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ABSTRACT

Which functions can be used as activations in deep neural networks? This article
explores families of functions based on orthonormal bases, including the Hermite
polynomial basis and the Fourier trigonometric basis, as well as a basis resulting
from the tropicalization of a polynomial basis. Our study shows that, through simple
variance-preserving initialization and without additional clamping mechanisms,
these activations can successfully be used to train deep models, such as GPT-2 for
next-token prediction on OpenWebText and ConvNeXt for image classification on
ImageNet. Our work addresses the issue of exploding and vanishing activations
and gradients, particularly prevalent with polynomial activations, and opens the
door for improving the efficiency of large-scale learning tasks. Furthermore, our
approach provides insight into the structure of neural networks, revealing that
networks with polynomial activations can be interpreted as multivariate polynomial
mappings. Finally, using Hermite interpolation, we show that our activations can
closely approximate classical ones in pre-trained models by matching both the
function and its derivative, making them especially useful for fine-tuning tasks.
These activations are available in the torchorth library.

1 INTRODUCTION

Modern deep learning is largely built upon the Multi-Layer Perceptron (MLP) McCulloch & Pitts
(1943); Rosenblatt| (1958) and the gradient backpropagation algorithm [Rumelhart et al.| (1986). The
MLP can be described as a combination of a multiplication by a matrix of learnable weights and
the application of a nonlinear activation function. Gradient backpropagation, on the other hand,
relies on the chain rule to compute partial derivatives necessary for optimizing weights through
gradient descent. In a deep neural network, preserving variance across layers is critical to ensure
stable training dynamics. |Glorot & Bengio| (2010); [He et al.| (2015) were the first to consider a
variance-preserving analysis for deep neural networks.

The analysis shown in He et al.|(2015) could be stated as the output signal of each MLP block should
have the same variance as the input signal. And since learning is performed with backpropagation,
this same rule should apply to the gradients as well, meaning that the variance of the gradient of the
input should also be equal to the variance of the gradient of the output of the MLP.

In this manner, |[He et al.|(2015)) demonstrated the methodology for initializing the weights of a deep
neural network, thereby attaining performance on ImageNet classification that exceeds that of humans.
This process entails the calculation of the ratio between the variance pre- and post-activation called
forward gain, as well as the ratio of variance with respect to the derivative of the activation, called
backward gain. Remarkably, for the ReLU function, both forward and backward gains are equal to 2.

Recently, Yang & Wang| (2024) employed the same principle to train learnable rational activations.
However, they encountered a challenge: the second-order moment has no closed formulation in
the case of rational fractions. The authors’ solution for ensuring the convergence of such rational
activation networks consisted in initializing them by fitting the polynomial coefficients to a classical
activation such as ReLLU or SiLU Ramachandran et al.| (2017); [Elfwing et al.| (2018). Here, we
propose a solution to the aforementioned problem by employing orthogonal basis functions (Fig. 4),
specifically polynomial and trigonometric functions. Orthogonal basis functions in a chosen L? space,
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as will be elucidated in the subsequent sections, facilitate the calculation of the second-order moment
integral, thereby yielding a closed and straightforward formula. Additionally, we demonstrate that
rational functions are unnecessary, asserting that polynomial activation functions are sufficient.

More generally, the convergence of polynomial networks shown in this work proves that deep
neural networks can be seen as multivariate polynomial mappings. Indeed, the successive layers
of a feed-forward network activated by a polynomial activation can be seen as a composition of
weighted sums of multivariate polynomials, ultimately resulting in a polynomial mapping. A parallel
representation was made by [Zhang et al.| (2018) for ReLU-activated networks, demonstrating that
they are tropical rational mappings. In a later section, we also explore tropical polynomial functions
as activation functions. We demonstrate that these can be interpreted as the discrete convex conjugate
of a learnable function, thus encoding the convex hull of its epigraph (the set of points lying on
or above the function’s graph). The contributions of this paper span theoretical proofs, technical
developments, and empirical confirmations, and can be summarized in the following list:

* A novel variance-preserving initialization method is introduced for orthogonal learnable activations
in neural networks. Assuming an orthonormal function basis, this method ensures that the output
variances are unitary and match those of the derivative, leading to stable training.

* Empirically showing that deep neural networks like ConvNeXt (Liu et al., 2022) and GPT-2
(Radford et al., 2019) can be trained using orthogonal learnable activations for tasks like image clas-
sification on ImageNet1k (Deng et al.l 2009) and language modeling on OpenWebText (Gokaslan
& Cohenl [2019). The innovation eliminates the need for additional mechanisms (e.g., ReLU,
SoftSign...) to maintain training stability.

* Proving in Appendix [Fthat polynomially activated neural networks are polynomial mappings.

» Developing Hermite, Fourier, and Tropical activations, addressing finite-precision floating-point
issues, and designing efficient parallel algorithms and kernels for their implementation.

2 RELATED WORK

The use of polynomial activations has long been denigrated, probably by the rise of works such as
Pinkus| (1999) and Leshno et al.|(1993)) which have mathematically demonstrated that the universal
approximation property is equivalent to the use of a non-polynomial activation function. The
Universal Approximation Theorem Cybenko|(1989); Hornik et al.| (1990) holds for neural networks
of arbitrary width and bounded depth. However, recent work such as |Kidger & Lyons| (2020); |Gao
et al.[(2025) show that in the framework of bounded width and arbitrary depth, every nonaffine
continuous function is possible to use in practice, including polynomial activation functions. We
show empirically in this work that polynomial activations can converge in the context of large-scale
deep networks and datasets, provided coefficients are learnable and initialization is suitable. The
empirical demonstration of the effectiveness of polynomial activations made here was achieved
without the use of other functions intended to regularize convergence, such as the SoftSign function
borrowed from [Turian et al.|(2009) and used in|Lokhande et al.| (2020) for Hermite activations, or
a ReLU function, or any normalization, as recently done in|Zhuo et al.|(2024). This confirmation
that polynomial activations are practicable opens the way to representing deep neural networks as
multivariate polynomial mappings. As in [Kileel et al.| (2019) and [Kubjas et al.| (2024), which see
that these types of networks have greater expressive potential, we show in Appendix [F] that deep
polynomially activated neural networks are indeed multivariate polynomial mappings. The subject
of learnable activations has seen a resurgence thanks to the popularity enjoyed by the KAN article
Liu et al.| (2024). In Appendix [J] we’ll digress for a while to explain how these are inspired by the
Kolmogorov-Arnold theorem Kolmogorov| (1957). Further related work appears in Appendix

3 METHODS

3.1 VARIANCE PRESERVING INITIALIZATION

The variance-preserving principle He et al.| (2015) mentioned in the introduction is expressed in the
following. Consider an input vector x = (zg,...,Z;,...,Zc,, ) € R, C;, € N*, where all z; are
mutually independent and uniformly distributed. Preserving the variance in an MLP layer with a
learnable weight tensor W of inner dimension C;,, and an activation function F' amounts to:

Var[z] = C;y, Var[W F(x)] (1)
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If we suppose that x and W are independent and of finite variance, we have:
Var[z] = C;p, (Var[W] -E [F(2)?] + Var[F(z)] - E [W]Q) 2)
Assumption 3.1. We initialize W such as E [IW] = 0.

Since we always assume that W is initialized with a zero mean, Eq. [2] simplifies into:

Var[z] = Cy,, Var[W] - E [F(z)?] 3)
Thus, to calculate the variance of the weights, we should calculate the following ratios:
Definition 3.2. The forward gain of the MLP layer is defined by:

a = Var[z] - E [F(z)?] - 4)

Similarly, and in a backward manner,

Definition 3.3. The backward gain is the gain of the derivative of the activation with respect to x and

is defined as: 1

o = Var[z] - E [F'(2)*] )

Since a deep neural network is essentially a composition of MLP layers, an appropriate initialization
method must avoid reducing or amplifying the input signals |He et al.| (2015).

Assumption 3.4. From now on, we assume that both the input signal x and its gradient Ax follow a
distribution of mean 0 and variance 1.

Therefore, calculating the gains o and o in an MLP (or equivalently a convolution layer) involves
calculating only the inverse of the second-order moments of the activation functions and their
derivatives. Interestingly, for the ReLU function, we have o = o/ = 2. Hence the scaling of the
standard deviation of the weights W in[He et al. (2015)) by a factor /2/C},, more details can be
found in Appendix [B]

Given an arbitrary activation, equality of forward and backward gains is not always achieved by
default as in ReLU. In the next section, we show the conditions for an activation function written in
an orthonormal coordinate system to verify the forward-backward gain equality. To illustrate this
point, we will calculate the second moment for Hermite and Fourier basis decompositions, given
their compatibility with the normal and uniform distributions, respectively.

3.2 VARIANCE PRESERVING INITIALIZATION FOR THE HERMITE ACTIVATION FUNCTION

Definition 3.5. Vn € N, the probabilist Hermite polynomials can be defined as follows:

He,(z) = (-1)"e™ o ez (6)

n is called the degree of the Hermite polynomial and we have the first terms:

Heg(z) =1 Hey(z) =2 Hey(x) =2? —1 Hez(z) =2° — 3z
Hermite polynomials constitute a suitable choice for calculating the moment of order 2 when z
follows a standard normal distribution A/(0, 1) as evidenced by the following property
Property 3.6. Vm,n € N2, we have:
/00 He,, (x) Hen(x)e_édx =V2mn!8,m @)

With 6,,,, the Kronecker delta.
Definition 3.7. We define the Hermite activation F': R — R with its learnable coefficients Vk €
[0,n] ar, € R as:

x— F(z) = Z % Heg () 8)
k=0
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Theorem 3.8. Variance-preserving coefficient initialization of Hermite activation. Let

1
Vk e [1,n] ap =1 and ag = 1—5 9)

Then using this initialization, the forward and backward gains become the same and are equal to:

) n—1 1 -1
a=a = ZE (10)

k=0

Proof. The proof is provided in Appendix O

Corollary 3.9. In the limit case n — +o0o, the coefficient initialization in Theorem [3.8| could be
divided by a factor \/e, with e =~ 2.7182 . . ., in order to have unitary forward and backward gains.

Vk e [1,n] :
1 1 1
ar = —=and ag = —/1 — — (11
Ve Ve n!

Remark 3.10. The choice of an orthonormal family of functions depends on the input’s probability
distribution. For a normally distributed input, Hermite polynomials simplify the computation of
second-order moments and related gains. For a uniform distribution over [—m, 7|, trigonometric
functions (Fourier series) are appropriate. If the input follows a Wigner semi-circle distribution (of
measure v/1 — x2dx), then the Chebyshev polynomials of the second kind are the suitable choice.

3.3 VARIANCE PRESERVING INITIALIZATION FOR THE FOURIER ACTIVATION FUNCTION

The forward and backward gains for a Hermite activation have been calculated under the assumption
that the input x follows a normal distribution, such that the initial coefficients provide equal gains.
The subsequent analysis will establish the same result for a truncated Fourier series expansion of
order n € N.

Assumption 3.11. The input z is assumed now to follow a uniform distribution on the interval
[—7, 7], denoted as © ~ U (—m, 7).

Definition 3.12. We consider the following Fourier activation F': R — R:

v F) = ao + Z (ak cos(k:a:); by, sin(kx)) (12)
k=1 ’

where (ag)ren and (by )xen- are real learnable coefficients.

Theorem 3.13. Variance-preserving coefficient initialization of Fourier activation. Let
1

(n!)?

Then, using this initialization, the forward and backward gains become the same and are equal to:

n—1 1 -1
a=a = (Z (k!)2> (14)

Vk e [l,n] ap =1landag = 4|1 — (13)

Proof. The proof is provided in Appendix [D] O

Corollary 3.14. In the limit case n — 400, in order to have unitary forward and backward gains,

the coefficient initialization in Theorem could be divided by a factor V1o (2 ) with 1, (x) is the
modified Bessel function of the first kind of order o, and we have 1y(2) ~ 2.2795...Vk € [1,n] :

1 /
=—— and 15
ak T)(Q) and ag = T) n' (15)

Remark 3.15. In both Definitions [3.7)and [3.12] the terms inside the sum are scaled by a factor of
k!, yielding exponential series. In practice, it is possible to scale the terms using other converging
series such as kP with p > 1. We experimented with this last alternative and observed no statistically
significant impact on loss convergence, though we did observe better stability for higher polynomial
degrees in the exponential variant.
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3.4 VARIANCE PRESERVING INITIALIZATION FOR THE TROPICAL ACTIVATION FUNCTION

Definition 3.16. The max-tropical semiring T is the semiring T = (R U {400}, $, ®), with the
operations, Vz,y € R U {+00}”:

r®y:=max{r,y} and zRy:=z+y (16)

Equivalently, we could define the min-tropical semiring by substituting the max operation in &
with a min operation. By extension, we define for all a € N the tropical power of z raised to a as
multiplying x to itself a times:

Vi =r® - Qr=a-x 17

Definition 3.17. The tropicalization of a polynomial of degree n € N is defined as F': R — R, with
Vk € [0,n] ar, € R are the polynomial learnable coefficients:

x— F(z) = @ak ® 2%k = I]?E(})( {ag + kx} (18)
k=0
With rlgliéa( {ag + kz} := max(ag,a1 + z, ..., ap + nx).

Definition 3.18. Convex conjugate (Legendre-Fenchel). Let © € R, f*: R — R is the convex
conjugate of f: R — R if and only if:

[ (x) = sup{kz — f(k)} (19)

kER
Theorem 3.19. Variance-preserving coefficient initialization of Tropical activation. Let
Vk e [0,n] ar =1 (20)

Then, applying this initialization to the limit case of n — oo yields an equal unitary gain both
forward and backward for the following "scaled" definition of the tropical activation:

x> F(z) = g Illclni%é( {ay, + kz} 1)

Proof. The proof is provided in Appendix [E]. O

The tropical polynomial activation can be viewed as a generalization of the ReL.U activation. Further-
more, it can be interpreted as a discrete version of the convex conjugate of a function f whose values
at the natural integers k € N are f(k) = —ay, effectively encoding the convex hull of the epigraph of
[, as illustrated in Figures[5]and [6]

3.5 PRACTICAL IMPLEMENTATION

In what follows, we outline the considerations we have taken in order to implement Hermite, Fourier,
and Tropical polynomial activations efficiently in PyTorch.

Weight decay. An important aspect of training learnable activations is that their learnable coefficients
should be trained without weight decay, as it could bias them toward zero.

Explicit Hermite formula. We can show by induction that the following definition is equivalent to
the one in Eq. [6}
2]

He,(z) (—=1)m  gn—2m
n! Z ml(n —2m)! 2m @2)

m=0

‘We can see that the formula@] can be parallelized, and is, therefore, the core of the algorithm we
have developed in native PyTorch to compute Hermite activations (see Algorithm [2)).

A dedicated Hermite kernel. Along with the parallel implementation of the Hermite activation,
we developed a dedicated kernel that leverages the derivation established in [C.5]for the backward
pass exploiting the fact that the derivative of a polynomial is a polynomial of lower degree and the
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following recurrence formula in the forward pass to optimize performance and memory usage (see
Algorithm [3):

He,11(z) = 2 Hep(x) — nHep—1 () (23)

Alternative Fourier formula. The definition of Fourier activation given in is under the
Sine-Cosine form. In practice, we use the following equivalent Amplitude-Phase formulation (see
Algorithm [5):

xHF(m):aO—Fﬂzw (24)
k=1 ’

as it is less expensive in terms of FLOP. The learnable parameters here are initialized as follows:
Vk € N*fy = k,¢r = T and a, and ay initialized as in @ In our implementation of Fourier
activation, not only were the coefficients learnable, but also the frequencies, yielding to what is
known as ‘“cosine basis” [Mallat| (2009) rather than Fourier series.

Initializing by fitting a classical activation Function. Using a family of orthonormal functions
permits an easy calculation of the initialization gain without resorting to the trick of fitting a function
to an activation whose gain is known or easy to calculate, as in Yang & Wang| (2024) with Safe Padé
activation Molina et al.|(2019). However, in some cases, such as continuing or fine-tuning a model that
was pretrained with a classical activation, using one of the learnable activations presented here to fit a
classical activation could still be relevant. By fitting we mean performing a Lagrange interpolation.
This could be accomplished via a direct method involving the inversion of a Vandermonde matrix
(Lagrange, or Newton’s methods), or by an iterated gradient descent method (Gauss-Jordan method).

Two precautions need to be taken, however, when performing such interpolation. The first concerns
the maximum degree that should be considered in order to fit the function on a given interval. Figure[T]
(left) shows how far a Hermite activation of degree 3 can be accurately fitted, while Figure|[T] (right)
shows the extent to which a Hermite activation of degree 8 can be accurately fitted. The second
precaution concerns the derivative of the activation with respect to the derivative of the target function
to be interpolated. A Lagrange interpolation of a function is not always sufficient to fit its k-th
derivatives. If we want to interpolate a function and its derivative(s) simultaneously, we refer to this
as a Hermite interpolation.
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Figure 1: Fitting a GELU with a Hermite Activation of degree 3 (left) and of degree 8 (right).

In the case of the Fourier activation, we observe in Figure 2] (left) that a Lagrange interpolation is not
sufficient and that higher-order frequencies occur in the derivative approximation. This phenomenon
can be likened to aliasing and can be circumvented by performing a simple Hermite interpolation
instead of a Lagrange interpolation, as shown in Figure 2] (right). Berrut & Welscher (2007) examined
the solutions to this last problem.

The success in fitting classical activations with Padé approximants in Yang & Wang| (2024) could
be attributed to the fact that a Padé approximant is by definition the rational function that coincides
with a function to be interpolated to the highest possible order, thus naturally achieving a Hermite
interpolation. A good fit of a non-convex function by a tropical polynomial activation is impossible
since tropical polynomials are convex by definition. Therefore, in Appendix [H]we show how rational
tropical activations (an extension of tropical polynomials) could, in principle, achieve this fitting.
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Figure 2: Lagrange interpolation (left) and Hermite interpolation (right) of a GELU with a Fourier
Activation of degree 6.

4 EXPERIMENTS

4.1 PRELIMINARY IMAGE CLASSIFICATION RESULTS ON CIFAR10

We trained ConvNeXt-T [2022)) on CIFAR-10 (Krizhevsky et all[2009) for 300 epochs,

averaging results over 10 random seeds. The experimental setup and results for CIFAR 10 classification
can be found in Appendix [[] The three proposed learnable activations consistently outperformed
baseline activations on test metrics. Results are shown in Table[7]and Figures [0} [7] and[§]

4.2 DECISION BOUNDARIES ON NOISY CLASSIFICATION DATASETS

We compared the decision boundaries of four single-layer neural networks trained on a simple noisy
classification dataset, each using a different activation function to evaluate how activation choice
affects classification behavior and boundary smoothness. Details of the visualizations of decision
boundaries on multiple noisy datasets are provided in Appendix [M]

(a) Hermite (b) Fourier (c) Tropical (d) GELU

Figure 3: Decision boundaries for different activation functions

4.3  VISION TASK: CONVNEXT-T IMAGE CLASSIFICATION ON IMAGENET1K

We evaluated the ConvNeXt-T model on the ImageNet1k datasetDeng et al.| (2009) for single-class
image classification. The baseline ConvNeXt-T model employed GELU as the activation function
in its MLP blocks. To analyze the impact of our learnable activations, we replaced GELU with
Hermite polynomial, Fourier trigonometric, and Tropical polynomial activation functions under our
proposed initialization scheme. Each model was trained under identical conditions with fixed random
seeds to ensure reproducibility and comparability. The evaluation metrics included: training loss,
Top-1 and Top-5 validation accuracy. Table [T]and Figures [T} [T2} and [T3] summarize our results.
We reproduced all experiments using five different random seeds. For each trial, we report the
mean + standard deviation at a fixed epoch. The experimental setup followed the approach and

hyperparameter configuration detailed in (2022).

Ablation Studies. Additionally, ablation studies were performed on this vision task to establish
the impact of the degree for the learnable activations (Table[3), the impact of our proposed initial-
ization scheme (Table[d)), and if making the activation coefficients learnable was useful (Table[3).
Higher degrees generally improved performance, with all proposed activations showing consistent
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improvements in Top-1 and Top-5 accuracy as the degree increased. Furthermore, making activation
coefficients learnable consistently resulted in better performance across all activation functions.
Initialization with the proposed method led to improvements, especially for Hermite activation, where
our derived initialization scheme outperformed GELU-based initialization.

Table 1: Training and validation results of ConvNeXt-T (28M) model on ImageNet- 1k classification.
Values are reported as mean + standard deviation over 5 seeds. p-values (two-tailed Student’s t-test
assuming equal variances) are for Val Top-1 accuracy compared to GELU.

Act. Deg. TrainLoss| Val Top-1(%) 1 Val Top-5(%)1 FLOP FLOP/Act. p-value (Top-1)
GELU - 2.824 +0.0051 82.06 + 0.072 95.92 +0.038 4.57G 12 -
Tropical 6 2.854 +£0.0080  82.17 +0.063 95.95 +0.072 462G 3d+1=19 0.0345 (*)
Fourier 6 2.759 £ 0.0167  81.64 +0.153 95.47 £ 0.049 483G T7d+1=43 0.0005 (%)
Hermite 3 2.788 £0.0072  82.22 +0.064 95.97 + 0.045 458G 4d+1=13 0.0062 (%)

4.4 LANGUAGE TASK: GPT-2 (124M) NEXT TOKEN PREDICTION ON OPENWEBTEXT

For the language modeling task, we trained the GPT-2 model Radford et al.|(2019) on the OpenWeb-
Text dataset|Gokaslan & Cohen|(2019) for next-token prediction. The baseline GPT-2 used GELU
activation, and we compared it against SiLU (Elfwing et al., [2018)), Hermite, Fourier, and Tropical
activations under our proposed initialization scheme. All models were trained with identical hyperpa-
rameters and initialization seeds to ensure consistent and reproducible comparisons. The evaluation
metrics included: training and test losses and perplexities (which are simply the exponential of the
loss). Table 2] and Figures [I35]and [I4] summarize our results. We reproduced all experiments using
five different seeds. For each trial, we report the mean + standard deviation at a fixed iteration. The
experimental design followed the guidelines established in Radford et al.[|(2019) and the open source
reproduction available at|Karpathy|(2022). We used a total batch size of 786, 432 of which a context
length of 1024 tokens for a total of 210, 000 iterations.

Table 2: Training and validation results for next-token prediction using GPT-2 (124M) model with
different activations. Values are reported as mean + standard deviation over 5 different seeds.
Perplexity is computed as exp(loss). p-values (two-tailed Student’s t-test assuming equal variances)
compare each activation’s validation loss against GELU.

Act. Deg. Train PPL |  Train Loss | Val PPL | Val Loss | FLOP p-value (Val Loss)
GELU - 19.003 £0.156  2.944 £0.0082 19.319+£0.076 2.961 £0.0039 87.52G -

SiLU - 19.324 £0.106  2.962 £ 0.0055 19.664 £ 0.088 2.979 £0.0045 87.37G 0.0001 (***)
Tropical 6 18.840 +£0.107 2.936 £ 0.0057 19.027 £0.055 2.946 +£0.0029 87.75G 0.0001 (***)
Fourier 6 18.761 £0.071  2.930+0.0038 18.965 +0.154 2.941 £0.0086 88.69G 0.0014 (*+*)
Hermite 3 18.678 £ 0.093  2.926 £ 0.0049 18.821 £0.293 2.932 +0.0175 87.56G 0.0067 (**)

All experiments were conducted under fixed configurations to ensure that any observed differences
were solely due to the choice of activation function, allowing for fair and reproducible comparison

4.5 FINETUNING EXPERIMENT ON CIFAR10

Using the insights from Sec. [3.5] we conducted a fine-tuning experiment in a transfer learning setting.
Specifically, we investigated whether initializing a learnable activation by fitting a classical one,
using Hermite interpolation, can improve performance when adapting a pretrained model to a new
dataset. This experiment complements our theoretical analysis by demonstrating how fitting classical
activations can serve as an effective initialization strategy. The experimental procedure and results
for activation finetuning are available in Appendix

’The code to reproduce the experiments is available at: https:/anonymous.4open.science/r/torchortho-D76A/
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5 PARAMETERS, MEMORY, FLOP COUNT, AND EXECUTION TIME

The proposed activation functions introduce a negligible number of additional parameters. For
example, Hermite activations of degree d = 3 add only 72 parameters to ConvNeXt-Tiny (28M total),
corresponding to 0.0002%, with similarly minimal overheads for Tropical and Fourier activations.
Hermite activations leverage a recursive formulation (Alg. [3) that reduces both FLOP and required
memory (VRAM) complexity from O(d?) to O(d), requiring only simple arithmetic per term. Fourier
and Tropical activations also scale linearly with degree (O(d)), as illustrated in Figure and Table@],
measured on CPU. On GPUs, smaller degrees benefit from vectorized computation, leading to
reduced runtime and near-constant O(1) scaling for low degrees (Figure Table .

We further evaluated average training times per epoch across varying MLP widths and depths
(Table[TT)). The proposed activations can incur higher latency compared to GELU in deep networks,
but are often faster in shallower ones. Slowdowns relative to GELU were analyzed across widths
(Figure 20) and depths (Figure [I9). Slowdowns are largely independent of width but increase
approximately linearly with depth, with Hermite activations showing the largest slope, followed by
Fourier and Tropical. This suggests that the proposed activations are more suitable for shallow, wide
MLPs. This observation aligns with Appendix [F| where a polynomially activated MLP of arbitrary
depth is shown to be equivalent to a high-degree single-layer multivariate polynomial.

6 DISCUSSION

The results presented in this paper demonstrate the potential of using learnable activation functions
based on orthogonal function bases and tropical polynomials in large-scale neural network tasks. Our
experiments on ImageNet-1K and OpenWebText with deep models such as ConvNeXt and GPT-2
show for the first time that such activations can lead to improvements over traditional static functions
like ReLU and GELU, both in terms of image classification and language modeling.

This challenges the long-standing notion that polynomial activations are inherently unsuitable for
deep learning, as demonstrated by prior work. Our approach provides empirical evidence that, with
appropriate initialization, polynomial activations can indeed be competitive. One of the key takeaways
from our findings is the effectiveness of our proposed variance-preserving initialization scheme. The
choice of orthogonal functions plays an essential role in achieving a closed-form expression for
the second-order moment. Furthermore, the use of tropical polynomials, which are not orthogonal,
introduces a FLOP-light alternative approach to polynomial activations.

While our approach shows promise, there are several avenues for future exploration. Extending the
framework to other activation families, such as wavelets is straightforward. Multiplying the Hermite
activation presented in this work by the term exp (—x2/2) gives what is known as Hermitian wavelets
Brackx et al.| (2008)), and applying the same to the Fourier activation yields the Morlet wavelet
Grossmann & Morlet| (1984)) (or Gabor wavelet |Gabor| (1946))). Wavelets retain good orthogonal
properties with respect to the adequate scalar product and the calculation of the second moment
is slightly modified to take account of the additional decaying exponential term. Using wavelet
activations instead of polynomials could enhance variance stability by providing finite function
support, with potential bio-plausibility implications. By expressing a Fourier series in its complex
form, a network with Fourier activation can be viewed as a complex-valued neural network, offering
a framework for modeling neuronal synchronization through the phase and amplitude relationships of
oscillatory brain activity. Extension to other non-orthogonal functions, such as rational functions,
could be done for example by means of a Laplace transform of the Fourier activation.

7 CONCLUSION

In this work, we introduced a novel framework for integrating learnable activation functions based on
orthogonal function bases and tropical polynomials into deep neural networks, addressing challenges
like variance preservation and stable gradient flow. Extensive experiments with the ConvNeXt model
on ImageNetlk and the GPT-2 model on OpenWebText showed that learnable polynomial activations
match or exceed traditional activation functions during large-scale training and fine-tuning on smaller
tasks, demonstrating their practical viability and challenging conventional beliefs about polynomial
activations in neural networks. Our results pave the way for representing deep neural networks as
polynomial mappings, with future work focused on exploring a careful relaxation of these last.
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A SCHEMATIC OF BASIS-MLP
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Figure 4: A classical MLP (linear + ReL.U) vs Basis-MLP (linear + learnable basis function) blocks.

B FORWARD AND BACKWARD SECOND MOMENT CALCULATION FOR THE
RELU ACTIVATION FUNCTION

B.1 SECOND MOMENT OF THE RELU ACTIVATION FUNCTION

The Rectified Linear Unit (ReLLU) activation function [Nair & Hinton|(2010), defined as:
ReLU(x) = max(0, x) (25)

is commonly used in neural networks due to its simplicity and effective gradient propagation. When z
is drawn from a standard normal distribution z ~ N (0, 1), the second moment of the ReLU function
is:

o0 1
E[ReLU(z)%] = / 22— 2y = 5 (26)
0

V2T
B.2 SECOND MOMENT OF THE DERIVATIVE OF RELU

The derivative of ReLU, given by:

d 1, z>0
—ReLU(z) =<’ ’ 27
gz Reu(@) {0, 2 <0, @7
acts as a binary indicator of positive inputs. The second moment of this derivative when = ~ A/(0, 1)
is:

1

d 2 < g >
_ —a?/2 _ 1
( deeLU(x)) ] _/O —e de = 3 (28)

This result matches the variance of the ReLLU function itself and validates the gain of 2 for variance-
preserving weight initialization with ReLU activations.

E

C PROOF OF THE THEOREM [3.8]

Definition C.1. We define the Hermite activation F': R — R with its learnable coefficients Vk €
[0,n] ar € R as:

z s F(z) = % Hey, (2) (29)
k=0
Property C.2. Vm,n € N2, we have:
o0 m2
/ He,, (z) Hep (z)e™ 2 dx = vV2mn!lopm, (30)

With 6,,,, the Kronecker delta.
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Proposition C.3. The second moment of this activation with respect to N'(0, 1) is:
E[F(2)’] =) 3% 3D

Proof. The proof relies on the orthonormality property
The orthonormality propertymeans that: Ym,n € N2,

2

* He,(z)% e~ 7
——— ——=dz =1 32
/—oo n! \/277 ( )
and if m # n
/ He,y, () He, () —— W dz =0 (33)
Given the definition (Def.|C.1]) of a Hermite activation F', we have:
2 T e
E|F(x)*| = F(x dx 34
PP = [ P (34)
2 2
400 n —z
T oy e 2
= T —dx 35
/. ( % e >) — G3)
Using the orthogonal property Eq.[33] the cross terms cancel out, and we have
+oo n _a?
a,C g€ 2
5> He dz 36
/ X G e 36)
1‘,2
ak oo e T
= Hey(z dx 37
Given the normality property Eq.[32] we have
" a? [T Hep(x)? e
E[F(z)?]=) & / — d 38
FET=2 0 [~ v (38)
n 2
=k (39)
k=0
O

Having designed the initialization gain for the activation F' (Eq.[8) so as it equals 1, we now need to
enforce this same gain for its derivative. Indeed, we are going to use the gradient descent algorithm to
train our learnable activation networks, and having an activation gradient of high (respectively low)
variance could lead to exploding (respectively vanishing) gradients, a nondesirable property for deep
neural networks trained with gradient backpropagation.

Property C.4. The following recurrence property is derived directly from the equation|[6] Vk € N
Vr € R:
He),(z) = x Hey,(z) — Hepy1 () (40)

Property C.5. The following property is shown by induction and by using the previous property[C.4|
Vk € N*Vz € R:
He) (z) = kHeg_1(x) (41)

Proposition C.6. Using the last property and by the linearity of the integral, the derivative of F'
(Def. , F’': R — Ris written as follows:

n

wHF’(x):ZmHek 1(2) (42)

k=1
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Remark C.7. A first remark here is that Vn > 2: F” is unbounded ( lim F’(z) — o0o). This means

T—
that F' is not Lipschitz continuous. Lipschitz continuity is often desired (or even required) when

training a deep neural network using gradient backpropagation. However, by a suitable initial choice
of the coefficients (ax)xefo,n] We can keep the Lipschitz constant under control.

Proposition C.8. The second moment of the derivative of the Hermite activation is:

n 2
E[F'(2)?] = L 43
F@7 =) a1 (43)
k=1
Proof. Knowing that Vk € N* Vo € R:
Hey (z) = kHep—1(z) (44)
The definition of F’ becomes:
F:R—-R
/ - kak
z— F'(z) = T Hey—1(z) (45)
k=1
Thus, the second-order moment of F” is:
2 2
+oo n -5
E [F'(z)?] = / O Hep1(2) | Se—da (46)
[ ] —o0 b—1 (k - 1)' V2
By the orthogonal property Eq.[33} the cross terms cancel out, and we have:
n m2
E [F/(z)?] = /m 3 O e (@2 an @7)
S () Vo
n 2 +oo [ 9 22
=yt [Tl g (48)
P k—1'J_ (K-=-D! /or
(49)
By the normality property Eq.[32] we finally have:
B[Par] =Y (50)
= (k—1)!
k=1
O
Proposition C.9. Equality between propositions|C.3|and|[C.8|imposes that:
(k-1
3= o i (51)
k=1 ’
& 1 1\ ,
Z((k—l)! k;') % >2)
k=1

To satisty the forward-backward gain equality, we could initialize the coefficients (ax)rc[o,] such
as Vn € N*:

1
Vke[l,n]ar=1 and ag= 1——' (53)
n!

This initialization works in practice for all n. Furthermore, as the term % in ag vanishes quickly with

n — +oo0, for larger n we could initialize all the coefficients to 1 including ay.

In the limit case, by a simple injection of aj, = 1 in Prop.[C.9]and then in Prop.[C.8] we obtain the
result.
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D PROOF OF THE THEOREM

Definition D.1. We consider the following Fourier activation F': R — R:

v F(z) = ag + Z (ag cos(k:c); by, sin(kx)) (54)
k=1

where (ag)ren and (by )xen- are real learnable coefficients.
Property D.2. The equivalent of the property for trignometric functions is given by Ym,n € Z2:

/ cos(max) cos(nz)dx = wonm

—T

/ sin(mz) sin(nz)dx = 7nm (55)

/7T cos(max) sin(nz)dx =0

—T
With 0., the Kronecker delta function.

Proposition D.3. The second moment of this activation is:
E[F(z)?] = ad + L Xn: (o + %) (56)
) (k!)2

Proof. The proof relies on the orthonormality property [D.2]

The random variable x is assumed to follow a uniform distribution on the interval [—, 7|, denoted
as:
x~U(—7,7) (57)

To compute the second moment of the Fourier activation F'(x), we need to compute the expected
value of F(x)%:

BIF@f) = [ Fafp)d 58)
where p(z) is the probability density function (PDF) of the uniform distribution:
1
p(l’) = 5 T e [—TF,TI'] (59)
27
Taking the square of the definition in Eq. [54] gives:
2
"\ (ay cos(kx) + by, sin(kx
F(x)2:<ao+z(’“ ( )k! s ))> (60)
k=1
Using the orthogonal property [D.2]and the linearity of the integral, we have:
I 1 (7 .
E[F(z)?] =a + 5 kZ:l )2 /_7T a2 cos®(kx) + b3 sin® (kx) dx (61)
1 < a7 (sin(27k) b? sin(27k)
2 k k
= — _— — - 62
Wt o ; ()2 ( ok ”) )z (“ 2%k ) ©2)
The second moment simplifies to:
13 (a2 +2)
2] _ 2 kT %
E[F(2)*] = af+5 ) NI (63)
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Next, we compute the second moment of the derivative of the Fourier activation F”. The derivative of
F is given by:

Proposition D.4. The derivative of the Fourier activation F': R — R is given by:

n

Fl(z) = Z ﬁ (—ax sin(kz) + by cos(kz)) (64)

Remark D.5. Contrary to the remark in F’ is bounded.

Vz e R: |F/($)| < max(|ak|v |bk|)k€[[1,n]] Z < emaX(|ak‘|a |bk|)k€[[1,n]] (65)
k=1

. (k—1)!

This means that in the case of a Fourier activation, F' is Lipschitz continuous.

Proposition D.6. The second moment of the derivative of the Fourier activation is:

1 1
E[F'(2)?] =2) ———(a; +b; 66
Proof. An orthonormality argument as for the proof in the forward case suffices. O

Proposition D.7. Equality between[D.3|and|D.6)imposes that:

n 2
Z k 1 ak+b2) (67)

To satisfy the forward-backward gain equality, we could again initialize the coefficients such as
Vn € N*:

Vke[l,n]ar=by=1andao = /1 —

CIE (68)
This initialization works in practice for all n. Furthermore, as the term ﬁ in ag vanishes quickly
with n — +o0, for larger n we could initialize all the coefficients to 1 including a.

In the limit case, by a simple injection of a; = 1 in Prop. and then in Prop.[D.6] we obtain the
result.

Remark D.8. For an input x of distribution z ~ U(—+/3,v/3), which has a variance of Var[z] = 1
and which is more in line with deep neural networks that seek a unitary variance preserving property
across layers, we could rescale the fundamental frequency given in the definition of F' in Def. [D.T|by
redefining it as:

x— F(z)=ag+ Z o (ak cos(k:\/g x) + by sm(k\/gx)) (69)

The computation of the second moment stays the same except for a factor % In general if

T~ U ( 1), 1 € RY, and if w € Z is the fundamental frequency, this last should be scaled by
W= Tw.

E PROOF OF THE THEOREM

Proof. Consider the function:

Fa) = L2

V2 n
max x{l+kr}= 7 (1 + max kx) (70)

Note that since z € R, the maximum over k depends on the sign of z:

* If 2 > 0, then max}_, {kz} = na.
e If x <0, then maxk_o {kz} = 0 (achieved at k = 0).
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Thus, we can write
2(1+na) =2+ Y2, >0

71
, 2<0 (71)

F(m)z{

We now analyze the variance of F'(x) under the assumption that x ~ A(0,1) (standard normal
input):

ol

As n — oo, the function becomes approximately:

3 0
F(z) ~ {(\)f”j ;” z . (72)

This is similar to a scaled ReLU: F'(x) &~ /2 - max(0, z), which we know from Appendix has
unitary forward and backward gains.

O

F DEEP POLYNOMIALLY ACTIVATED NEURAL NETWORKS ARE
MULTIVARIATE POLYNOMIAL MAPPINGS

Deep MLPs are compositions of affine transformations and activation functions applied layer by layer.
When the activation functions are polynomial, the entire network can be expressed as a polynomial

mapping.
Definition F.1. Let n, m € N. A function F' : R™ — R™ is called a polynomial mapping if each

component function F; : R™ — R, fori = 1,...,m, is a polynomial in n variables. Explicitly, this
means that for each 7, F; has the form:
Fi(z1,...,zy,) = Z Ci ] Ty, (73)
| <d;
where the sum is taken over all multi-indices &« = (a1, ..., ;) € N™ such that || = a1 + a2 +

-+ oy < d;, ¢ o € R are real coefficients, and d; € N.

Definition F.2. A deep neural network with L layers, input dimension n, and output dimension m is
a function F' : R — R™ of the form:

Fx)=Wro(Wp_10(---o(Wix +by)--- )+ br—1) + bz, (74)

where Vi € [1, L] C; € N*. Each W; € RE*Ci-1 i5 a weight matrix, b; € R®" is a bias vector, and
o is an activation function applied element-wise.

Proposition F.3. Let F' : R" — R™ be a deep neural network with polynomial activation functions
of degree d. Then F is a polynomial mapping of degree at most d*. Furthermore, any L-layer MLP
could be collapsed into an equivalent 3-layer network with the middle layer being a polynomial
mapping of degree at most d*.
Proof. The proof proceeds by induction on the number of layers L and is detailed in what follows.
Base case: For L = 1, the network takes the form

F(xz) = Wio(Wox + bo) + b1.

Since o is a polynomial of degree d, applying it to the affine transformation Wyx + by yields a
polynomial mapping of degree at most d. Therefore, F'(x) is a polynomial mapping of degree at
most d.

Inductive step: Assume the statement holds for L — 1 layers, meaning the network Fy,_;(z) is a
polynomial mapping of degree at most d*~!. For the L-layer case, we have

F((E) = WLU(FLfl(.’L')) +br.

Since o is a polynomial of degree d, applying it to Fy,_; () results in a polynomial of degree at most
d - d*=1 = d". Thus, by induction, the statement holds for all L > 1. O
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Corollary F.4. Any deep neural network with polynomial activation functions realizes a polynomial

mapping whose degree grows exponentially with the number of layers.
Remark F.5. The total number of monomial terms in this mapping is (dilf”).

Remark F.6. An equivalent consideration for trigonometric polynomials can be established by
approximation, but will not be covered here.

G ALGORITHMS

Algorithm 1 Initialization of Hermite Grid and Coefficients

Input: Polynomial degree n
Output: Coefficients tensor coeffs, Grid of powers tensor grid

Initialize coeffs and grid as zero matrices of shape [n + 1,n//2 + 1]
for i = 0tondo
for j = 0 to 5 do
if j < £ then
coeffs[i][j] « (—1)7 e(~loa(it)—log((i=27)")—jlog(2))
grid[i][j] i —2j
else
coeffs[i][j] < O
grid[i][j] <0
end if
end for
end for
return coeffs, grid

Algorithm 2 Hermite Activation Function Forward Pass

Input: Input tensor x, polynomial degree n
Parameters: Learnable polynomial coefficients A € R"
Output: Output tensor after applying Hermite activation function

coeffs, grid < Initialize_coeffs_grid()
Procedure Forward(x):
x < x.repeat(n + 1).repeat(n//2 + 1)
r + |z|#9 © sign(z)gid
x < xQcoeffs
T+ QA
return r
End Procedure

Algorithm 3 Hermite Forward CUDA Kernel

Input: Input tensor x, degree n, output tensor out
Output: Computed Hermite polynomials up to degree n

Procedure HermiteForwardCUDA (x, n, out):
for 7 in parallel index size(z):
outfi - n] < 1.0
if n> 1:outfi-n+ 1] < z[f]
for k =2ton:
outi -n+ k] < zfi] -outfi -n+k—1]—(k—1)-outli-n+k — 2]
End Procedure
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Algorithm 4 Hermite Backward CUDA Kernel

Input: Input tensor x, degree n, output tensor out, gradient tensor grad_out
Output: Computed gradients for Hermite polynomials

Procedure HermiteBackwardCUDA(z, n, out, grad_out):
for i in parallel index size(grad_out):
grad < 0.0
for k=1ton:
grad < grad+ z[i -n+ k] - k- outfi - n 4+ k — 1]
grad_out[i] « grad
End Procedure

Algorithm 5 Fourier Activation Function Forward Pass

Input: Input tensor x, degree n

Parameters: Learnable coefficients A € R", fundamental a € R, phases P € R", frequencies
F eR",

Output: Output tensor after applying Fourier activation function

Procedure FourierActivation(x):
T+ x.repeat(n + 1)

r+— Fozxz—-P
T+ /2 cos(x)
T+ QA
r+—x+a
return x

End Procedure

Algorithm 6 Tropical Activation Function Forward Pass

Input: Input tensor x, degree n
Parameters: Learnable coefficients A € R"
Output: Output tensor after applying Tropical activation function

powers < range(0,n+1)

Procedure Forward(z):
T +— x.repeat(n + 1)
T + /2/n - max(z © powers + A, dim = —1)
return x

End Procedure
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H RATIONAL TROPICAL ACTIVATION

Definition H.1. The tropical quotient @ of x over y is defined as:
TQY i=x—Y (75)

Definition H.2. The tropical rational activation F' is defined as the quotient of two tropical polyno-
mials F; and Fy of degree m, n € N? respectively.
F:R—-R
F(x)— Fi(z) © Fs(x) := Fi(x) — Fy(x) (76)

An example of fitting a classical activation (GELU) with a rational tropical activation is shown in
Figure[5] Rational tropical activation is understood here in the general sense, i.e., with real powers.

T T T T T T T
6k —o¢ru |
GELU deriv.
= = = Tropical Rat.
Tropical Rat. deriv.

4 - -
=
=
2 - -
Lo 4 |
! ! ! ! ! ! !
—6 —4 -2 0 2 4 6
T-axis

Figure 5: Hermite interpolation of a GELU with a Tropical Rational Activation of degree 6 in both
the numerator and the denominator.

An example of fitting a convex function (x + %-) with a polynomial tropical function (in the general
sense) is shown in Figure[6]

F(x)

Figure 6: Interpolation of % function by the Tropical-Laurent polynomial (with potentially negative

k2
powers) ]?i%,)é {kx — ?} of degree 6.
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I ABLATION STUDIES

Table 3: Ablation studies for the degree of the activation on ConvNeXt-T model.

Activation Degree Train Loss Val Top-1(%) Val Top-5 (%)

Tropical 1 2.925 81.60 95.73
Tropical 3 2.866 82.01 95.91
Tropical 5 2.863 82.18 96.00
Tropical 6 2.857 82.20 95.90
Fourier 1 2.872 80.29 95.03
Fourier 3 2.850 80.61 95.26
Fourier 5 2.844 80.69 95.41
Fourier 6 2.837 80.93 95.44
Hermite 2 2.833 81.66 95.71
Hermite 3 2.790 82.34 96.03

Table 4: Ablation studies for the initialization of the activation on ConvNeXt-T model.

Activation Degree Initialized from Train Loss Val Top-1(%) Val Top-5 (%)

Fourier 6 GELU 2.775 81.91 95.77
Fourier 6 Thrm. [3.13] 2.837 80.93 95.44
Hermite 3 GELU 2.809 82.04 95.91
Hermite 3 Thrm. [3.8] 2.790 82.34 96.03

Table 5: Ablation studies for the learnability of the parameters of the activation on ConvNeXt-T
model.

Activation Degree Learnable? Train Loss Val Top-1(%) Val Top-5 (%)

Tropical 6 X 3.560 76.31 93.09
Tropical 6 V4 2.857 82.20 95.90
Fourier 6 X 3.181 79.51 94.60
Fourier 6 Vv 2.837 80.93 95.44
Hermite 3 X 3411 78.48 94.20
Hermite 3 4 2.790 82.34 96.03

Table 6: Ablation studies for the clamping in the Hermite activation on ConvNeXt-T model.

Activation Degree Clamped? Train Loss Val Top-1(%) Val Top-5 (%)

Hermite 3 4 2.772 81.98 95.81
Hermite 3 X 2.790 82.34 96.03

J A BRIEF DIGRESSION ON KOLMOGOROV ARNOLD NETWORKS (KANS)

Kolmogorov-Arnold networks [Liu et al.| (2024) have been presented as a potential alternative to
Multilayer-Perceptrons (MLPs), promoting several merits such as greater accuracy, fewer learnable
parameters, and better interpretability. While the first two advantages could only be demonstrated
for simple cases in the (Liu et al., [2024]) article, the third benefit is more straightforward, as these
networks overcome the “black-box” aspect of traditional non-linear activations MLPs by allowing
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the activation to be polynomial, piece-wise polynomial, or rational, as in Yang & Wang|(2024). From
there, having learned the weights of the network and those of the activation, it becomes clear what
approximation these functions (polynomial, rational, or trigonometric ) have converged to.

Rather than providing a direct application of the celebrated Kolmogorov—Arnold representation theo-
rem (KART) |Kolmogorov|(1957);/Arnold|(1959), the recent work on KAN [Liu et al.|(2024) appears to
take inspiration from it in a more figurative sense. For clarity, we recall that the Kolmogorov—Arnold
representation theorem, cited below, states that any continuous multivariate function f: [0,1]" — R
can be represented as a composition of addition and some functions of one variable denoted by v, ,,
and ®,:

Theorem J.1. (Arnold (2009b}ia))) Let f : I™ := [0, 1]™ — R be an arbitrary multivariate continuous
function. Then it can be represented as follows:

2n n
Flay,. o an) =) @, (Z Yap (x,,)> (77)

q=0

with continuous one-dimensional functions ®,: R — R and 1, ,: [0,1] — R. &, are called outer
Sfuncions and 14 p, are called inner functions. The inner functions )4 , are independent of the function

7.

This differs substantially from KAN’s formulation Liu et al.| (2024)), where the outer functions
disappear, the inner functions are replaced by a weighted sum of a SiLU MLP [Elfwing et al.|(2018)
and a B-spline, and the networks are a composition of multiple feed-forward layers to accommodate
recent neural network architectures.

Since the KART proof is not constructible, and is essentially based on Baire’s theorem Kahane|(1975)),
the first efforts to implement a constructive proof of the KART were made by Sprecher in |Sprecher
(1996;1997). These latest works are based on a more economical variant of the KART in terms of
the number of outer and inner functions due to both [Sprecher| (19635)) and [Lorentz (1966)).

This was followed by the first article on the practical training of this type of network by [Koppen
(2002)), pointing out at the same time that the inner function ¢ constructed in this theorem was
continuous but fractal! This limited its use in gradient-based learning algorithms. |Braun & Griebel
(2009) gave rigorous proof of termination, continuity, and monotonicity for the construction of the
inner and the outer functions given by [Sprecher| (1997).

As acknowledged by both [Liu et al.|(2024) and [Yang & Wang| (2024)), the original “KAN" layer
defined in |Liu et al| (2024) could be seen as a sum of a SiLU MLP and a weighted B-Spline
combination. Let us define a linear function Ly : x — Wx, with W a learnable weight matrix. The
“KAN" layer|Liu et al.| (2024)) is then defined as follows:

KANLiu(.’L‘) = ,CWb(SiLU(.I‘)) + 'CWS (Z Cle(.%‘)> (78)

With W}, and W, two learnable weight matrices, (B;);e[o,q) @ family of B-spline functions of order

d + 1, (¢i)ic[o,q) the learnable spline weights and SiLU: z — 77—

Indeed, if we follow the line of thought set out in KAN |Liu et al.[(2024), an MLP with learnable
activation, or equivalently a learnable activation network (LAN) would be a sort of KART formulation,
with the 74, inner functions being a linear combination of ReLU functions. However, this is not what
the KART theorem suggests. Constructing a Kolmogorov-Arnold superposition requires a maximum
of two layers formulated by inner and outer functions as in theorem [J.T| (Ismailov, 2024).

It is worth noting that the concept of using splines to approximate inner functions in a Kolmogorov-
Arnold network or more generally as a representation of an activation function isn’t entirely new. The
analogy between KANs and MLPs has been noticed since Hecht-Nielsen| (1987) and [Karkovd(1992).
Earlier research, such as Igelnik & Parikh|(2003), introduced Kolmogorov’s Spline Network, which
employed splines for flexible function approximation. In his PhD thesis, Braun| (2009)) corrected the
constructive proof of the KAT and gave practical examples using B-splines. Further developments in
this area include Bohra et al.| (2020) and [Fakhoury et al.|(2022), who focused on learning adaptive
activation functions through splines, thus enhancing the network’s expressiveness.
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Additionally, the use of the Kolmogorov superposition theorem to tackle high-dimensional problems
has been explored by [Laczkovich| (2021)) and [Lai & Shen| (2021), who showed its potential in
overcoming the curse of dimensionality. Similarly, [Montanelli et al.| (2019) demonstrated how
structured networks like Deep ReLU models can efficiently approximate bandlimited functions, thus
expanding the practical applications of spline-based methodologies in neural networks.

With an equivalent number of parameters or FLOP, |Yu et al.| (2024) observed that KAN surpasses
MLP solely in symbolic formula representation, while it falls short of MLP in other machine learning
tasks, including computer vision, NLP, and audio processing. |(Cang et al.|(2024) confirmed the same
finding.

Nevertheless, KANs have had the merit of rekindling interest in learnable activations in neural
networks, among them polynomial and trigonometric activations.

Since the interest in KANSs began, numerous researchers have proposed a multitude of learnable
functions for activations, spanning a diverse range of mathematical functions, including splines,
classical orthogonal polynomials, rational functions, Fourier bases, and wavelets... Despite this, in
some instances, the safety of these operations, the boundedness of their gradients, their initialization,
and their computational properties in the context of gradient descent have sometimes received less
emphasis. Instead, many studies have highlighted proof-of-concept results, often demonstrating
that such functions can achieve strong performance on benchmark datasets like MNIST |[LeCun
et al.| (1998). This line of work has produced a rich body of literature. A common observation,
however, is that much of it focuses on adapting a specific interpolation function within relatively
shallow architectures and evaluating on small-scale datasets (such as the MNIST dataset, for example).
Because a wide variety of functions can achieve test accuracies exceeding 97% on MNIST with
networks of depth three or less, it becomes challenging to distinguish which approaches provide the
most robust or generalizable benefits.

K EXTENDED RELATED WORK

The subject of learnable activation is a well-known one, but it has seen a resurgence thanks to the
popularity enjoyed by the KAN article |Liu et al.|(2024). Examples of works in which the main theme
is learning the activation function include [Houlsby et al.|(2019)); \Goyal et al.|(2019); Tavakoli et al.
(2021)); Moosavi et al.| (2022); [Fang et al.[ (2022); Bodyanskiy & Kostiuk| (2023)); |[Pishchik] (2023)).

Earlier works exploring polynomial activations in deep neural networks trained using the backpropa-
gation algorithm include [Zhou et al.| (2019) and|Chrysos et al.| (2020), which empirically demonstrate
that polynomially activated neural networks, even without non-linear activation functions, can per-
form well across multiple tasks. Building on this, [Chrysos et al.| (2023) sought to regularize such
networks to compete with deep ReLU networks.

More recently, [Nebioglu & Iliev| (2023) investigated the use of Chebyshev and Hermite orthogonal
polynomials as activation functions, demonstrating that Chebyshev activations are computationally
efficient but sensitive to problem types, while Hermite activations exhibit greater robustness and
generalization. Additionally, Xiao et al.| (2024) introduced HOPE (High-order Polynomial Expansion),
a novel method that represents neural networks as high-order Taylor polynomials, enabling improved
interpretability, low computational complexity, and applications such as function discovery, fast
inference, and feature selection.

Other recent works utilizing Chebyshev activation include Deepthi et al.|(2023) and Heidari et al.
(2024), which employed single-layer shallow networks. |Seydi| (2024)) conducted a comparative
study of exotic polynomial activations on the MNIST dataset, while |Cooley et al.| (2024) applied
polynomial-augmented neural networks for approximating solutions to partial differential equations.

On the rational activation front, notable works include [Trefethen & Gutknecht| (1987)), which intro-
duced stable-Padé and Chebyshev-Padé approximators, and Molina et al.|(2019)), which proposed
the Safe-Padé activation by ensuring the denominator of the rational activation remains nonzero. An
orthogonal variant of the Padé approximant was presented in Biswas et al.| (2021)), while Chebyshev
rational functions |Castellanos & Rosenthal| (1993)) and Fourier rational functions |Geer| (1995]) were
explored in subsequent studies. More recently, advancements in rational activation using general
Jacobi functions were introduced in |Aghaei| (2024bza).
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Polynomial piecewise functions (such as B-splines) and rational functions (such as the Padé approx-
imant) can exhibit finite support properties. On the other hand, these last lack the orthogonality
property. Several works have aimed to formulate orthogonal splines [Mason et al.|(1993); |Alavi &
/Aminikhah|(2023)) and orthogonal rational functions Bultheel et al.| (2001), or even a theory of spline
wavelets |Chui & Wang|(1991) and rational wavelets Zheng & Minggen|(1999); |Choueiter & Glass
(2007).

Learning with a periodic function or a Fourier series has also been the subject of many anterior works,
such as|Sitzmann et al.|(2020), and more recently Mehrabian et al.| (2024)), and [Martinez-Gost et al.
(2024)) using a Discrete Cosine Transform (DCT). Recently, Hashemi et al.| (2024)) introduced the
Dynamic Range Activator (DRA), an activation function that combines harmonic (trigonometric)
and hyperbolic components to capture the highly recursive and high-variance behavior within a deep
problem in enumerative algebraic geometry.

In the context of tropical activations, prior work has been done to establish connections between
tropical geometry and neural networks. For instance, Zhang et al.|(2018)) demonstrated that feedfor-
ward neural networks with ReLU activation can be interpreted as tropical rational maps, relating their
decision boundaries to tropical hypersurfaces and showing how deeper networks leverage zonotopes
to achieve exponentially greater expressiveness. Building on this geometric foundation, |Smyrnis
& Maragos| (2019)) introduced tropical polynomial division, an approach inspired by the max-plus
semiring, and applied it to neural networks with ReLU activation. Recent work also developed
tropical activation functions |Yoshida et al.| (2024}, which were subsequently applied to convolutional
neural networks (CNNs) for image classification tasks on MNIST [LeCun et al.|(1998)), CIFAR10
Krizhevsky et al.|(2009), and SVHN [Netzer et al.|(2011) in[Pasque et al.| (2024]).

L IMAGE CLASSIFICATION RESULTS ON CIFAR10

We conducted an experiment using ConvNeXt-T on CIFAR10 for 300 epochs and averaged the
results over 10 different seeds. The experiment shows that Hermite, Fourier, and Tropical activations
are significantly above the GELU baseline in terms of test metrics. In addition, we added three
different seeds for ResNet50 with ReLLU, and the results of the latter are clearly inferior to those of
ConvNeXt-T, ConvNeXt-T being a modernized version of ResNet50. The results, in table form, are
reported in Table[7]and in graphical form in Figures 0] [7} and|[8]

Table 7: Comparison of the proposed activation functions on ResNet50 and ConvNeXt-T models
for CIFAR-10 image classification task. Values are reported as mean * standard deviation over 10
different seeds (3 seeds for the ResNet50 case). p-values (two-tailed Student’s t-test assuming equal
variances) compare each activation’s Top1-accuracy against GELU.

Model Activation Top-1 Acc. (%) Top-5 Acc. (%) p-value vs GELU (Top-1)
ResNet50 ReLU 88.9 + 0.04 99.43 4+ 0.47 < 0.0001 (k)
ConvNeXt-Tiny Baseline (GELU) 90.47 £ 0.20 99.62 + 0.06 -
ConvNeXt-Tiny  Tropical 90.87 + 0.19 99.63 4+ 0.04 0.0002 (%)
ConvNeXt-Tiny Fourier 91.23 £ 0.65 99.60 £ 0.05 0.0023 (*%*)
ConvNeXt-Tiny Hermite 91.35 + 0.29 99.63 4 0.05 < 0.0001 (k)
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eval_topl

= ConvNeXt-T Tropical = ConvNeXt-T Fourier == ConvNeXt-T GELU == ConvNeXt-T Hermite = ResNet50
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Figure 7: Evaluation Top1 accuracy curves for ConvNeXt-T on CIFAR-10. The solid lines represent
the mean of the metric over 10 different seeds (3 seeds for the ResNet50 case), and the shaded areas
show the range (min to max).

eval_top5
— ConvNeXt-T Tropical =— ConvNeXt-T Fourier = ConvNeXt-T GELU = ConvNeXt-T Hermite — ResNet50

100 150 200 250 300

Figure 8: Evaluation Top5 accuracy curves for ConvNeXt-T on CIFAR-10. The solid lines represent
the mean of the metric over 10 different seeds (3 seeds for the ResNet50 case), and the shaded areas
show the range (min to max).
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train_loss
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Figure 9: Training loss curves for ConvNeXt-T on CIFAR-10. The solid lines represent the mean of
the metric over 10 different seeds (3 seeds for the ResNet50 case), and the shaded areas show the
range (min to max).

For this experiment we used the TIMM library with the following configuration 8}

Table 8: Configuration for the pretraining experiment on CIFAR-10.

Hyperparameter Value

Input Size 3x32x32
Number of Classes 10

Batch Size 128 x 4 GPUs
Optimizer AdamW

Learning Rate 4e-3

Epochs 300

Scheduler Cosine

Drop Path Rate 0.0

Mean 0.491, 0.482, 0.446
Std 0.247,0.243, 0.261
Warmup Epochs 20

Weight Decay 0.0

Mixup 0.8

Label Smoothing 0.1

Auto Augmentation rand-m9-mstd0.5
Re-mode Pixel

Random Erasing Prob  0.25

Gradient Clipping 5.0

CutMix 1.0
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M DECISION BOUNDARIES

We compare the decision boundaries of four single-layer neural networks trained on simple 2D
classification datasets (two moons, circles ...), each using a different activation function to evalu-
ate how activation choice affects classification behavior and boundary smoothness. The Hermite
activation produces a smooth and globally coherent decision boundary, reflecting its polynomial
nature. In contrast, the Fourier activation leads to quasi-periodic patterns that adapt well to the
underlying structure of the data, capturing fine-grained details and even fitting noisy points. The
tropical activation yields a piecewise affine boundary, resembling the behavior of ReLU, with sharp
transitions and linear segments that reflect its max-plus (tropical) structure.

Hermite Fourier Tropical GELU

Figure 10: Decision boundaries across datasets: Top row: classification; middle row: moons; bottom
row: circles, using four different activation functions.

30



Under review as a conference paper at ICLR 2026

N LINE PLOTS

Global Train/train_loss

= ConvNeXt-T Hermite = ConvNeXt-T Tropical == ConvNeXt-T GELU = ConvNeXt-T Fourier
2.95 :
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Figure 11: Training loss curves for ConvNeXt-T on ImageNetlk. The solid lines represent the mean
of the metric over 5 different seeds, and the shaded areas show the range (min to max).

Global Test/test_accl_ema

= ConvNeXt-T Hermite = ConvNeXt-T Tropical == ConvNeXt-T GELU = ConvNeXt-T Fourier
82
81.5 b
81
Z
epoch
200 220 240 260 280

Figure 12: Topl evaluation accuracy for ConvNeXt-T on ImageNetlk. The solid lines represent the
mean of the metric over 5 different seeds, and the shaded areas show the range (min to max).
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Global Test/test_acc5_ema
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Figure 13: Top5 evaluation accuracy for ConvNeXt-T on ImageNetlk. The solid lines represent the
mean of the metric over 5 different seeds, and the shaded areas show the range (min to max).

train/loss
= GPT2 GELU = GPT2 Fourier == GPT2 Hermite GPT2SiLU = GPT2 Tropical

iter

100k 120k 140k 160k 180k 200k

Figure 14: Comparison of the train losses of the GPT2 model (124M) on OpenWebText with GELU,
SiLU, Hermite, Fourier, and Tropical activations. The solid lines represent the mean of the metric
over 5 different seeds, and the shaded areas show the range (min to max).
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val/loss
= GPT2 GELU GPT2 Fourier == GPT2 Hermite 5PT2 SiLU = GPT2 Tropical

2.98
2.96
2.94
iter
100k 120k 140k 160k 180k 200k

Figure 15: Comparison of the validation losses of the GPT2 model (124M) on OpenWebText with
GELU, SiLU, Hermite, Fourier, and Tropical activations. The solid lines represent the mean of the
metric over 5 different seeds, and the shaded areas show the range (min to max).

O FINETUNING ACTIVATIONS EXPERIMENT ON CIFAR10

We conducted an experiment for fine-tuning ConvNeXt-tiny (pre-trained on ImageNetlk) on CI-
FAR10. We froze all the weights except those of the last linear layer and the ones of the learnable
activations, which were initialized by fitting GELU with a Hermite interpolation. The results hereby
show a clear superiority of the proposed learnable activations:

Fine-Tuning a pretrained ConvNeXt-Tiny on CIFAR-10: Comparing Learnable Activations with GELU

Train Loss Test Loss
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Figure 16: Performance of a pretrained ConvNeXt-T (on ImageNetlk) on CIFAR10 when fine-tuning
only the final linear layer and the learnable coefficients of the activations.
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P TIMING RESULTS

Forward + Backward Time (s)

Figure 17: Forward + backward pass averaged times (in seconds and log-log scale) for Hermite,
Tropical, and Fourier activations across varying degrees as benchmarked on an AMD EPYC 7402

CPU.

Table 9: Forward + backward pass averaged times (in seconds) for Hermite, Tropical, and Fourier

101

10-2

—8— Hermite
—o— Tropical
Fourier

=

2 2 2 > 2 > 2
Degree

activations across varying degrees as benchmarked on an AMD EPYC 7402 CPU.

Activation Degree = Forward+Backward Time

Hermite 1 0.00047354
Hermite 4 0.00188883
Hermite 8 0.00462004
Hermite 16 0.0168367

Hermite 32 0.0496985

Hermite 64 0.191425

Tropical 1 0.000300329
Tropical 4 0.000337174
Tropical 8 0.000356829
Tropical 16 0.000405076
Tropical 32 0.000512147
Tropical 64 0.000788548
Fourier 1 0.000270138
Fourier 4 0.000599022
Fourier 8 0.000644515
Fourier 16 0.000787303
Fourier 32 0.00121512
Fourier 64 0.00262779
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Figure 18: Forward + backward pass averaged times (in seconds) for Hermite (explicit Alg.[2| Eq.
and recurrence-based CUDA implementation Alg.[3] Eq.[23), Tropical, and Fourier activations across
varying degrees as benchmarked on a single NVIDIA A100 GPU/40GB.
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Figure 19: Relative slowdowns of Hermite, Tropical, and Fourier activations compared to GELU
across different widths.
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Figure 20: Relative slowdowns of Hermite, Tropical, and Fourier activations compared to GELU
across different depths.
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Table 10: Forward + backward pass averaged times (in seconds) for Hermite (explicit Alg. |2} Eq.
and recurrence-based CUDA implementation Alg. [3] Eq.[23)), Tropical, and Fourier activations across
varying degrees as benchmarked on a single NVIDIA A100 GPU/40GB.

Activation Degree  Forward+Backward Time
Hermite 1 0.000350997
Hermite 4 0.00035552
Hermite 8 0.00035341
Hermite 16 0.000355005
Hermite 32 0.000355887
Hermite 64 0.000795927
Hermite 128 0.00221812
Hermite 256 0.00794526
Hermite 512 0.0306861
Hermite 1024 0.122032

Hermite Rec. CUDA 1 0.000887356
Hermite Rec. CUDA 4 0.000887024
Hermite Rec. CUDA 8 0.000893834
Hermite Rec. CUDA 16 0.000912833
Hermite Rec. CUDA 32 0.000956004
Hermite Rec. CUDA 64 0.00100782
Hermite Rec. CUDA 128 0.00110659
Hermite Rec. CUDA 256 0.0017534
Hermite Rec. CUDA 512 0.00233119
Hermite Rec. CUDA 1024 0.00555244
Hermite Rec. CUDA 2048 0.0119172
Tropical 1 0.000296884
Tropical 4 0.000295298
Tropical 8 0.000295942
Tropical 16 0.000296063
Tropical 32 0.000302484
Tropical 64 0.000303783
Tropical 128 0.000304883
Tropical 256 0.000305769
Tropical 512 0.000305247
Tropical 1024 0.000306931
Tropical 2048 0.000375793
Fourier 1 0.000470023
Fourier 4 0.000471404
Fourier 8 0.000478096
Fourier 16 0.000471656
Fourier 32 0.000489211
Fourier 64 0.000487039
Fourier 128 0.000486042
Fourier 256 0.00048811
Fourier 512 0.000489757
Fourier 1024 0.000666652
Fourier 2048 0.00125729
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Table 11: Training times (in seconds) and relative slowdowns compared to GELU across different
MLP network widths and depths, for Hermite, Tropical, and Fourier activations. The reported times
were averaged per epoch and were obtained using a single NVIDIA A100 GPU with 40 GB of
memory.

Activation Degree  Width Depth  Training Time Slowdown vs Baseline

GELU - 1024 8 16.13s 1.00x
Hermite 3 1024 8 16.03s 0.99x
Tropical 6 1024 8 13.27s 0.82x
Fourier 6 1024 8 13.93s 0.86x%

GELU - 1024 16 12.86s 1.00x
Hermite 3 1024 16 16.15s 1.26x
Tropical 6 1024 16 14.06s 1.09x
Fourier 6 1024 16 15.13s 1.18x

GELU - 1024 32 13.96s 1.00x
Hermite 3 1024 32 20.65s 1.48%
Tropical 6 1024 32 16.29s 1.17x
Fourier 6 1024 32 18.50s 1.33x

GELU - 2048 8 12.36s 1.00x
Hermite 3 2048 8 14.08s 1.14x%
Tropical 6 2048 8 12.98s 1.05x
Fourier 6 2048 8 13.51s 1.09x

GELU - 2048 16 12.96s 1.00x
Hermite 3 2048 16 16.29s 1.26x
Tropical 6 2048 16 14.05s 1.08%
Fourier 6 2048 16 15.15s 1.17x

GELU - 2048 32 13.98s 1.00x
Hermite 3 2048 32 20.65s 1.48x%
Tropical 6 2048 32 16.64s 1.19x
Fourier 6 2048 32 18.53s 1.33x

GELU - 4096 8 12.43s 1.00x
Hermite 3 4096 8 14.12s 1.14x
Tropical 6 4096 8 13.02s 1.05x

Fourier 6 4096 8 13.58s 1.09x

GELU - 4096 16 13.10s 1.00x
Hermite 3 4096 16 17.07s 1.30x%
Tropical 6 4096 16 14.30s 1.09x

Fourier 6 4096 16 15.42s 1.18x

GELU - 4096 32 23.93s 1.00x
Hermite 3 4096 32 3341s 1.40x%
Tropical 6 4096 32 26.10s 1.09%

Fourier 6 4096 32 28.21s 1.18x%
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Q LARGE LANGUAGE MODEL USAGE DISCLOSURE

We used large language models to assist in translating, rewording, and polishing the text for clarity
and readability. The models were not used for idea generation, experiments, analysis, or contributions
at the level of scientific authorship.
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