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Abstract

Large Language Models (LLMs) have shown
remarkable progress, but their real-world ap-
plication necessitates reliable calibration. This
study conducts a comprehensive analysis of
calibration degradation of LLMs across four
dimensions: models, calibration metrics, tasks,
and confidence extraction methods. Initial anal-
ysis showed that the relationship between align-
ment and calibration is not always a trade-off,
but under stricter analysis conditions, we found
the alignment process consistently harms cal-
ibration. This highlights the need for (1) a
careful approach when measuring model con-
fidences and calibration errors and (2) future
research into algorithms that can help LLMs to
achieve both instruction-following and calibra-
tion without sacrificing either.

1 Introduction

The impressive performance of LLMs has opened
up unprecedented possibilities for their application
in real-world. Calibration, a measure of model
reliability, is crucial in such applications (Pak-
daman Naeini et al., 2015; Nixon et al., 2019).
Recently, there have even been cases of legal reper-
cussions for using fabricated case law generated
by large language models (LLMs) in legal doc-
uments (Weiser and Schweber, 2023). However,
recent studies indicate that the alignment process,
a necessary step to improve instruction-following
capabilities of LLMs, harms their calibration (Ope-
nAI et al., 2024; Zhu et al., 2023). Prior study (Tian
et al., 2023) has explored the calibration of black-
box models with respect to confidence extraction
methods and calibration metrics, and they argued
that the calibration of LLMs after alignment may
not degrade the reliability depending on the con-
fidence extraction method. However, by focusing
on the black-box API, they have not fully explored
diverse logit-based confidence extraction methods.
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Figure 1: Expected Calibration Error (ECE) scores of
pretrained or instruction-tuned LLMs (left). The ECE
change rates vary significantly depending on the choice
of metrics (right).

We extend this work to open-source LLMs, by com-
prehensively analyzing the calibration degradation
across models, metrics, tasks, and confidence ex-
traction methods.

2 Experiment

We investigate calibration changes across 1) var-
ious open LLMs; Llama2 (Touvron et al., 2023),
Llama3 (AI@Meta, 2024), Mistral (Jiang et al.,
2023), Gemma (Team et al., 2024), OLMo (Groen-
eveld et al., 2024), Qwen (Bai et al., 2023);
2) different metrics: Expected Calibration Er-
ror (ECE) (Pakdaman Naeini et al., 2015) and
Static Calibration Error (SCE) (Nixon et al.,
2019); 3) various tasks: ARC-easy (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), MedM-
CQA (Pal et al., 2022), MMLU (Hendrycks
et al., 2021) and PIQA (Bisk et al., 2020);
4) different methods to extract model confi-
dence: continuation-sum, continuation-min,
and choice. continuation-sum uses sum of
logits for each choice’s continuation token se-
quence given a context to extract confidence of
model. We noticed that choices often have sim-
ilar content (e.g., ["2.2x1011 kg", "2.2x1014kg",
"2.2x1020kg", and "2.2x1016 kg"] in MMLU), so
we introduce continuation-min, which uses the
minimum logit within a continuation sequence, to
mitigate the influence of this similarity and em-



Figure 2: The rates of change in calibration metrics
between instruction-tuned and pre-trained models. sum,
min, and choice correspond to continuation-sum,
continuation-min, and choice methods, respectively.
Humanities and STEM are from MMLU

phasize differences. choice method uses the logit
of the token corresponding to the capital letter of
each choice in the prompt. This eliminates any
overlap in the choices’ content. We follow Yang
et al. (2024) to design prompt for the choice method
when continuation is the default. All tasks were per-
formed in a zero-shot setting using lm-evaluation-
harness (Gao et al., 2023) with four A6000 GPUs.

3 Results and Analysis

We have identified model-task combinations where
the ECE decreased after the alignment process
(Figure 1, left), which contradicts previous stud-
ies (OpenAI et al., 2024; Zhu et al., 2023). Ex-
amples of these model-task combinations include
OLMO-7B on HellaSwag (blue), Qwen-72B on
HellaSwag (orange), and Llama-3-8B on MMLU
Humanities (green). However, on the same com-
binations, when examining the SCE, we observed
consistent increases or negligible changes in cali-
bration error. Furthermore, when we changed the
method for extracting the model’s confidence, the
rate of change increased significantly, as depicted
in the right side of Figure 1. Given the consistent
increase of SCE with the alignment process in the
continuation-sum method, we decided to focus

Table 1: Rank of the change rate of the SCE for the
task and models, when extracting confidence using the
choice. Higher ranks assigned to larger changes.

Rank ARC_Easy, MMLU_STEM, HellaSwag MedMCQA
MMLU_Humanities, PIQA

1 OLMo-7B OLMo-7B OLMo-7B
2 Llama-2-7b Llama-2-7b gemma-7b
3 gemma-7b gemma-7b Llama-2-7b
4 Llama-3-8B Llama-3-8B Llama-3-70B
5 Mistral-7B Llama-3-70B Llama-3-8B
6 Llama-3-70B Mistral-7B Mistral-7B
7 Qwen2-72B Qwen2-72B Qwen2-72B

on the SCE for the remainder of our experiments.
Next, we analyzed continuation-min method.

Unlike the consistent increase of SCE observed in
continuation-sum method, as shown in the third
graph of Figure 2, we observed SCE decreases for
some combinations in this method. Specifically, the
Llama-3-8B model on HellaSwag and PIQA tasks,
and the Mistral-7B model on HellaSwag and PIQA
tasks, showed SCE changes of -1.25%, -2.67%,
-6.08%, and -6.28%, respectively.

Finally, we examined the case of extracting
model confidence using the choice method. As
shown in the fourth graph of Figure 2, the
choice method consistently exhibited positive SCE
changes across all tasks and model combinations.
This shows that if we combining strict calibra-
tion metric and confidence extraction method, cal-
ibration, as influenced by the alignment process,
is consistently harmed regardless of the task or
model. Furthermore, as seen in Table 1, the rank-
ing of models’ change rates remained remarkably
robust across tasks. Since the models we consid-
ered do not have significant structural differences,
we believe that the consistent model ranking in
Table 1 is primarily attributable to the training
data and algorithms used in the model’s alignment
process. Further experimental results are avail-
able in the following GitHub repository. https:
//github.com/abzb1/alingment_calibration

4 Discussion and Conclusion

Our analysis has yielded several insights. Firstly,
The calibration of LLMs can vary complexly and
diversely depending on the combinations we’ve
examined, so careful analysis is required. Sec-
ondly, in the choice-SCE combination, where re-
dundance of choices is minimized and confidence
of all choices are considered, all models exhibited
positive calibration error change rates across all
tasks. This implies that under stricter analysis con-
ditions, the alignment process can still be seen as
detrimental to calibration.

https://github.com/abzb1/alingment_calibration
https://github.com/abzb1/alingment_calibration
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