
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POLYNOMIAL, TRIGONOMETRIC, AND TROPICAL
ACTIVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Which functions can be used as activations in deep neural networks? This article
explores families of functions based on orthonormal bases, including the Hermite
polynomial basis and the Fourier trigonometric basis, as well as a basis resulting
from the tropicalization of a polynomial basis. Our study shows that, through simple
variance-preserving initialization and without additional clamping mechanisms,
these activations can successfully be used to train deep models, such as GPT-2 for
next-token prediction on OpenWebText and ConvNeXt for image classification on
ImageNet. Our work addresses the issue of exploding and vanishing activations
and gradients, particularly prevalent with polynomial activations, and opens the
door for improving the efficiency of large-scale learning tasks. Furthermore, our
approach provides insight into the structure of neural networks, revealing that
networks with polynomial activations can be interpreted as multivariate polynomial
mappings. Finally, using Hermite interpolation, we show that our activations can
closely approximate classical ones in pre-trained models by matching both the
function and its derivative, making them especially useful for fine-tuning tasks.
These activations are available in the torchortho1 library.

1 INTRODUCTION

Modern deep learning is largely built upon the Multi-Layer Perceptron (MLP) McCulloch & Pitts
(1943); Rosenblatt (1958) and the gradient backpropagation algorithm Rumelhart et al. (1986). The
MLP can be described as a combination of a multiplication by a matrix of learnable weights and
the application of a nonlinear activation function. Gradient backpropagation, on the other hand,
relies on the chain rule to compute partial derivatives necessary for optimizing weights through
gradient descent. In a deep neural network, preserving variance across layers is critical to ensure
stable training dynamics. Glorot & Bengio (2010); He et al. (2015) were the first to consider a
variance-preserving analysis for deep neural networks.

The analysis shown in He et al. (2015) could be stated as the output signal of each MLP block should
have the same variance as the input signal. And since learning is performed with backpropagation,
this same rule should apply to the gradients as well, meaning that the variance of the gradient of the
input should also be equal to the variance of the gradient of the output of the MLP.

In this manner, He et al. (2015) demonstrated the methodology for initializing the weights of a deep
neural network, thereby attaining performance on ImageNet classification that exceeds that of humans.
This process entails the calculation of the ratio between the variance pre- and post-activation called
forward gain, as well as the ratio of variance with respect to the derivative of the activation, called
backward gain. Remarkably, for the ReLU function, both forward and backward gains are equal to 2.

Recently, Yang & Wang (2024) employed the same principle to train learnable rational activations.
However, they encountered a challenge: the second-order moment has no closed formulation in
the case of rational fractions. The authors’ solution for ensuring the convergence of such rational
activation networks consisted in initializing them by fitting the polynomial coefficients to a classical
activation such as ReLU or SiLU Ramachandran et al. (2017); Elfwing et al. (2018). Here, we
propose a solution to the aforementioned problem by employing orthogonal basis functions (Fig. 4),
specifically polynomial and trigonometric functions. Orthogonal basis functions in a chosen L2 space,

1https://anonymous.4open.science/r/torchortho-D76A/

1

https://anonymous.4open.science/r/torchortho-D76A/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

as will be elucidated in the subsequent sections, facilitate the calculation of the second-order moment
integral, thereby yielding a closed and straightforward formula. Additionally, we demonstrate that
rational functions are unnecessary, asserting that polynomial activation functions are sufficient.

More generally, the convergence of polynomial networks shown in this work proves that deep
neural networks can be seen as multivariate polynomial mappings. Indeed, the successive layers
of a feed-forward network activated by a polynomial activation can be seen as a composition of
weighted sums of multivariate polynomials, ultimately resulting in a polynomial mapping. A parallel
representation was made by Zhang et al. (2018) for ReLU-activated networks, demonstrating that
they are tropical rational mappings. In a later section, we also explore tropical polynomial functions
as activation functions. We demonstrate that these can be interpreted as the discrete convex conjugate
of a learnable function, thus encoding the convex hull of its epigraph (the set of points lying on
or above the function’s graph). The contributions of this paper span theoretical proofs, technical
developments, and empirical confirmations, and can be summarized in the following list:

• A novel variance-preserving initialization method is introduced for orthogonal learnable activations
in neural networks. Assuming an orthonormal function basis, this method ensures that the output
variances are unitary and match those of the derivative, leading to stable training.

• Empirically showing that deep neural networks like ConvNeXt (Liu et al., 2022) and GPT-2
(Radford et al., 2019) can be trained using orthogonal learnable activations for tasks like image clas-
sification on ImageNet1k (Deng et al., 2009) and language modeling on OpenWebText (Gokaslan
& Cohen, 2019). The innovation eliminates the need for additional mechanisms (e.g., ReLU,
SoftSign...) to maintain training stability.

• Proving in Appendix F that polynomially activated neural networks are polynomial mappings.
• Developing Hermite, Fourier, and Tropical activations, addressing finite-precision floating-point

issues, and designing efficient parallel algorithms and kernels for their implementation.

2 RELATED WORK

The use of polynomial activations has long been denigrated, probably by the rise of works such as
Pinkus (1999) and Leshno et al. (1993) which have mathematically demonstrated that the universal
approximation property is equivalent to the use of a non-polynomial activation function. The
Universal Approximation Theorem Cybenko (1989); Hornik et al. (1990) holds for neural networks
of arbitrary width and bounded depth. However, recent work such as Kidger & Lyons (2020); Gao
et al. (2025) show that in the framework of bounded width and arbitrary depth, every nonaffine
continuous function is possible to use in practice, including polynomial activation functions. We
show empirically in this work that polynomial activations can converge in the context of large-scale
deep networks and datasets, provided coefficients are learnable and initialization is suitable. The
empirical demonstration of the effectiveness of polynomial activations made here was achieved
without the use of other functions intended to regularize convergence, such as the SoftSign function
borrowed from Turian et al. (2009) and used in Lokhande et al. (2020) for Hermite activations, or
a ReLU function, or any normalization, as recently done in Zhuo et al. (2024). This confirmation
that polynomial activations are practicable opens the way to representing deep neural networks as
multivariate polynomial mappings. As in Kileel et al. (2019) and Kubjas et al. (2024), which see
that these types of networks have greater expressive potential, we show in Appendix F that deep
polynomially activated neural networks are indeed multivariate polynomial mappings. The subject
of learnable activations has seen a resurgence thanks to the popularity enjoyed by the KAN article
Liu et al. (2024). In Appendix J, we’ll digress for a while to explain how these are inspired by the
Kolmogorov-Arnold theorem Kolmogorov (1957). Further related work appears in Appendix K.

3 METHODS

3.1 VARIANCE PRESERVING INITIALIZATION

The variance-preserving principle He et al. (2015) mentioned in the introduction is expressed in the
following. Consider an input vector x = (x0, . . . , xi, . . . , xCin

) ∈ RCin , Cin ∈ N∗, where all xi are
mutually independent and uniformly distributed. Preserving the variance in an MLP layer with a
learnable weight tensor W of inner dimension Cin and an activation function F amounts to:

Var[x] = Cin Var[WF (x)] (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

If we suppose that x and W are independent and of finite variance, we have:

Var[x] = Cin

(
Var[W] · E

[
F (x)2

]
+Var[F (x)] · E [W]

2
)

(2)

Assumption 3.1. We initialize W such as E [W] = 0.

Since we always assume that W is initialized with a zero mean, Eq. 2 simplifies into:

Var[x] = Cin Var[W] · E
[
F (x)2

]
(3)

Thus, to calculate the variance of the weights, we should calculate the following ratios:
Definition 3.2. The forward gain of the MLP layer is defined by:

α = Var[x] · E
[
F (x)2

]−1
(4)

Similarly, and in a backward manner,
Definition 3.3. The backward gain is the gain of the derivative of the activation with respect to x and
is defined as:

α′ = Var[x] · E
[
F ′(x)2

]−1
(5)

Since a deep neural network is essentially a composition of MLP layers, an appropriate initialization
method must avoid reducing or amplifying the input signals He et al. (2015).
Assumption 3.4. From now on, we assume that both the input signal x and its gradient ∆x follow a
distribution of mean 0 and variance 1.

Therefore, calculating the gains α and α′ in an MLP (or equivalently a convolution layer) involves
calculating only the inverse of the second-order moments of the activation functions and their
derivatives. Interestingly, for the ReLU function, we have α = α′ = 2. Hence the scaling of the
standard deviation of the weights W in He et al. (2015) by a factor

√
2/Cin, more details can be

found in Appendix B.

Given an arbitrary activation, equality of forward and backward gains is not always achieved by
default as in ReLU. In the next section, we show the conditions for an activation function written in
an orthonormal coordinate system to verify the forward-backward gain equality. To illustrate this
point, we will calculate the second moment for Hermite and Fourier basis decompositions, given
their compatibility with the normal and uniform distributions, respectively.

3.2 VARIANCE PRESERVING INITIALIZATION FOR THE HERMITE ACTIVATION FUNCTION

Definition 3.5. ∀n ∈ N, the probabilist Hermite polynomials can be defined as follows:

Hen(x) = (−1)ne x2

2
dn

dxn
e−

x2

2 (6)

n is called the degree of the Hermite polynomial and we have the first terms:

He0(x) = 1 He1(x) = x He2(x) = x2 − 1 He3(x) = x3 − 3x

Hermite polynomials constitute a suitable choice for calculating the moment of order 2 when x
follows a standard normal distribution N (0, 1) as evidenced by the following property 3.6.
Property 3.6. ∀m,n ∈ N2, we have:∫ ∞

−∞
Hem(x)Hen(x)e

− x2

2 dx =
√
2πn!δnm (7)

With δnm the Kronecker delta.
Definition 3.7. We define the Hermite activation F : R → R with its learnable coefficients ∀k ∈
J0, nK ak ∈ R as:

x 7→ F (x) =

n∑
k=0

ak
k!

Hek(x) (8)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 3.8. Variance-preserving coefficient initialization of Hermite activation. Let

∀k ∈ J1, nK ak = 1 and a0 =

√
1− 1

n!
(9)

Then using this initialization, the forward and backward gains become the same and are equal to:

α = α′ =

(
n−1∑
k=0

1

k!

)−1

(10)

Proof. The proof is provided in Appendix C.

Corollary 3.9. In the limit case n → +∞, the coefficient initialization in Theorem 3.8 could be
divided by a factor

√
e, with e ≈ 2.7182 . . ., in order to have unitary forward and backward gains.

∀k ∈ J1, nK :

ak =
1√
e

and a0 =
1√
e

√
1− 1

n!
(11)

Remark 3.10. The choice of an orthonormal family of functions depends on the input’s probability
distribution. For a normally distributed input, Hermite polynomials simplify the computation of
second-order moments and related gains. For a uniform distribution over [−π, π], trigonometric
functions (Fourier series) are appropriate. If the input follows a Wigner semi-circle distribution (of
measure

√
1− x2dx), then the Chebyshev polynomials of the second kind are the suitable choice.

3.3 VARIANCE PRESERVING INITIALIZATION FOR THE FOURIER ACTIVATION FUNCTION

The forward and backward gains for a Hermite activation have been calculated under the assumption
that the input x follows a normal distribution, such that the initial coefficients provide equal gains.
The subsequent analysis will establish the same result for a truncated Fourier series expansion of
order n ∈ N.
Assumption 3.11. The input x is assumed now to follow a uniform distribution on the interval
[−π, π], denoted as x ∼ U (−π, π).
Definition 3.12. We consider the following Fourier activation F : R→ R:

x 7→ F (x) = a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx))

k!
(12)

where (ak)k∈N and (bk)k∈N∗ are real learnable coefficients.
Theorem 3.13. Variance-preserving coefficient initialization of Fourier activation. Let

∀k ∈ J1, nK ak = 1 and a0 =

√
1− 1

(n!)2
(13)

Then, using this initialization, the forward and backward gains become the same and are equal to:

α = α′ =

(
n−1∑
k=0

1

(k!)2

)−1

(14)

Proof. The proof is provided in Appendix D.

Corollary 3.14. In the limit case n→ +∞, in order to have unitary forward and backward gains,
the coefficient initialization in Theorem 3.13 could be divided by a factor

√
I0(2), with Iα(x) is the

modified Bessel function of the first kind of order α, and we have I0(2) ≈ 2.2795 . . . ∀k ∈ J1, nK :

ak =
1√
I0(2)

and a0 =
1√
I0(2)

√
1− 1

(n!)2
(15)

Remark 3.15. In both Definitions 3.7 and 3.12, the terms inside the sum are scaled by a factor of
k!, yielding exponential series. In practice, it is possible to scale the terms using other converging
series such as kp with p > 1. We experimented with this last alternative and observed no statistically
significant impact on loss convergence, though we did observe better stability for higher polynomial
degrees in the exponential variant.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.4 VARIANCE PRESERVING INITIALIZATION FOR THE TROPICAL ACTIVATION FUNCTION

Definition 3.16. The max-tropical semiring T is the semiring T = (R ∪ {+∞},⊕,⊗), with the
operations, ∀x, y ∈ R ∪ {+∞}2:

x⊕ y := max{x, y} and x⊗ y := x+ y (16)

Equivalently, we could define the min-tropical semiring by substituting the max operation in ⊕
with a min operation. By extension, we define for all a ∈ N the tropical power of x raised to a as
multiplying x to itself a times:

x⊗a := x⊗ · · · ⊗ x = a · x (17)

Definition 3.17. The tropicalization of a polynomial of degree n ∈ N is defined as F : R 7→ R, with
∀k ∈ J0, nK ak ∈ R are the polynomial learnable coefficients:

x 7→ F (x) =

n⊕
k=0

ak ⊗ x⊗k :=
n

max
k=0
{ak + kx} (18)

With
n

max
k=0
{ak + kx} := max(a0, a1 + x, . . . , an + nx).

Definition 3.18. Convex conjugate (Legendre-Fenchel). Let x ∈ R, f∗ : R → R is the convex
conjugate of f : R→ R if and only if:

f∗(x) = sup
k∈R
{kx− f(k)} (19)

Theorem 3.19. Variance-preserving coefficient initialization of Tropical activation. Let

∀k ∈ J0, nK ak = 1 (20)

Then, applying this initialization to the limit case of n → ∞ yields an equal unitary gain both
forward and backward for the following "scaled" definition of the tropical activation:

x 7→ F (x) =

√
2

n

n
max
k=0
{ak + kx} (21)

Proof. The proof is provided in Appendix E .

The tropical polynomial activation can be viewed as a generalization of the ReLU activation. Further-
more, it can be interpreted as a discrete version of the convex conjugate of a function f whose values
at the natural integers k ∈ N are f(k) = −ak effectively encoding the convex hull of the epigraph of
f , as illustrated in Figures 5 and 6.

3.5 PRACTICAL IMPLEMENTATION

In what follows, we outline the considerations we have taken in order to implement Hermite, Fourier,
and Tropical polynomial activations efficiently in PyTorch.

Weight decay. An important aspect of training learnable activations is that their learnable coefficients
should be trained without weight decay, as it could bias them toward zero.

Explicit Hermite formula. We can show by induction that the following definition is equivalent to
the one in Eq. 6:

Hen(x)

n!
=

⌊n
2 ⌋∑

m=0

(−1)m

m!(n− 2m)!

xn−2m

2m
(22)

We can see that the formula 22 can be parallelized, and is, therefore, the core of the algorithm we
have developed in native PyTorch to compute Hermite activations (see Algorithm 2).

A dedicated Hermite kernel. Along with the parallel implementation of the Hermite activation,
we developed a dedicated kernel that leverages the derivation established in C.5 for the backward
pass exploiting the fact that the derivative of a polynomial is a polynomial of lower degree and the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

following recurrence formula in the forward pass to optimize performance and memory usage (see
Algorithm 3):

Hen+1(x) = xHen(x)− nHen−1(x) (23)

Alternative Fourier formula. The definition of Fourier activation given in 3.12 is under the
Sine-Cosine form. In practice, we use the following equivalent Amplitude-Phase formulation (see
Algorithm 5):

x 7→ F (x) = a0 +
√
2

n∑
k=1

ak cos(fkx− ϕk)
k!

(24)

as it is less expensive in terms of FLOP. The learnable parameters here are initialized as follows:
∀k ∈ N∗fk = k, ϕk = π

4 and ak and a0 initialized as in 3.14. In our implementation of Fourier
activation, not only were the coefficients learnable, but also the frequencies, yielding to what is
known as “cosine basis” Mallat (2009) rather than Fourier series.

Initializing by fitting a classical activation Function. Using a family of orthonormal functions
permits an easy calculation of the initialization gain without resorting to the trick of fitting a function
to an activation whose gain is known or easy to calculate, as in Yang & Wang (2024) with Safe Padé
activation Molina et al. (2019). However, in some cases, such as continuing or fine-tuning a model that
was pretrained with a classical activation, using one of the learnable activations presented here to fit a
classical activation could still be relevant. By fitting we mean performing a Lagrange interpolation.
This could be accomplished via a direct method involving the inversion of a Vandermonde matrix
(Lagrange, or Newton’s methods), or by an iterated gradient descent method (Gauss-Jordan method).

Two precautions need to be taken, however, when performing such interpolation. The first concerns
the maximum degree that should be considered in order to fit the function on a given interval. Figure 1
(left) shows how far a Hermite activation of degree 3 can be accurately fitted, while Figure 1 (right)
shows the extent to which a Hermite activation of degree 8 can be accurately fitted. The second
precaution concerns the derivative of the activation with respect to the derivative of the target function
to be interpolated. A Lagrange interpolation of a function is not always sufficient to fit its k-th
derivatives. If we want to interpolate a function and its derivative(s) simultaneously, we refer to this
as a Hermite interpolation.

−2 0 2

0

2

4

x-axis

F(
x)

GELU
GELU deriv.
Hermite
Hermite deriv.

−2 0 2

0

1

2

3

x-axis

F(
x)

GELU
GELU deriv.
Hermite
Hermite deriv.

Figure 1: Fitting a GELU with a Hermite Activation of degree 3 (left) and of degree 8 (right).

In the case of the Fourier activation, we observe in Figure 2 (left) that a Lagrange interpolation is not
sufficient and that higher-order frequencies occur in the derivative approximation. This phenomenon
can be likened to aliasing and can be circumvented by performing a simple Hermite interpolation
instead of a Lagrange interpolation, as shown in Figure 2 (right). Berrut & Welscher (2007) examined
the solutions to this last problem.

The success in fitting classical activations with Padé approximants in Yang & Wang (2024) could
be attributed to the fact that a Padé approximant is by definition the rational function that coincides
with a function to be interpolated to the highest possible order, thus naturally achieving a Hermite
interpolation. A good fit of a non-convex function by a tropical polynomial activation is impossible
since tropical polynomials are convex by definition. Therefore, in Appendix H we show how rational
tropical activations (an extension of tropical polynomials) could, in principle, achieve this fitting.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

−10 0 10

0

5

10

x-axis

F(
x)

GELU
GELU deriv.
Fourier
Fourier deriv.

−10 0 10
0

5

10

x-axis

F(
x)

GELU
GELU deriv.
Fourier
Fourier deriv.

Figure 2: Lagrange interpolation (left) and Hermite interpolation (right) of a GELU with a Fourier
Activation of degree 6.

4 EXPERIMENTS

4.1 PRELIMINARY IMAGE CLASSIFICATION RESULTS ON CIFAR10

We trained ConvNeXt-T (Liu et al., 2022) on CIFAR-10 (Krizhevsky et al., 2009) for 300 epochs,
averaging results over 10 random seeds. The experimental setup and results for CIFAR10 classification
can be found in Appendix L. The three proposed learnable activations consistently outperformed
baseline activations on test metrics. Results are shown in Table 7 and Figures 9, 7, and 8.

4.2 DECISION BOUNDARIES ON NOISY CLASSIFICATION DATASETS

We compared the decision boundaries of four single-layer neural networks trained on a simple noisy
classification dataset, each using a different activation function to evaluate how activation choice
affects classification behavior and boundary smoothness. Details of the visualizations of decision
boundaries on multiple noisy datasets are provided in Appendix M.

(a) Hermite (b) Fourier (c) Tropical (d) GELU

Figure 3: Decision boundaries for different activation functions

4.3 VISION TASK: CONVNEXT-T IMAGE CLASSIFICATION ON IMAGENET1K

We evaluated the ConvNeXt-T model on the ImageNet1k dataset Deng et al. (2009) for single-class
image classification. The baseline ConvNeXt-T model employed GELU as the activation function
in its MLP blocks. To analyze the impact of our learnable activations, we replaced GELU with
Hermite polynomial, Fourier trigonometric, and Tropical polynomial activation functions under our
proposed initialization scheme. Each model was trained under identical conditions with fixed random
seeds to ensure reproducibility and comparability. The evaluation metrics included: training loss,
Top-1 and Top-5 validation accuracy. Table 1 and Figures 11, 12, and 13 summarize our results.
We reproduced all experiments using five different random seeds. For each trial, we report the
mean ± standard deviation at a fixed epoch. The experimental setup followed the approach and
hyperparameter configuration detailed in Liu et al. (2022).

Ablation Studies. Additionally, ablation studies were performed on this vision task to establish
the impact of the degree for the learnable activations (Table 3), the impact of our proposed initial-
ization scheme (Table 4), and if making the activation coefficients learnable was useful (Table 5).
Higher degrees generally improved performance, with all proposed activations showing consistent

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

improvements in Top-1 and Top-5 accuracy as the degree increased. Furthermore, making activation
coefficients learnable consistently resulted in better performance across all activation functions.
Initialization with the proposed method led to improvements, especially for Hermite activation, where
our derived initialization scheme outperformed GELU-based initialization.

Table 1: Training and validation results of ConvNeXt-T (28M) model on ImageNet-1k classification.
Values are reported as mean ± standard deviation over 5 seeds. p-values (two-tailed Student’s t-test
assuming equal variances) are for Val Top-1 accuracy compared to GELU.

Act. Deg. Train Loss ↓ Val Top-1(%) ↑ Val Top-5(%) ↑ FLOP FLOP/Act. p-value (Top-1)
GELU - 2.824 ± 0.0051 82.06 ± 0.072 95.92 ± 0.038 4.57G 12 -
Tropical 6 2.854 ± 0.0080 82.17 ± 0.063 95.95 ± 0.072 4.62G 3d + 1 = 19 0.0345 (*)
Fourier 6 2.759 ± 0.0167 81.64 ± 0.153 95.47 ± 0.049 4.83G 7d + 1 = 43 0.0005 (***)
Hermite 3 2.788 ± 0.0072 82.22 ± 0.064 95.97 ± 0.045 4.58G 4d + 1 = 13 0.0062 (**)

4.4 LANGUAGE TASK: GPT-2 (124M) NEXT TOKEN PREDICTION ON OPENWEBTEXT

For the language modeling task, we trained the GPT-2 model Radford et al. (2019) on the OpenWeb-
Text dataset Gokaslan & Cohen (2019) for next-token prediction. The baseline GPT-2 used GELU
activation, and we compared it against SiLU (Elfwing et al., 2018), Hermite, Fourier, and Tropical
activations under our proposed initialization scheme. All models were trained with identical hyperpa-
rameters and initialization seeds to ensure consistent and reproducible comparisons. The evaluation
metrics included: training and test losses and perplexities (which are simply the exponential of the
loss). Table 2 and Figures 15 and 14 summarize our results. We reproduced all experiments using
five different seeds. For each trial, we report the mean ± standard deviation at a fixed iteration. The
experimental design followed the guidelines established in Radford et al. (2019) and the open source
reproduction available at Karpathy (2022). We used a total batch size of 786, 432 of which a context
length of 1024 tokens for a total of 210, 000 iterations.

Table 2: Training and validation results for next-token prediction using GPT-2 (124M) model with
different activations. Values are reported as mean ± standard deviation over 5 different seeds.
Perplexity is computed as exp(loss). p-values (two-tailed Student’s t-test assuming equal variances)
compare each activation’s validation loss against GELU.

Act. Deg. Train PPL ↓ Train Loss ↓ Val PPL ↓ Val Loss ↓ FLOP p-value (Val Loss)
GELU - 19.003 ± 0.156 2.944 ± 0.0082 19.319 ± 0.076 2.961 ± 0.0039 87.52G -
SiLU - 19.324 ± 0.106 2.962 ± 0.0055 19.664 ± 0.088 2.979 ± 0.0045 87.37G 0.0001 (***)
Tropical 6 18.840 ± 0.107 2.936 ± 0.0057 19.027 ± 0.055 2.946 ± 0.0029 87.75G 0.0001 (***)
Fourier 6 18.761 ± 0.071 2.930 ± 0.0038 18.965 ± 0.154 2.941 ± 0.0086 88.69G 0.0014 (**)
Hermite 3 18.678 ± 0.093 2.926 ± 0.0049 18.821 ± 0.293 2.932 ± 0.0175 87.56G 0.0067 (**)

All experiments were conducted under fixed configurations to ensure that any observed differences
were solely due to the choice of activation function, allowing for fair and reproducible comparisons2.

4.5 FINETUNING EXPERIMENT ON CIFAR10

Using the insights from Sec. 3.5, we conducted a fine-tuning experiment in a transfer learning setting.
Specifically, we investigated whether initializing a learnable activation by fitting a classical one,
using Hermite interpolation, can improve performance when adapting a pretrained model to a new
dataset. This experiment complements our theoretical analysis by demonstrating how fitting classical
activations can serve as an effective initialization strategy. The experimental procedure and results
for activation finetuning are available in Appendix O.

2The code to reproduce the experiments is available at: https://anonymous.4open.science/r/torchortho-D76A/

8

https://anonymous.4open.science/r/torchortho-D76A/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 PARAMETERS, MEMORY, FLOP COUNT, AND EXECUTION TIME

The proposed activation functions introduce a negligible number of additional parameters. For
example, Hermite activations of degree d = 3 add only 72 parameters to ConvNeXt-Tiny (28M total),
corresponding to 0.0002%, with similarly minimal overheads for Tropical and Fourier activations.
Hermite activations leverage a recursive formulation (Alg. 3) that reduces both FLOP and required
memory (vRAM) complexity fromO(d2) toO(d), requiring only simple arithmetic per term. Fourier
and Tropical activations also scale linearly with degree (O(d)), as illustrated in Figure 17 and Table 9,
measured on CPU. On GPUs, smaller degrees benefit from vectorized computation, leading to
reduced runtime and near-constant O(1) scaling for low degrees (Figure 18, Table 10).

We further evaluated average training times per epoch across varying MLP widths and depths
(Table 11). The proposed activations can incur higher latency compared to GELU in deep networks,
but are often faster in shallower ones. Slowdowns relative to GELU were analyzed across widths
(Figure 20) and depths (Figure 19). Slowdowns are largely independent of width but increase
approximately linearly with depth, with Hermite activations showing the largest slope, followed by
Fourier and Tropical. This suggests that the proposed activations are more suitable for shallow, wide
MLPs. This observation aligns with Appendix F, where a polynomially activated MLP of arbitrary
depth is shown to be equivalent to a high-degree single-layer multivariate polynomial.

6 DISCUSSION

The results presented in this paper demonstrate the potential of using learnable activation functions
based on orthogonal function bases and tropical polynomials in large-scale neural network tasks. Our
experiments on ImageNet-1K and OpenWebText with deep models such as ConvNeXt and GPT-2
show for the first time that such activations can lead to improvements over traditional static functions
like ReLU and GELU, both in terms of image classification and language modeling.

This challenges the long-standing notion that polynomial activations are inherently unsuitable for
deep learning, as demonstrated by prior work. Our approach provides empirical evidence that, with
appropriate initialization, polynomial activations can indeed be competitive. One of the key takeaways
from our findings is the effectiveness of our proposed variance-preserving initialization scheme. The
choice of orthogonal functions plays an essential role in achieving a closed-form expression for
the second-order moment. Furthermore, the use of tropical polynomials, which are not orthogonal,
introduces a FLOP-light alternative approach to polynomial activations.

While our approach shows promise, there are several avenues for future exploration. Extending the
framework to other activation families, such as wavelets is straightforward. Multiplying the Hermite
activation presented in this work by the term exp (−x2/2) gives what is known as Hermitian wavelets
Brackx et al. (2008), and applying the same to the Fourier activation yields the Morlet wavelet
Grossmann & Morlet (1984) (or Gabor wavelet Gabor (1946)). Wavelets retain good orthogonal
properties with respect to the adequate scalar product and the calculation of the second moment
is slightly modified to take account of the additional decaying exponential term. Using wavelet
activations instead of polynomials could enhance variance stability by providing finite function
support, with potential bio-plausibility implications. By expressing a Fourier series in its complex
form, a network with Fourier activation can be viewed as a complex-valued neural network, offering
a framework for modeling neuronal synchronization through the phase and amplitude relationships of
oscillatory brain activity. Extension to other non-orthogonal functions, such as rational functions,
could be done for example by means of a Laplace transform of the Fourier activation.

7 CONCLUSION

In this work, we introduced a novel framework for integrating learnable activation functions based on
orthogonal function bases and tropical polynomials into deep neural networks, addressing challenges
like variance preservation and stable gradient flow. Extensive experiments with the ConvNeXt model
on ImageNet1k and the GPT-2 model on OpenWebText showed that learnable polynomial activations
match or exceed traditional activation functions during large-scale training and fine-tuning on smaller
tasks, demonstrating their practical viability and challenging conventional beliefs about polynomial
activations in neural networks. Our results pave the way for representing deep neural networks as
polynomial mappings, with future work focused on exploring a careful relaxation of these last.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alireza Afzal Aghaei. fkan: Fractional kolmogorov-arnold networks with trainable jacobi basis
functions. arXiv preprint arXiv:2406.07456, 2024a.

Alireza Afzal Aghaei. rkan: Rational kolmogorov-arnold networks. arXiv preprint arXiv:2406.14495,
2024b.

Javad Alavi and Hossein Aminikhah. Orthogonal cubic splines for the numerical solution of nonlinear
parabolic partial differential equations. MethodsX, 10:102190, 2023.

VI Arnold. On the presentation of continuous functions of three variables by superpositions of
continuous functions of two variables. Sbornik: Mathematics, 48(90):3–74, 1959.

Vladimir I Arnold. On functions of three variables. Collected Works: Representations of Functions,
Celestial Mechanics and KAM Theory, 1957–1965, pp. 5–8, 2009a.

Vladimir I Arnold. On the representation of functions of several variables as a superposition of
functions of a smaller number of variables. Collected works: Representations of functions, celestial
mechanics and KAM theory, 1957–1965, pp. 25–46, 2009b.

Jean-Paul Berrut and Annick Welscher. Fourier and barycentric formulae for equidistant hermite
trigonometric interpolation. Applied and Computational Harmonic Analysis, 23(3):307–320, 2007.

Koushik Biswas, Shilpak Banerjee, and Ashish Kumar Pandey. Orthogonal-padé activation functions:
Trainable activation functions for smooth and faster convergence in deep networks. arXiv preprint
arXiv:2106.09693, 2021.

YEVGENIY Bodyanskiy and SERHII Kostiuk. Learnable extended activation function for deep
neural networks. International Journal of Computing (Oct. 2023), pp. 311–318, 2023.

Pakshal Bohra, Joaquim Campos, Harshit Gupta, Shayan Aziznejad, and Michael Unser. Learning
activation functions in deep (spline) neural networks. IEEE Open Journal of Signal Processing, 1:
295–309, 2020.

Fred Brackx, Hennie De Schepper, Nele De Schepper, and Franciscus Sommen. Hermitian clifford-
hermite wavelets: an alternative approach. Bulletin of the Belgian mathematical Society-Simon
Stevin, 15(1):87–107, 2008.

Jürgen Braun. An application of Kolmogorov’s superposition theorem to function reconstruction in
higher dimensions. PhD thesis, Universitäts-und Landesbibliothek Bonn, 2009.

Jürgen Braun and Michael Griebel. On a constructive proof of kolmogorov’s superposition theorem.
Constructive approximation, 30:653–675, 2009.

Adhemar Bultheel, Pablo Gonzalez-Vera, Erik Hendriksen, and Olav Njåstad. Orthogonal rational
functions and continued fractions. Special Functions 2000: Current Perspective and Future
Directions, pp. 87–109, 2001.

Yueyang Cang, Li Shi, et al. Can kan work? exploring the potential of kolmogorov-arnold networks
in computer vision. arXiv preprint arXiv:2411.06727, 2024.

D Castellanos and William E Rosenthal. Rational chebyshev approximations of analytic functions.
The Fibonacci Quarterly, 31(3):205–215, 1993.

Ghinwa F Choueiter and James R Glass. An implementation of rational wavelets and filter design for
phonetic classification. IEEE Transactions on Audio, Speech, and Language Processing, 15(3):
939–948, 2007.

Grigorios G Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Yannis Panagakis, Jiankang Deng,
and Stefanos Zafeiriou. P-nets: Deep polynomial neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7325–7335, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Grigorios G Chrysos, Bohan Wang, Jiankang Deng, and Volkan Cevher. Regularization of polynomial
networks for image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16123–16132, 2023.

Charles K Chui and Jian-zhong Wang. A cardinal spline approach to wavelets. Proceedings of the
American Mathematical Society, 113(3):785–793, 1991.

Madison Cooley, Shandian Zhe, Robert M Kirby, and Varun Shankar. Polynomial-augmented neural
networks (panns) with weak orthogonality constraints for enhanced function and pde approximation.
arXiv preprint arXiv:2406.02336, 2024.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

M Deepthi, GNVR Vikram, and P Venkatappareddy. Development of a novel activation function
based on chebyshev polynomials: an aid for classification and denoising of images. The Journal of
Supercomputing, 79(18):20515–20531, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Daniele Fakhoury, Emanuele Fakhoury, and Hendrik Speleers. Exsplinet: An interpretable and
expressive spline-based neural network. Neural Networks, 152:332–346, 2022.

Haishuo Fang, Ji-Ung Lee, Nafise Sadat Moosavi, and Iryna Gurevych. Transformers with learnable
activation functions. arXiv preprint arXiv:2208.14111, 2022.

Dennis Gabor. Theory of communication. part 1: The analysis of information. Journal of the
Institution of Electrical Engineers-part III: radio and communication engineering, 93(26):429–
441, 1946.

Tianxiang Gao, Siyuan Sun, Hailiang Liu, and Hongyang Gao. Global convergence in neural
odes: Impact of activation functions. In The Thirteenth International Conference on Learning
Representations, 2025.

James F Geer. Rational trigonometric approximations using fourier series partial sums. Journal of
Scientific Computing, 10:325–356, 1995.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus, 2019. URL http://Skylion007.g
ithub.io/OpenWebTextCorpus.

Mohit Goyal, Rajan Goyal, and Brejesh Lall. Learning activation functions: a new paradigm of
understanding neural networks. arxiv 2019. arXiv preprint arXiv:1906.09529, 2019.

Alexander Grossmann and Jean Morlet. Decomposition of hardy functions into square integrable
wavelets of constant shape. SIAM journal on mathematical analysis, 15(4):723–736, 1984.

Baran Hashemi, Roderic G Corominas, and Alessandro Giacchetto. Can transformers do enumerative
geometry? arXiv preprint arXiv:2408.14915, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Robert Hecht-Nielsen. Kolmogorov’s mapping neural network existence theorem. In Proceedings of
the international conference on Neural Networks, volume 3, pp. 11–14. IEEE press New York, NY,
USA, 1987.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Moein Heidari, Reza Rezaeian, Reza Azad, Dorit Merhof, Hamid Soltanian-Zadeh, and Ilker Haci-
haliloglu. Single-layer learnable activation for implicit neural representation (SL2 A-INR). arXiv
preprint arXiv:2409.10836, 2024.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks. Neural networks, 3(5):551–560,
1990.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Boris Igelnik and Neel Parikh. Kolmogorov’s spline network. IEEE transactions on neural networks,
14(4):725–733, 2003.

Vugar Ismailov. Addressing common misinterpretations of kart and uat in neural network literature.
arXiv preprint arXiv:2408.16389, 2024.

Jean-Pierre Kahane. Sur le théorème de superposition de kolmogorov. Journal of Approximation
Theory, 1975.

Andrej Karpathy. NanoGPT, 2022. URL https://github.com/karpathy/nanoGPT.

Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference
on learning theory, pp. 2306–2327. PMLR, 2020.

Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial neural
networks. Advances in neural information processing systems, 32, 2019.

Andrei Nikolaevich Kolmogorov. On the representation of continuous functions of many variables by
superposition of continuous functions of one variable and addition. In Doklady Akademii Nauk,
volume 114, pp. 953–956. Russian Academy of Sciences, 1957.

Mario Köppen. On the training of a kolmogorov network. In Artificial Neural Networks—ICANN
2002: International Conference Madrid, Spain, August 28–30, 2002 Proceedings 12, pp. 474–479.
Springer, 2002.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Technical report, 2009.

Kaie Kubjas, Jiayi Li, and Maximilian Wiesmann. Geometry of polynomial neural networks. arXiv
preprint arXiv:2402.00949, 2024.

Věra Kůrková. Kolmogorov’s theorem and multilayer neural networks. Neural Networks, 5(3):501–
506, 1992. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(92)90012-8. URL https:
//www.sciencedirect.com/science/article/pii/0893608092900128.

Miklós Laczkovich. A superposition theorem of kolmogorov type for bounded continuous functions.
Journal of Approximation Theory, 269:105609, 2021.

Ming-Jun Lai and Zhaiming Shen. The kolmogorov superposition theorem can break the curse of
dimensionality when approximating high dimensional functions. arXiv preprint arXiv:2112.09963,
2021.

Yann LeCun, Corinna Cortes, and Christopher Burges. The mnist database of handwritten digits,
1998.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural networks,
6(6):861–867, 1993.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

12

https://github.com/karpathy/nanoGPT
https://www.sciencedirect.com/science/article/pii/0893608092900128
https://www.sciencedirect.com/science/article/pii/0893608092900128

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Vishnu Suresh Lokhande, Songwong Tasneeyapant, Abhay Venkatesh, Sathya N Ravi, and Vikas
Singh. Generating accurate pseudo-labels in semi-supervised learning and avoiding overconfident
predictions via hermite polynomial activations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11435–11443, 2020.

GG Lorentz. Approximation of functions, athena series. Selected Topics in Mathematics, 1966.

Stéphane Mallat. Chapter 4 - time meets frequency. In Mallat Stéphane (ed.), A Wavelet Tour of Signal
Processing (Third Edition), pp. 89–153. Academic Press, Boston, third edition edition, 2009. ISBN
978-0-12-374370-1. doi: https://doi.org/10.1016/B978-0-12-374370-1.00008-2. URL https:
//www.sciencedirect.com/science/article/pii/B9780123743701000082.

Marc Martinez-Gost, Ana Pérez-Neira, and Miguel Ángel Lagunas. Enn: A neural network with dct
adaptive activation functions. IEEE Journal of Selected Topics in Signal Processing, 2024.

JC Mason, Giuseppe Rodriguez, and Sebastiano Seatzu. Orthogonal splines based on b-splines—with
applications to least squares, smoothing and regularisation problems. Numerical Algorithms, 5:
25–40, 1993.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5:115–133, 1943.

Ali Mehrabian, Parsa Mojarad Adi, Moein Heidari, and Ilker Hacihaliloglu. Implicit neural represen-
tations with fourier kolmogorov-arnold networks. arXiv preprint arXiv:2409.09323, 2024.

Alejandro Molina, Patrick Schramowski, and Kristian Kersting. Pad\’e activation units: End-to-end
learning of flexible activation functions in deep networks. arXiv preprint arXiv:1907.06732, 2019.

Hadrien Montanelli, Haizhao Yang, and Qiang Du. Deep relu networks overcome the curse of
dimensionality for bandlimited functions. arXiv preprint arXiv:1903.00735, 2019.

Nafise Sadat Moosavi, Quentin Delfosse, Kristian Kersting, and Iryna Gurevych. Adaptable adapters.
arXiv preprint arXiv:2205.01549, 2022.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Burak Nebioglu and Alexander I Iliev. Higher order orthogonal polynomials as activation functions
in artificial neural networks. Serdica Journal of Computing, 17(1):1–16, 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, pp. 7. Granada, 2011.

Kurt Pasque, Christopher Teska, Ruriko Yoshida, Keiji Miura, and Jefferson Huang. Tropical
decision boundaries for neural networks are robust against adversarial attacks. arXiv preprint
arXiv:2402.00576, 2024.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica, 8:143–195,
1999.

Evgenii Pishchik. Trainable activations for image classification. Preprints, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI Blog, 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

13

https://www.sciencedirect.com/science/article/pii/B9780123743701000082
https://www.sciencedirect.com/science/article/pii/B9780123743701000082

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Seyd Teymoor Seydi. Exploring the potential of polynomial basis functions in kolmogorov-arnold net-
works: A comparative study of different groups of polynomials. arXiv preprint arXiv:2406.02583,
2024.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Georgios Smyrnis and Petros Maragos. Tropical polynomial division and neural networks. arXiv
preprint arXiv:1911.12922, 2019.

David A Sprecher. On the structure of continuous functions of several variables. Transactions of the
American Mathematical Society, 115:340–355, 1965.

David A Sprecher. A numerical implementation of kolmogorov’s superpositions. Neural networks, 9
(5):765–772, 1996.

David A Sprecher. A numerical implementation of kolmogorov’s superpositions ii. Neural networks,
10(3):447–457, 1997.

Mohammadamin Tavakoli, Forest Agostinelli, and Pierre Baldi. Splash: Learnable activation
functions for improving accuracy and adversarial robustness. Neural Networks, 140:1–12, 2021.

L. N. Trefethen and M. H. Gutknecht. Padé, stable Padé, and Chebyshev-Padé approximation, pp.
227–264. Clarendon Press, USA, 1987. ISBN 0198536127.

Joseph Turian, James Bergstra, and Yoshua Bengio. Quadratic features and deep architectures for
chunking. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, Companion Volume:
Short Papers, pp. 245–248, 2009.

Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-i
mage-models, 2019.

Tingxiong Xiao, Weihang Zhang, Yuxiao Cheng, and Jinli Suo. Hope: High-order polynomial
expansion of black-box neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Xingyi Yang and Xinchao Wang. Kolmogorov-arnold transformer. arXiv preprint arXiv:2409.10594,
2024.

Ruriko Yoshida, Georgios Aliatimis, and Keiji Miura. Tropical neural networks and its applications
to classifying phylogenetic trees. In 2024 International Joint Conference on Neural Networks
(IJCNN), pp. 1–9. IEEE, 2024.

Runpeng Yu, Weihao Yu, and Xinchao Wang. Kan or mlp: A fairer comparison. arXiv preprint
arXiv:2407.16674, 2024.

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. In
International Conference on Machine Learning, pp. 5824–5832. PMLR, 2018.

Kuang Zheng and Cui Minggen. Rational filter wavelets. Journal of mathematical analysis and
applications, 239(2):227–244, 1999.

Jun Zhou, Huimin Qian, Xinbiao Lu, Zhaoxia Duan, Haoqian Huang, and Zhen Shao. Polynomial
activation neural networks: Modeling, stability analysis and coverage bp-training. Neurocomputing,
359:227–240, 2019.

Zhijian Zhuo, Ya Wang, Yutao Zeng, Xiaoqing Li, Xun Zhou, and Jinwen Ma. Polynomial
composition activations: Unleashing the dynamics of large language models. arXiv preprint
arXiv:2411.03884, 2024.

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A SCHEMATIC OF BASIS-MLP

Figure 4: A classical MLP (linear + ReLU) vs Basis-MLP (linear + learnable basis function) blocks.

B FORWARD AND BACKWARD SECOND MOMENT CALCULATION FOR THE
RELU ACTIVATION FUNCTION

B.1 SECOND MOMENT OF THE RELU ACTIVATION FUNCTION

The Rectified Linear Unit (ReLU) activation function Nair & Hinton (2010), defined as:
ReLU(x) = max(0, x) (25)

is commonly used in neural networks due to its simplicity and effective gradient propagation. When x
is drawn from a standard normal distribution x ∼ N (0, 1), the second moment of the ReLU function
is:

E[ReLU(x)2] =

∫ ∞

0

x2
1√
2π
e−x2/2dx =

1

2
(26)

B.2 SECOND MOMENT OF THE DERIVATIVE OF RELU

The derivative of ReLU, given by:

d

dx
ReLU(x) =

{
1, x > 0,

0, x ≤ 0,
(27)

acts as a binary indicator of positive inputs. The second moment of this derivative when x ∼ N (0, 1)
is:

E

[(
d

dx
ReLU(x)

)2
]
=

∫ ∞

0

1√
2π
e−x2/2dx =

1

2
(28)

This result matches the variance of the ReLU function itself and validates the gain of 2 for variance-
preserving weight initialization with ReLU activations.

C PROOF OF THE THEOREM 3.8

Definition C.1. We define the Hermite activation F : R → R with its learnable coefficients ∀k ∈
J0, nK ak ∈ R as:

x 7→ F (x) =

n∑
k=0

ak
k!

Hek(x) (29)

Property C.2. ∀m,n ∈ N2, we have:∫ ∞

−∞
Hem(x)Hen(x)e

− x2

2 dx =
√
2πn!δnm (30)

With δnm the Kronecker delta.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proposition C.3. The second moment of this activation with respect to N (0, 1) is:

E
[
F (x)2

]
=

n∑
k=0

a2k
k!

(31)

Proof. The proof relies on the orthonormality property C.2.

The orthonormality property C.2 means that: ∀m,n ∈ N2,∫ ∞

−∞

Hen(x)
2

n!

e−
x2

2

√
2π

dx = 1 (32)

and if m ̸= n ∫ ∞

−∞
Hem(x)Hen(x)

e−
x2

2

√
2π

dx = 0 (33)

Given the definition (Def. C.1) of a Hermite activation F , we have:

E
[
F (x)2

]
=

∫ +∞

−∞
F 2(x)

e−
x2

2

√
2π

dx (34)

=

∫ +∞

−∞

(
n∑

k=0

ak
k!

Hek(x)

)2
e−

x2

2

√
2π

dx (35)

Using the orthogonal property Eq. 33, the cross terms cancel out, and we have:

E
[
F (x)2

]
=

∫ +∞

−∞

n∑
k=0

a2k
(k!)2

Hek(x)
2 e

− x2

2

√
2π

dx (36)

=

n∑
k=0

a2k
(k!)2

∫ +∞

−∞
Hek(x)

2 e
− x2

2

√
2π

dx (37)

Given the normality property Eq. 32, we have

E
[
F (x)2

]
=

n∑
k=0

a2k
k!

∫ +∞

−∞

Hek(x)
2

k!

e−
x2

2

√
2π

dx (38)

=

n∑
k=0

a2k
k!

(39)

Having designed the initialization gain for the activation F (Eq. 8) so as it equals 1, we now need to
enforce this same gain for its derivative. Indeed, we are going to use the gradient descent algorithm to
train our learnable activation networks, and having an activation gradient of high (respectively low)
variance could lead to exploding (respectively vanishing) gradients, a nondesirable property for deep
neural networks trained with gradient backpropagation.
Property C.4. The following recurrence property is derived directly from the equation 6. ∀k ∈ N
∀x ∈ R:

He′k(x) = xHek(x)−Hek+1(x) (40)

Property C.5. The following property is shown by induction and by using the previous property C.4.
∀k ∈ N∗ ∀x ∈ R:

He′k(x) = kHek−1(x) (41)
Proposition C.6. Using the last property and by the linearity of the integral, the derivative of F
(Def. C.1), F ′ : R→ R is written as follows:

x 7→ F ′(x) =

n∑
k=1

ak
(k − 1)!

Hek−1(x) (42)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Remark C.7. A first remark here is that ∀n > 2: F ′ is unbounded (lim
x→∞

F ′(x)→∞). This means
that F is not Lipschitz continuous. Lipschitz continuity is often desired (or even required) when
training a deep neural network using gradient backpropagation. However, by a suitable initial choice
of the coefficients (ak)k∈J0,nK we can keep the Lipschitz constant under control.
Proposition C.8. The second moment of the derivative of the Hermite activation is:

E
[
F ′(x)2

]
=

n∑
k=1

a2k
(k − 1)!

(43)

Proof. Knowing that ∀k ∈ N∗ ∀x ∈ R:

He′k(x) = kHek−1(x) (44)

The definition of F ′ becomes:

F ′ : R→ R

x 7→ F ′(x) =

n∑
k=1

kak
k!

Hek−1(x) (45)

Thus, the second-order moment of F ′ is:

E
[
F ′(x)2

]
=

∫ +∞

−∞

(
n∑

k=1

ak
(k − 1)!

Hek−1(x)

)2
e−

x2

2

√
2π

dx (46)

By the orthogonal property Eq. 33, the cross terms cancel out, and we have:

E
[
F ′(x)2

]
=

∫ +∞

−∞

n∑
k=1

a2k
((k − 1)!)2

Hek−1(x)
2 e

− x2

2

√
2π

dx (47)

=

n∑
k=1

a2k
(k − 1)!

∫ +∞

−∞

Hek−1(x)
2

(k − 1)!

e−
x2

2

√
2π

dx (48)

(49)

By the normality property Eq. 32, we finally have:

E
[
F ′(x)2

]
=

n∑
k=1

a2k
(k − 1)!

(50)

Proposition C.9. Equality between propositions C.3 and C.8 imposes that:

a20 =

n∑
k=1

(k − 1)

k!
a2k (51)

=

n∑
k=1

(
1

(k − 1)!
− 1

k!

)
a2k (52)

To satisfy the forward-backward gain equality, we could initialize the coefficients (ak)k∈J0,nK such
as ∀n ∈ N∗:

∀k ∈ J1, nK ak = 1 and a0 =

√
1− 1

n!
(53)

This initialization works in practice for all n. Furthermore, as the term 1
n! in a0 vanishes quickly with

n→ +∞, for larger n we could initialize all the coefficients to 1 including a0.

In the limit case, by a simple injection of ak = 1 in Prop. C.9 and then in Prop. C.8, we obtain the
result.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D PROOF OF THE THEOREM 3.13

Definition D.1. We consider the following Fourier activation F : R→ R:

x 7→ F (x) = a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx))

k!
(54)

where (ak)k∈N and (bk)k∈N∗ are real learnable coefficients.

Property D.2. The equivalent of the C.2 property for trignometric functions is given by ∀m,n ∈ Z2:

∫ π

−π

cos(mx) cos(nx)dx = πδnm∫ π

−π

sin(mx) sin(nx)dx = πδnm∫ π

−π

cos(mx) sin(nx)dx = 0

(55)

With δnm the Kronecker delta function.

Proposition D.3. The second moment of this activation is:

E[F (x)2] = a20 +
1

2

n∑
k=1

(
a2k + b2k

)
(k!)2

(56)

Proof. The proof relies on the orthonormality property D.2.

The random variable x is assumed to follow a uniform distribution on the interval [−π, π], denoted
as:

x ∼ U (−π, π) (57)

To compute the second moment of the Fourier activation F (x), we need to compute the expected
value of F (x)2:

E[F (x)2] =
∫ π

−π

F (x)2p(x) dx (58)

where p(x) is the probability density function (PDF) of the uniform distribution:

p(x) =
1

2π
, x ∈ [−π, π] (59)

Taking the square of the definition in Eq. 54 gives:

F (x)2 =

(
a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx))

k!

)2

(60)

Using the orthogonal property D.2 and the linearity of the integral, we have:

E[F (x)2] =a20 +
1

2π

n∑
k=1

1

(k!)2

∫ π

−π

a2k cos
2(kx) + b2k sin

2(kx) dx (61)

=a20 +
1

2π

n∑
k=1

a2k
(k!)2

(
sin(2πk)

2k
+ π

)
+

b2k
(k!)2

(
π − sin(2πk)

2k

)
(62)

The second moment simplifies to:

E[F (x)2] = a20 +
1

2

n∑
k=1

(
a2k + b2k

)
(k!)2

(63)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Next, we compute the second moment of the derivative of the Fourier activation F ′. The derivative of
F is given by:
Proposition D.4. The derivative of the Fourier activation F ′ : R→ R is given by:

F ′(x) =

n∑
k=1

1

(k − 1)!
(−ak sin(kx) + bk cos(kx)) (64)

Remark D.5. Contrary to the remark in C.7, F ′ is bounded.

∀x ∈ R : |F ′(x)| ≤ max(|ak|, |bk|)k∈J1,nK

n∑
k=1

1

(k − 1)!
≤ emax(|ak|, |bk|)k∈J1,nK (65)

This means that in the case of a Fourier activation, F is Lipschitz continuous.
Proposition D.6. The second moment of the derivative of the Fourier activation is:

E
[
F ′(x)2

]
=

1

2

n∑
k=1

1

((k − 1)!)2
(a2k + b2k) (66)

Proof. An orthonormality argument as for the proof in the forward case suffices.

Proposition D.7. Equality between D.3 and D.6 imposes that:

a20 =

n∑
k=1

(k2 − 1)

(k!)2
(a2k + b2k) (67)

To satisfy the forward-backward gain equality, we could again initialize the coefficients such as
∀n ∈ N∗:

∀k ∈ J1, nK ak = bk = 1 and a0 =

√
1− 1

(n!)2
(68)

This initialization works in practice for all n. Furthermore, as the term 1
(n!)2 in a0 vanishes quickly

with n→ +∞, for larger n we could initialize all the coefficients to 1 including a0.

In the limit case, by a simple injection of ak = 1 in Prop. D.7 and then in Prop. D.6, we obtain the
result.
Remark D.8. For an input x of distribution x ∼ U(−

√
3,
√
3), which has a variance of Var[x] = 1

and which is more in line with deep neural networks that seek a unitary variance preserving property
across layers, we could rescale the fundamental frequency given in the definition of F in Def. D.1 by
redefining it as:

x 7→ F (x) = a0 +

n∑
k=1

1

k!

(
ak cos(k

π√
3
x) + bk sin(k

π√
3
x)

)
(69)

The computation of the second moment stays the same except for a factor π√
3

. In general if
x ∼ U(−l, l), l ∈ R∗

+, and if ω ∈ Z is the fundamental frequency, this last should be scaled by
ω′ = π

l ω.

E PROOF OF THE THEOREM 3.19

Proof. Consider the function:

F (x) =

√
2

n

n
max
k=0
{1 + kx} =

√
2

n

(
1 +

n
max
k=0

kx

)
(70)

Note that since x ∈ R, the maximum over k depends on the sign of x:

• If x > 0, then maxnk=0 {kx} = nx.
• If x ≤ 0, then maxnk=0 {kx} = 0 (achieved at k = 0).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Thus, we can write

F (x) =

{√
2

n (1 + nx) =
√
2x+

√
2

n , x > 0√
2

n , x ≤ 0
(71)

We now analyze the variance of F (x) under the assumption that x ∼ N (0, 1) (standard normal
input):

As n→∞, the function becomes approximately:

F (x) ≈
{√

2x, x > 0

0, x ≤ 0
(72)

This is similar to a scaled ReLU: F (x) ≈
√
2 ·max(0, x), which we know from Appendix B has

unitary forward and backward gains.

F DEEP POLYNOMIALLY ACTIVATED NEURAL NETWORKS ARE
MULTIVARIATE POLYNOMIAL MAPPINGS

Deep MLPs are compositions of affine transformations and activation functions applied layer by layer.
When the activation functions are polynomial, the entire network can be expressed as a polynomial
mapping.
Definition F.1. Let n,m ∈ N. A function F : Rn → Rm is called a polynomial mapping if each
component function Fi : Rn → R, for i = 1, . . . ,m, is a polynomial in n variables. Explicitly, this
means that for each i, Fi has the form:

Fi(x1, . . . , xn) =
∑

|α|≤di

ci,αx
α1
1 xα2

2 · · ·xαn
n , (73)

where the sum is taken over all multi-indices α = (α1, . . . , αn) ∈ Nn such that |α| = α1 + α2 +
· · ·+ αn ≤ di, ci,α ∈ R are real coefficients, and di ∈ N.
Definition F.2. A deep neural network with L layers, input dimension n, and output dimension m is
a function F : Rn → Rm of the form:

F (x) =WLσ(WL−1σ(· · ·σ(W1x+ b1) · · ·) + bL−1) + bL, (74)

where ∀i ∈ J1, LK Ci ∈ N∗. Each Wi ∈ RCi×Ci−1 is a weight matrix, bi ∈ RCi is a bias vector, and
σ is an activation function applied element-wise.
Proposition F.3. Let F : Rn → Rm be a deep neural network with polynomial activation functions
of degree d. Then F is a polynomial mapping of degree at most dL. Furthermore, any L-layer MLP
could be collapsed into an equivalent 3-layer network with the middle layer being a polynomial
mapping of degree at most dL.

Proof. The proof proceeds by induction on the number of layers L and is detailed in what follows.

Base case: For L = 1, the network takes the form

F (x) =W1σ(W0x+ b0) + b1.

Since σ is a polynomial of degree d, applying it to the affine transformation W0x + b0 yields a
polynomial mapping of degree at most d. Therefore, F (x) is a polynomial mapping of degree at
most d.

Inductive step: Assume the statement holds for L− 1 layers, meaning the network FL−1(x) is a
polynomial mapping of degree at most dL−1. For the L-layer case, we have

F (x) =WLσ(FL−1(x)) + bL.

Since σ is a polynomial of degree d, applying it to FL−1(x) results in a polynomial of degree at most
d · dL−1 = dL. Thus, by induction, the statement holds for all L ≥ 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Corollary F.4. Any deep neural network with polynomial activation functions realizes a polynomial
mapping whose degree grows exponentially with the number of layers.

Remark F.5. The total number of monomial terms in this mapping is
(
dL+n
dL

)
.

Remark F.6. An equivalent consideration for trigonometric polynomials can be established by
approximation, but will not be covered here.

G ALGORITHMS

Algorithm 1 Initialization of Hermite Grid and Coefficients

Input: Polynomial degree n
Output: Coefficients tensor coeffs, Grid of powers tensor grid

Initialize coeffs and grid as zero matrices of shape [n+ 1, n//2 + 1]
for i = 0 to n do

for j = 0 to n
2 do

if j ≤ i
2 then

coeffs[i][j]← (−1)je(− log(j!)−log((i−2j)!)−j log(2))

grid[i][j]← i− 2j
else

coeffs[i][j]← 0
grid[i][j]← 0

end if
end for

end for
return coeffs, grid

Algorithm 2 Hermite Activation Function Forward Pass

Input: Input tensor x, polynomial degree n
Parameters: Learnable polynomial coefficients A ∈ Rn

Output: Output tensor after applying Hermite activation function

coeffs, grid← Initialize_coeffs_grid()
Procedure Forward(x):
x← x.repeat(n+ 1).repeat(n//2 + 1)
x← |x|grid ⊙ sign(x)grid

x← x@coeffs
x← x@A
return x

End Procedure

Algorithm 3 Hermite Forward CUDA Kernel

Input: Input tensor x, degree n, output tensor out
Output: Computed Hermite polynomials up to degree n

Procedure HermiteForwardCUDA(x, n, out):
for i in parallel index size(x):

out[i · n]← 1.0
if n > 1: out[i · n+ 1]← x[i]
for k = 2 to n:

out[i · n+ k]← x[i] · out[i · n+ k − 1]− (k − 1) · out[i · n+ k − 2]
End Procedure

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 4 Hermite Backward CUDA Kernel

Input: Input tensor x, degree n, output tensor out, gradient tensor grad_out
Output: Computed gradients for Hermite polynomials

Procedure HermiteBackwardCUDA(x, n, out, grad_out):
for i in parallel index size(grad_out):

grad← 0.0
for k = 1 to n:

grad← grad + x[i · n+ k] · k · out[i · n+ k − 1]
grad_out[i]← grad

End Procedure

Algorithm 5 Fourier Activation Function Forward Pass

Input: Input tensor x, degree n
Parameters: Learnable coefficients A ∈ Rn, fundamental a ∈ R, phases P ∈ Rn, frequencies
F ∈ Rn,
Output: Output tensor after applying Fourier activation function

Procedure FourierActivation(x):
x← x.repeat(n+ 1)
x← F ⊙ x− P
x←

√
2 cos(x)

x← x@A
x← x+ a
return x

End Procedure

Algorithm 6 Tropical Activation Function Forward Pass

Input: Input tensor x, degree n
Parameters: Learnable coefficients A ∈ Rn

Output: Output tensor after applying Tropical activation function

powers← range(0,n+1)
Procedure Forward(x):
x← x.repeat(n+ 1)
x←

√
2/n ·max(x⊙ powers +A, dim = −1)

return x
End Procedure

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

H RATIONAL TROPICAL ACTIVATION

Definition H.1. The tropical quotient ⊘ of x over y is defined as:

x⊘ y := x− y (75)

Definition H.2. The tropical rational activation F is defined as the quotient of two tropical polyno-
mials F1 and F2 of degree m,n ∈ N2 respectively.

F : R→ R
F (x) 7→ F1(x)⊘ F2(x) := F1(x)− F2(x) (76)

An example of fitting a classical activation (GELU) with a rational tropical activation is shown in
Figure 5. Rational tropical activation is understood here in the general sense, i.e., with real powers.

−6 −4 −2 0 2 4 6

0

2

4

6

x-axis

F(
x)

GELU
GELU deriv.
Tropical Rat.
Tropical Rat. deriv.

Figure 5: Hermite interpolation of a GELU with a Tropical Rational Activation of degree 6 in both
the numerator and the denominator.

An example of fitting a convex function (x 7→ x2

2) with a polynomial tropical function (in the general
sense) is shown in Figure 6.

−6 −4 −2 0 2 4 6

0

5

10

x-axis

F(
x)

x2

2
3

max
k=−3

{kx −
k2

2
}

Figure 6: Interpolation of
x2

2
function by the Tropical-Laurent polynomial (with potentially negative

powers)
3

max
k=−3

{kx− k2

2
} of degree 6.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

I ABLATION STUDIES

Table 3: Ablation studies for the degree of the activation on ConvNeXt-T model.

Activation Degree Train Loss Val Top-1 (%) Val Top-5 (%)

Tropical 1 2.925 81.60 95.73
Tropical 3 2.866 82.01 95.91
Tropical 5 2.863 82.18 96.00
Tropical 6 2.857 82.20 95.90

Fourier 1 2.872 80.29 95.03
Fourier 3 2.850 80.61 95.26
Fourier 5 2.844 80.69 95.41
Fourier 6 2.837 80.93 95.44

Hermite 2 2.833 81.66 95.71
Hermite 3 2.790 82.34 96.03

Table 4: Ablation studies for the initialization of the activation on ConvNeXt-T model.

Activation Degree Initialized from Train Loss Val Top-1 (%) Val Top-5 (%)

Fourier 6 GELU 2.775 81.91 95.77
Fourier 6 Thrm. 3.13 2.837 80.93 95.44

Hermite 3 GELU 2.809 82.04 95.91
Hermite 3 Thrm. 3.8 2.790 82.34 96.03

Table 5: Ablation studies for the learnability of the parameters of the activation on ConvNeXt-T
model.

Activation Degree Learnable? Train Loss Val Top-1 (%) Val Top-5 (%)

Tropical 6 × 3.560 76.31 93.09
Tropical 6

√
2.857 82.20 95.90

Fourier 6 × 3.181 79.51 94.60
Fourier 6

√
2.837 80.93 95.44

Hermite 3 × 3.411 78.48 94.20
Hermite 3

√
2.790 82.34 96.03

Table 6: Ablation studies for the clamping in the Hermite activation on ConvNeXt-T model.

Activation Degree Clamped? Train Loss Val Top-1 (%) Val Top-5 (%)

Hermite 3
√

2.772 81.98 95.81
Hermite 3 × 2.790 82.34 96.03

J A BRIEF DIGRESSION ON KOLMOGOROV ARNOLD NETWORKS (KANS)

Kolmogorov-Arnold networks Liu et al. (2024) have been presented as a potential alternative to
Multilayer-Perceptrons (MLPs), promoting several merits such as greater accuracy, fewer learnable
parameters, and better interpretability. While the first two advantages could only be demonstrated
for simple cases in the (Liu et al., 2024) article, the third benefit is more straightforward, as these
networks overcome the “black-box” aspect of traditional non-linear activations MLPs by allowing

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

the activation to be polynomial, piece-wise polynomial, or rational, as in Yang & Wang (2024). From
there, having learned the weights of the network and those of the activation, it becomes clear what
approximation these functions (polynomial, rational, or trigonometric) have converged to.

Rather than providing a direct application of the celebrated Kolmogorov–Arnold representation theo-
rem (KART) Kolmogorov (1957); Arnold (1959), the recent work on KAN Liu et al. (2024) appears to
take inspiration from it in a more figurative sense. For clarity, we recall that the Kolmogorov–Arnold
representation theorem, cited below, states that any continuous multivariate function f : [0, 1]n → R
can be represented as a composition of addition and some functions of one variable denoted by ψq,p

and Φq:

Theorem J.1. (Arnold (2009b;a)) Let f : In := [0, 1]n → R be an arbitrary multivariate continuous
function. Then it can be represented as follows:

f (x1, . . . , xn) =

2n∑
q=0

Φq

(
n∑

p=1

ψqp (xp)

)
(77)

with continuous one-dimensional functions Φq : R→ R and ψq,p : [0, 1]→ R. Φq are called outer
funcions and ψq,p are called inner functions. The inner functions ψq,p are independent of the function
f .

This differs substantially from KAN’s formulation Liu et al. (2024), where the outer functions
disappear, the inner functions are replaced by a weighted sum of a SiLU MLP Elfwing et al. (2018)
and a B-spline, and the networks are a composition of multiple feed-forward layers to accommodate
recent neural network architectures.

Since the KART proof is not constructible, and is essentially based on Baire’s theorem Kahane (1975),
the first efforts to implement a constructive proof of the KART were made by Sprecher in Sprecher
(1996; 1997). These latest works are based on a more economical variant of the KART in terms of
the number of outer and inner functions due to both Sprecher (1965) and Lorentz (1966).

This was followed by the first article on the practical training of this type of network by Köppen
(2002), pointing out at the same time that the inner function ψ constructed in this theorem was
continuous but fractal! This limited its use in gradient-based learning algorithms. Braun & Griebel
(2009) gave rigorous proof of termination, continuity, and monotonicity for the construction of the
inner and the outer functions given by Sprecher (1997).

As acknowledged by both Liu et al. (2024) and Yang & Wang (2024), the original “KAN" layer
defined in Liu et al. (2024) could be seen as a sum of a SiLU MLP and a weighted B-Spline
combination. Let us define a linear function LW : x 7→Wx, with W a learnable weight matrix. The
“KAN" layer Liu et al. (2024) is then defined as follows:

KANLiu(x) = LWb
(SiLU(x)) + LWs

(∑
i

ciBi(x)

)
(78)

With Wb and Ws two learnable weight matrices, (Bi)i∈J0,dK a family of B-spline functions of order
d+ 1, (ci)i∈J0,dK the learnable spline weights and SiLU : x 7→ x

1+e−x .

Indeed, if we follow the line of thought set out in KAN Liu et al. (2024), an MLP with learnable
activation, or equivalently a learnable activation network (LAN) would be a sort of KART formulation,
with the ψqp inner functions being a linear combination of ReLU functions. However, this is not what
the KART theorem suggests. Constructing a Kolmogorov-Arnold superposition requires a maximum
of two layers formulated by inner and outer functions as in theorem J.1 (Ismailov, 2024).

It is worth noting that the concept of using splines to approximate inner functions in a Kolmogorov-
Arnold network or more generally as a representation of an activation function isn’t entirely new. The
analogy between KANs and MLPs has been noticed since Hecht-Nielsen (1987) and Kůrková (1992).
Earlier research, such as Igelnik & Parikh (2003), introduced Kolmogorov’s Spline Network, which
employed splines for flexible function approximation. In his PhD thesis, Braun (2009) corrected the
constructive proof of the KAT and gave practical examples using B-splines. Further developments in
this area include Bohra et al. (2020) and Fakhoury et al. (2022), who focused on learning adaptive
activation functions through splines, thus enhancing the network’s expressiveness.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Additionally, the use of the Kolmogorov superposition theorem to tackle high-dimensional problems
has been explored by Laczkovich (2021) and Lai & Shen (2021), who showed its potential in
overcoming the curse of dimensionality. Similarly, Montanelli et al. (2019) demonstrated how
structured networks like Deep ReLU models can efficiently approximate bandlimited functions, thus
expanding the practical applications of spline-based methodologies in neural networks.

With an equivalent number of parameters or FLOP, Yu et al. (2024) observed that KAN surpasses
MLP solely in symbolic formula representation, while it falls short of MLP in other machine learning
tasks, including computer vision, NLP, and audio processing. Cang et al. (2024) confirmed the same
finding.

Nevertheless, KANs have had the merit of rekindling interest in learnable activations in neural
networks, among them polynomial and trigonometric activations.

Since the interest in KANs began, numerous researchers have proposed a multitude of learnable
functions for activations, spanning a diverse range of mathematical functions, including splines,
classical orthogonal polynomials, rational functions, Fourier bases, and wavelets... Despite this, in
some instances, the safety of these operations, the boundedness of their gradients, their initialization,
and their computational properties in the context of gradient descent have sometimes received less
emphasis. Instead, many studies have highlighted proof-of-concept results, often demonstrating
that such functions can achieve strong performance on benchmark datasets like MNIST LeCun
et al. (1998). This line of work has produced a rich body of literature. A common observation,
however, is that much of it focuses on adapting a specific interpolation function within relatively
shallow architectures and evaluating on small-scale datasets (such as the MNIST dataset, for example).
Because a wide variety of functions can achieve test accuracies exceeding 97% on MNIST with
networks of depth three or less, it becomes challenging to distinguish which approaches provide the
most robust or generalizable benefits.

K EXTENDED RELATED WORK

The subject of learnable activation is a well-known one, but it has seen a resurgence thanks to the
popularity enjoyed by the KAN article Liu et al. (2024). Examples of works in which the main theme
is learning the activation function include Houlsby et al. (2019); Goyal et al. (2019); Tavakoli et al.
(2021); Moosavi et al. (2022); Fang et al. (2022); Bodyanskiy & Kostiuk (2023); Pishchik (2023).

Earlier works exploring polynomial activations in deep neural networks trained using the backpropa-
gation algorithm include Zhou et al. (2019) and Chrysos et al. (2020), which empirically demonstrate
that polynomially activated neural networks, even without non-linear activation functions, can per-
form well across multiple tasks. Building on this, Chrysos et al. (2023) sought to regularize such
networks to compete with deep ReLU networks.

More recently, Nebioglu & Iliev (2023) investigated the use of Chebyshev and Hermite orthogonal
polynomials as activation functions, demonstrating that Chebyshev activations are computationally
efficient but sensitive to problem types, while Hermite activations exhibit greater robustness and
generalization. Additionally, Xiao et al. (2024) introduced HOPE (High-order Polynomial Expansion),
a novel method that represents neural networks as high-order Taylor polynomials, enabling improved
interpretability, low computational complexity, and applications such as function discovery, fast
inference, and feature selection.

Other recent works utilizing Chebyshev activation include Deepthi et al. (2023) and Heidari et al.
(2024), which employed single-layer shallow networks. Seydi (2024) conducted a comparative
study of exotic polynomial activations on the MNIST dataset, while Cooley et al. (2024) applied
polynomial-augmented neural networks for approximating solutions to partial differential equations.

On the rational activation front, notable works include Trefethen & Gutknecht (1987), which intro-
duced stable-Padé and Chebyshev-Padé approximators, and Molina et al. (2019), which proposed
the Safe-Padé activation by ensuring the denominator of the rational activation remains nonzero. An
orthogonal variant of the Padé approximant was presented in Biswas et al. (2021), while Chebyshev
rational functions Castellanos & Rosenthal (1993) and Fourier rational functions Geer (1995) were
explored in subsequent studies. More recently, advancements in rational activation using general
Jacobi functions were introduced in Aghaei (2024b;a).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Polynomial piecewise functions (such as B-splines) and rational functions (such as the Padé approx-
imant) can exhibit finite support properties. On the other hand, these last lack the orthogonality
property. Several works have aimed to formulate orthogonal splines Mason et al. (1993); Alavi &
Aminikhah (2023) and orthogonal rational functions Bultheel et al. (2001), or even a theory of spline
wavelets Chui & Wang (1991) and rational wavelets Zheng & Minggen (1999); Choueiter & Glass
(2007).

Learning with a periodic function or a Fourier series has also been the subject of many anterior works,
such as Sitzmann et al. (2020), and more recently Mehrabian et al. (2024), and Martinez-Gost et al.
(2024) using a Discrete Cosine Transform (DCT). Recently, Hashemi et al. (2024) introduced the
Dynamic Range Activator (DRA), an activation function that combines harmonic (trigonometric)
and hyperbolic components to capture the highly recursive and high-variance behavior within a deep
problem in enumerative algebraic geometry.

In the context of tropical activations, prior work has been done to establish connections between
tropical geometry and neural networks. For instance, Zhang et al. (2018) demonstrated that feedfor-
ward neural networks with ReLU activation can be interpreted as tropical rational maps, relating their
decision boundaries to tropical hypersurfaces and showing how deeper networks leverage zonotopes
to achieve exponentially greater expressiveness. Building on this geometric foundation, Smyrnis
& Maragos (2019) introduced tropical polynomial division, an approach inspired by the max-plus
semiring, and applied it to neural networks with ReLU activation. Recent work also developed
tropical activation functions Yoshida et al. (2024), which were subsequently applied to convolutional
neural networks (CNNs) for image classification tasks on MNIST LeCun et al. (1998), CIFAR10
Krizhevsky et al. (2009), and SVHN Netzer et al. (2011) in Pasque et al. (2024).

L IMAGE CLASSIFICATION RESULTS ON CIFAR10

We conducted an experiment using ConvNeXt-T on CIFAR10 for 300 epochs and averaged the
results over 10 different seeds. The experiment shows that Hermite, Fourier, and Tropical activations
are significantly above the GELU baseline in terms of test metrics. In addition, we added three
different seeds for ResNet50 with ReLU, and the results of the latter are clearly inferior to those of
ConvNeXt-T, ConvNeXt-T being a modernized version of ResNet50. The results, in table form, are
reported in Table 7 and in graphical form in Figures 9, 7, and 8.

Table 7: Comparison of the proposed activation functions on ResNet50 and ConvNeXt-T models
for CIFAR-10 image classification task. Values are reported as mean ± standard deviation over 10
different seeds (3 seeds for the ResNet50 case). p-values (two-tailed Student’s t-test assuming equal
variances) compare each activation’s Top1-accuracy against GELU.

Model Activation Top-1 Acc. (%) Top-5 Acc. (%) p-value vs GELU (Top-1)

ResNet50 ReLU 88.9 ± 0.04 99.43 ± 0.47 < 0.0001 (****)
ConvNeXt-Tiny Baseline (GELU) 90.47 ± 0.20 99.62 ± 0.06 –
ConvNeXt-Tiny Tropical 90.87 ± 0.19 99.63 ± 0.04 0.0002 (***)
ConvNeXt-Tiny Fourier 91.23 ± 0.65 99.60 ± 0.05 0.0023 (**)
ConvNeXt-Tiny Hermite 91.35 ± 0.29 99.63 ± 0.05 < 0.0001 (****)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 7: Evaluation Top1 accuracy curves for ConvNeXt-T on CIFAR-10. The solid lines represent
the mean of the metric over 10 different seeds (3 seeds for the ResNet50 case), and the shaded areas
show the range (min to max).

Figure 8: Evaluation Top5 accuracy curves for ConvNeXt-T on CIFAR-10. The solid lines represent
the mean of the metric over 10 different seeds (3 seeds for the ResNet50 case), and the shaded areas
show the range (min to max).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 9: Training loss curves for ConvNeXt-T on CIFAR-10. The solid lines represent the mean of
the metric over 10 different seeds (3 seeds for the ResNet50 case), and the shaded areas show the
range (min to max).

For this experiment we used the TIMM library Wightman (2019) with the following configuration 8:

Table 8: Configuration for the pretraining experiment on CIFAR-10.

Hyperparameter Value

Input Size 3×32×32
Number of Classes 10
Batch Size 128 × 4 GPUs
Optimizer AdamW
Learning Rate 4e-3
Epochs 300
Scheduler Cosine
Drop Path Rate 0.0
Mean 0.491, 0.482, 0.446
Std 0.247, 0.243, 0.261
Warmup Epochs 20
Weight Decay 0.0
Mixup 0.8
Label Smoothing 0.1
Auto Augmentation rand-m9-mstd0.5
Re-mode Pixel
Random Erasing Prob 0.25
Gradient Clipping 5.0
CutMix 1.0

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

M DECISION BOUNDARIES

We compare the decision boundaries of four single-layer neural networks trained on simple 2D
classification datasets (two moons, circles ...), each using a different activation function to evalu-
ate how activation choice affects classification behavior and boundary smoothness. The Hermite
activation produces a smooth and globally coherent decision boundary, reflecting its polynomial
nature. In contrast, the Fourier activation leads to quasi-periodic patterns that adapt well to the
underlying structure of the data, capturing fine-grained details and even fitting noisy points. The
tropical activation yields a piecewise affine boundary, resembling the behavior of ReLU, with sharp
transitions and linear segments that reflect its max-plus (tropical) structure.

Hermite Fourier Tropical GELU

Figure 10: Decision boundaries across datasets: Top row: classification; middle row: moons; bottom
row: circles, using four different activation functions.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

N LINE PLOTS

Figure 11: Training loss curves for ConvNeXt-T on ImageNet1k. The solid lines represent the mean
of the metric over 5 different seeds, and the shaded areas show the range (min to max).

Figure 12: Top1 evaluation accuracy for ConvNeXt-T on ImageNet1k. The solid lines represent the
mean of the metric over 5 different seeds, and the shaded areas show the range (min to max).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 13: Top5 evaluation accuracy for ConvNeXt-T on ImageNet1k. The solid lines represent the
mean of the metric over 5 different seeds, and the shaded areas show the range (min to max).

Figure 14: Comparison of the train losses of the GPT2 model (124M) on OpenWebText with GELU,
SiLU, Hermite, Fourier, and Tropical activations. The solid lines represent the mean of the metric
over 5 different seeds, and the shaded areas show the range (min to max).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 15: Comparison of the validation losses of the GPT2 model (124M) on OpenWebText with
GELU, SiLU, Hermite, Fourier, and Tropical activations. The solid lines represent the mean of the
metric over 5 different seeds, and the shaded areas show the range (min to max).

O FINETUNING ACTIVATIONS EXPERIMENT ON CIFAR10

We conducted an experiment for fine-tuning ConvNeXt-tiny (pre-trained on ImageNet1k) on CI-
FAR10. We froze all the weights except those of the last linear layer and the ones of the learnable
activations, which were initialized by fitting GELU with a Hermite interpolation. The results hereby
show a clear superiority of the proposed learnable activations:

Figure 16: Performance of a pretrained ConvNeXt-T (on ImageNet1k) on CIFAR10 when fine-tuning
only the final linear layer and the learnable coefficients of the activations.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

P TIMING RESULTS

Figure 17: Forward + backward pass averaged times (in seconds and log-log scale) for Hermite,
Tropical, and Fourier activations across varying degrees as benchmarked on an AMD EPYC 7402
CPU.

Table 9: Forward + backward pass averaged times (in seconds) for Hermite, Tropical, and Fourier
activations across varying degrees as benchmarked on an AMD EPYC 7402 CPU.

Activation Degree Forward+Backward Time

Hermite 1 0.00047354
Hermite 4 0.00188883
Hermite 8 0.00462004
Hermite 16 0.0168367
Hermite 32 0.0496985
Hermite 64 0.191425

Tropical 1 0.000300329
Tropical 4 0.000337174
Tropical 8 0.000356829
Tropical 16 0.000405076
Tropical 32 0.000512147
Tropical 64 0.000788548

Fourier 1 0.000270138
Fourier 4 0.000599022
Fourier 8 0.000644515
Fourier 16 0.000787303
Fourier 32 0.00121512
Fourier 64 0.00262779

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 18: Forward + backward pass averaged times (in seconds) for Hermite (explicit Alg. 2, Eq. 22
and recurrence-based CUDA implementation Alg. 3, Eq. 23), Tropical, and Fourier activations across
varying degrees as benchmarked on a single NVIDIA A100 GPU/40GB.

Figure 19: Relative slowdowns of Hermite, Tropical, and Fourier activations compared to GELU
across different widths.

Figure 20: Relative slowdowns of Hermite, Tropical, and Fourier activations compared to GELU
across different depths.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 10: Forward + backward pass averaged times (in seconds) for Hermite (explicit Alg. 2, Eq. 22
and recurrence-based CUDA implementation Alg. 3, Eq. 23), Tropical, and Fourier activations across
varying degrees as benchmarked on a single NVIDIA A100 GPU/40GB.

Activation Degree Forward+Backward Time

Hermite 1 0.000350997
Hermite 4 0.00035552
Hermite 8 0.00035341
Hermite 16 0.000355005
Hermite 32 0.000355887
Hermite 64 0.000795927
Hermite 128 0.00221812
Hermite 256 0.00794526
Hermite 512 0.0306861
Hermite 1024 0.122032

Hermite Rec. CUDA 1 0.000887356
Hermite Rec. CUDA 4 0.000887024
Hermite Rec. CUDA 8 0.000893834
Hermite Rec. CUDA 16 0.000912833
Hermite Rec. CUDA 32 0.000956004
Hermite Rec. CUDA 64 0.00100782
Hermite Rec. CUDA 128 0.00110659
Hermite Rec. CUDA 256 0.0017534
Hermite Rec. CUDA 512 0.00233119
Hermite Rec. CUDA 1024 0.00555244
Hermite Rec. CUDA 2048 0.0119172

Tropical 1 0.000296884
Tropical 4 0.000295298
Tropical 8 0.000295942
Tropical 16 0.000296063
Tropical 32 0.000302484
Tropical 64 0.000303783
Tropical 128 0.000304883
Tropical 256 0.000305769
Tropical 512 0.000305247
Tropical 1024 0.000306931
Tropical 2048 0.000375793

Fourier 1 0.000470023
Fourier 4 0.000471404
Fourier 8 0.000478096
Fourier 16 0.000471656
Fourier 32 0.000489211
Fourier 64 0.000487039
Fourier 128 0.000486042
Fourier 256 0.00048811
Fourier 512 0.000489757
Fourier 1024 0.000666652
Fourier 2048 0.00125729

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 11: Training times (in seconds) and relative slowdowns compared to GELU across different
MLP network widths and depths, for Hermite, Tropical, and Fourier activations. The reported times
were averaged per epoch and were obtained using a single NVIDIA A100 GPU with 40 GB of
memory.

Activation Degree Width Depth Training Time Slowdown vs Baseline

GELU - 1024 8 16.13s 1.00×
Hermite 3 1024 8 16.03s 0.99×
Tropical 6 1024 8 13.27s 0.82×
Fourier 6 1024 8 13.93s 0.86×

GELU - 1024 16 12.86s 1.00×
Hermite 3 1024 16 16.15s 1.26×
Tropical 6 1024 16 14.06s 1.09×
Fourier 6 1024 16 15.13s 1.18×

GELU - 1024 32 13.96s 1.00×
Hermite 3 1024 32 20.65s 1.48×
Tropical 6 1024 32 16.29s 1.17×
Fourier 6 1024 32 18.50s 1.33×

GELU - 2048 8 12.36s 1.00×
Hermite 3 2048 8 14.08s 1.14×
Tropical 6 2048 8 12.98s 1.05×
Fourier 6 2048 8 13.51s 1.09×

GELU - 2048 16 12.96s 1.00×
Hermite 3 2048 16 16.29s 1.26×
Tropical 6 2048 16 14.05s 1.08×
Fourier 6 2048 16 15.15s 1.17×

GELU - 2048 32 13.98s 1.00×
Hermite 3 2048 32 20.65s 1.48×
Tropical 6 2048 32 16.64s 1.19×
Fourier 6 2048 32 18.53s 1.33×

GELU - 4096 8 12.43s 1.00×
Hermite 3 4096 8 14.12s 1.14×
Tropical 6 4096 8 13.02s 1.05×
Fourier 6 4096 8 13.58s 1.09×

GELU - 4096 16 13.10s 1.00×
Hermite 3 4096 16 17.07s 1.30×
Tropical 6 4096 16 14.30s 1.09×
Fourier 6 4096 16 15.42s 1.18×

GELU - 4096 32 23.93s 1.00×
Hermite 3 4096 32 33.41s 1.40×
Tropical 6 4096 32 26.10s 1.09×
Fourier 6 4096 32 28.21s 1.18×

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Q LARGE LANGUAGE MODEL USAGE DISCLOSURE

We used large language models to assist in translating, rewording, and polishing the text for clarity
and readability. The models were not used for idea generation, experiments, analysis, or contributions
at the level of scientific authorship.

38

	Introduction
	Related Work
	Methods
	Variance Preserving Initialization
	Variance Preserving Initialization for the Hermite Activation Function
	Variance Preserving Initialization for the Fourier Activation Function
	Variance Preserving Initialization for the Tropical Activation Function
	Practical Implementation

	Experiments
	Preliminary image classification results on CIFAR10
	Decision boundaries on noisy classification datasets
	Vision Task: ConvNeXt-T Image Classification on ImageNet1k
	Language Task: GPT-2 (124M) Next Token Prediction on OpenWebText
	Finetuning experiment on CIFAR10

	Parameters, Memory, FLOP Count, and Execution Time
	Discussion
	Conclusion
	Schematic of Basis-MLP
	Forward and Backward Second Moment calculation for the ReLU Activation Function
	Second Moment of the ReLU Activation Function
	Second Moment of the Derivative of ReLU

	Proof of the Theorem 3.8
	Proof of the Theorem 3.13
	Proof of the Theorem 3.19
	Deep Polynomially Activated Neural Networks are Multivariate Polynomial Mappings
	Algorithms
	Rational Tropical Activation
	Ablation Studies
	A brief digression on Kolmogorov Arnold Networks (KANs)
	Extended Related Work
	Image classification results on CIFAR10
	Decision boundaries
	Line plots
	Finetuning activations experiment on CIFAR10
	Timing Results
	Large Language Model Usage Disclosure

