491, 0.482, 0.446
Std	0.247, 0.243, 0.261
Warmup Epochs	20
Weight Decay	0.0
Mixup	0.8
Label Smoothing	0.1
Auto Augmentation	rand-m9-mstd0.5
Re-mode	Pixel
Random Erasing Prob	0.25
Gradient Clipping	5.0
CutMix	1.0

1566
1567

M DECISION BOUNDARIES

1568
1569
1570
1571
1572
1573
1574
1575

We compare the decision boundaries of four single-layer neural networks trained on simple 2D classification datasets (two moons, circles ...), each using a different activation function to evaluate how activation choice affects classification behavior and boundary smoothness. The Hermite activation produces a smooth and globally coherent decision boundary, reflecting its polynomial nature. In contrast, the Fourier activation leads to quasi-periodic patterns that adapt well to the underlying structure of the data, capturing fine-grained details and even fitting noisy points. The tropical activation yields a piecewise affine boundary, resembling the behavior of ReLU, with sharp transitions and linear segments that reflect its max-plus (tropical) structure.

1576

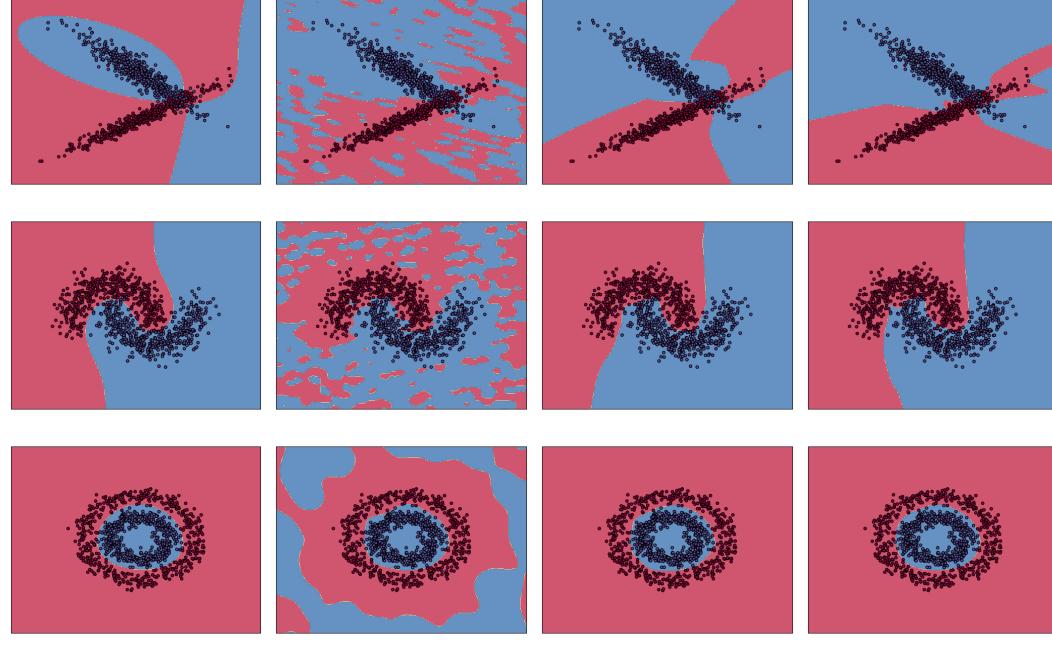
1597
1598

Figure 10: Decision boundaries across datasets: Top row: classification; middle row: moons; bottom row: circles, using four different activation functions.

1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620 N LINE PLOTS
1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

Figure 11: Training loss curves for ConvNeXt-T on ImageNet1k. The solid lines represent the mean of the metric over 5 different seeds, and the shaded areas show the range (min to max).

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

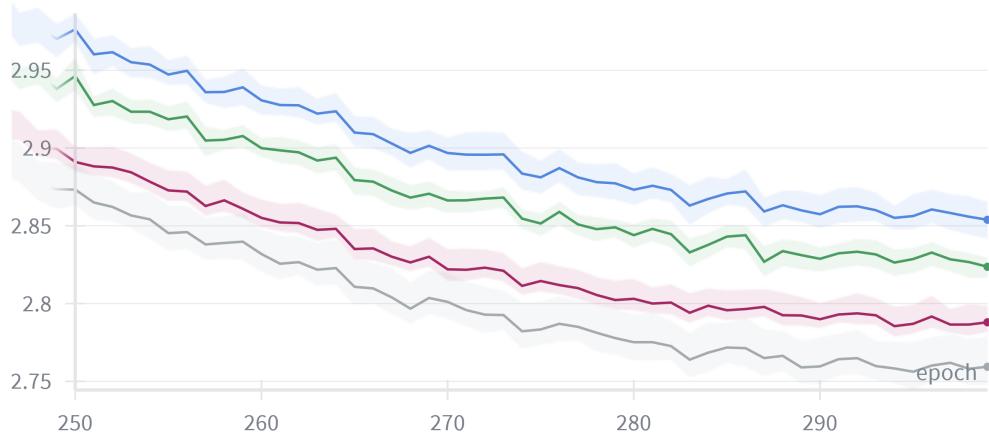
1671

1672

1673

Global Train/train_loss

— ConvNeXt-T Hermite — ConvNeXt-T Tropical — ConvNeXt-T GELU — ConvNeXt-T Fourier



Global Test/test_acc1_ema

— ConvNeXt-T Hermite — ConvNeXt-T Tropical — ConvNeXt-T GELU — ConvNeXt-T Fourier

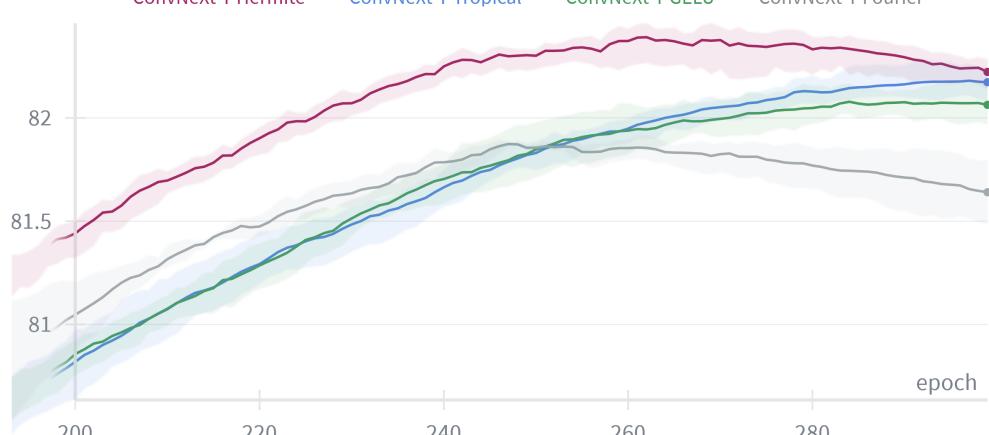


Figure 12: Top1 evaluation accuracy for ConvNeXt-T on ImageNet1k. The solid lines represent the mean of the metric over 5 different seeds, and the shaded areas show the range (min to max).

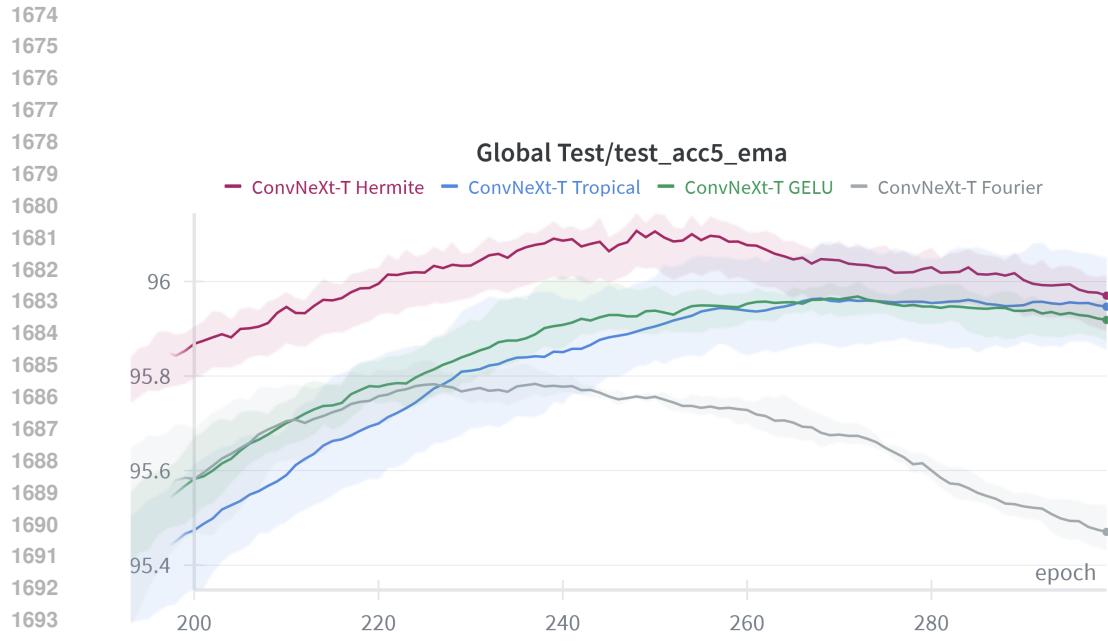


Figure 13: Top5 evaluation accuracy for ConvNeXt-T on ImageNet1k. The solid lines represent the mean of the metric over 5 different seeds, and the shaded areas show the range (min to max).

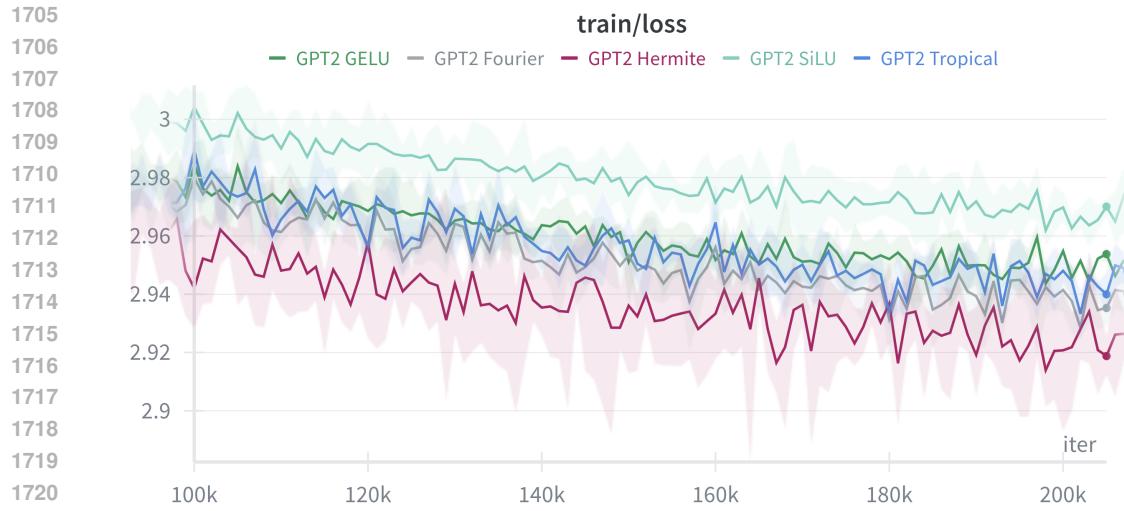


Figure 14: Comparison of the train losses of the GPT2 model (124M) on OpenWebText with GELU, SiLU, Hermite, Fourier, and Tropical activations. The solid lines represent the mean of the metric over 5 different seeds, and the shaded areas show the range (min to max).

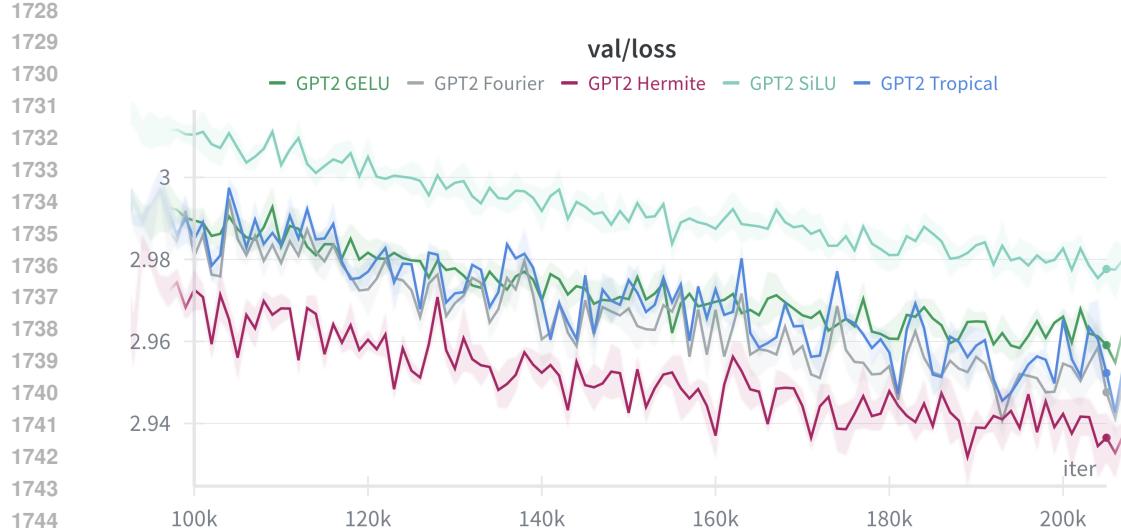


Figure 15: Comparison of the validation losses of the GPT2 model (124M) on OpenWebText with GELU, SiLU, Hermite, Fourier, and Tropical activations. The solid lines represent the mean of the metric over 5 different seeds, and the shaded areas show the range (min to max).

O FINETUNING ACTIVATIONS EXPERIMENT ON CIFAR10

We conducted an experiment for fine-tuning ConvNeXt-tiny (pre-trained on ImageNet1k) on CIFAR10. We froze all the weights except those of the last linear layer and the ones of the learnable activations, which were initialized by fitting GELU with a Hermite interpolation. The results hereby show a clear superiority of the proposed learnable activations:

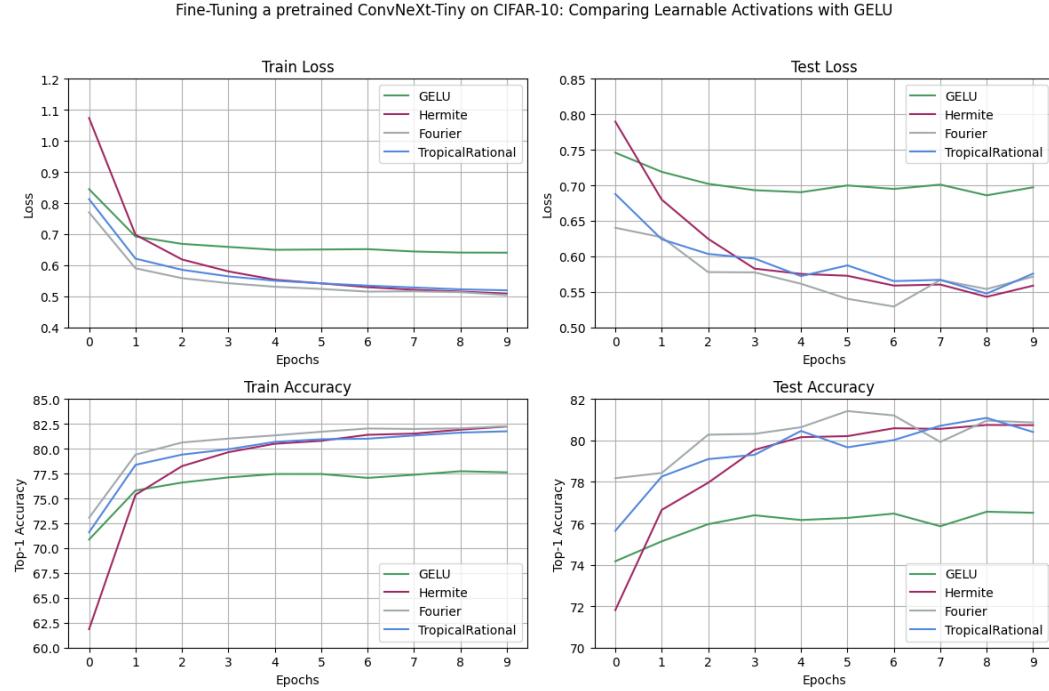


Figure 16: Performance of a pretrained ConvNeXt-T (on ImageNet1k) on CIFAR10 when fine-tuning only the final linear layer and the learnable coefficients of the activations.

P TIMING RESULTS

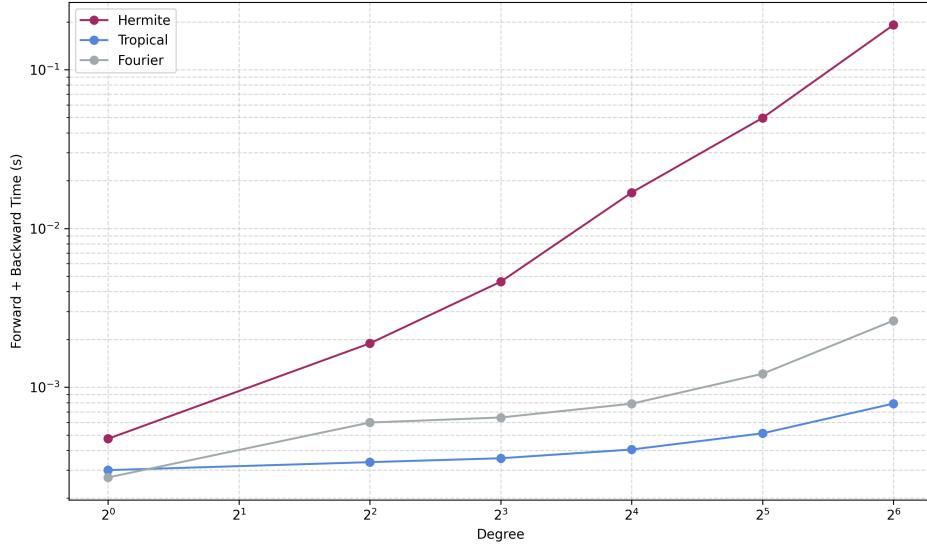


Figure 17: Forward + backward pass averaged times (in seconds and log-log scale) for Hermite, Tropical, and Fourier activations across varying degrees as benchmarked on an AMD EPYC 7402 CPU.

Table 9: Forward + backward pass averaged times (in seconds) for Hermite, Tropical, and Fourier activations across varying degrees as benchmarked on an AMD EPYC 7402 CPU.

Activation	Degree	Forward+Backward Time
Hermite	1	0.00047354
	4	0.00188883
	8	0.00462004
	16	0.0168367
	32	0.0496985
	64	0.191425
Tropical	1	0.000300329
	4	0.000337174
	8	0.000356829
	16	0.000405076
	32	0.000512147
	64	0.000788548
Fourier	1	0.000270138
	4	0.000599022
	8	0.000644515
	16	0.000787303
	32	0.00121512
	64	0.00262779

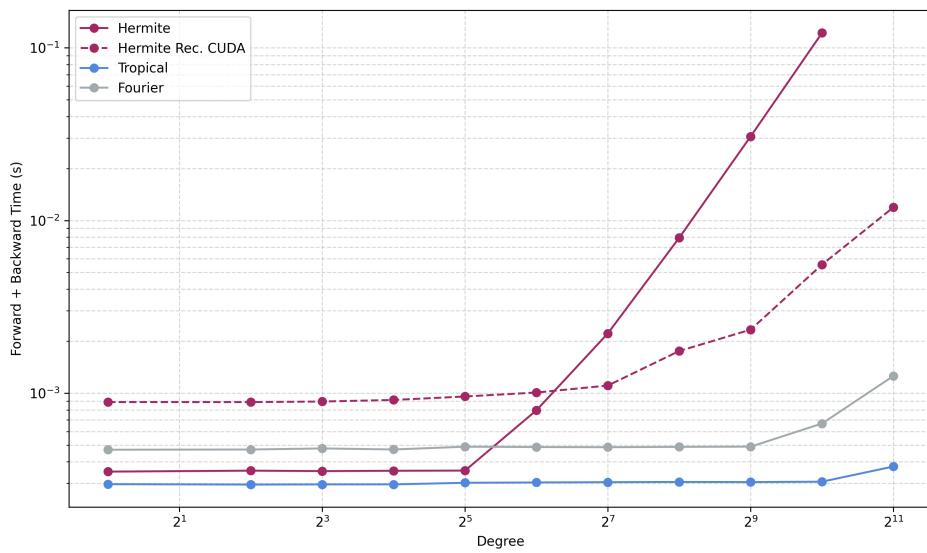


Figure 18: Forward + backward pass averaged times (in seconds) for Hermite (explicit Alg. 2, Eq. 22 and recurrence-based CUDA implementation Alg. 3, Eq. 23), Tropical, and Fourier activations across varying degrees as benchmarked on a single NVIDIA A100 GPU/40GB.

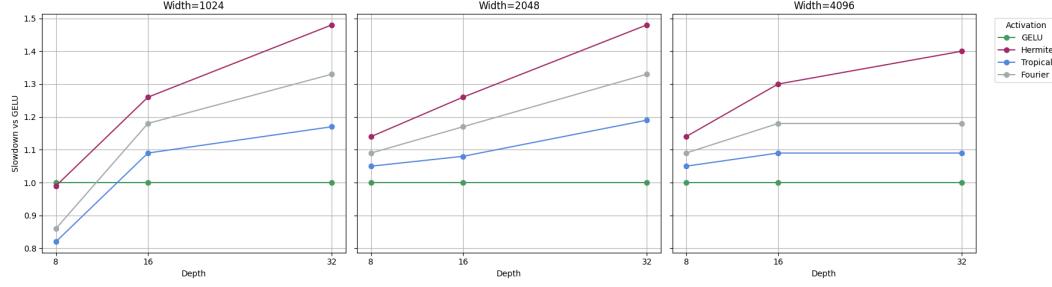


Figure 19: Relative slowdowns of Hermite, Tropical, and Fourier activations compared to GELU across different widths.

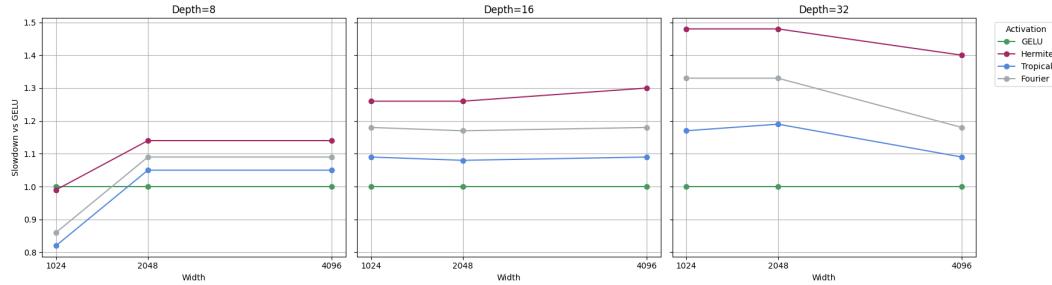


Figure 20: Relative slowdowns of Hermite, Tropical, and Fourier activations compared to GELU across different depths.

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899

Table 10: Forward + backward pass averaged times (in seconds) for Hermite (explicit Alg. 2, Eq. 22 and recurrence-based CUDA implementation Alg. 3, Eq. 23), Tropical, and Fourier activations across varying degrees as benchmarked on a single NVIDIA A100 GPU/40GB.

1900	Activation	Degree	Forward+Backward Time
1901	Hermite	1	0.000350997
1902	Hermite	4	0.00035552
1903	Hermite	8	0.00035341
1904	Hermite	16	0.000355005
1905	Hermite	32	0.000355887
1906	Hermite	64	0.000795927
1907	Hermite	128	0.00221812
1908	Hermite	256	0.00794526
1909	Hermite	512	0.0306861
1910	Hermite	1024	0.122032
1911	Hermite Rec. CUDA	1	0.000887356
1912	Hermite Rec. CUDA	4	0.000887024
1913	Hermite Rec. CUDA	8	0.000893834
1914	Hermite Rec. CUDA	16	0.000912833
1915	Hermite Rec. CUDA	32	0.000956004
1916	Hermite Rec. CUDA	64	0.00100782
1917	Hermite Rec. CUDA	128	0.00110659
1918	Hermite Rec. CUDA	256	0.0017534
1919	Hermite Rec. CUDA	512	0.00233119
1920	Hermite Rec. CUDA	1024	0.00555244
1921	Hermite Rec. CUDA	2048	0.0119172
1922	Tropical	1	0.000296884
1923	Tropical	4	0.000295298
1924	Tropical	8	0.000295942
1925	Tropical	16	0.000296063
1926	Tropical	32	0.000302484
1927	Tropical	64	0.000303783
1928	Tropical	128	0.000304883
1929	Tropical	256	0.000305769
1930	Tropical	512	0.000305247
1931	Tropical	1024	0.000306931
1932	Tropical	2048	0.000375793
1933	Fourier	1	0.000470023
1934	Fourier	4	0.000471404
1935	Fourier	8	0.000478096
1936	Fourier	16	0.000471656
1937	Fourier	32	0.000489211
1938	Fourier	64	0.000487039
1939	Fourier	128	0.000486042
1940	Fourier	256	0.00048811
1941	Fourier	512	0.000489757
1942	Fourier	1024	0.000666652
1943	Fourier	2048	0.00125729

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954

Table 11: Training times (in seconds) and relative slowdowns compared to GELU across different MLP network widths and depths, for Hermite, Tropical, and Fourier activations. The reported times were averaged per epoch and were obtained using a single NVIDIA A100 GPU with 40 GB of memory.

1955

1956

Activation	Degree	Width	Depth	Training Time	Slowdown vs Baseline
GELU	-	1024	8	16.13s	1.00x
Hermite	3	1024	8	16.03s	0.99x
Tropical	6	1024	8	13.27s	0.82x
Fourier	6	1024	8	13.93s	0.86x
GELU	-	1024	16	12.86s	1.00x
Hermite	3	1024	16	16.15s	1.26x
Tropical	6	1024	16	14.06s	1.09x
Fourier	6	1024	16	15.13s	1.18x
GELU	-	1024	32	13.96s	1.00x
Hermite	3	1024	32	20.65s	1.48x
Tropical	6	1024	32	16.29s	1.17x
Fourier	6	1024	32	18.50s	1.33x
GELU	-	2048	8	12.36s	1.00x
Hermite	3	2048	8	14.08s	1.14x
Tropical	6	2048	8	12.98s	1.05x
Fourier	6	2048	8	13.51s	1.09x
GELU	-	2048	16	12.96s	1.00x
Hermite	3	2048	16	16.29s	1.26x
Tropical	6	2048	16	14.05s	1.08x
Fourier	6	2048	16	15.15s	1.17x
GELU	-	2048	32	13.98s	1.00x
Hermite	3	2048	32	20.65s	1.48x
Tropical	6	2048	32	16.64s	1.19x
Fourier	6	2048	32	18.53s	1.33x
GELU	-	4096	8	12.43s	1.00x
Hermite	3	4096	8	14.12s	1.14x
Tropical	6	4096	8	13.02s	1.05x
Fourier	6	4096	8	13.58s	1.09x
GELU	-	4096	16	13.10s	1.00x
Hermite	3	4096	16	17.07s	1.30x
Tropical	6	4096	16	14.30s	1.09x
Fourier	6	4096	16	15.42s	1.18x
GELU	-	4096	32	23.93s	1.00x
Hermite	3	4096	32	33.41s	1.40x
Tropical	6	4096	32	26.10s	1.09x
Fourier	6	4096	32	28.21s	1.18x

1992
1993
1994
1995
1996
1997

1998
1999

Q LARGE LANGUAGE MODEL USAGE DISCLOSURE

2000
2001
2002

We used large language models to assist in translating, rewording, and polishing the text for clarity and readability. The models were not used for idea generation, experiments, analysis, or contributions at the level of scientific authorship.

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051