
Under review as a conference paper at ICLR 2023

A NEW PARADIGM FOR FEDERATED STRUCTURE
NON-IID SUBGRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated graph learning (FGL), a distributed training framework for graph neu-
ral networks (GNNs) has attracted much attention for breaking the centralized
machine learning assumptions. Despite its effectiveness, the differences in data
collection perspectives and quality lead to the challenges of heterogeneity, es-
pecially the domain-specific graph is partitioned into subgraphs in different in-
stitutions. However, existing FGL methods implement graph data augmentation
or personalization with community split which follows the cluster homogeneity
assumptions. Hence we investigate the above issues and suggest that subgraph
heterogeneity is essentially the structure variations. From the observations on
FGL, we first define the structure non-independent identical distribution (Non-
IID) problem, which presents unique challenges among client-wise subgraphs.
Meanwhile, we propose a new paradigm for general federated data settings called
Adaptive Federated Graph Learning (AdaFGL). The motivation behind it is to im-
plement adaptive propagation mechanisms based on federated global knowledge
and non-params label propagation. We conduct extensive experiments with com-
munity split and structure Non-IID settings, our approach achieves state-of-the-art
performance on five benchmark datasets.

1 INTRODUCTION

The graph as a relational data structure is widely used to model real-world entity relations such
as citation networks Yang et al. (2016a), recommended systems Wu et al. (2022), drug discov-
ery Gaudelet et al. (2021), particle physics Shlomi et al. (2021), etc. However, due to the collection
agents and privacy concerns, generally, the global domain-specific graph consists of many subgraphs
collected by multiple institutions. In order to analyze the local subgraph, each client maintains a
powerful graph mining model such as graph neural networks (GNNs), which have achieved state-
of-the-art performance in many graph learning tasks Zhang et al. (2022b); Hu et al. (2021); Zhang
& Chen (2018). Despite its effectiveness, the limited data provide sub-optimal performance in most
cases. Motivated by the success of federated learning (FL), a natural idea is to combine the GNNs
with FL to utilize the distributed subgraphs. Recently, federated graph learning (FGL) He et al.
(2021); Wang et al. (2022b) is proposed to achieve collaborative training without directly sharing
data, yet an essential concern is the heterogeneity of the distributed subgraphs.

Notably, graph heterogeneity is different from the heterogeneity of labels or features in the fields of
computer vision or natural language processing, we suggest that it depends on the graph structure.
However, The existing FGL methods simulate the federated subgraph distributions through com-
munity split, which follows the cluster homogeneity assumption as shown in Fig.1(a). Specifically,
community split leads to the subgraph structure being consistent and the same as the original graph,
e.g., connected nodes are more likely to have the same labels. Obviously, it is overly desirable and
hard to satisfy in reality, hence we consider a more reasonable setting shown in Fig.1(c). We first
refer to the above problem as structure non-independent identical distribution (Non-IID).

The motivation behind it is due to graph structure directly related to node labels and feature distribu-
tions. Meanwhile, the challenges of structure heterogeneity are ubiquitous in the real world Zheng
et al. (2022b). For instance, in citation networks, we consider research teams focused on computers
and intersectional fields (e.g., AI in Science) Shlomi et al. (2021); Gaudelet et al. (2021) as clients. In
online transaction networks, fraudsters are more likely to build connections with customers instead
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Figure 1: We utilize black circles for base class and gray circles for other class. (a): Limitations of
existing FGL methods. (b): The general collaborative training pipeline. (c): The new challenges of
graph structure Non-IID for FGL.

of other fraudsters Pandit et al. (2007). We consider different regions as clients to detect financial
fraudsters by analyzing online transaction subgraphs. Specifically, graph structure can be divided
into two types: homogeneity means that connected nodes are more likely to have the same label and
similar feature distributions and heterogeneity is the opposite. In order to explain it intuitively, we
visualize the 3 clients partitioning result on Cora in Table. 1 and Table. 2, where Homo represents the
homogeneity degree of the local subgraph, and it is computed by a popular metric Pei et al. (2020).
Obviously, compared to community split, which follows the cluster homogeneity assumption and
uniform distribution principle, structure Non-IID brings challenges to the existing FGL methods.

Table 1: Community split in Cora.

Community #Nodes #Edges Homo
Client1 903 1696 0.85
Client2 903 1575 0.78
Client3 902 1592 0.87

Table 2: Structure Non-IID in Cora.
Non-IID #Nodes #Edges Homo
Client1 1095 1473 0.43
Client2 946 1400 0.87
Client3 667 1212 0.31

Based on this, we investigate the above issues through empirical analysis shown in Fig. 2. According
to the results, we observe that in case the original graph satisfies the homogeneity assumption then
the label distributions satisfy Non-IID. It is the opposite when the original graph satisfies the hetero-
geneity. This is due to the fact that the nodes partitioned into the same clients are communities and
follow the uniform distribution principle. In addition, the local accuracy indicates that the subgraph
structure performs a more important role in FGL compared to the label distributions, which also
supports our motivation. In model performance, we observe that the GGCN improves the structure
Non-IID problem, and FedSage+ trains NeighGen to implement local subgraph augmentation by
sharing node embeddings. However, the above methods fail to achieve competitive results as SGC
on the homogeneous subgraphs while considering heterogeneity.

In order to efficiently analyze distributed subgraphs with both homogeneity and heterogeneity. We
propose a simple pipeline called Adaptive Federated Graph Learning (AdaFGL) for more general
federated data settings, which consists of three main parts. Specifically, it starts by analyzing the
subgraph structure through non-params label propagation and selects the appropriate base model: (i)
the federated global knowledge extractor (e.g., MLP, powerful GNNs, or any reasonable embedding
models), which does not rely on any learning over the subgraph. Then, the base predictor is trained
based on the global data, which can be done offline or in parallel with local training, benefiting
from the flexibility of our approach. Finally, the local client implements two adaptive propagation
mechanisms: (ii) homogeneity propagation module or (iii) heterogeneity propagation module based
on the local subgraph. Notably, with non-params label propagation, the above process is adaptive.

To summarize, the contributions of this paper are as follows: (1) To the best of our knowledge, we
are the first to analyze the structure Non-IID problem in FGL, which is a more general federated data
setting and brings new challenges. (2) We propose AdaFGL, a new paradigm for structure Non-IID
subgraph learning, which shows its flexibility in FGL with impressive performance. (3) Extensive
experiments demonstrate the effectiveness of AdaFGL. Specifically, our approach achieves state-of-
the-art performance in the above two data settings. Compared to the best prediction accuracy in the
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Figure 2: FedSGC: FedAvg+SGC, FedGGCN: FedAvg+GGCN represent the representative meth-
ods. The upper and lower parts represent CiteSeer and Squirrel, respectively, left and right parts
represent community split and structure Non-IID, respectively. The left x-axis represents the client
ID, and the number represents the number of samples in each client corresponding to the classes.
The dark color represents the number of samples with high numbers.

baselines, our method achieves performance gains of 4.67% and 2.65% in structure Non-IID and
community split data settings, respectively.

2 PRELIMINARIES

In this section, we first introduce the semi-supervised node classification task. Then, we review the
prior diverse GNNs and very recent FGL methods. Consider a graph G = (V,E) with |V | = n

nodes and |E| = m edges, the adjacency matrix (including self loops) is denoted as Â ∈ Rn×n, the
feature matrix is denoted as X = {x1, x2, . . . , xn} in which xv ∈ Rf represents the feature vector
of node v, and f represents the dimension of the node attributes. Besides, Y = {y1, y2, . . . , yn} is
the label matrix, where yv ∈ R|Y | is a one-hot vector and |Y | represents the number of the node
classes. The semi-supervised node classification task is based on the topology of labeled set VL and
unlabeled set VU , and the nodes in VU are predicted with the model supervised by VL.

GNNs. As the most popular GNN method, The forward information propagation process of the l-th
layer GCN Kipf & Welling (2017) is formulated as

X(l) = σ(ÃX(l−1)W(l)), Ã = D̂r−1ÂD̂−r, (1)

where D̂ represents the degree matrix with Â, r ∈ [0, 1] denotes the convolution kernel coefficient,
W represents the trainable weight matrix, and σ(·) represents the non-linear activation function.
In GCN, we set r = 1/2, and then D̂−1/2ÂD̂−1/2 is called symmetric normalized adjacency
matrix. Despite their effectiveness, they have limitations in real-world graphs, which have complex
heterogeneous relationship patterns. Some recent researches Liu et al. (2021); Chien et al. (2021);
He et al. (2022); Wang et al. (2022a); Yang et al. (2022) solve it by higher-order neighborhood
discovery or message combination strategies to improve the GNN process via

m(l)
v = Aggregate(l)({h∗

u|u ∈ N∗(v)}),
h(l)
v = Update(l)(h∗

v,m
∗
v),

(2)

where h∗
u denotes the information of multi-hop neighbors N∗(v), m∗

v represents the higher-order
messages of node v from the previous layers, Aggregate(·) and Update(·) denote the message
aggregation function and update function, respectively. However, these methods suffer from high
computational complexity and fail to achieve competitive performance on the homogeneous graph.

FGL has received growing attention for breaking centralized graph machine learning assumptions.
FedGraphNN He et al. (2021) and FS-G Wang et al. (2022b) propose general FGL packages, which
contain a wide range of graph learning tasks. GCFL Xie et al. (2021) and FED-PUB Baek et al.
(2022) investigate the personalized technologies in graph-level and node-level, respectively. Fur-
thermore, some recent researches improve performance with local subgraph augmentation, includ-
ing FedGNN Wu et al. (2021), FedGL Chen et al. (2021), and FedSage Zhang et al. (2021). Inspired
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Figure 3: Overview of our model-free pipeline with a toy example. The federated global knowledge
extractor represents a wide variety of node embedding models. The middle part of the black circles
represents labeled nodes and the gray circles represent unlabeled nodes. Based on this we obtain
graph structure properties and implement the adaptive propagation mechanisms.

by FS-G Wang et al. (2022b), we can consider the collaborative training process in FGL as mod-
ules. Specifically, we model the information such as gradients and node embeddings uploaded by
the clients as messages. Then we consider the server processes and broadcast results as the various
message-handling mechanisms. Here we illustrate the GNNs combined with collaborative training.
Its generic form with N clients is defined as

FGL− Clients (Local Update) → min
1

N

N∑
i=1

E(Ai,Xi,Yi)∼Di
[Lce(fθi(Ai,Xi),Yi)],

L(fθi(Ai,Xi),Yi) = −
∑
i∈VL

∑
j

[Yij log(Softmax(Ỹij)) + (1−Yij) log(1− Softmax(Ỹij))],

(3)

where fθi and Lce are the i-th local GNN with parameters θ and cross-entropy loss function,
respectively. It can be replaced by any other appropriate loss function depending on the task.
(Ai,Xi,Yi) ∼ Di represents the local subgraph (Ai,Xi,Yi) sampled from the distribution Di.
FedAvg McMahan et al. (2017) is an efficient FL algorithm, which can be defined as

FGL− Server (Aggregate)→ ∀i,Wt+1
i ←Wt

i − ηgi, W
t+1 ←

N∑
i=1

ni
n
Wt+1

i , (4)

where t represents the round number of the FL process, W represents the model weights, η repre-
sents the learning rate, g represents the gradient calculated from the Eq. 3, ni and n represent the
i-th local client data size and the global data size, respectively.

3 ADAFGL PIPELINE

The basic idea of AdaFGL is to perform adaptive propagation mechanisms based on federated global
knowledge and non-params label propagation. The pipeline with three main parts as shown in Fig. 3,
which combine the global knowledge embeddings and local structure properties. The above decou-
pling process utilizes the computational capacity of the local system while minimizing communica-
tion costs and the risk of privacy leakage. AdaFGL can benefit from the evolution of FL and GNN
through the base predictor and adaptive propagation. Notably, the base predictor obtained by feder-
ated training and personalized propagation are viewed as two decoupled modules that are executed
sequentially. Meanwhile, both of them accomplish the training without sharing local private data.

3.1 FEDERATED GLOBAL KNOWLEDGE EXTRACTOR

In FGL, limited data yields sub-optimal performance in most cases. Therefore, AdaFGL starts to
perform non-params label propagation to adaptive process. Note this process does not rely on any
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learning over the subgraph. Specifically, the labeled nodes are initialized as y0
v = yv,∀v ∈ VL,

and the unlabeled nodes are denoted as y0
u = ( 1

|Y | , . . . ,
1

|Y | ),∀u ∈ VU . Then, the non-params label
propagation of the k-step is expressed as

yk
u = graph− aggregator({yk−1

v |v ∈ Nu})

= αy0
u + (1− α)

∑
v∈Nu

1√
d̃vd̃u

yk−1
v .

(5)

We follow the approximate calculation of the personalized PageRank matrix Klicpera et al. (2019),
where Nv represents the one-hop neighbors of v, and we default set α = 0.5. Then, we design
the homogeneity confidence score (HCS) computed by the number of correct predictions, and the
default ratio of the boolean mask is 0.5. Finally, we set thresholds λ for the adaptive binary selection
of the homogeneity propagation module and heterogeneity propagation module in each client. In ex-
periments, we default set λ = 0.6 To demonstrate that AdaFGL is a simple yet effective framework,
we choose simple models (e.g. MLP or SGC) and FedAvg to achieve federated training. Due to the
flexibility of AdaFGL, they can be replaced by any other powerful GNNs and federated methods.

From the perspective of FL in Non-IID data, we default choose MLP as the base predictor, which is
independent of the graph structure. Then we quote the convergence theorem Li et al. (2020) in T
rounds and E epochs, the federated global knowledge extractor error bound ϵfed is expressed as

ϵfed ≤
2L

µ2(γ + T − 1)

(
N∑
i=1

ni
n
φ2
i + 6Lϕ+ 8(E − 1)2ω2 +

γ

4
||W1 −W⋆||2

)
. (6)

It assumes that the mapping function satisfies L-smooth and µ-strongly convex, where φ and ϕ
represent the local random gradient and the degree of model heterogeneity, respectively, γ =
max{8L/µ,E}, ω denotes the divergence of local model, and W∗ represents the global optima.

We observe that the base predictor error bound is mainly determined by the differences in the node
feature distributions, and the model performance will be further hurt if the graph structure is con-
sidered. Therefore, we are motivated to propose adaptive propagation mechanisms. Specifically, we
implement the binary selection of the homogeneity propagation module or heterogeneity propaga-
tion module in each client by comparing the HCS value and the threshold λ. We will describe the
technical details of personalized propagation strategies.

3.2 ADAPTIVE HOMOGENEITY PROPAGATION

After that, we use the base predictor to embed local subgraph nodes into the global knowledge
space Xglobal and improve the accuracy with the local homogeneous structure. The motivation
behind it is that the feature propagation satisfying homogeneity has a significant positive impact on
prediction performance, which has also been confirmed in many recent research works Zhang et al.
(2022a); Wang & Leskovec (2020). Hence we expect to utilize local smoothing features to correct
the predictions. Then, we first define the homogeneous feature propagation

X
(k)
smooth = graph− operator(A)(k)X(0),∀k = 1, . . .K,

Hhomo = message− updater(X
(k)
smooth) = fθ(X

(k)
smooth),

(7)

where graph− operator(·) represents the graph operator in feature propagation, we default to
use symmetric normalized adjacency as shown in Eq. 1. X

(k)
smooth represents the local smoothing

features after K-steps propagation, message− updater(·) denotes the model training process, and
we use fθ to represent the linear regression or MLP with parameters of θ.

In order to correct the global embedding and local information, we use the local message update
mechanism and online distillation to achieve an effective combination of the local smooth structure
prior and the global embeddings, which can be written as

Hlocal = WlocalXglobal,

Lkd = ||Hhomo −Hlocal||F .
(8)

Based on this, we can make local smoothing information and global embeddings to achieve mutual
supervision and end-to-end training by gradient updating. This exploits the local structure informa-
tion to reduce the error bound. Notably, the above adaptive process is accomplished in the local
client and has no additional communication costs and privacy concerns.
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3.3 ADAPTIVE HETEROGENEITY PROPAGATION

In contrast, in order to break the heterogeneous structure limitations, we optimize the message-
passing framework by embeddings Xglobal to detect subgraph heterogeneous patterns. Specifically,
we propose an adaptive propagation mechanism by discovering the global dependency of the current
node and modeling the positive or negative impact of the messages. Intuitively, we first expect to
optimize the propagation probability matrix and align the local structure by global embeddings

A(0)
prop = XglobalX

T
global,

Xalign =graph− operator(Â(0)
prop)

(k)X(0).
(9)

Obviously, the original propagation probability matrix introduces high error, we improve it by scal-
ing the aggregated messages and making it trainable. Formally, let pij ∈ Aprop correspond to the
i-th row and j-th col of Aprop, we define the scaling operator dij = dis(Pii,Pij) for j ̸= i,
where dis(·) is a distance function or a function positively relative with the difference, which can
be implemented using identity distance. Thus the corrected propagation matrix is expressed as

Â(l)
prop = A(l)

prop/dd
T − diag(A(l)

prop). (10)
The purpose of it is to measure the global dependency of the current node through the probability
difference. Then, we further model the positive and negative impacts of the messages to implement
effective aggregation, which is formally represented as follows

H(l) = WH(l−1), A(l)
prop = Â(l−1)

prop + β
(
H(l)H(l)

)T
,

H(l)
pos = PoSign(Â(l)

prop)H
(l), H(l)

neg = NeSign(Â(l)
prop)H

(l),

H(l+1) = H(l) +H(l)
pos +H(l)

neg,

(11)

where H(0) = Xalign, PoSign(·) and NeSign(·) represent the trainable adaptive propagation prob-
abilities, it can be replaced by any reasonable nonlinear activation function. Here we analyze the
error bound for the above adaptive heterogeneous propagation mechanism. The proof of the follow-
ing theorem and reasonable assumptions are given in Appendix. A.1

Theorem 3.1 Suppose that the latent ground-truth mapping Φ : x→ y from node features to node
labels is differentiable and satisfies L-Lipschitz constraint, the following approximation error is∣∣∣∣∣∣

∑
j ̸=i

P⋆
ijΦ(H

(l))−

H
(l)
i +

∑
j ̸=i

(Pos
(l)
ij +Neg

(l)
ij )H

(l)
j

∣∣∣∣∣∣
≤

L ∥ϵi∥2 +
∑
j ̸=i

P⋆
ij O

(∥∥∥Hl
j −H

(l)
i

∥∥∥
2

)+
(∥∥∥H⋆ − ϕ (κ+P)H(l)

∥∥∥
2

)
,

where ⋆ represents the global optimal, ϵ denotes immediate neighbors error, O(·) denotes a higher
order infinitesimal, ϕ and κ represent propagation matrix and model differences, respectively.

The core of the above propagation mechanisms is to generate embeddings based on other nodes
in the embedding space. In other words, it means that any node representation can be mapped
to a linear combination of existing node representations, which has been applied in many studies
Zheng et al. (2022a); Yang et al. (2022). However, most of the methods use ranking mechanisms for
representation and fail to consider modeling propagation processes, which has limitations.

4 EXPERIMENTS

In this section, we conduct experimental analysis on five benchmark datasets with community split
and structure Non-IID settings to validate the effectiveness of AdaFGL. We aim to answer the
following five questions. Q1: Compared with other state-of-the-art FGL baselines, can AdaFGL
achieve better predictive accuracy in the community split setting? Q2: How does structure Non-
IID influence existing methods and can AdaFGL improve it? Q3: Are knowledge distillation and
message detection working in adaptive propagation mechanisms? Q4: Why AdaFGL can achieve
desirable predictions utilizing the interactions between decoupled modules? Q5: Compared with
existing FGL methods and heterogeneous GNNs, what are the advantages of AdaFGL?
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Table 3: The results of test accuracy based on Cora and Chameleon by implementing the community
split: mean accuracy ± standard deviation. The best results are shown in bold.

Cora Chameleon
Community Client3 Client5 Client10 Client3 Client5 Client10

FedMLP 63.65±1.03 64.91±1.33 72.44±1.26 44.88±0.97 42.46±1.42 42.88±1.40
FedSGC 81.71±0.06 81.58±0.12 82.07±0.23 33.57±0.23 30.44±0.21 30.03±0.19

FedNLGNN 82.16±1.01 82.47±0.88 84.04±1.31 55.92±1.92 53.94±1.54 39.31±3.18
FedGGCN 82.79±0.27 80.17±1.04 82.80±0.97 56.16±1.43 55.59±1.11 41.52±1.25

FedGL 81.47±0.76 82.88±1.09 83.01±1.61 48.13±1.23 42.62±2.06 39.95±1.21
GCFL+ 83.92±0.17 83.98±1.00 84.53±0.30 41.85±0.43 35.85±0.93 35.04±0.71

FedSage+ 82.80±0.63 83.06±0.55 85.49±0.91 54.16±1.67 53.08±1.79 50.11±1.95
w/o HomoKD 83.22±0.54 83.24±1.68 85.51±0.98 59.74±1.83 60.19±2.14 54.43±1.52
w/o HeteTA 84.91±0.57 85.87±1.75 86.47±0.83 57.98±1.27 58.96±1.35 51.28±1.06

AdaFGL 84.91±0.57 85.87±1.75 86.89±1.02 59.74±1.83 60.19±2.14 54.43±1.52

Table 4: The results of test accuracy are based on Cora and Chameleon by implementing the
structure Non-IID: mean accuracy ± standard deviation. The best results are shown in bold.

Cora Chameleon
Non-IID Client3 Client5 Client10 Client3 Client5 Client10
FedMLP 69.02±0.82 71.16±1.10 74.90±1.85 47.95±0.98 47.10±1.59 48.10±1.12
FedSGC 65.16±0.20 73.10±0.06 70.98±0.39 26.92±0.42 28.08±0.39 25.32±0.21

FedNLGNN 68.21±0.78 72.93±0.72 76.40±1.10 53.74±2.34 56.75±1.61 47.98±1.43
FedGGCN 75.19±0.50 78.20±1.04 78.78±0.98 55.59±0.84 60.51±1.53 49.90±1.17

FedGL 67.86±0.73 74.62±1.14 71.82±0.58 54.53±1.93 55.59±2.23 49.79±1.91
GCFL+ 68.81±0.36 74.15±0.64 72.05±0.39 41.15±0.83 44.64±0.66 45.18±0.61

FedSage+ 77.90±0.89 76.83±0.91 80.81±0.74 49.80±1.85 52.21±1.96 53.21±2.33
w/o HomoKD 78.34±0.43 80.54±0.97 80.38±1.28 60.89±1.12 67.85±1.83 59.89±2.37
w/o HeteTA 78.87±0.41 80.92±0.89 80.96±0.87 58.75±0.99 65.28±1.66 58.72±2.18

AdaFGL 79.03±0.46 81.15±1.18 82.32±1.34 61.05±1.16 68.41±1.97 60.28±2.49

4.1 EXPERIMENTAL SETUP AND BASELINES

Existing FGL methods implement data partitioning by community split Wang et al. (2022b). We fol-
low it while proposing a more convincing strategy structure Non-IID. Due to space limitations, the
implementation details of the structure Non-IID can be found in Appendix. A.3 and Appendix. A.6.
To demonstrate the effectiveness of AdaFGL, we combine powerful GNNs with FedAvg as the rep-
resentative methods. Meanwhile, we compare the recently proposed FGL methods such as FedGL,
FedSage+, and GCFL+. FedSGC efficiently exploits the local structure prior by performing fea-
ture propagation. FedNLGNN implements node embeddings by MLP or GCN to discover potential
neighbors. FedGGCN further exploits the relationship between over-smoothing and heterogene-
ity to achieve weighted propagation. FedGL aims to optimize the local model performance using
global information, it is essentially graph structure learning without overlapping nodes. FedSage+
performs local graph augmentation to improve prediction performance. GCFL+ implements the
clustering process to perform the personalized update mechanisms. More details about baseline
methods can be referred to Appendix. A.2.

4.2 OVERALL PERFORMANCE

We first present the complete results on Cora and Chameleon in Table. 4 and Table. 3, which are
two representative homogeneous and heterogeneous datasets. Due to the space limitation, the de-
tails about the experiment environment and results in other datasets can be found in AppendixA.6.
Notably, since we randomly inject homogeneous or heterogeneous information into the structure
Non-IID data partitioning process, the model performance does not directly relate to the number
of clients. Meanwhile, in the community split setting, the process of model aggregation by mul-
tiple clients to achieve federated learning can be considered as ensemble learning. Therefore, the
prediction performance gets better with the increasing number of clients in some cases.

To answer Q1, Table. 3 shows the comparison results with the baseline methods in community split
setting. For the homogeneous dataset Cora, compared with the most competitive FGL methods,
AdaFGL achieved accuracy gains of 1.18%, 2.25%, and 1.64% in multiple client settings, respec-
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Figure 4: The results based on two data partitioning methods on 10 clients, where the upper part
represents structure Non-IID and the lower part represents community split.
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Figure 5: The heat maps of nodes similarity on PubMed for 10 clients. Homogeneity and hetero-
geneity represent local structure assumptions, respectively. Dark color indicates high similarity.

tively. Meanwhile, AdaFGL exceeds the best methods among all considered baselines on the het-
erogeneous datasets by a margin of 6.37% to 8.52%. In the community split setting, we improve the
prediction accuracy by utilizing the local smoothing prior and adaptive propagation mechanisms.

To answer Q2, We demonstrate the performance of existing methods in the face of structure Non-IID
challenges in Table. 4. Although FedGGCN performs well in general, it cannot obtain competitive
performance. Despite FedSage+ achieving effective local graph augmentation by sharing global
data, structure Non-IID is a natural challenge, and this weakness is amplified when heterogeneity is
high. In contrast, our method achieves performance gains of 1.45%, 3.77%, and 1.87% compared to
the highest prediction accuracy. Impressively, AdaFGL improves performance by 9.82%, 13.06%,
and 13.29% in the structure Non-IID setting for the heterogeneous dataset Chameleon. From the
observation of the comparison results with the baselines, our method has significant advantages,
especially in terms of robustness and impressive performance.

4.3 ABLATION EXPERIMENTS

To answer Q3, we present the ablation experiment results in Table. 3 and Table. 4, where HomoKD
represents the online distillation in the homogeneous propagation module and HeteTA represents the
trainable probability propagation matrix in the heterogeneous propagation module. We observe that
the online distillation enhances Homogeneous propagation by combining local smoothing features
and local embeddings, it can effectively improve model performance without adding additional com-
putation costs. In essence, it achieves mutually supervised end-to-end learning of global and local
information. Furthermore, the trainable probability propagation matrix optimizes the heterogene-
ity propagation module. It learns the global optimal propagation mechanism and detects positive
and negative messages to generate embeddings. HeteTA can discover the global dependence of the
current node and achieve effective message aggregation, which is proved by Theorem. 3.1.

4.4 VISUALIZATION AND EXPLAINABILITY ANALYSIS

To answer Q4, we present the local prediction accuracy trends with the competitive baseline methods
in Fig. 4. According to it, we can notice that our method achieves the best performance in most
cases under both community split and structure Non-IID data settings, while the overall trend is
optimized. Due to space limitations, the relevant experimental results about the hyperparameter
sensitivity analysis experiments on AdaFGL and conclusions can be found in Appendix. A.5.

In order to illustrate the effectiveness of the federated global knowledge extractor and the adaptive
propagation mechanisms, we also analyze the explainability by presenting the heat maps shown
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Table 5: A summary of very recent FGL methods and our approach.

Method Type Exchange Messages Structure Non-IID
FedSage+ Augmentation Model Params (GraphSAGE, NeighGen), Node Embeddings ✗

FedGL Augmentation Model Params (Linear Regression or MLP) ✗
GCFL+ Personalization Model Params (Linear Regression or MLP), Model Gradient ✗

Ours Personalization Model Params (Linear Regression or MLP) ✓

Table 6: A summary of powerful GNNs in heterogeneous graph and our approach.
Method Neighbor Discovery Message Combination Strategy Heterogeneity

MLP ✗ ✗ Ignore Structure, Update Function ✗
FedGL ✓ ✗ Graph Structure Learning, Update Function ✗

FedSage+ ✓ ✗ Graph Augmentation, Update Function ✗
NLGNN ✓ ✗ Embedding Model, Similarity Ranking ✓
GGCN ✗ ✓ Nodal Degree Weighting, Update Function ✓
Ours ✓ ✓ Trainable Propagation Matrix ✓

in Fig. 5. We perform structure Non-IID partitioning for 10 clients on PubMed, then select the
client with the highest number of nodes with homogeneity and heterogeneity. Based on this, we
randomly sampled 20 nodes to obtain the similarity score by computing the embedding transpose.
From the observation of the results, we notice that the federated global knowledge extractor only
obtains fuzzy results and cannot be optimized for the local subgraphs. Fortunately, we achieve an
effective combination of global knowledge and local subgraph structure prior to obtaining explicit
node embeddings, which is also demonstrated through the final output in Fig. 5.

4.5 METHODS COMPARISON

To answer Q5, we review three recent FGL methods and analyze our approach to them in terms of
three aspects: method type, exchange messages, and the ability to solve structure Non-IID problems
as shown in Table.5. Obviously, although FedSage+ can achieve competitive results, it introduces
significant communication costs and privacy concerns. Specifically, FedSage+ trains two models and
thus has communication costs, while implementing cross-client information sharing to improve pre-
dictive performance, which no doubt increases privacy concerns. GCFL+ has limitations in model
selection leads to its failure to handle the structure Non-IID problem in subgraph learning. In our
experiments, FedGL is essentially a local graph structure learning process. In contrast, our approach
can utilize the computational capabilities of the local system while minimizing communication costs
and privacy concerns. More experimental details can be found in Appendix. A.4.

Then, we compare the effectiveness of existing GNNs and our approach to handling heterogeneous
graph, which focuses on two points: Neighbor Discovery and Message Combination, which is shown
in Fig. 6. We observe that MLP ignores graph structure prior which leads to the failure to handle
heterogeneous graphs. Although FedGL and FedSage+ can improve this problem by utilizing global
information for local graph augmentation, the limitations of propagation lead to the fact that they
are still not the best solutions. Notably, they cannot handle the structure Non-IID problem in FGL.
Although NLGNN and GGCN attempt to solve the heterogeneous structure problem, they cannot
be directly applied in FGL. Therefore, we are motivated by these methods and propose adaptive
propagation mechanisms to improve the performance, which has been validated to be effective.

5 CONCLUSION

In this paper, we discover and define the structure Non-IID problem in FGL, which is a new chal-
lenge for existing methods. Based on this, we propose a new paradigm AdaFGL for more general
federated data settings. Specifically, we investigate the structure Non-IID problem in FGL for sup-
plementing the existing community split data partitioning approach, which is a more practical feder-
ated data setting. To implement effective FGL on heterogeneous distributed subgraphs, we propose
AdaFGL which consists of the federated global knowledge extractor and adaptive propagation mod-
ules. It combines FL and GNNs tightly and benefits from their evolution. Extensive experiments
based on the community split and structure Non-IID data settings demonstrate the effectiveness of
AdaGFL. We believe that the ability to fully utilize the graph structure information is the key to
achieving efficient FGL, thus the research on graph structure in FGL is a promising direction.
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A APPENDIX OUTLINE

The appendix is organized as follows:

A.1 Theory error bounds for adaptive heterogeneous propagation modules.

A.2 More details about the compared baselines.

A.3 Datasets description and structure Non-IID data setting.

A.4 Communication costs analysis.

A.5 Hyperparameter sensitivity analysis.

A.6 Experimental environment and additional base results.

A.1 THEORY ERROR BOUNDS FOR ADAPTIVE HETEROGENEOUS PROPAGATION

To demonstrate the effectiveness of the adaptive heterogeneous propagation module, we prove its
error bound. We first make the reasonable following assumption and definitions.

Assumption A.1 Φ is L-smooth, ∀x1,x2 ∈ dom(Φ)

Φ(x1) ≤ Φ(x2) + (x1 − x2)
T∇Φ(x2) +

L

2
||x1 − x2||22.

Then we quote the embedding method theorem Linial et al. (1995).

Definition A.1 Given two metric spaces (V, d) and (Z, d
′
) and mapping function Φ : V → Z , the

distortion ϵdistor is definied as ∀u, v ∈ V, 1/ϵdistord(u, v) ≤ d
′
(Φ(u),Φ(v)) ≤ d(u, v).

Theorem A.1 (Bourgain theorem) Given any finite metric space (V, d) with V = n, there exists an
embedding of (V, d) into Rk under any lp metric, where k = O(log2 n), and the distortion of the
embedding is O(log n).

It defines the distortion O(log n) in the embedding space (V, d) for mapping methods satisfying the
above conditions. Based on this, we consider a graph G with fixed structure represented by Ã =

D̂−1/2ÂD̂−1/2, embeddings represented with H in the forward propagation, and nodes mapping
function Φ(H), which satisfies the Theorem. A.1, it can be expressed as

ϕ(H) =

(
d(H, S1,1)

k
,
d(H, S1,2)

k
, . . . ,

d(H, Slogn,c logn)

k

)
,

where d(H, Si,j) = minu∈Si,j d(H, u). Si,j ⊂ V, i = 1, 2, . . . , log n, j = 1, 2, . . . , c log n repre-
sents c log2 n random sets, where c is a constant. It is chosen by including each point in V indepen-
dently with probability 1/2i. Then motivated by Xie et al. (2021) and the above conclusions, we
have the following model weights difference proposition.

Proposition A.1 Assume the propagation probability matrix, hidden embeddings, and label differ-
ence with global optima f⋆

θ and local model fθ are bounded with

∥P⋆ −P∥22 = ∥EP∥22 ≤ ϵP

∥H⋆ −H∥22 = ∥EH∥22 ≤ ϵH∥∥∥Ŷ⋆ − Ŷ
∥∥∥2
2
=
∥∥EŶ

∥∥2
2
≤ ϵŶ.
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Based on this, given that ∥H ·H⋆∥22 = ∥H · (H+ EH)∥22 ≥ ∥HEH∥22. Let ∥XEH∥22 = δH, then

we have
∥∥H⋆−1 −H−1

∥∥2
2
= ∥EH−1∥ ≤ ϵH/δH. If we choose SGC Wu et al. (2019) for the forward

propagation, the model weights difference with the influence of feature difference is represented as

ϕ = ∥f⋆
θ − fθ∥2 =

∥∥∥(PH⋆)−1Ŷ⋆ − (PH)−1Ŷ
∥∥∥2
2

=
∥∥∥H⋆−1P−1(Ŷ + EŶ)−H−1P−1Ŷ

∥∥∥2
2

=
∥∥∥(H⋆−1 −H−1)P−1Ŷ +H⋆−1P−1EŶ

∥∥∥2
2

=
∥∥∥EH−1P−1Ŷ + (PH+PEH)−1EŶ

∥∥∥2
2

≤ ϵH
δH

∥∥∥P−1Ŷ
∥∥∥2
2
+

ϵ2HϵŶ
δX

∥∥(PH)−1
∥∥2
2
+ ϵHϵŶ

∥∥(PH)−1
∥∥4
2
.

Similarly, there exists ∥P ·P⋆∥22 = ∥P · (P+ EP)∥22 ≥ ∥PEP∥22, ∥PEP∥22 = δP, and∥∥P⋆−1 −P−1
∥∥2
2
= ∥EP−1∥ ≤ ϵP/δP.

we can obtain the model weight differences with the influence of structure difference.

ϕ = ∥f⋆
θ − fθ∥2 =

∥∥∥(P⋆H)−1Ŷ⋆ − (PH)−1Ŷ
∥∥∥2
2

=
∥∥∥H−1

(
P⋆−1Ŷ⋆ −P−1Ŷ

)∥∥∥
=
∥∥H−1

∥∥2
2

∥∥∥(P−1 + EP−1)(Ŷ + EŶ)−P−1Ŷ
∥∥∥2
2

=
∥∥H−1

∥∥2
2

∥∥∥P−1EŶ + EP−1Ŷ + EP−1EŶ

∥∥∥
≤
∥∥H−1

∥∥2
2

[
ϵŶ
∥∥P−1

∥∥2
2
+

ϵP
δP

∥∥∥Ŷ∥∥∥2
2
+

ϵPϵŶ
δP

]
.

Proof A.1 Here, based on the Eq. 11, we consider the adaptive heterogeneous propagation process

H(l+1) = H(l) +H(l)
pos +H(l)

neg

= H(l) + PoSign(Â(l)
prop)H

(l) +NeSign(Â(l)
prop)H

(l)

= H(l) + PoSign
(
Â(l−1)

prop + βWH(l−1)(WH(l−1))T
)
H(l)

+NeSign
(
Â(l−1)

prop + βWH(l−1)(WH(l−1))T
)
H(l).

Take node i as an example, given that Φ(·) is differentiable, where contains the gradient update
of the model difference ϕ. Meanwhile, in order to quantify the difference between our trainable
propagation probability matrix and the global optimum, we define

κi =
∑

P⋆[i :]−

(
Â0

prop[i :] +
∑
l

βWHl(WH(l))T [i :]

)
,

where P⋆ represents the optimal propagation probability matrix. Then, we use Pos,Neg to denote
the positive and negative message propagation weights P = Â

(l)
prop, there exist

H
(l+1)
i =

∑
j ̸=i

P⋆
ijΦ(H

(l))

= H
(l)
i +

∑
j ̸=i

(Pos
(l)
ij +Neg

(l)
ij )H

(l)
j

=

κi +Pii +
∑
j ̸=i

(Pos
(l)
ij +Neg

(l)
ij )

ϕH(l),
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where Pos
(l)
ij + Neg

(l)
ij = Â

(l)
prop[i :]. Then, we perform a first-order Taylor expansion with Peano’s

form of remainder at H(l)
i and consider the model differences∑

j ̸=i

P⋆
ijΦ(H

(l)) =
∑
j ̸=i

P⋆
ij

(
Φ(H(l)) +

∂Φ(H
(l)
j )

∂(H(l))T
(H

(l)
j −H

(l)
i ) +O(||H(l)

j −H
(l)
i ||2)

)

=
∑
j ̸=i

P⋆
ijΦ(H

(l)) +
∑
j ̸=i

P⋆
ij

∂Φ(H
(l)
j )

∂(H(l))T
(H

(l)
j −H

(l)
i ) +

∑
j ̸=i

P⋆
ijO(||H

(l)
j −H

(l)
i ||2).

Now, we let
∑

j ̸=i P
⋆
ij(H

(l)
j −H

(l)
i ) = −ϵi, there exist

∑
j ̸=i

P⋆
ijΦ(H

(l)) =

κi +Pii +
∑
j ̸=i

(Pos
(l)
ij +Neg

(l)
ij )

ϕH(l),

=
∑
j ̸=i

P⋆
ijΦ(H

(l))−
∂Φ(H

(l)
j )

∂(H(l))T
ϵi +

∑
j ̸=i

P⋆
ijO(||H

(l)
j −H

(l)
i ||2)∣∣∣∣∣∣

∑
j ̸=i

P⋆
ijΦ(H

(l))−

κi +Pii +
∑
j ̸=i

(Pos
(l)
ij +Neg

(l)
ij )

ϕH(l)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∂Φ(H

(l)
j )

∂(H(l))T
ϵi −

∑
j ̸=i

P⋆
ijO(||H

(l)
j −H

(l)
i ||2)

∣∣∣∣∣∣ .
According to Cauchy-Schwarz inequality and L-Lipschitz property, we have

∣∣∣∣∣∂Φ(H(l)
i )

∂(H(l))T
ϵi

∣∣∣∣∣ ≤
∥∥∥∥∥∂Φ(H(l)

i )

∂(H(l))T

∥∥∥∥∥ ∥ϵi∥2 ≤ L ∥ϵi∥2 .

Therefore, the approximation of H(l)
i +

∑
j ̸=i(Pos

(l)
ij +Neg

(l)
ij )H

(l)
j is bounded by∣∣∣∣∣∣

∑
j ̸=i

P⋆
ijΦ(H

(l))−

H
(l)
i +

∑
j ̸=i

(Pos
(l)
ij +Neg

(l)
ij )H

(l)
j

∣∣∣∣∣∣
=

∣∣∣∣∣∣∂Φ(H
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where H⋆ represents the global optimal embeddings. Based on this, we obtain the theory error
bound for heterogeneous propagation. From the observation of error bounds, we reveal that in
theory, the adaptive heterogeneous propagation process can minimize the immediate neighbors error
ϵi, the model difference ϕ, and the propagation probability matrix difference κ to scale the error to
improve the predictive performance.

A.2 COMPARED BASELINES

The main characteristic of all baselines are listed below:

FedMLP: The combination of FedAvg and MLP, we employ a two-layer MLP with the hidden
dimension of 64. It generates node embeddings based on the original features while ignoring graph
structure information in the forward propagation process.
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Table 7: Statistics of five benchmark datasets.

Datasets #Nodes #Edges #Classes Nodes Homo Edges Homo
Cora 2708 5278 7 0.83 0.81

CiteSeer 3703 4552 6 0.71 0.74
PubMed 19717 44324 3 0.79 0.80

Chameleon 2277 36101 5 0.25 0.24
Squirrel 5201 217073 5 0.22 0.22

FedSGC: We combine FedAvg and SGC Wu et al. (2019), we default to use the 3-layer feature
propagation process, which follows the homogeneous assumption and thus fails to deal with hetero-
geneous graph.

FedNLGNN: Implementation of NLGNN (NLMLP or NLGCN) Liu et al. (2021) based on FedAvg,
we select the more effective version to present the model performance. It depends on the embedding
model and suffers from representational limitations.

FedGGCN: The combination of FedAvg and GGCN Yan et al. (2021), we follow the experimental
setup of the original paper as much as possible, which can handle heterogeneous graphs effectively,
but cannot achieve competitive results on homogeneous graphs.

FedGL Chen et al. (2021): As a FGL training framework, it strongly relies on the overlapping nodes
assumption, which in our data setting is essentially local graph structure learning.

GCFL+ Xie et al. (2021): due to the limitations of personalized techniques in model selection, they
cannot fundamentally solve the structure Non-IID challenges.

FedSage+ Zhang et al. (2021): It trains NeighGen to achieve local subgraph augmentation by sharing
global missing subgraph feature and topology information for the most powerful results, but suffers
from privacy leakage risk and additional computational costs.

For fairness, we follow the experimental setup of the baseline methods paper as much as possible,
and in other cases, we show the best prediction accuracy. In addition, the number of rounds for the
above baseline methods is 50, and the local epoch is 20.

A.3 DATASETS DESCRIPTION AND STRUCTURE NON-IID DATA SETTING

The statistics of datasets are summarized in Table. 7, which contains both homogeneity and hetero-
geneity. In our experiments, we use five benchmark datasets containing homogeneity and hetero-
geneity, for which details are given below.

Cora, Citeseer, and Pubmed Yang et al. (2016b) are three popular citation network datasets. In
these three networks, papers from different topics are considered as nodes, and the edges are citations
among the papers. The node attributes are binary word vectors, and class labels are the topics papers
belong to.

Chameleon and Squirrel are two web page datasets collected from Wikipedia Rozemberczki et al.
(2021), where nodes are web pages on specific topics and edges are hyperlinks between them.

Based on this, we illustrate the structure Non-IID data partitioning process in detail. The core of it
is the Dirichlet process He et al. (2020), Its basic analysis is as follows. The pdf of the Dirichlet
distribution is defined as

p(P = {pi}|αi) =

∏
i Γ(αi)

Γ(
∑

i αi)
Γip

αi−1
i ,

where αi ∈ {α1, . . . , αk} > 0 is the dimensionless distribution parameter, the scale (or concentra-
tion) ϑ =

∑
i αi, the base measure (α⋆

1, . . . , α
⋆
k), α

⋆
i = αi/ϑ, and Γ(n) = (n − 1)!. Dirichlet is a

distribution over Multinomials, thus there is
∑

i pi = 1, pi ≥ 0, where pi represents the probability.
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Table 8: The results of accuracy based on Cora and CiteSeer by implementing the community split
of 10 clients: mean accuracy ± standard deviation. The best results are shown in bold.

Dataset Cora CiteSeer
Method # Val Acc # Test Acc # Params # Val Acc # Test Acc # Params
FedSage 85.32±0.87 85.49±0.91 1.52×107 76.13±0.54 75.49±0.63 3.85×107

FedGGCN 82.34±0.84 82.80±0.97 5.52×105 75.32±0.95 75.78±1.12 1.42×106

Ours 87.97±0.98 86.89±1.02 2.88×105 79.63±1.48 77.05±1.72 7.26×105

Table 9: The results of accuracy based on Chameleon and Squirrel by implementing the community
split of 10 clients: mean accuracy ± standard deviation. The best results are shown in bold.

Dataset Chameleon Squirrel
Method # Val Acc # Test Acc # Params # Val Acc # Test Acc # Params
FedSage 53.49±2.06 50.11±1.95 2.44×107 31.44±2.17 31.27±1.93 2.19×107

FedGGCN 43.81±1.37 41.52±1.25 8.95×105 35.26±1.10 34.10±1.25 8.04×105

Ours 58.06±1.23 54.43±1.52 8.95×105 39.16±1.88 35.43±2.53 8.04×105

It determines the mean distribution, and the scale affects the variance, then we obtain

E(pi) =
αi

ϑ
= α⋆

i ,

V ar(pi) =
αi(ϑ− α)

ϑ2(ϑ+ 1)
=

α⋆
i (1− α⋆

i )

(ϑ+ 1)
,

Cov(pi, pj) =
−αiαj

ϑ2(ϑ+ 1)
,

which means that a Dirichlet with small scale ϑ favors extreme distributions, but this prior belief is
very weak and is easily overwritten by data. As ϑ → ∞, the covariance→ 0, the samples→ base
measure.

Based on this, we start sampling the edges to determine the attribution of a pair of nodes. If a
conflicting set of nodes exists it is sampled again and finally generates induced subgraphs. Then,
we randomly inject homogeneous or heterogeneous information based on the label prior, which can
solve unreal structure loss and enhance structure identity. We propose to set three probabilities piso,
phomo, and phete for each client individually to represent the probability of avoiding isolated nodes,
increasing homogeneous edges, and increasing heterogeneous edges in the subgraph, respectively.
Specifically, piso represents the probability of isolated nodes generating edges with other nodes,
which can effectively be used to prevent the generation of isolated nodes. phomo applies to the
subgraph of clients that are selected to enhance homogeneity, and it represents the probability of
connection between two nodes with the same label based on the label prior information. Corre-
spondingly, phete represents the probability used to perform the structure information injection for
the client subgraph that performs the heterogeneity enhancement.

A.4 COMMUNICATION COSTS ANALYSIS

The advantage of our approach is to exploit the local structure prior while making full use of the
global information, which considers the characteristics of GNNs. It has the benefit of reducing the
communication costs and privacy concerns during the federated training process. Meanwhile, thanks
to the utilization of the local structure information, we can obtain models with better representational
power to improve the performance. To demonstrate the effectiveness of our method, we provide the
experimental results of AdaFGL with the two most competitive methods, FedSage and FedGGCN,
as shown in Tables. A.4 and Table. A.4.

According to the experimental results, we observe that AdaFGL maintains the low communication
costs and achieves a satisfying result, which mainly benefits from the utilization of local structure
information by the adaptive propagation modules. Compared to FedSage, which is the current most
competitive FGL approach, suffers from the performance improvement and communication costs
dilemma, which also brings more privacy concerns.
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Figure 6: Hyperparameter sensitivity analysis on the Cora and Chameleon for 5 clients.
Table 10: The results of test accuracy based on CiteSeer and Squirrel by implementing the commu-
nity split: mean accuracy ± standard deviation. The best results are shown in bold.

CiteSeer Squirrel
Community Client3 Client5 Client10 Client3 Client5 Client10

FedMLP 65.83±0.66 70.54±1.42 70.86±2.03 29.90±0.59 40.89±0.64 30.58±0.70
FedSGC 72.59±0.40 73.31±0.05 75.68±0.10 29.98±0.13 32.59±1.06 27.96±0.59

FedNLGNN 71.35±0.78 73.14±0.89 75.05±0.65 40.79±1.58 44.32±1.66 32.22±1.24
FedGGCN 70.02±0.57 73.30±0.70 75.78±1.12 42.76±0.57 48.45±1.03 34.10±1.25

FedGL 71.57±1.05 72.28±0.62 74.40±0.78 32.45±2.74 35.32±1.04 29.96±0.56
GCFL+ 73.25±0.27 73.30±0.49 76.28±0.26 27.17±0.46 28.03±0.30 27.33±0.39

FedSage+ 69.15±0.62 71.88±0.73 75.49±0.63 36.72±1.05 43.65±1.46 31.27±1.93
w/o HomoKD 71.46±0.71 74.26±0.88 76.12±1.59 43.02±1.19 49.38±1.62 35.43±2.53
w/o HeteTA 72.57±0.50 73.57±0.39 75.81±1.06 41.94±0.71 47.79±1.10 33.16±1.40

AdaFGL 73.69±0.65 75.32±0.90 77.05±1.72 43.02±1.19 49.38±1.62 35.43±2.53

A.5 HYPERPARAMETER SENSITIVITY ANALYSIS

Here we conduct the hyperparameter sensitivity of AdaFGL, and the experimental results are shown
in Fig. 6. In our experiments, we analyze the ratio of online distillation loss in the homogeneous
propagation module and the smoothing coefficient of the trainable propagation matrix in the het-
erogeneous propagation module. According to the experimental results, we observe that AdaFGL
performs robustness except for extreme cases. Furthermore, we obtain the conclusion from the re-
sults generated by the extreme knowledge distillation loss ratios, where the low confidence base
predictor results instead affect the homogeneous propagation module. Motivated by this, in order to
avoid global embeddings with low confidence from influencing the propagation module, we measure
the confidence of the global model according to the characteristics of the base predictor.

A.6 EXPERIMENTAL ENVIRONMENT AND ADDITIONAL BASE RESULTS

The experiments are conducted on a machine with Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz,
and a single NVIDIA GeForce RTX 3090 with 24GB memory. The operating system of the machine
is Ubuntu 18.04.6. As for software versions, we use Python 3.8, Pytorch 1.11.0, and CUDA 11.4.
To alleviate the influence of randomness, we repeat each method 10 times and report the statistical
characteristics. The hyper-parameters of baselines are set according to the original paper if available.
We use Optuna Akiba et al. (2019) to implement hyperparameters search. Following the above
principles, we present the results of two data partitioning as follows.

17



Under review as a conference paper at ICLR 2023

Table 11: The results of test accuracy based on CiteSeer and Squirrel by implementing the strcuture
Non-IID: mean accuracy ± standard deviation. The best results are shown in bold.

CiteSeer Squirrel
Non-IID Client3 Client5 Client10 Client3 Client5 Client10
FedMLP 69.58±0.65 71.31±1.06 70.92±1.36 30.59±0.44 30.42±0.46 30.27±0.97
FedSGC 83.12±0.25 46.84±0.05 49.52±0.19 39.06±0.64 28.44±0.67 36.95±0.23

FedNLGNN 81.35±0.97 70.78±0.98 70.17±0.93 46.82±2.58 37.85±2.17 42.33±1.77
FedGGCN 80.72±0.52 70.90±1.54 70.83±1.14 53.35±0.95 43.59±0.90 38.22±0.82

FedGL 82.91±0.99 69.28±0.70 68.12±0.54 35.06±1.93 32.88±1.51 33.85±2.49
GCFL+ 83.42±0.08 51.70±0.43 53.73±0.82 46.16±0.31 31.08±0.46 39.90±0.39

FedSage+ 69.64±0.63 72.49±0.70 70.92±0.53 34.79±1.26 33.37±0.89 34.42±2.87
w/o HomoKD 82.62±0.51 72.03±0.84 70.89±1.41 55.06±1.08 44.99±1.08 45.89±1.97
w/o HeteTA 83.37±0.28 71.15±0.33 70.09±0.72 54.22±0.87 43.48±0.73 42.83±1.39

AdaFGL 84.05±0.49 72.95±0.92 71.44±1.53 55.27±1.13 45.55±1.01 46.15±2.06

Table 12: The results of test accuracy based on PubMed by implementing the community split and
structure Non-IID: mean accuracy ± standard deviation. The best results are shown in bold.

PubMed (Community) PubMed (Non-IID)
Client3 Client5 Client10 Client3 Client5 Client10

FedMLP 84.10±0.44 81.92±0.70 78.26±0.84 85.65±0.29 84.78±0.18 85.29±0.52
FedSGC 76.37±0.22 77.34±0.31 74.32±0.10 87.05±0.03 87.84±0.19 59.72±0.11

FedNLGNN 85.61±0.26 84.04±0.40 85.10±0.46 90.17±0.26 91.20±0.16 85.11±0.20
FedGGCN 86.11±0.29 86.53±0.52 85.67±0.35 90.24±0.19 92.38±0.13 86.59±0.63

FedGL 84.17±0.28 82.46±0.15 80.50±0.76 92.14±0.21 86.16±0.19 85.16±0.19
GCFL+ 86.38±0.11 86.38±0.11 86.19±0.05 89.99±0.01 91.88±0.08 74.91±0.14

FedSage+ 85.33±0.43 85.17±0.49 84.32±0.57 86.12±0.37 84.85±0.17 86.93±0.56
w/o HomoKD 84.83±0.21 85.17±0.30 84.99±0.32 92.47±0.08 93.17±0.08 87.87±0.42
w/o HeteTA 86.49±0.26 86.69±0.35 86.01±0.38 94.32±0.04 93.98±0.04 86.23±0.25

AdaFGL 86.49±0.26 86.69±0.35 86.49±0.47 94.55±0.09 95.45±0.07 88.39±0.37
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