
Distances for Markov chains from sample streams

Sergio Calo Anders Jonsson Gergely Neu Ludovic Schwartz Javier Segovia-Aguas
Universitat Pompeu Fabra, Barcelona, Spain

{sergio.calo,anders.jonsson,gergely.neu,ludovic.schwartz,javier.segovia}@upf.edu

Abstract

Bisimulation metrics are powerful tools for measuring similarities between stochas-
tic processes, and specifically Markov chains. Recent advances have uncovered that
bisimulation metrics are, in fact, optimal-transport distances, which has enabled the
development of fast algorithms for computing such metrics with provable accuracy
and runtime guarantees. However, these recent methods, as well as all previously
known methods, assume full knowledge of the transition dynamics. This is often
an impractical assumption in most real-world scenarios, where typically only sam-
ple trajectories are available. In this work, we propose a stochastic optimization
method that addresses this limitation and estimates bisimulation metrics based
on sample access, without requiring explicit transition models. Our approach is
derived from a new linear programming (LP) formulation of bisimulation metrics,
which we solve using a stochastic primal-dual optimization method. We provide
theoretical guarantees on the sample complexity of the algorithm and validate its
effectiveness through a series of empirical evaluations.

1 Introduction

Computing similarity metrics between stochastic processes is an important mathematical problem
with numerous promising use cases in diverse areas such as mathematical finance, computational
neuroscience, biology, and computer science. Within machine learning, potential applications include
representation learning for dynamical systems and reinforcement learning [Zhang et al., 2021, Chen
and Pan, 2022], fitting and comparing sequence models [Xu et al., 2020, Tao et al., 2024] or prediction
tasks on graph-structured data [Titouan et al., 2019, Brugère et al., 2024]. While there exist several
rigorous frameworks for defining such similarity metrics and studying their properties, computing
them typically requires full knowledge of the probability law of the processes to compare, which is
not available in just about any case of practical interest. In this paper, we address this problem by
developing methods for estimating similarity metrics for a family of stochastic processes, based only
on sample streams and without requiring any prior information about the underlying process laws.

We focus on a family of similarity metrics known as bisimulation metrics, originating from theoretical
computer science for purposes of formal verification of computer programs [Park, 1981, Milner,
1989, Desharnais et al., 1999, van Breugel and Worrell, 2001]. This notion of process similarity
has gained popularity within reinforcement learning (RL), where its potential for learning state
representations has been recognized by the early works of Givan et al. [2003] and Ferns et al. [2004]
and the possibility of using it as a basis of practical methods for representation learning has been
explored in a long line of subsequent works [Castro, 2020, Zhang et al., 2021, Chen and Pan, 2022,
Kemertas and Jepson, 2022]. Another popular framework for studying similarities between structured
probability distributions is that of optimal transport (OT, cf. Villani, 2009), which has received
serious attention within machine learning in the last decade, largely owing to the work of Cuturi
[2013]. Very recently, Calo et al. [2024] pointed out that bisimulation metrics also fall within the
family of OT distances, which not only allowed them to connect two distinct areas of mathematics
but also import tools from the literature of computational optimal transport [Peyré and Cuturi, 2019]

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

and develop more efficient methods for computing bisimulation metrics. We refer to Appendix A of
Calo et al. [2024] for more historical details on the two extensive lines of literature on bisimulation
metrics and optimal transport for stochastic processes.

In this paper, we extend this line of work and show that recasting bisimulation metrics as OT
distances allows not only computational advances, but the development of a rigorous theory for
statistical estimation of similarity metrics between stochastic processes. In particular, we build on
the foundations laid down by Calo et al. [2024] and derive a new stochastic optimization algorithm
for estimating bisimulation metrics based on sample observations only, and provide its complete
computational and sample-complexity analysis for finite Markov chains. A core technical contribution
is a new linear-program formulation of bisimulation metrics, which we solve via a stochastic saddle-
point optimization method. For two Markov chains with state spaces X and Y , the algorithm is
guaranteed to return an ε-accurate estimate of the true similarity metric after Õ(|X | |Y| (|X | +
|Y|)/ε2) iterations, with each iteration making use of a single sample transition from each of the
two chains, and costing Θ(|X |2 |Y|2) computation. This is the first result of its kind: no previous
methods have successfully addressed this problem either in practice or in theory.

As mentioned above, the problem we study in this paper has been extensively studied in (at least) two
major research communities. Within the optimal-transport community, the problem of computing
distances between stochastic processes has been studied under the names “adapted”, “causal” or
“bicausal” optimal transport [Pflug and Pichler, 2012, Lassalle, 2018, Backhoff-Veraguas et al., 2017,
Eckstein and Pammer, 2024]. Considering the special case of Markov chains (as we do in the present
paper), Moulos [2021], O’Connor et al. [2022] and Brugère et al. [2024] proposed approximate
dynamic programming algorithms based on the observation that computing OT distances between
Markov chains can be reduced to a problem of optimal control in Markov decision processes. Calo
et al. [2024] developed a novel linear programming framework for computing OT distances between
Markov chains, and showed that such distances are equivalent to bisimulation metrics. However,
previous approaches in this line of work all assume known transition dynamics.

Within the theoretical computer science community, the study of bisimulation metrics progressed
quite differently: after an initial flurry of foundational works of Desharnais et al. [1999], van
Breugel and Worrell [2001] and Desharnais et al. [2002], surprisingly few studies have addressed
computational matters (one rare example being the work of Chen et al. [2012]). Several recent works
in reinforcement learning aim to learn approximate bisimulation metrics from sample transitions
using deep learning [Castro, 2020, Zhang et al., 2021, Chen and Pan, 2022, Kemertas and Jepson,
2022]. However, these approximate bisimulation metrics are not well-founded in theory and as a
consequence, do not enjoy the theoretical guarantees of the original metrics. In contrast, the stochastic-
optimization method we develop in this paper is firmly rooted in a theoretical understanding of the
problem and comes with provable computational and sample-complexity guarantees.

The use of stochastic solvers to compute OT distances has been explored in several past works, mostly
in the context of static optimal transport between probability distributions. A good part of these
methods are based on the observation that the static OT problem is formulated as a linear program, and
the associated unconstrained dual optimization problem directly lends itself to numerical optimization.
This view has been exploited by works like Genevay et al. [2016], Arjovsky et al. [2017], and Seguy
et al. [2018], with some rigorous performance guarantees provided by Ballu et al. [2020]. Another
line of work makes use of Monte Carlo estimates of OT distances [Genevay et al., 2018, Fatras et al.,
2019, 2021, Mensch and Peyré, 2020]. To our knowledge, the idea of computing OT distances via
stochastic primal-dual methods as we do in the present work has not been explored in this literature,
and thus our contribution may be of independent interest within this context as well.

The rest of the paper is organized as follows. After formally defining our problem in Section 2, we
describe the foundations of our new algorithm and describe it in detail in Section 3. We state our main
theoretical results in Section 4, where we also outline the main ideas of the analysis. We complement
these with some empirical studies of the newly proposed method in Section 5, and conclude with a
discussion of the results and open problems in Section 6.

Notation. For a finite set S, we use ∆S to denote the set of all probability distributions over S.
For two sets X and Y , we will often write XY = X × Y to abbreviate their direct product. We
will denote infinite sequences by x̄ = (x0, x1, . . .) and for any n the corresponding subsequences as
x̄n = (x0, . . . , xn).

2

2 Preliminaries

We study the problem of measuring distances between pairs of finite Markov chains. Specifically, we
consider two stationary Markov processes MX = (X , PX , ν0,X) and MY = (Y, PY , ν0,Y), where

• X and Y are the state spaces with finite cardinality,
• PX : X → ∆X and PY : Y → ∆Y are the transition kernels that specify the evolution of states as
PX (x′|x) = P [Xt+1 = x′|Xt = x] and PY(y

′|y) = P [Yt+1 = y′|Yt = y] (for all time indices t
and state pairs x, x′ and y, y′),

• ν0,X ∈ ∆(X) and ν0,Y ∈ ∆(Y) are the initial-state distributions which specify the states at time
t = 0 as X0 ∼ ν0,X and Y0 ∼ ν0,y .

Without loss of generality, we will assume that ν0,X and ν0,Y are both Dirac measures respectively
supported on some fixed x0 and y0, and use ν0 = ν0,X ⊗ ν0,Y to denote the joint distribution of
the pair of initial states (X0, Y0) (which is of course a Dirac measure on x0, y0). For each n ≥ 0,
the objects above define a sequence of joint distributions P [(X0, X1, . . . , Xn) = (x0, x1, . . . , xn)]
and P [(Y0, Y1, . . . , Yn) = (y0, y1, . . . , yn)]. These distributions in turn define the laws of the infinite
sequences X = (X0, X1, . . .) and Y = (Y0, Y1, . . .) via Kolmogorov’s extension theorem. With
a slight abuse of notation we use MX and MY to denote the corresponding measures satisfying
MX (x̄n) = P

[
Xn = x̄n

]
and MY(ȳn) = P

[
Y n = ȳn

]
for any x̄ ∈ X∞, ȳ ∈ Y∞ and n ≥ 0.

Our goal is to compute optimal transport distances between infinite-horizon Markov chains. To
this end, we will suppose access to a ground cost (or ground metric) c : XY → R+ that quantifies
the (dis-)similarity between each state x ∈ X and y ∈ Y as c(x, y). For any two sequences
x̄ = (x0, x1, . . .) ∈ XN and ȳ = (y0, y1, . . .) ∈ YN, we define the discounted total cost

cγ(x̄, ȳ) =

∞∑
t=0

γtc(xt, yt),

where γ ∈ (0, 1) is the discount factor (which emphasizes earlier differences between the two
sequences, and serves to make sure that the distance is well-defined). As is usual in the optimal-
transport literature, we will define the distance between the two stochastic processes MX and MY by
minimizing the expected cost over a suitable class of couplings of the two joint distributions.

Formally, a coupling of MX and MY is defined as a stochastic process on the joint space
X × Y whose law is defined for all n as MX ,Y(xn, yn) = P

[
Xn = xn, Y n = yn

]
and satisfies∑

yn∈Yn MX ,Y(xnyn) = MX (xn) and
∑

xn∈Xn MX ,Y(xn, yn) = MY(yn). We denote the set of
all couplings by Π, and call a coupling MX ,Y ∈ Π bicausal if and only if it satisfies∑
y∈Y

MX ,Y(xy|x̄n−1ȳn−1) = MX (x|x̄n−1) and
∑
x∈X

MX ,Y(xy|x̄n−1ȳn−1) = MY(y|ȳn−1),

respectively for all x and y, and for all n. The set of all bicausal couplings will be denoted by Πbc.
Intuitively, this is the class of couplings that respect the temporal structure of the Markov chains
and only allow the distribution of each state Xt+1 (resp. Yt+1) to be influenced by the past state
pairs

(
Xt, Y t

)
. The optimal transport distance between the two Markov chains MX and MY is then

defined as
dγ(MX ,MY) = inf

π∈Πbc

∫
cγ(X,Y) dπ(X,Y), (1)

with the dependence on the cost function c suppressed for simplicity of notation. Following the
observation made by Calo et al. [2024], we will frequently refer to this distance as the bisimulation
metric between MX and MY .

3 Bisimulation metrics from sample streams

As observed by Calo et al. [2024], the bisimulation metric in (1) can be rewritten in terms of
occupancy couplings. The occupancy coupling associated with the bicausal coupling π ∈ Πbc is a
distribution µπ ∈ ∆XYXY with entries

µπ(x, y, x′, y′) = (1− γ)

∞∑
t=0

γtPπ [Xt = x, Yt = y,Xt+1 = x′, Yt+1 = y′] ,

3

where Pπ [·] denotes the probability law induced by the coupling π. Introducing the notation
⟨µ, c⟩ =

∑
x,y,x′,y′ µ(x, y, x′, y′)c(x, y), this means that the original optimization problem defining

the distance can be obviously rewritten as a linear function of µπ as
dγ(MX ,MY) = inf

π∈Πbc
⟨µπ, c⟩ . (2)

Calo et al. [2024] identified a set of linear constraints on µπ that are satisfied if and only if π ∈ Πbc,
which has effectively reduced the problem of computing the distance to a linear program (LP). This
formulation is closely related to the standard LP formulation of optimal control in Markov decision
processes, where the primal variables are commonly called occupancy measures (see, e.g., Chapter
6.9 in Puterman, 1994). As shown by Calo et al. [2024], one of the linear constraints satisfied by any
valid occupancy µ is the following flow condition:∑

x′,y′

µ(x, y, x′, y′) = γ
∑
x̂,ŷ

µ(x̂, ŷ, x, y) + (1− γ)ν0(x, y) (∀x, y ∈ XY). (3)

Unfortunately, their other constraints explicitly feature the transition kernels PX and PY , which
ultimately makes their LP unsuitable as a basis for stochastic optimization. Indeed, optimizing their
LP via primal, dual, or primal-dual methods would require having at least a generative model of
PX and PY that allows sampling from PX (·|x) and PY(·|y) at arbitrary states x and y. In practice
however, such models are rarely available and one has to make do with samples drawn directly from
a stream of states generated by the two chains. We address this limitation by reformulating their
linear constraints in a form that eliminates the transition kernels PX and PY from the constraints,
and replaces them with a joint state-next-state distribution from each chain that can be sampled from
efficiently. In what follows, we first introduce our new LP formulation, and then provide a primal-dual
stochastic optimization algorithm to approximately solve the resulting optimization problem along
with its performance guarantees.

3.1 A new LP formulation of bisimulation metrics

Our reformulation is based on the following observations. First, notice that any valid occupancy
coupling has to arise as a coupling of the marginal occupancy measures of the two chains MX and
MY , defined respectively for each x, x′ and y, y′ as

νX (x, x′) = (1− γ)
∑∞

t=0 γ
tP [Xt = x,Xt+1 = x′],

νY(y, y
′) = (1− γ)

∑∞
t=0 γ

tP [Yt = y, Yt+1 = y′].

Indeed, valid occupancy couplings respectively satisfy the coupling condition∑
y,y′ µπ(x, x′, y, y′) = νX (x, x′) and

∑
x,x′ µπ(x, x′, y, y′) = νY(y, y

′) (4)

for all x, x′ and y, y′. Second, the conditional occupancies induced by a bicausal coupling π satisfy
µπ(x′, y|x) = PX (x′|x)µπ(y|x) and µπ(x, y′|y) = PY(y

′|y)µπ(x|y),
due to the requirement of causality that the conditional law of Yt given Xt (resp. Xt given Yt) should
be independent of the future state Xt+1 (resp. Yt+1). By multiplying both sides of these equations by∑

x′ νX (x, x′) and
∑

y′ νY(y, y
′), we obtain∑

y′ µπ(x, x′, y, y′) = νX (x, x′)µπ(y|x) and
∑

x′ µπ(x, x′, y, y′) = νY(y, y
′)µπ(x|y). (5)

Summing both sides for all y and x respectively recovers the coupling conditions of Equation (4).
In this sense, both the causality and coupling conditions can be recovered by the single set of
equations (5). The following key result shows that, together with the flow constraints of Equation (3),
this system of equations provides a complete characterization of occupancy couplings.
Proposition 1. The distribution µ is the induced occupancy coupling of a bicausal coupling π ∈ Πbc

if and only if there exist λX ∈ RYX
+ and λY ∈ RXY

+ such that the following equations hold:∑
x′,y′

µ(x, y, x′, y′) = γ
∑
x̂,ŷ

µ(x̂, ŷ, x, y) + (1− γ)ν0(x, y) (∀x, y ∈ XY) (6)

∑
y′

µ(x, y, x′, y′) = νX (x, x′)λX (y|x) (∀x, x′, y ∈ XXY) (7)

∑
x′

µ(x, y, x′, y′) = νY(y, y
′)λY(x|y) (∀x, y, y′ ∈ XYY). (8)

4

Furthermore, if the equations are satisfied for some µ, λX and λY , we also have
∑

y λX (y|x) = 1

and
∑

x λY(x|y) = 1 for all x and y.

Thus, the set of equations (6)–(8) uniquely identifies the complete set of occupancy couplings. In
particular, whenever the constraints are satisfied for some µ, there exists a bicausal coupling π
inducing µ as its occupancy coupling, and conversely all occupancy couplings satisfy the above
equations. Further important side results can be read out from the proof, provided in Appendix A.

3.2 A stochastic primal-dual method

An immediate consequence of Proposition 1 is that the OT distance between MX and MY can
be written as the solution of the minimization problem of Equation (2) with respect to µπ as the
optimization variable, subject to the constraints (6)–(8). Equivalently, it can be written as a saddle
point of the associated Lagrangian defined as

L(µ, λ;α, V) =
∑

xyx′y′

µ(x, y, x′, y′) (c(x, y) + αX (x, x′, y) + αY(x, y, y
′) + γV (x′, y′)− V (x, y))

−
∑
xx′y

νX (x, x′)λX (y|x)αX (x, x′, y)−
∑
xyy′

νY(y, y
′)λY(x|y)αY(x, y, y

′)

+ (1− γ)
∑
xy

ν0(x, y)V (x, y), (9)

where αX ∈ RXXY and αY ∈ RXYY are the Lagrange multipliers associated with constraints (7)
and (8), and V ∈ RXY are the multipliers for the flow constraint (6). Indeed, by the Lagrange
multiplier theorem, the optimal value of the original LP can be written as dγ(MX ,MY) =
minµ,λ maxα,V L(µ, λ;α, V). Importantly, the gradients of the Lagrangian with respect to dual
variables αX and αY can be written as expectations with respect to the occupancy measures νX
and νY , which suggests that the objective may be amenable to stochastic optimization given sample
access to these distributions.

Algorithm 1 SOMCOT
Input: c, η, β, γ, K
Initialize: µ1 = U(XYXY), λX (·|x) = U(Y)
for all x, λY(·|y) = U(X) for all y, α = 0, V = 0.
For k = 1, 2, . . . ,K:
• Sample Xk, X

′
k ∼ νX and Yk, Y

′
k ∼ νY ,

• compute gradient estimators via Eqs. (10)–(15),
• update primal parameters via Eqs. (16)–(18),
• update dual parameters via Eqs. (19)–(21).
Output: µK = 1

K

∑K
k=1 µk.

Inspired by this observation, we propose a
primal-dual stochastic optimization algorithm
that aims to approximate the saddle point of
the Lagrangian. In particular, we will suppose
that we have sampling access to the occupancy
measures νX and νY and use these samples to
construct stochastic gradient estimators for in-
crementally updating the primal and dual vari-
ables via variants of stochastic gradient descent-
ascent. Concretely, the algorithm proceeds in a
sequence of iterations k = 1, 2, . . . ,K, updat-
ing the primal variables µk, λX ,k and λY,k via
stochastic mirror descent (SMD) with entropic regularization and the dual variables Vk, αX ,k and
αY,k via stochastic gradient ascent (SGA). We describe the gradient-estimation procedures and the
update rules below, and provide a high-level pseudocode as Algorithm 1. For brevity, we will refer to
the algorithm as SOMCOT, for Stochastic Optimization for Markov Chain Optimal Transport. Further
details about the derivation of SOMCOT and a more detailed pseudocode can be found in Appendix B.

The gradient estimators. For constructing the gradient estimators needed for the updates, we first
sample transitions (Xk, X

′
k) ∼ νX and (Yk, Y

′
k) ∼ νY from the marginal occupancy measures of

MX and MY , and let Fk denote the record of all transition data drawn until the end of round k. The
primal updates are defined in terms of the following gradient estimates:

gk,µ(x, y, x
′, y′) = c(x, y)− αX ,k(x, x

′, y)− αY,k(x, y, y
′) + γVk(x

′, y′)− Vk(x, y) (10)

g̃k,λX (y|x) = 1{Xk,X′
k=x,x′}αX ,k(x, x

′, y) (11)

g̃k,λY (x|y) = 1{Yk,Y ′
k=y,y′}αY,k(x, y, y

′). (12)

Clearly, we have gk,µ = ∇µL(µk, λk;αk, Vk). Furthermore, it is easy to check that
E [g̃k,λX | Fk−1] = ∇λXL(µk, λk;αk, Vk) and E [g̃k,λY | Fk−1] = ∇λYL(µk, λk;αk, Vk). Simi-

5

larly, we can define the gradient estimates for the dual variables as

g̃k,αX (x, x
′, y) =

∑
y′

µk(x, y, x
′, y′)− 1{Xk,X′

k=x,x′}λX ,k(y|x) (13)

g̃k,αY (x, y, y
′) =

∑
x′

µk(x, y, x
′, y′)− 1{Yk,Y ′

k=y,y′}λY,k(x|y) (14)

gk,V (x, y) =
∑
x′y′

µk(x, y, x
′, y′)− (1− γ)ν0(x, y)− γ

∑
x̂,ŷ

µk(x̂, ŷ, x, y), (15)

which are again easily seen to satisfy E [g̃k,αX | Fk−1] = ∇αXL(µk, λk;αk, Vk), E [g̃k,αY | Fk−1] =
∇αYL(µk, λk;αk, Vk) and gk,V = ∇V L(µk, λk;αk, Vk).

The update rules. The primal variables are updated via stochastic mirror descent with appropriately
chosen entropic regularization functions. For µ, the updates are given as

µk+1(x, y, x
′, y′) =

µk(x, y, x
′, y′) exp(−ηgk,µ(x, y, x′, y′))∑

x̂ŷx̂′ŷ′ µk(x̂, ŷ, x̂′, ŷ′) exp(−ηgk,µ(x̂, ŷ, x̂′, ŷ′))
, (16)

with η > 0 being a stepsize parameter, and the λX variables are updated as

λX ,k+1(y|x) =
λX ,k(y|x) exp(−ηX g̃k,λX (y|x))∑
ŷ λX ,k(ŷ|x) exp(−ηX g̃k,λX (ŷ|x))

, (17)

λY,k+1(x|y) =
λY,k(x|y) exp(−ηY g̃k,λY (x|y))∑
x̂ λY,k(x̂|y) exp(−ηY g̃k,λY (x̂|y))

, (18)

with respective stepsize parameters ηX , ηY > 0. Note that due to the design of the gradient estimators,
each iteration only needs to update these variables locally at λX (·|Xk) and λY(·|Yk) at the sampled
states Xk and Yk. For the dual variables, we define ΠD as the orthogonal projection operator onto a
convex set D, and implement the following projected stochastic gradient ascent updates:

αX ,k+1 = ΠDα
[αX ,k − βX g̃k,αX] , (19)

αY,k+1 = ΠDα
[αY,k − βY g̃k,αY] , (20)

Vk+1 = ΠDV
[Vk − βgk,V] , (21)

where DV = B∞(0, 2
1−γ) and Dα = B∞(0, 6

1−γ) are the projection domains for each variable, and
β, βX , βY > 0 are the stepsize parameters.

The output. The algorithm terminates after K rounds, and produces the average of the primal
iterates µK = 1

K

∑K
k=1 µk as output. From this, an estimate of the distance can be computed as

d̂γ(MX ,MY) = ⟨µK , c⟩. Averaging the output variables is motivated by the design of SOMCOT as a
primal-dual method and its theoretical analysis, and it also helps stabilize the quality of the solution.
Indeed, primal-dual methods are prone to instability and oscillations, which are smoothed out very
effectively by averaging. We discuss the role of this step and other practical improvements to the
algorithm in Section 5 below, and provide further comments on the potential usefulness of other side
products computed by SOMCOT for downstream tasks.

4 Analysis

The following theorem is our main theoretical result about the performance of our algorithm.

Theorem 1. Suppose that ∥c∥∞ ≤ 1. Let µK = 1
K

∑K
k=1 µk be the output of SOMCOT, let µ∗ be

the optimal occupancy coupling achieving the minimum in Equation (2), and set the learning rates as

η =

√
log(|X |2 |Y|2)(1− γ)2

K
, ηX =

√
|X | log |Y| (1− γ)2

K
, ηY =

√
|Y| log |X | (1− γ)2

K
,

βX =

√
|X |2 |Y|

(1− γ)2K
, βY =

√
|X | |Y|2

(1− γ)2K
, β =

√
|X | |Y|

(1− γ)2K
.

6

Then, the following bound is satisfied with probability at least 1− δ:

|⟨µK − µ∗, c⟩| = O
(

1√
K(1− γ)

(√
|X | |Y| (|X |+ |Y|) +

√
(|X |+ |Y|) log (1/δ)

))
.

Equivalently, for any ε > 0, the output satisfies |⟨µK − µ∗, c⟩| ≤ ε with probability at least 1− δ if

the number of iterations is at least K ≥ K0 = O
(

|X ||Y|(|X |+|Y|)+(|X |+|Y|) log(1/δ)
(1−γ)2ε2

)
.

A perhaps surprising feature of the sample-complexity guarantee is that it scales with the state spaces
as |X | |Y| (|X |+ |Y|) instead of the full dimensionality of the decision variables, |X |2 |Y|2. Note
however that each iteration has a computational cost scaling with this full dimensionality. The scaling
in terms of ε is optimal up to logarithmic factors, as can be deduced from well-known lower bounds
for the static OT problem (see, e.g., Klatt et al. 2020). Finally, we note that the big-O notation only
hides numerical constants, and the bound features no problem-dependent factors whatsoever.

We provide the main idea of the proof below, and relegate the full analysis to Appendix C. The main
technical idea is to relate the estimated transport cost ⟨µK , c⟩ to the true optimal transport cost via
the analysis of the duality gap associated with the sequence of iterates computed by the algorithm.
The duality gap GK(µ∗, λ∗;α∗, V ∗) against a set of comparator points (µ∗, λ∗;α∗, V ∗) satisfies

GK(µ∗, λ∗;α∗, V ∗) =
1

K

K∑
k=1

(L(µk, λk;α
∗, V ∗)− L(µ∗, λ∗;αk, Vk)) . (22)

As is standard for analysis of primal-dual methods, the duality gap can be decomposed into the sum
of the regrets of the minimizing player controlling µ and λ, and the maximizing player controlling
α and V , which can be controlled using the well-established of online learning [Cesa-Bianchi and
Lugosi, 2006, Orabona, 2019]. For the analysis, we will pick the comparator points as follows. For
the primal variables, we let µ∗ be the occupancy coupling achieving the minimum in Equation (2)
and let the λ∗ variables be the conditional distributions of Y |X and X|Y under the joint distribution
µ∗. For the dual variables, we choose

(α∗, V ∗) = arg max
α∈Dα,V ∈DV

1

K

K∑
k=1

L(µk, λk;α, V).

Under these choices, the error can be upper bounded as follows.
Lemma 1. |⟨µK − µ∗, c⟩| ≤ GK(µ∗, λ∗, α∗, V ∗).

The proof of this lemma makes up the bulk of the analysis, and is thus relegated to Appendix C.1.
It then remains to upper-bound the regrets of the two sets of players, which is routine work that we
execute in Appendix C.3.

5 Experiments

We performed a suite of numerical experiments to study the empirical behavior of our newly proposed
algorithm, as well as to illustrate some potential applications that are enabled by our method. Due
to space restrictions, we only show a small portion of the results here, and refer the reader to
Appendix F for additional results and implementation details (most notably a detailed discussion on
hyperparameter-tuning).

Several of the experiments are conducted with a family of processes we call block Markov chains,
motivated by the framework of block Markov decision processes (or block MDPs, Du et al. 2019).
This framework is commonly studied in the context of representation learning for reinforcement
learning, where a standard postulate is that the dynamics of the environment are governed by a
simple latent structure. Block Markov chains formalize this setting by assuming the existence of
a latent Markov chain with a small discrete state space, with each latent state generating a unique
set of observations. Formally, we emulate the block structure by fixing a low-dimensional chain
MX and another chain MY that is a copy of MX up to an additional irrelevant noise variable. In our
experiments, we let MX be a uniform random walk on the state space X = {1, 2, . . . , n} and MY
is a Markov chain on the state space X × {1, 2, . . . , B}, with the value in {1, 2, . . . , B} generated
uniformly at random. In all experiments, we use a sparse cost function that only allows to clearly
distinguish between states x = 1 and x = n, and treats all other states as identical.

7

Figure 1: Encoder-decoder maps learned by the algorithm in a block Markov chain example (n = 10,
B = 5) for sample sizes 1000, 10000 and 100000.

(a) Distances between the true dynamics (θ = 0.5)
and the different models in the model class, for dif-
ferent values of the parameter θ and the number of
iterations K.

(b) Distances between the true dynamics (g = 9.8)
and the different models in the model class, for differ-
ent values of the gravity parameter g.

Figure 2: Model selection results for random walks and the pendulum environment

Representation learning. Within the family of block Markov processes, the task of representation
learning is equivalent to finding the mapping between the latent states and the observations and vice
versa. Our method is very well suited for this task, thanks to the following curious observation.
Besides the estimated coupling µK and the associated cost, the algorithm outputs other values that
are potentially useful. Among these, the variables λX = 1

K

∑K
k=1 λX ,k and λY = 1

K

∑K
k=1 λY,k

are particularly interesting for purposes of representation, as these conditional distributions can be
interpreted as an encoder-decoder pair, with λX (·|x) and λY(·|y) giving the respective conditional
distributions of Y |X = x and X|Y = y under the estimate of the optimal coupling. To illustrate
the potential usefulness of these maps, we conducted a set of experiments on block Markov chains
with parameters n = 10 and B = 5, and show the encoder-decoder pairs computed by SOMCOT
in Figure 1. Notably, the algorithm does not make use of any prior structural knowledge of the
environment: each individual state y is treated as a separate state. Despite this and the very limited
information revealed by the cost function, a block structure is clearly identified by SOMCOT after
sufficiently many samples.

Model selection. Another important use case is identifying the hidden dynamics underlying re-
alizations of stochastic processes. We model this scenario in two experiments. In the first one, we
generate a block-structured Markov chain M∗

Y , and a set of low-dimensional Markov chains MX
with different transition kernels parameterized by θ ∈ [0, 1]. This set contains the true model M∗

X
underlying M∗

Y , corresponding to θ = 0.5. We compute estimates of the distances between MY and
all the candidates of the model class by running SOMCOT for various sample sizes, and show the
results on Figure 2a. Notably, the distance achieves its minimum for the true model, and increases as
θ is further separated from its true value.

8

We also conduct a second experiment on model selection in continuous state spaces. To this end,
we consider the classic control environment Pendulum-v1 from Gymnasium [Towers et al., 2024].
We begin by training a near-optimal policy using the DDPG algorithm [Lillicrap et al., 2015] and
fix this policy to induce a Markov chain over the environment. The continuous state variables of
the pendulum are then discretized to n bins each. We instantiate several copies of the environment
by varying a hyperparameter: the acceleration constant g, which by default is set to g = 9.8. The
learning task we consider is to identify which of the class of candidate models best explains the
unknown true dynamics corresponding to the default choice of g. Figure 2b shows the results obtained.
Again, we can observe that the distance achieves its minimum for the true model, and increases as g
departs from its true value. Notably, due to discretization of the state space, the observations are not
Markovian, yet the results clearly indicate that SOMCOT is still able to produce meaningful distance
estimates, thus illustrating the potential of this methodology for general representation learning tasks.

6 Discussion

In this work, we have explored the use of stochastic methods to compute distances between Markov
chains. This is still a largely unexplored field, and we believe the results presented here open the door
to many interesting advances. We outline some of these future research directions we consider to be
the most promising.

Most importantly, it remains unclear how to properly scale our algorithm to larger problems with
potentially infinite state spaces. While we believe that our bounds cannot be improved significantly
in the case of finite state spaces, addressing infinite state spaces should be possible under appropriate
structural assumptions. One may take direct inspiration from the OT literature to extend our approach
to these settings. For instance, parametrizing the dual variables via kernels or neural networks has
been shown to be an effective approach to solve static OT problems (cf. Genevay et al. 2016, Seguy
et al. 2018), and extending this idea to our setting is straightforward. The real challenge seems to
be approximating the primal variables, which correspond to (conditional) probability distributions,
which are not straightforward to parametrize via modern architectures (at least as long as one is
interested in theoretically sound methods). We leave the investigation of this very interesting question
open for future work.

Among all applications of optimal transport for Markov chains, its use in representation learning
for RL is particularly interesting to us. Many previous works on this domain have highlighted
the potential of bisimulation metrics for learning state abstractions, but all theoretically sound
previous methods for computing such distances required full knowledge of the transition kernels.
Removing this need brings us closer to realizing this potential. The experiments presented here
demonstrate the effectiveness of bisimulation metrics in capturing symmetries and latent dynamics of
Markov chains directly from sampled trajectories, both in random walks and discretized classical
control environments. Incorporating function approximation along the lines mentioned above could
significantly enhance these applications.

Besides the already-mentioned interpretation of the variables λx and λy as encoder-decoder maps,
there are other side products of SOMCOT that can prove useful for representation learning. Most
notably, the optimal dual variables αX and αY correspond to the derivatives of the distance with
respect to the state-transition distributions νX and νY , which is a fact that can prove extremely useful
for the development of practical methods. Indeed, notice that these distributions themselves are
differentiable with respect to the transition kernels, which altogether allows one to backpropagate
through the OT distance as a loss function in representation learning tasks. Successful implementation
of this idea may lead to strong theoretically sound alternatives to empirically successful methods such
as MuZero [Schrittwieser et al., 2020]. This latter method uses a loss function remarkably similar to
our OT distance, albeit with some limitations that disallow its application to stochastic environments
(cf. Jiang 2024). Once again, we leave this direction for future work.

Acknowledgements. The authors wish to thank Csaba Szepesvári for thought-provoking discus-
sions during the preparation of this manuscript. This project has received funding from the European
Research Council (ERC), under the European Union’s Horizon 2020 research and innovation pro-
gramme (Grant agreement No. 950180). This work has been co-funded by MICIU/AEI/UE-PID2023-
147145NB-I00, AGAUR SGR and MCIN/AEI/10.13039/501100011033 under the Maria de Maeztu
Units of Excellence Programme (CEX2021-001195-M).

9

References
Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation

algorithms for optimal transport via Sinkhorn iteration. In Neural Information Processing Systems,
2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning (ICML), pages 214–223, 2017.

Julio Backhoff-Veraguas, Mathias Beiglbock, Yiqing Lin, and Anastasiia Zalashko. Causal transport
in discrete time and applications. SIAM Journal on Optimization, 27(4):2528–2562, 2017.

Marin Ballu, Quentin Berthet, and Francis Bach. Stochastic optimization for regularized wasserstein
estimators. In International Conference on Machine Learning, pages 602–612, 2020.

Tristan Brugère, Zhengchao Wan, and Yusu Wang. Distances for Markov chains, and their differ-
entiation. In International Conference on Algorithmic Learning Theory (ALT), pages 282–336,
2024.

Sergio Calo, Anders Jonsson, Gergely Neu, Ludovic Schwartz, and Javier Segovia-Aguas. Bisimula-
tion metrics are optimal transport distances, and can be computed efficiently. In Neural Information
Processing Systems, 2024.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic Markov
decision processes. In AAAI Conference on Artificial Intelligence (AAAI), pages 10069–10076,
2020.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006.

Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing probabilistic
bisimilarity. In Foundations of Software Science and Computational Structures (FOSSACS), pages
437–451, 2012.

Jianda Chen and Sinno Jialin Pan. Learning Representations via a Robust Behavioral Metric for Deep
Reinforcement Learning. In Neural Information Processing Systems, 2022.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Neural Informa-
tion Processing Systems, 2013.

Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for labeled
Markov systems. In International Conference on Concurrency Theory (CONCUR), pages 258–273,
1999.

Josée Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. The metric analogue of
weak bisimulation for probabilistic processes. In IEEE Symposium on Logic in Computer Science
(LICS), pages 413–422, 2002.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Lang-
ford. Provably Efficient RL with Rich Observations via Latent State Decoding. In International
Conference on Machine Learning (ICML), pages 1665–1674, 2019.

Stephan Eckstein and Gudmund Pammer. Computational methods for adapted optimal transport. The
Annals of Applied Probability, 34(1A):675–713, 2024.

Kilian Fatras, Younes Zine, Rémi Flamary, Rémi Gribonval, and Nicolas Courty. Learning with
minibatch Wasserstein: asymptotic and gradient properties. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2019.

Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval, and Nicolas Courty.
Minibatch optimal transport distances; analysis and applications. arXiv preprint arXiv:2101.01792,
2021.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov decision processes.
In Uncertainty in Artificial Intelligence (UAI), pages 162–169, 2004.

10

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic Optimization for Large-
scale Optimal Transport. In Neural Information Processing Systems, 2016.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with Sinkhorn
divergences. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages
1608–1617, 2018.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence, 147(1-2):163–223, 2003.

Nan Jiang. A note on loss functions and error compounding in model-based reinforcement learning.
arXiv preprint arXiv:2404.09946, 2024.

Mete Kemertas and Allan Jepson. Approximate policy iteration with bisimulation metrics. Transac-
tions on Machine Learning Research, 2022.

Marcel Klatt, Carla Tameling, and Axel Munk. Empirical regularized optimal transport: Statistical
theory and applications. SIAM Journal on Mathematics of Data Science, 2(2):419–443, 2020.

Rémi Lassalle. Causal Transport Plans and Their Monge–Kantorovich Problems. Taylor & Francis,
2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

Arthur Mensch and Gabriel Peyré. Online sinkhorn: Optimal transport distances from sample streams.
Advances in Neural Information Processing Systems, 33:1657–1667, 2020.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

Vrettos Moulos. Bicausal optimal transport for Markov chains via dynamic programming. In IEEE
International Symposium on Information Theory (ISIT), pages 1688–1693, 2021.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19:1574–1609, 2009.

Gergely Neu and Nneka Okolo. Dealing with unbounded gradients in stochastic saddle-point
optimization. In International Conference on Machine Learning (ICML), 2024.

Kevin O’Connor, Kevin McGoff, and Andrew B Nobel. Optimal transport for stationary Markov
chains via policy iteration. Journal of Machine Learning Research, 23(1):2175–2226, 2022.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

David M. R. Park. Concurrency and automata on infinite sequences. In GI Symposium on Theoretical
Computer Science, volume 104 of Lecture Notes in Computer Science, pages 167–183. Springer,
1981.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends in
Machine Learning, 11(5-6):355–607, 2019.

Georg C. Pflug and Alois Pichler. A distance for multistage stochastic optimization models. SIAM
Journal on Optimization, 22(1):1–23, 2012.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley-Interscience, April 1994.

Alexander Rakhlin and Karthik Sridharan. On equivalence of martingale tail bounds and deterministic
regret inequalities. In Conference on Learning Theory, pages 1704–1722. PMLR, 2017.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

11

Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet, and Math-
ieu Blondel. Large-scale optimal transport and mapping estimation. In International Conference
on Learning Representations (ICLR), 2018.

Jiajie Tao, Hao Ni, and Chong Liu. High rank path development: an approach to learning the filtration
of stochastic processes. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Vayer Titouan, Nicolas Courty, Romain Tavenard, Chapel Laetitia, and Rémi Flamary. Optimal
Transport for structured data with application on graphs. In International Conference on Machine
Learning (ICML), pages 6275–6284, 2019.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Franck van Breugel and James Worrell. An algorithm for quantitative verification of probabilistic
transition systems. In International Conference on Concurrency Theory (CONCUR), pages 336–
350, 2001.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Tianlin Xu, Li Kevin Wenliang, Michael Munn, and Beatrice Acciaio. COT-GAN: Generating
sequential data via causal optimal transport. Advances in neural information processing systems,
33:8798–8809, 2020.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
Invariant Representations for Reinforcement Learning without Reconstruction. In International
Conference on Learning Representations (ICLR), 2021.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work and the future research directions are included in
the discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

13

Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report 95% confidence intervals when applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no direct societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

16

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

17

paperswithcode.com/datasets

Answer: [NA]

Justification: There are no new assets introduced in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

18

Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

A Equivalence of the LP formulation and the bisimulation metric

In this section we prove Proposition 1, which together with Equation (2) implies that the novel LP
formulation is equivalent to Equation (1) for computing the bisimulation metric. Our proof uses
the linear programming formulation of Calo et al. [2024] as a starting point. Concretely, Calo et al.
[2024] prove that µ is the induced occupancy coupling of a bicausal coupling π ∈ Πbc if and only if
µ satisfies the following set of constraints:∑

x′,y′

µ(x, y, x′, y′) = γ
∑
x′,y′

µ(x′, y′, x, y) + (1−γ)ν0(x, y) (∀x, y ∈ X×Y), (23)

∑
y′

µ(x, y, x′, y′) =
∑
x′′,y′

µ(x, y, x′′, y′)PX (x′|x) (∀x, y, x′ ∈ X×Y×X), (24)

∑
x′

µ(x, y, x′, y′) =
∑
x′,y′′

µ(x, y, x′, y′′)PY(y
′|y) (∀x, y, y′ ∈ X×Y×Y). (25)

Importantly, the above constraints provide a complete characterization of occupancy couplings: not
only do occupancy couplings satisfy all equations, but any µ satisfying the three linear systems of
equations above is a valid occupancy coupling (cf. Lemma 1 in Calo et al., 2024).

To prove the proposition it is sufficient to show that µ satisfies Equations (6)–(8) if and only if it
satisfies Equations (23)–(25). Equation (6) is identical to Equation (23), and thus we are left with
showing that Equations (7) and (8) are equivalent to Equations (24) and (25), respectively. We will
show the first of these claims, and note that the second claim will follow by symmetry. Within
the proof, we will repeatedly make use of the shorthand notation νX (x) =

∑
x′ νX (x, x′) and the

easy-to-see fact that PX (x′|x) = νX (x, x′)/νX (x).

First, let us assume that µ ∈ RX×Y×X×Y satisfies Equation (24). Then, it is easy to check that
Equation (7) is satisfied with the choice λX (y|x) =

∑
x′,y′ µ(x, y, x′, y′)/νX (x), making use of

the relation between νX and PX stated above. Conversely, assume that µ, λX satisfy Equation (7).
Summing both sides over x′ gives

∑
x′,y′ µ(x, y, x′, y′) = νX (x)λX (y|x), which can be plugged

back into Equation (7) to obtain∑
y′

µ(x, y, x′, y′) = νX (x, x′)λX (y|x) = PX (x′|x)νX (x)λX (y|x) = PX (x′|x)
∑
x′,y′

µ(x, y, x′′, y′),

thus confirming that Equation (24) is indeed satisfied.

For the last part, let us define µX as µX (x, x′) =
∑

y,y′ µ(x, y, x′, y′) for each (x, x′) whenever
Equations (6)–(8) are satisfied. As per the above argument, Equations (3) and (24) are also satisfied,
and thus summing both equations over y yields∑

x′

µX (x, x′) = γ
∑
x′

µX (x′, x) + (1− γ)ν0,X (x),

µX (x, x′) = PX (x′|x)
∑
x′′

µX (x, x′′).

A standard argument (provided as Lemma 12 in Appendix E) shows that the unique solution to this
system of equations is equal to the marginal occupancy measure νX . This implies∑

y

λX (y|x) =
∑
y

∑
x′,y′ µ(x, y, x′, y′)

νX (x)
=

∑
x′ µX (x, x′)

νX (x)
=

∑
x′ νX (x, x′)

νX (x)
= 1,

which concludes the proof.

B Further details about the algorithm

In this section we describe some further details about the derivation of our algorithm (SOMCOT) that
were omitted from the main text. Algorithm 2 provides a full pseudocode for SOMCOT.

At a high level, the algorithm aims to find the saddle point of the Lagrangian (9) by performing
primal-dual updates for the two sets of variables (µ, λ) and (α, V), referred to as minimizing and

20

maximizing players, respectively (or often simply call them min and max players). Both sets of
players maintain a sequence of iterates (µk, λk) and (αk, Vk), which are updated using versions of
online stochastic mirror descent, described below in detail. For the updates, the µ and λ players move
in the direction of the negative gradient of the Lagrangian evaluated at (µk, λk;αk, Vk), and the α
and V players move in the direction of the positive gradient.

Since some of these gradients involve the occupancy measures νX and νY , they cannot be computed
exactly without perfect knowledge of these distributions. However, since the dependence on νX and
νY is always linear, it is straightforward to obtain unbiased gradient estimators given only sample
access to the chains MX and MY . We provide a detailed guide for sampling from these distributions
in Appendix B.4.

The remainder of the section provides a detailed derivation of the gradients and update rules used
in each iteration. We begin by introducing the Mirror Descent algorithm that forms the basis of the
update rules for each variable.

Algorithm 2 Stochastic Optimization for Markov Chain Optimal Transport (SOMCOT)

Require: Convex sets DαX ⊂ RX×X×Y ,DαY ⊂ RX×Y×Y ,DV ⊂ RX×Y ,
Initial values µ1, λX ,1, λY,1, αX ,1, αY,1, V1,
Learning rates η, ηX , ηY , βX , βY , β > 0.

1: for k = 1, . . .K − 1 : do
2: Step 1: Draw samples from the Markov chains
3: Receive (Xk, X

′
k) ∼ νX , (Yk, Y

′
k) ∼ νY

4: Step 2: Compute gradients or stochastic gradients
5: gk,µ(x, y, x

′, y′)← c(x, y)− αX ,k(x, x
′, y)− αY,k(x, y, y

′) + γVk(x
′, y′)− Vk(x, y)

6: g̃k,λX (y|x)← 1{Xk=x}αX ,k(x,X
′
k, y)

7: g̃k,λY (x|y)← 1{Yk=y}αY,k(x, y, Y
′
k)

8: g̃k,αX (x, x
′, y)←

∑
y′ µk(x, y, x

′, y′)− 1{Xk,X′
k=x,x′}λX ,k(y|x)

9: g̃k,αY (x, y, y
′)←

∑
x′ µk(x, y, x

′, y′)− 1{Yk,Y ′
k=y,y′}λY,k(x|y)

10: gk,V (x, y)←
∑

x′,y′ µk(x, y, x
′, y′)− (1− γ)ν0(xy)− γ

∑
x̂,ŷ µk(x̂, ŷ, x, y)

11: Step 3: Update primal variables
12: µk+1(x, y, x

′, y′) ∝ µk(x, y, x
′, y′) exp(−ηgk,µ(x, y, x′, y′))

13: λX ,k+1(y|x) ∝ λX ,k(y|x) exp(−ηX g̃k,λX (y|x))
14: λY,k+1(x|y) ∝ λY,k(x|y) exp(−ηY g̃k,λY (x|y))
15: Step 4: Update dual variables
16: αX ,k+1 ← ΠDαX

(αX ,k − βX g̃k,αX)

17: αY,k+1 ← ΠDαY
(αY,k − βY g̃k,αY)

18: Vk+1 ← ΠDV
(Vk − βgk,V)

19: end for
20: Output µK = 1

K

∑K
k=1 µk.

B.1 Online Stochastic Mirror Descent

Online Stochastic Mirror Descent (OSMD) is an algorithm for the problem of online linear optimiza-
tion, where in a sequence of rounds k = 1, 2, . . . ,K, the following steps are repeated:

1. The online learner picks a decision zk taking values in the vector space Z ,

2. the environment picks a linear function gk : Z → R,

3. the online learner incurs loss ⟨gk, zk⟩,
4. the online learner observes an unbiased estimate g̃k ∈ Z∗ of the loss function.

The sequence of steps above defines a filtration (Fk)k, and the loss estimate g̃k is assumed to satisfy
E [g̃k| Fk−1] = gk. Typically, the vectors gk are subgradients of a sequence of convex loss functions,
and thus we will often refer to them with this term, and also call the vectors g̃k stochastic subgradients
(or simply stochastic gradients). OSMD computes a sequence of updates based on these noisy gradient
estimates and a convex and differentiable distance-generating function Ψ : Z → R. Concretely,

21

OSMD operates with the Bregman divergence BΨ of Ψ, defined for each pair z, z′ ∈ Z as

BΨ(z∥z′) = Ψ(z)−Ψ(z′)− ⟨∇Ψ(z′), z − z′⟩.

OSMD starts with an initial point z1 ∈ Z , and computes each subsequent iterate using the recursive
update rule

zk+1 = arg min
z∈Z

⟨g̃k, z⟩+
1

η
BΨ(z∥zk), (26)

where η > 0 is called the learning rate.

Each of the update rules used by SOMCOT follows from instantiating OSMD with a specific decision
space Z , a distance-generating function Ψ and a noisy subgradient estimator. Concretely, we will
make use of the following instances and corresponding update rules of MD, whose derivations are
available in standard textbooks (e.g. Orabona 2019).

Proposition 2. When Z = Rd and Ψ is the squared Euclidean norm defined as Ψ(z) = 1
2 ∥z∥

2
2 for

each z ∈ Z , the OSMD update reduces to the projected stochastic gradient descent update rule

zk+1 = ΠZ(zk − ηg̃k),

where ΠZ is the orthogonal projection onto the set Z defined as ΠZ(x) = arg miny∈Z ∥x− y∥2.
Proposition 3. When Z = ∆X is the probability simplex on a finite set X and Ψ is the negative
entropy defined as Ψ(p) =

∑
x p(x) log p(x), p ∈ ∆X , the OSMD update reduces to

pk+1(x) =
pk(x)e

−ηg̃k(x)∑
y pk(y)e

−ηg̃k(y)
(∀x ∈ X).

Proposition 4. When Z = ∆Y|X is the conditional simplex on finite sets X and Y and Ψ is the total
negative entropy Ψ(p) =

∑
x,y p(y|x) log p(y|x), p ∈ ∆Y|X , the OSMD update reduces to

pk+1(y|x) =
pk(y|x)e−ηg̃k(y|x)∑
ȳ pk(ȳ|x)e−ηg̃k(ȳ|x)

(∀x, y ∈ XY).

B.2 Primal updates

In this section we derive the gradients and update rules of the primal variables µ and λX . The gradient
and update rule of λY follow by symmetry.

For µ, first notice that any valid occupancy coupling µ is an element of the simplex ∆XYXY : summing
the flow constraint in (6) over x and y immediately yields

∑
x,y,x′,y′ µ(x, y, x′, y′) = 1. Thus, it is

natural to enforce this constraint throughout the execution of the algorithm and use OSMD with the
entropy regularizer given in Proposition 3. In order to derive the update rule, it remains to compute
the gradients of the Lagrangian with respect to µ, which is given as

∂L
∂µ

[µ, λ;α, V](x, y, x′, y′) = c(x, y)− αX (x, x′, y)− αY(x, y, y
′) + γV (x′, y′)− V (x, y). (27)

In each iteration k, the algorithm computes the gradient gk,µ = ∂L
∂µ [µk, λX ,k, λY,k;αX ,k, αY,k, Vk],

which can be used as the unbiased estimator g̃k. Altogether, this yields the update rule on line 12 of
Algorithm 2.

As for the λX variables, notice that Proposition 1 implies that λX belongs to the conditional simplex
∆Y|X = {λ ∈ RY×X

+ , ∀x ∈ X ,
∑

y λ(y|x) = 1}. Thus, it is natural to use the total negative entropy
as regularization function (as suggested in Proposition 4). For selecting the update direction, we note
that the gradient of the Lagrangian with respect to λX is

∂L
∂λX

[µ, λ;α, V](y|x) =
∑
x′

νX (x, x′)αX (x, x′, y) = EX,X′∼νX

[
1{X=x}αX (x,X ′, y)

]
. (28)

Thus, we can obtain a stochastic gradient estimate g̃k,λX of ∂L
∂λX

[µk, λX ,k, λY,k;αX ,k, αY,k, Vk]

by sampling a transition (Xk, X
′
k) from νX and setting g̃k,λX = 1{Xk=x}αX ,k(x,X

′
k, y). Putting

things together, this yields the update rules on lines 13–14 of Algorithm 2.

22

B.3 Dual updates

We now move our attention to the dual variables. Again, we will derive the gradients and update
rules for αX and V , and the gradient and update rule for αY follow by symmetry. Since we are
maximizing over the dual variables which are not restricted to any simplex, we update them using
projected (stochastic) gradient ascent, which is why the gradients are negated below. The feasible sets
for the dual variables are chosen to enable using Lemma 2 for bounding the estimation error—see
Appendix C.1 for details.

The gradient of the Lagrangian with respect to αX is defined as

∂L
∂αX

[µ, λ;α, V](x, x′, y) = −

∑
y′

µ(x, y, x′, y′)− νX (x, x′)λX (y|x)


= −EXk,X′

k∼νX

∑
y′

µ(x, y, x′, y′)− 1{Xk,X′
k=x,x′}λX (y|x)

 .

Our algorithm will use the update direction g̃k,αX (x, x
′, y) =

∑
y′ µk(x, y, x

′, y′) −
1{Xk,X′

k=x,x′}λX ,k(y|x). We will apply OSMD to update αX using a learning rate βX and the
regularizer in Proposition 2, which yields the update rule on lines 16–17 of Algorithm 2.

The gradient of the Lagrangian with respect to V is given by

∂L
∂V

[µ, λ;α, V](xy) = −

∑
x′,y′

µ(x, y, x′, y′)− (1− γ)ν0(x, y)− γ
∑
x̂,ŷ

µ(x̂, ŷ, x, y)

 .

We use the update direction gk,V =
∑

x′,y′ µk(x, y, x
′, y′)− (1−γ)ν0(x, y)−γ

∑
x̂,ŷ µk(x̂, ŷ, x, y)

and apply OSMD to update V using a learning rate β and the regularizer in Proposition 2, which
yields the update rule on line 18 of Algorithm 2.

B.4 Sampling from νX and νY

A key step in constructing our gradient estimators (and thus running our algorithm) is drawing
samples from the occupancy measures νX and νY . Here we provide further details about how to
perform this operation in practice.

In order to generate a sample from the occupancy measure, we let G be a geometric random variable
with mean 1

1−γ , and recall the definition of the marginal occupancy measure νX to write

νX (x, x′) = (1− γ)

∞∑
t=0

γtP [Xt = x,Xt+1 = x′] =

∞∑
t=0

P [G = t]P [Xt = x,Xt+1 = x′]

= P [XG = x,XG+1 = x′] .

Thus, one can obtain independent samples from νX by first sampling a geometric stopping time G,
sample a sequence (X0, X1, . . . , XG, XG+1), and keep the last pair of states XG, XG+1.

We remark that the task of sampling from an occupancy measure is common in reinforcement
learning, and in particular it is necessary for correctly implementing policy gradient methods. To
avoid sampling an entire sequence in each iteration, it is standard practice to replace samples from the
occupancy measure with arbitrary sample trajectories generated by the Markov chain. Specifically, it
is common to ignore discounting and draw samples directly from trajectories in which consecutive
state pairs are no longer independent. We expect that, like most other RL algorithms, our method is
also resilient to such abuse, and can be fed with sample pairs drawn from longer trajectories without
resets or throwing away samples to ensure independence.

C Analysis

This section provides the complete details for the proof of our main result, Theorem 1. Throughout
the analysis, we will assume ∥c∥∞ ≤ 1. Completing the outline provided in Section 4 requires filling

23

two gaps: proving Lemma 1, and bounding the duality gap in terms of the regrets of the two players.
These are respectively done in Sections C.1 and C.3 below (with Section C.2 providing additional
technical tools for the proof of Lemma 1). Putting the two parts together complete the proof.

C.1 Proof of Lemma 1

The majority of our theoretical analysis is dedicated to proving the error bound stated as Lemma 1,
recalled here for convenience as

|⟨µK − µ∗, c⟩| ≤ GK(µ∗, λ∗, α∗, V ∗). (29)

As a first step towards this proof, we first need to define a technical tool that will allow us to quantify
the constraint violations associated with the output µK . Indeed, one challenge in the analysis is that
µK does not necessarily satisfy the constraints (6)–(8) exactly. We quantify this effect by defining
total absolute constraint violations associated with the primal variables µ, λX and λY respectively by

∂F(µ) =
∑
x,y

∣∣∣∣∣∣
∑
x′,y′

µ(x, y, x′y′)− γ
∑
x̂,ŷ

µ(x̂, ŷ, x, y)− (1− γ)ν0(x, y)

∣∣∣∣∣∣
∂CX (µ, λX) =

∑
x,x′,y

∣∣∣∣∣∣
∑
y′

µ(x, y, x′, y′)− νX (x, x′)λX (y|x)

∣∣∣∣∣∣
∂CY(µ, λY) =

∑
x,y,y′

∣∣∣∣∣∑
x′

µ(x, y, x′, y′)− νY(y, y
′)λY(x|y)

∣∣∣∣∣ .
For the sake of analysis, we will make use of a rounding procedure that will convert µK into a valid
occupancy coupling r(µK) that satisfies all constraints. Importantly, this rounding procedure never
has to be executed in reality: it is only used as a device within the analysis. The details of this
rounding process (which is an adaptation of a method developed by Calo et al. 2024) are provided in
Appendix C.2. The following lemma provides an upper bound on the rounding error in terms of the
total absolute constraint violations.

Lemma 2. Let µ ∈ ∆XYXY and r(µ) be its rounding (as defined in Appendix C.2), and λX and λY
be arbitrary. Then, we have

∥µ− r(µ)∥1 ≤
3CX (µ, λX) + 3CY(µ, λY) + ∂F(µ)

1− γ
. (30)

The proof is provided along with all relevant definitions in Appendix C.2. With this rounding process
and its guarantees at hand, we can rewrite the absolute error between the cost estimate ⟨µK , c⟩ and
the true cost d(MX ,MY) = ⟨µ∗, c⟩ as follows:

|⟨µK − µ∗, c⟩| ≤ ⟨r(µK)− µ∗, c⟩+ ∥r(µK)− µK∥1 ∥c∥∞
≤ ⟨µK − µ∗, c⟩+ 2 ∥µK − r(µK)∥1 ∥c∥∞ .

(31)

Here, the first step follows from the triangle inequality and the crucially important fact that ⟨r(µK)−
µ∗, c⟩ ≥ 0 thanks to the feasibility of r(µK) and the optimality of µ∗.

It now only remains to relate the quantity appearing on the right-hand side of the above bound with
the duality gap. To this end, we define the shorthand λX = 1

K

∑K
k=1 λX ,k and λY = 1

K

∑K
k=1 λY,k

and recall the choice

(α∗, V ∗) = arg max
α∈Dα,V ∈DV

1

K

K∑
k=1

L(µk, λk;α, V).

Then, by plugging these variables into the Lagrangian, it is easy to check that

1

K

K∑
k=1

L(µk, λk;α
∗, V ∗) = ⟨µK , c⟩+ 6CX (µK , λX) + 6CY(µK , λY) + 2∂F(µK)

1− γ
,

24

which, by using Lemma 2, implies the following bound:

⟨µK , c⟩+ 2 ∥µK − r(µK)∥1 ≤
1

K

K∑
k=1

L(µk, λk;α
∗, V ∗)

On the other hand, it is easily verified that ⟨µ∗, c⟩ = L(µ∗, λ∗;α, V) holds for any choice of α and
V , thanks to the fact that µ∗ and λ∗ verify all the constraints of the LP. Putting this together with
Equation (31), we obtain that the error can be bounded in terms of the duality gap at the above-defined
comparator (µ∗, λ∗, α∗, V ∗) as

|⟨µK − µ∗, c⟩| ≤ GK(µ∗, λ∗, α∗, V ∗).

This concludes the proof of Lemma 1.

C.2 Rounded coupling and rounding error

We describe the process and guarantees of rounding an (approximate) occupancy coupling µ ∈
RXYXY

+ . We note that computing this rounding requires knowledge of νX , but this does not cause
any practical problems since the rounding is only ever executed in the analysis. For the rounding
process itself, we first introduce the state-occupancy measure νµ(x, y) =

∑
x′y′ µ(x, y, x′, y′), and

we define the associated transition coupling πµ as the kernel πµ : XY → ∆XY with entries

πµ(x
′, y′|x, y) =

{
µ(x,y,x′,y′)

νµ(x,y)
if νµ(x, y) ̸= 0,

PX (x′|x)PY(y
′|y) otherwise.

As shown by Calo et al. [2024], each transition coupling π : XY → ∆XY induces a unique occupancy
coupling µπ , and that the occupancy induced by πµ is valid if and only if it equals µ (i.e., if µπµ = µ
holds). For more details, we refer to Appendix B.2 in Calo et al. [2024].

Following Calo et al. [2024], we will apply the rounding procedure of Altschuler et al. [2017,
Algorithm 2] to πµ to obtain a valid transition coupling r(πµ), and then extract the occupancy
coupling induced by r(πµ). More precisely, for two probability distributions p ∈ ∆(X), q ∈ ∆(Y),
the set of valid couplings is defined as Up,q = {P ∈ RX×Y

+ : P · 1 = p;PT · 1 = q}. For a
nonnegative matrix F ∈ RX×Y

+ , the rounding procedure outputs a valid coupling r(F, p, q) ∈ Up,q.
By Lemma 7 of Altschuler et al. [2017], the rounded coupling satisfies

∥r(F, p, q)− F∥1 ≤ 2(∥F · 1∥+
∥∥FT · 1

∥∥).
For completeness the procedure is detailed in Algorithm 3.

Algorithm 3 Rounding procedure for couplings
Input: approximate coupling F , marginals p, q
X ← diag(min(p/(F · 1),1))
F ′ ← XF
Y ← diag(min(q/(F ′⊤ · 1),1))
F ′′ ← F ′Y
errp = p− F ′′ · 1, errq = q − F ′′⊤ · 1
Output: G← F ′′ + errperr⊤q / ∥errp∥1

This procedure is not symmetric, and thus we consider the following symmetrized procedure defined
as

rsym(F, p, q) =
r(F, p, q) + r(FT , q, p)T

2
.

To obtain the rounded transition coupling, we apply the rounding procedure individually for each
pair of states x, y. In particular, for a transition kernel πµ : XY → ∆XY , we define its rounded
counterpart π̃ = r(π) with entries

π̃(·|x, y) = rsym(π(·|x, y), PX (·|x), PY(·|y)).
With some abuse of notation, we will now denote as r(µ) the occupancy coupling induced by r(πµ).
Because r(πµ) is a valid transition coupling, r(µ) is a valid occupancy coupling. The following

25

derivations will relate the distance between r(µ) and µ to the total absolute constraint violations of µ,
thus providing a proof for Lemma 2.

To make the subsequent derivations easier, we will define some handy notation. We first define
the operator E : ∆XYXY → ∆XY via its action on any µ as (Eµ)(x, y) =

∑
x̂,ŷ µ(x̂, ŷ, x, y), and

note that this allows us to rewrite the flow condition (6) in the form νµ = γEµ + (1 − γ)ν0. For
a state-distribution ν ∈ ∆XY and a kernel π : XY → ∆XY , we define the composition ν ◦ π as
the distribution p with entries p(x, y, x′, y′) = ν(x, y)π(x′, y′|x, y). We will specifically use the
notation ∆(µ) = νµ ◦ (r(πµ)− πµ). Armed with all this notation, we bound the ℓ1 distance between
r(µ) and µ as

∥r(µ)− µ∥1 =
∥∥νr(µ) ◦ r(πµ)− νµ ◦ πµ

∥∥
=
∥∥νr(µ) ◦ r(πµ)− νµ ◦ r(πµ) + νµ ◦ r(πµ)− νµ ◦ πµ

∥∥
≤
∥∥νr(µ) − νµ

∥∥
1
+ ∥νµ ◦ (r(πµ)− πµ)∥1

=
∥∥νr(µ) − (1− γ)ν0 + (1− γ)ν0 − νµ

∥∥
1
+ ∥∆(µ)∥1

= ∥γEr(µ)− γEµ+ [γEµ+ (1− γ)ν0 − νµ]∥1 + ∥∆(µ)∥1
≤ γ ∥r(µ)− µ∥1 + ∂F(µ) + ∥∆(µ)∥1 ,

where the second-to-last line uses the fact that r(µ) is a valid occupancy coupling and as such satisfy
the flow condition (6), and we have recalled the definition of ∂F(µ) stated in the main text. After
reordering, we obtain

∥r(µ)− µ∥1 ≤
∂F(µ) + ∥∆(µ)∥1

1− γ
,

and thus it remains to upper bound ∥∆(µ)∥1. This is done in the following lemma, using which
concludes the proof of Lemma 2.
Lemma 3. For any µ ∈ ∆XYXY , and any λX : X → ∆Y and λY : Y → ∆X , we have
∥∆(µ)∥1 ≤ 3∂CY(µ, λY) + 3∂CX (µ, λX).

Proof. By Lemma 7 of Altschuler et al. [2017], we have that for arbitrary state pairs x, y, the
following is satisfied:

∥r(πµ)(·|x, y)− πµ(·|x, y)∥1

≤ 2

∑
x′

∣∣∣∣∣∣PX (x′|x)−
∑
y′

πµ(x
′, y′|x, y)

∣∣∣∣∣∣+
∑
y′

∣∣∣∣∣PY(y
′|y)−

∑
x′

πµ(x
′, y′|x, y)

∣∣∣∣∣
 .

By symmetry, this directly gives

∥rsym(πµ)(·|x, y)− πµ(·|x, y)∥1

≤ 3

2

∑
x′

∣∣∣∣∣∣PX (x′|x)−
∑
y′

πµ(x
′, y′|x, y)

∣∣∣∣∣∣+
∑
y′

∣∣∣∣∣PY(y
′|y)−

∑
x′

πµ(x
′, y′|x, y)

∣∣∣∣∣
 .

Now, multiplying both sides by νµ(x, y), we get

∆(µ)(x, y) = νµ(x, y) ∥rsym(πµ)(·|x, y)− πµ(·|x, y)∥1

≤ 3

2

∑
x′

∣∣∣∣∣∣PX (x′|x)νµ(x, y)−
∑
y′

µ(x, y, x′, y′)

∣∣∣∣∣∣+
∑
y′

∣∣∣∣∣PY(y
′|y)νµ(x, y)−

∑
x′

µ(x, y, x′, y′)

∣∣∣∣∣
.

The first term on the right-hand side of the above expression can be bounded as follows:

∑
x′

∣∣∣∣∣∣PX (x′|x)νµ(x, y)−
∑
y′

µ(x, y, x′, y′)

∣∣∣∣∣∣
=
∑
x′

∣∣∣∣∣∣PX (x′|x)νµ(x, y)− νX (x, x′)λX (y|x) + νX (x, x′)λX (y|x)−
∑
y′

µ(x, y, x′, y′)

∣∣∣∣∣∣
26

(i)
≤
∑
x′

|PX (x′|x)νµ(x, y)− νX (x, x′)λX (y|x)|+

∣∣∣∣∣∣νX (x, x′)λX (y|x)−
∑
y′

µ(x, y, x′, y′)

∣∣∣∣∣∣
=
∑
x′

PX (x′|x) |νµ(x, y)− νX (x)λX (y|x)|+ ∂CX (µ, λX)

(ii)
= |νµ(x, y)− νX (x)λX (y|x)|+ ∂CX (µ, λX)

(iii)
=

∣∣∣∣∣∣
∑
x′,y′

µ(x, y, x′, y′)−
∑
x′

νX (x)PX (x′|x)λX (y|x)

∣∣∣∣∣∣+ ∂CX (µ, λX)

≤
∑
x′

∣∣∣∣∣∣
∑
y′

µ(x, y, x′, y′)− νX (x, x′)λX (y|x)

∣∣∣∣∣∣+ ∂CX (µ, λX)

= 2∂CX (µ, λX).

Here, we used the triangle inequality for (i) and the fact that
∑

x′ PX (x′|x) = 1 for (ii) and (iii). The
proof is concluded by repeating the same argument for the constraint violations ∂CY(µ, λY), and
plugging the results back into the previous inequalities.

C.3 Regret bounds of the primal and dual sequence

This section provides an upper bound on the duality gap as defined in Equation (22), in terms of
the regrets of the two set of algorithms controlling the primal and dual variables. Recalling the
convention established in Appendix B, we will refer to the algorithms as the min- and max-players,
with their regrets respectively defined as

regretmax
K (α∗, V ∗) =

K∑
k=1

(
L(µk, λk;α

∗, V ∗)− L(µk, λk;αk, Vk)
)

regretmin
K (µ∗, λ∗) =

K∑
k=1

(
L(µk, λk;αk, Vk)− L(µ∗, λ∗;αk, Vk)

)
,

where our notation emphasizes that each regret is measured against the comparators α∗, V ∗ and
µ∗, λ∗. With this notation, the duality gap can be rewritten as

GK(µ∗, λ∗;α∗, V ∗) =
regretmax

K (α∗, V ∗) + regretmin
K (µ∗, λ∗)

K
. (32)

With a mild abuse of our earlier notation, we write out the full expression of the Lagrangian in terms
of the αX , αY and λX , λY variables as L(µ, λX , λY ;αX , αY , V). The regret terms that need to be
bounded can be further decomposed in terms of the following individual terms defined for each set of
primal and dual variables:

regretmax
K (α∗

X) =

K∑
k=1

L(µk, λX ,k, λY,k;α
∗
X , α∗

Y , V
∗)− L(µk, λX ,k, λY,k;αX ,k, α

∗
Y , V

∗)

regretmax
K (α∗

Y) =

K∑
k=1

L(µk, λX ,k, λY,k;αX ,k, α
∗
Y , V

∗)− L(µk, λX ,k, λY,k;αX ,k, αY,k, V
∗)

regretmax
K (V ∗) =

K∑
k=1

L(µk, λX ,k, λY,k;αX ,k, αY,k, V
∗)− L(µk, λX ,k, λY,k;αX ,k, αY,k, Vk)

regretmin
K (µ∗) =

K∑
k=1

L(µk, λX ,k, λY,k;αX ,k, αY,k, Vk)− L(µ∗, λX ,k, λY,k;αX ,k, αY,k, Vk)

regretmin
K (λ∗

X) =

K∑
k=1

L(µ∗, λX ,k, λY,k;αX ,k, αY,k, Vk)− L(µ∗, λ∗
X , λY,k;αX ,k, αY,k, Vk)

27

regretmin
K (λ∗

Y) =

K∑
k=1

L(µ∗, λ∗
X , λY,k;αX ,k, αY,k, Vk)− L(µ∗, λ∗

X , λ∗
Y ;αX ,k, αY,k, Vk)

Thanks to the bilinearity of the Lagrangian, each of these terms can be seen as the regret of an online
learning algorithm with linear loss / gain functions and decision variables taking values in a convex
decision space Z (embedded within some Euclidean space). In particular, each of these regrets can
be written in the following form for some sequences (gk)k ∈ Rd, (zk)k ∈ Z and z ∈ Z:

regretK(z∗) =

K∑
k=1

⟨gk, zk − z∗⟩.

As noted in Section B, our algorithm can be understood as running an instance of Online Stochastic
Mirror Descent (OSMD) for each set of variables, and thus each regret term can be bounded using
standard results. One challenge for the analysis is that the comparator points α∗ and V ∗ are chosen in
a data-dependent manner. This is not easily handled by standard tools in online learning, but can still
be treated with some relatively more advanced tools that are common in the context of saddle-point
optimization (most notably, using techniques of Nemirovski et al. 2009, Rakhlin and Sridharan 2017).
In particular, we will use the following general result to bound the regrets of each player in the
analysis below.
Lemma 4. Let z∗ ∈ Z be a potentially data-dependent comparator and assume that Ψ is λ-strongly
convex with respect to some norm ∥·∥ whose dual is denoted by ∥·∥∗. Furthermore, suppose that
supz,z′∈Z ∥z − z′∥ ≤ C holds for some constant C > 0. Then, for any η̃ > 0, the sequence (zk)k
produced by OSMD satisfies the following bound with probability at least 1− δ:

K∑
k=1

⟨gk, zk − z∗⟩ ≤BΨ (z∥z1)
η

+
η

2λ

K∑
k=1

∥gk∥2∗

+
BΨ (z∥z1)

η̃
+

η̃

2λ

K∑
k=1

∥gk − g̃k∥2∗ + C

√√√√2

K∑
k=1

∥gk − g̃k∥2∗ log
1

δ
.

While composed of standard elements, we provide the proof for the sake of completeness in Ap-
pendix D. The regret bound itself can be simplified in two different ways, depending on whether or
not the algorithm in question uses deterministic or stochastic gradients: for deterministic updates, we
have gk = g̃k and we can choose 1/η̃ = 0, whereas for stochastic updates the choice η̃ = η is more
natural. This is how we will apply the lemma to each regret term below. In what follows, we will
instantiate this bound to bound the regrets of all players listed above, which will require establishing i)
the strong-convexity properties of the regularization functions, ii) bounds on the Bregman divergences
between the initial points and the comparators and iii) bounds on the dual norms of the gradients and
the gradient noise. This is done case by case in the following subsections.

C.3.1 Regret of the α-players

The policy of the α-players is to run projected online stochastic gradient ascent on the feasible set
Z = B∞(6

1−γ), and unbiased gradient estimators with elements defined respectively as

g̃k,αX (x, x
′, y) =

∑
y′

µk(x, y, x
′, y′)− 1{Xk,X′

k=x,x′}λX ,k(y|x)

and
g̃k,αY (x, y, y

′) =
∑
x′

µk(x, y, x
′, y′)− 1{Yk,Y ′

k=y,y′}λY,k(x|y).

The following lemma provides an upper bound on each of the two α-players.
Lemma 5. With probability at least 1− δ, the regret of the αX -player is bounded as

regretmax
K (α∗

X) ≤ 18 |X |2 |Y|
(1− γ)2βX

+ 4βXK +

√
72K

(1− γ)2
log

2

δ
, (33)

and the regret of the αY -player is bounded as

regretmax
K (α∗

Y) ≤
18 |Y|2 |X |
(1− γ)2βY

+ 4βYK +

√
72K

(1− γ)2
log

2

δ
. (34)

28

Proof. We prove the claim for αX , and the result for αY will follow by symmetry. We start by noting
that the gradient estimators and the gradients satisfy ∥g̃k,αX ∥1 ≤ 2 and ∥gk,αX − g̃k,αX ∥1 ≤ 2.
Indeed, this can be verified easily as

∥g̃k,αX ∥1 ≤
∑

x,y,x′,y′

µk(x, y, x
′, y′) +

∑
x,x′,y

1{X,X′=x,x′}λX ,k(y|x) = 2,

because of the normalization of both µk and λX ,k. Similarly, we have

∥gk,αX − gk,αX ∥1 ≤
∑
x,x′,y

(
1{X,X′=x,x′} + νX (x, x′)

)
λX ,k(y|x) = 2.

Furthermore, ∥α∗
X − αX ,1∥∞ ≤

6
1−γ trivially holds thanks to the definition of the domain of αX

and the choice αX ,1 = 0. Finally, notice that Ψ is 1-strongly convex with respect to ∥·∥2, and thus
Lemma 4 (with the choice η̃ = η = βX) immediately implies the claim after using the relations
∥g̃k,αX ∥2 ≤ ∥g̃k,αX ∥1 ≤ 2 and ∥α∗

X − αX ,1∥22 ≤ ∥α
∗
X − αX ,1∥2∞ ≤

36|X |2|Y|
(1−γ)2

.

C.3.2 Regret of the V -player

Similarly to the α-players, the V -player employs online gradient ascent on the feasible set Z =
B∞(2

1−γ), with entries of the gradients given in each round as

gk,V (x, y) =
∑
x′,y′

µk(x, y, x
′, y′)− (1− γ)ν0(x, y)− γ

∑
x̂,ŷ

µk(x̂, ŷ, x, y).

The following lemma gives a bound on its regret.
Lemma 6. The regret of the V -player is bounded as

regretmax
K (V ∗) ≤ 4 |X | |Y|

β(1− γ)2
+ 2βK. (35)

Proof. Since the V -player employs deterministic gradients, we will apply Lemma 4 with 1/η̃ = 0,
and bound the Euclidean norms of the comparator V ∗ and the gradients. By the choice of the feasible
set for V ∗ and the choice V1 = 0, we immediately have ∥V ∗ − V1∥2 ≤ |X | |Y| ∥V ∗ − V1∥2∞ ≤
4|X ||Y|
(1−γ)2 . Furhermore, evaluating the gradient of the Lagrangian with respect to V , we get

∥gk,V ∥1 ≤ (1− γ)
∑
x,y

ν0(x, y) + (1 + γ)
∑

x,y,x′,y′

µ(x, y, x′, y′) = 2,

which in turn implies ∥gk,V ∥2 ≤ ∥gk,V ∥1 ≤ 2. Plugging these results in the bound of Lemma 4
concludes the proof.

C.3.3 Regret of the µ-player

The µ-player plays OSMD with entropy regularization, and gradients with elements defined as
gk,µ(x, y, x

′, y′) = c(x, y)− αX ,k(x, x
′, y)− αY,k(x, y, y

′) + γVk(x
′, y′)− Vk(x, y).

The following bound gives a bound on the regret of this player.
Lemma 7. The regret of the µ-player is bounded as

regretmin
K (µ∗) ≤

log
(
|X |2 |Y|2

)
η

+
200ηK

(1− γ)2
.

Proof. The proof follows from noticing that the regularization function Ψ is 1-strongly convex with
respect to the norm ∥·∥1, and that the dual norm of the gradients is bounded as ∥gk,µ∥∞ ≤

20
1−γ .

Indeed, this follows by upper-bounding each entry of the gradient as
|gk,µ(x, y, x′, y′)| ≤ c(x, y) + |αX ,k(x, x

′, y′)|+ |αY,k(x, y, y
′)|+ γ |Vk(x

′, y′)|+ |Vk(x, y)|

≤ 1 +
12

1− γ
+

4(γ + 1)

1− γ
=

17 + 3γ

1− γ
≤ 20

1− γ
.

Finally, we recall the choice of µ1 being uniform over XYXY , and the standard result that the
relative entropy between any distribution and µ1 is equal to log(|X |2 |Y|2).

29

C.3.4 Regret of the λ-players

The regret analysis of the λ-players is slightly nonstandard. Focusing on the λX -player here, we
note that the updates correspond to using OSMD on the decision space Z = {λ : ∀x, y λ(y|x) ≥
0 ;∀x

∑
y λ(y|x) = 1} with the following choice of regularization function:

Ψ(λ) =
∑
x

∑
y

λ(y|x) log(λ(y|x)).

As we show in Lemma 10, this regularization function is 1-strongly convex with respect to the 2-1
group norm defined for each λ ∈ Z as

∥λ∥2,1 =

√√√√∑
x

(∑
y

|λ(y|x)|

)2

.

It is easy to verify that the corresponding dual norm is the 2−∞ group norm defined as ∥g∥2,∞ =√∑
x(maxy |g(x, y)|)2. We also recall that the updates make use of the following unbiased estimate

of the gradient:
g̃k,λX (x, y) = 1{X=x}αX ,k(X,X ′, y). (36)

With these facts at hand, we prove the following bound on the regret of the λ-players.
Lemma 8. With probability at least 1− δ, the regret of the λX player and is bounded as

regretmax
K (λ∗

X) ≤ |X | log |Y|
ηX

+
90ηXK

(1− γ)2
+

√
288 |X |K log

(
2
δ

)
(1− γ)2

. (37)

and the regret of the λY -player is bounded as

regretmax
K (λ∗

Y) ≤
|Y| log |X |

ηY
+

90ηYK

(1− γ)2
+

√
288 |Y|K log

(
2
δ

)
(1− γ)2

. (38)

Proof. We provide a complete proof for λX , and note that the result for λY is analogous. For this
case, notice that Lemmas 4 and 10 suggest that we should first obtain upper-bounds on the magnitude
of the gradients in terms of their 2,∞-group norms, and thus we first establish that

∥g̃k,λX ∥2,∞ =

√√√√∑
x

(
max

y
|1{X=x}αX (X,X ′, y)|

)2

≤
√∑

x

1{X=x} ∥αX ,k∥2∞ = ∥αX ,k∥∞ .

Note that the latter is upper-bounded as ∥αX ,k∥∞ ≤
6

1−γ by construction. Further observing that the
true gradient norm can be bounded via the same argument as ∥g̃k,λX ∥2,∞ ≤

6
1−γ , we also have

∥gk,λX − g̃k,λX ∥2,∞ ≤ ∥gk,λX ∥2,∞ + ∥g̃k,λX ∥2,∞ ≤
12

1− γ
.

Finally, since λX ,1(·|x) is chosen as the uniform distribution over Y for all x, we have
BΨ(λ∗

X ∥λX ,1) ≤ |X | log |Y|, and the primal-norm distance satisfies ∥λ∗ − λ∥ ≤ 2
√
|X |. Now,

the claim follows from using Lemma 4 with η̃ = ηX .

C.4 Proof of Theorem 1

The proof of the theorem now follows from putting together Lemma 1 with the regret decomposition
in Equation (32), and combining Lemmas 5–8. Taking a union bound over the two probabilistic
claims of Lemma 5 and 5, this gives that the following bound holds with probability at least 1− 2δ:

|⟨µK − µ∗, c⟩| ≤ 18|X |2|Y|
βXK(1− γ)2

+ 4βX +

√
72

K(1− γ)2
log

2

δ

+
18|X ||Y|2

βYK(1− γ)2
+ 4βY +

√
72

K(1− γ)2
log

2

δ

30

+
4|X ||Y|

βK(1− γ)2
+ 2β

+
2 log(|X ||Y|)

ηK
+

200η

2(1− γ)2

+
|X | log(|Y|)

ηXK
+

90ηX
(1− γ)2

+

√
288|X | log 2

δ

K(1− γ)2

+
|Y| log |X |

ηYK
+

90ηY
(1− γ)2

+

√
288|Y| log 2

δ

K(1− γ)2
.

Setting βX =
√

9|X |2|Y|
2(1−γ)2K , βY =

√
9|X ||Y|2
2(1−γ)2K , β =

√
2|X ||Y|
(1−γ)2K , ηX =

√
(1−γ)2|X | log |Y|

90K , ηX =√
(1−γ)2|Y| log |X |

90K , η =
√

(1−γ)2 log(|X ||Y|)
100K , the bound becomes

|⟨µK − µ∗, c⟩| ≤
12
√
2|X ||Y|

(√
|X |+

√
|Y|
)

(1− γ)
√
K

+
4
√
2|X ||Y|

(1− γ)
√
K

+
3
√

10|X | log |Y|
(1− γ)

√
K

+
3
√
10|Y| log |X |
(1− γ)

√
K

+
40
√
log(|X|2|Y |2)

(1− γ)
√
K

+
12
√

log 1
δ

(1− γ)
√
K

+
12
√
2|X | log 1

δ

(1− γ)
√
K

+
12
√
2|Y| log 1

δ

(1− γ)
√
K

=O

√ (|X ||Y| (|X |+ |Y|) + |X | log |Y|
δ + |Y| log |X |

δ

(1− γ)2K

 .

This concludes the proof.

D Online learning: The proof of Lemma 4

This section is dedicated to proving the general regret bound we use throughout the analysis for
upper-bounding the regret of each player, Lemma 4. As mentioned in Appendix C.3, the main
challenge that we need to deal with is that the comparators for some of the regret terms are data
dependent, which requires some additional steps that are typically not necessary in regret analyses.
For concreteness, we adapt the notation of Lemma 4 and write the regret against comparator z∗ as

regretK(z∗) =

K∑
k=1

⟨gk, zk − z∗⟩ =
K∑

k=1

⟨g̃k, zk − z∗⟩︸ ︷︷ ︸
RK

+

K∑
k=1

⟨gk − g̃k, zk − z∗⟩︸ ︷︷ ︸
MK

,

where in the second equality we also added some terms corresponding to the stochastic gradient g̃k.
Here, the first term RK corresponds to the regret of the online learning algorithm on the sequence
of stochastic gradients g̃k, which can be upper-bounded using standard tools of online learning. For
the second term, notice that the stochastic gradient satisfies E [g̃k| Fk−1] = gk, and thus if z∗ is
independent of the sequence of stochastic gradients, the second term MK in the above decomposition
is a martingale. However, this is no longer true if z∗ is statistically dependent on the sequence. In
order to account for this, we adopt an elegant technique by Rakhlin and Sridharan [2017] to control
the resulting sequence of dependent random variables1. In particular, we introduce a second online
learning algorithm for the sake of analysis, and use its regret bound to account for the additional error
terms in the above decomposition. For sake of concreteness, we define the sequence of decisions
made by this algorithm by setting z̃1 = z1 and updating the parameters recursively via a mirror

1This technique is commonly attributed to Nemirovski et al. [2009], but we find the connection with Rakhlin
and Sridharan [2017] more illuminating. Otherwise, we learned this proof technique from Neu and Okolo
[2024].

31

descent scheme analogous to the one underlying the sequence zk:

z̃k+1 = arg min
z∈Z

{
⟨gk − g̃k, z⟩+

1

η
BΨ(z∥zk)

}
.

Using this notation, the regret of the original algorithm can be rewritten as follows:
K∑

k=1

⟨gk, zk − z∗⟩ =
K∑

k=1

⟨g̃k, zk − z∗⟩︸ ︷︷ ︸
RK

+

K∑
k=1

⟨gk − g̃k, zk − z̃k⟩︸ ︷︷ ︸
M̃K

+

K∑
k=1

⟨gk − g̃k, z̃k − z∗⟩︸ ︷︷ ︸
R̃K

.

Thanks to this construction, the term M̃K is a martingale and R̃K is the regret of the auxiliarly online
learning algorithm in the newly defined online learning game.

For the concrete proof of Lemma 4, we will make use of the following classic result regarding the
regret of mirror descent.
Lemma 9. Let z ∈ Z and assume that Ψ is λ-strongly convex with respect to some norm ∥·∥ whose
dual is denoted by ∥·∥∗. Consider the sequence with an arbitrary u1 ∈ Z and all subsequent iterates
defined as

uk+1 = arg min
z∈Z

{
⟨vk, z⟩+

1

ω
BΨ(z∥uk)

}
,

where ak is an arbitrary sequence in Z∗ and ω > 0. Then, for any u∗ ∈ Z , the sequence (uk)k
produced by OSMD satisfies the following bound:

K∑
k=1

⟨ak, uk − u⟩ ≤ BΨ(u
∗∥u1)

ω
+

ω

2λ

K∑
k=1

∥ak∥2∗ . (39)

The proof is standard and can be found in many textbooks—for concreteness, we refer to Theorem 6.10
of Orabona [2019]. To proceed, we apply this lemma to the standard sequence of iterates in our
setting with ak = g̃k and ω = η to bound RK and once again with ak = gk− g̃k and ω = η̃ to bound
R̃K . Finally, we use the Hoeffding–Azuma inequality (Lemma 11) to control the remaining term as

M̃K =

K∑
k=1

⟨gk − g̃k, zk − z̃k⟩ ≤ C

√√√√2

K∑
k=1

∥gk − g̃k∥2 log
1

δ

with probability at least 1 − δ. Indeed, notice that under the condition maxz,z′∈Z ∥z − z′∥ ≤ C
each term satisfies |⟨gk − g̃k, zk − z̃k⟩| ≤ C ∥gk − g̃k∥∗, which allows using Lemma 11 with ck =
2C ∥gk − g̃k∥∗. Putting these results together concludes the proof of Lemma 4.

E Technical Lemmas

Lemma 10. The function Ψ(p) =
∑J

j=1

∑I
i=1 p(i|j) log p(i|j) is 1-strongly convex with respect

to the 2-1 group norm ∥p∥2,1 =

√∑J
j=1

(∑I
i=1

∣∣pi|j∣∣)2 on the set Z = {p ∈ RI×J : p(i|k) ≥

0(∀i, j),
∑I

i=1 p(i|j) = 1 (∀j).

Proof. We first note that, by standard calculations, the Bregman divergence induced by Ψ is

BΨ(p∥q) =
J∑

j=1

I∑
i=1

p(i|j) log p(i|j)
q(i|j)

.

Now, by Pinsker’s inequality, we have that

BΨ(p∥q) ≥
1

2

J∑
j=1

∥p(·|j)− q(·|j)∥1 ,

which is equivalent to the statement of the lemma.

32

Lemma 11. (Hoeffding–Azuma inequality, see, e.g., Lemma A.7 in Cesa-Bianchi and Lugosi 2006)
Let (Zk)k be a martingale with respect to a filtration (Fk)k. Assume that there are predictable

processes (Ak)k and (Bk)k and positive constant (ck)k such that for all k ≥ 1, almost surely,
Ak ≤ Zk − Zk−1 ≤ Bk and Bk −Ak ≤ ct.

Then, for all ϵ > 0,

P [Zt − Z0 ≥ ϵ] ≤ exp

(
− 2ϵ2∑t

i=1 c
2
i

)
, (40)

or equivalently for all δ ∈ (0, 1)

P

Zt − Z0 ≥

√√√√(∑t
i=1 c

2
i

)
log(1δ)

2

 ≤ δ. (41)

Lemma 12. The occupancy measure νX ∈ RX×X
+ of the Markov chain MX is uniquely defined by

the two sets of equations∑
x′

νX (x, x′) = γ
∑
x′′

νX (x′′, x) + (1− γ)ν0,X (x) (∀x), (42)

νX (x, x′) = PX (x′|x)
∑
x′′

νX (x, x′′) (∀x, x′). (43)

Proof. Using the definition of the occupancy measure νX we obtain

νX (x, x′) = (1− γ)

∞∑
t=0

γtP [Xt = x,Xt+1 = x′]

= (1− γ)

∞∑
t=0

γtPX (x′|x)P [Xt = x]

= PX (x′|x)

(
(1− γ)ν0,X (x) + (1− γ)

∞∑
t=1

γtP [Xt = x]

)

= PX (x′|x)

(
(1− γ)ν0,X (x) + γ

∑
x′′

(1− γ)

∞∑
t=1

γt−1P [Xt−1 = x′′, Xt = x]

)

= PX (x′|x)

(
(1− γ)ν0,X (x) + γ

∑
x′′

νX (x′′, x)

)
,

where we used the stationarity of the transition kernel PX , the definition of ν0,X , the law of total
probability, and the stationarity of the Markov chain to recognize νX (x′′, x) in the last step. Summing
the previous equation over x′ yields (42), and substituting (42) into the previous equation yields (43).

In order to show that the solution νX to (42) and (43) is unique, we introduce the notation ξX as
ξX (x) =

∑
x′ νX (x, x′) for each x. Substituting (43) into (42) yields

ξX (x) = γ
∑
x′′

PX (x|x′′)ξX (x′′) + (1− γ)ν0,X (x) (∀x).

By defining ξX and ν0,X as vectors and PX as a matrix, we can write this system of equations in
matrix form as ξX = γPX ξT

X + (1− γ)ν0,X , or equivalently, (I − γP T

X)ξX = (1− γ)ν0,X . Since
PX is a positive matrix with spectral radius 1, the Perron–Frobenius theorem applies and the matrix
(I − γPX) is invertible. Hence there exists a unique solution ξX = (1− γ)(I − γP T

X)−1ν0,X , which
together with (43) implies that νX is uniquely defined as νX (x, x′) = PX (x′|x)ξX (x).

F Additional details on experiments

In this appendix we present further details about the experiments included in the main text, along
with some additional empirical results. Along the way, we will also provide some further comments
on best practices when implementing SOMCOT, including recommended hyperparameter settings.

33

Figure 3: Distance matrices between instances after running SOMCOT for 1000 and 10000 steps, and
the ground truth obtained via Sinkhorn Value Iteration.

F.1 Similarity metrics between parametric Markov chains

This experiment serves to illustrate the ability of bisimulation metrics to capture intuitive similarities
between stochastic processes, as well as the empirical behavior of SOMCOT when used to approximate
such similarity metrics based on data. To this end, we generated several random walk instances from
the same family as used in the experiments in the main body (described in detail in Appendix F.3).
For this experiment, we let X = Y = {1, 2, . . . , n} with n = 1 and set the block size as B = 1.
Deviating from the setup described in Appendix F.3, we set the reward function as r(1) = r(n) = 1
for both extremes of the state space, which induces a symmetry on the state space. For generating
the set of environments, we varied the initial states x0 and y0 between {2, 3, . . . , n− 1} and the
bias parameter θ in the set {0.05, 0.1, 0.15, . . . , 0.95}, thus resulting in 72 different instances. We
then computed pairwise distances between these instances using SOMCOT with various sample sizes,
and compared the results with the ground truth (computed by the Sinkhorn Value Iteration method
of Calo et al. 2024). Figure 3 shows the similarity matrices obtained by these methods, showing
that the distances computed by SOMCOT successfully capture the structure of the problem: even
though the exact numerical values of the true distances are not approximated very accurately, the
qualitative picture obtained by SOMCOT is very similar to the ground truth. In particular, the symmetry
induced our choice of reward function is clearly visible with the matrix being symmetric along the
counter-diagonal as well as the main diagonal.

F.2 Practical implementation details

Being a primal-dual method, SOMCOT is not as easy to tune as a common stochastic optimization
algorithm. There are several implementation details that one needs to design carefully in order to
make sure that the algorithm behaves in a stable way and outputs good estimates. This section
describes our experience working with SOMCOT, and provides practical guidance for implementation.

SOMCOT has one tunable parameter per optimization variable: a positive learning rate that controls the
magnitude of the updates during optimization. While our theoretical analysis suggests some specific
values for these learning rates to guarantee convergence, such values are typically too conservative (as
is common in stochastic optimization). In practice, using larger learning rates can significantly reduce
the number of iterations needed to reach good solutions. Since our problem involves optimizing
six variables, this leads to six separate hyperparameters, which makes tuning a grueling task. To
address this, we tie some of the learning rates together: all primal variables share a single learning
rate denoted by η, and all dual variables share another one denoted by β.

Moreover, we observed that in practice using a fixed value for the dual learning rate η often made
it difficult to achieve stable convergence across different problem instances. To address this, we
introduced a decaying learning-rate scheme of the form ηk = η0√

1+ak
, where k is the index of the

current iteration and a > 0 is a tunable parameter. This decay helps balance the need for large updates
in early iterations with the stability required for convergence in later stages.

Figure 4 illustrates the performance of the algorithm under different learning rate settings. This shows
that, even given the above choices, it is not easy to pick hyperparameters that work uniformly well
across problem instances. Even for a single instance, the combination of η0 and β that leads to the best
performance requires careful hyperparameter search. In order to understand the behavior of SOMCOT
under different parameter choice, it is helpful to remember the roles of the primal and dual variables,

34

Figure 4: The influence of the ratio between η and β on the convergence of SOMCOT for different
chain sizes. Error and learning rates are shown on a logarithmic scale. To produce this plot, a decay
rate of a = 0.001 was used for η. No decay was applied on β.

and in particular that the dual variables serve to penalize the primal variables for violating the primal
constraints. Thus, a value of η that is too high relative to β leads to large constraint violations,
resulting in µ values that yield very small distances but fall outside the feasible set. Ultimately, setting
β too small results in gross underestimation of the true distance. Thus, whenever one sees distance
estimates that are suspiciously close to zero, the value of β should be increased or the value of η be
decreased. The opposite scenario produces the inverse effect: a β that is too large relative to η causes
the dual variables to update too quickly, leading to a resulting distance that overestimates the actual
value. This issue can largely be mitigated by decaying η while keeping β constant (as described
above). In our experience, it is often better to pick a large initial value for η: while this typically leads
to a rapid drop of the distance estimate to zero, the estimates eventually start increasing and converge
toward the true cost.

Theorem 1 provides guarantees for the averaged output µK = 1
K

∑K
k=1 µk, where µk is the value of

µ obtained at iteration k. This is commonly required for algorithms based on regret analysis, at least
for the theoretical guarantees to go through. In typical applications of stochastic optimization, this
averaging step is not strictly necessary and the final iteration can perform well enough. However,
this is typically not the case for primal-dual algorithms like SOMCOT, where iterate averaging often
makes a big difference to the stability of algorithms. This is true in our case too: without averaging,
the iterates typically fluctuate quite wildly around the optimum. Averaging makes the estimates much
more stable, and is thus strongly recommended (even if only for the last half of the iterates or less).

Finally, we note that all our experiments have made use of i.i.d. transitions sampled from the
occupancy measures of the two chains. This falls in line perfectly with the theory, but may be
impractical in applications where transitions may be dependent or be sampled from undiscounted
trajectory distributions. While we have not experimented with such data, we believe that SOMCOT
should be able to deal with it as long as efforts are made to break the correlations between the
consecutive samples, for instance by sampling the transitions randomly from a buffer (instead of
processing them in their original order). In our experiments, we have sometimes made use of
minibatch updates, which can affect computational efficiency and stability, but no major impact on
the overall convergence properties has been observed. We display all hyperparameter choices we
have made in the experiments in Table 1.

F.3 Details about the environments

Our experiments made use of two families of Markov chains: a collection of parametrized random
walks, and several instances of the classic “inverted pendulum” environment. We describe the details
of these settings below.

Parametrized random walks. We consider a one-dimensional random walk over a finite state
space X = {1, 2, . . . , n} with biased transitions. A transition from state x moves to x + 1 with
probability θ ∈ [0, 1] and x − 1 with probability 1 − θ. States 1 and n are “sticky walls”: the
process remains there with probability 0.9 or moves to the neighboring state with probability 0.1.

35

Experiment η0 a β b γ
Figure 1 40 0 0.2 1 0.99
Figure 3 20 0 0.5 1 0.99
Figure 2a 0.1 0.001 0.5 8 0.95
Figure 2b 0.1 0.05 0.2 16 0.95

Table 1: Table summarizing our hyperparameter choices for each experiment. Recall that the learning
rates follow the decaying scheme ηk = η0√

1+ak
, and the minibatch size is denoted by b.

Additionally, we define a reward function on the state space, with values r(1) = 1, r(n) = −1, and
r(x) = 0 for all x ∈ 2, . . . , n− 1. The initial state distribution is a Dirac measure on x = 1. To
produce the plot shown in Figure 2a, we generate a low-dimensional chain MX with bias θ = 0.5
following this setting. Then, we produce a set of chains MY ∈ B, each of them with a different bias
parameter. In addition, all MY are augmented with an additional irrelevant noise variable, producing
B observations per each latent state in X . Formally, MY is a Markov chain on the state space Y
equal to X ×{1, 2, . . . , B}. The cost between x ∈ X and y ∈ Y is given by c(x, y) = |r(x)− r(y)|,
reflecting the absolute difference in rewards between the states.

Inverted pendulum. We begin by training a near-optimal policy using DDPG, a widely known Deep
RL algorithm, in the standard Pendulum-v1 environment, which is then used to induce a Markov
chain. One could use any policy, but using a near-optimal policy produces richer dynamics (e.g., using
a random policy in the Pendulum-v1 environment reduces the effective state space to the surroundings
of the initial state). Once a policy is fixed, we discretized each state variable of the environment into
n bins. Since the Pendulum-v1 environment has 2 variables (angle θ and angular velocity w), the
resulting state space has n2 states. In our experiments, we have chosen n = 7, which resulted in a
total of 49 states. Note that due to the discretization, the resulting stochastic process is no longer
a Markov chain, as the states are no longer sufficient to predict the distribution of the next state.
Nevertheless, the conducted experiments follow the same principle as the aforementioned random
walks: We will compare the (approximate) Markov chain MX of discretized observations with a set
of parametrized models MY . The parameter governing the dynamics the acceleration constant g,
capturing the effect of gravity. We set the default value g = 9.8 in MX , and choose values in [0.4, 20]
in the model set. The cost function is given by c(x, y) = |r(x)− r(y)|, where r(x) is the average
reward in bin x (computed from all samples that fell into bin x along a long simulated trajectory).

36

	Introduction
	Preliminaries
	Bisimulation metrics from sample streams
	A new LP formulation of bisimulation metrics
	A stochastic primal-dual method

	Analysis
	Experiments
	Discussion
	Equivalence of the LP formulation and the bisimulation metric
	Further details about the algorithm
	Online Stochastic Mirror Descent
	Primal updates
	Dual updates
	Sampling from X and Y

	Analysis
	Proof of Lemma 1
	Rounded coupling and rounding error
	Regret bounds of the primal and dual sequence
	Regret of the -players
	Regret of the V -player
	Regret of the -player
	Regret of the -players

	Proof of Theorem 1

	Online learning: The proof of Lemma 4
	Technical Lemmas
	Additional details on experiments
	Similarity metrics between parametric Markov chains
	Practical implementation details
	Details about the environments

