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Abstract

The information processing in the brain and embodied agents form a sensory-action
loop to interact with the world. An important step in the loop is motion planning
which selects motor actions based on the current world state and task need. In
goal-directed navigation, the brain chooses and generates motor actions to bring
the current state into the goal state. It is unclear about the neural circuit mechanism
of motor action selection, nor its underlying theory. The present study formulates
the motion planning as a Lie group operator search problem, and uses the 1D
rotation group as an example to provide insight into general operator search in
neural circuits. We found the abstract group operator search can be implemented
by a two-layer feedforward circuit utilizing circuit motifs of connection phase shift,
nonlinear activation function, and pooling, similar to Drosophila’s goal-directed
navigation neural circuits. And the computational complexity of the feedforward
circuit can be even lower than common signal processing algorithms in certain
conditions. We also provide geometric interpretations of circuit computation in
the group representation space. The feedforward motion planning circuit is further
combined with sensory and motor circuit modules into a full circuit of the sensory-
action loop implementing goal-directed navigation. Our work for the first time
links the abstract operator search with biological neural circuits.

1 Introduction

The information processing in the brain forms a sensory-action loop to interact with the external world
(Fig. 1A) [1–3]. The sensory-action loop consists of three modules: the sensory neural circuit module
forms a neural representation of the world state, the motor circuit module produces motor actions to
change the world states, and in between there is an essential sensorimotor transformation module that
plans motor actions based on the sensory input and tasks goals [4, 5]. For example, in goal-directed
navigation tasks, the sensorimotor transformation module plans a sequence of motor actions to bring
the current sensory state towards a goal state. Extensive neuroscience studies have investigated the
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Figure 1: (A) The sensory-action loop. Sensorimotor transformation plans motion actions based on
the world state and task goals. (B) The equivariant map of the sensory neurons’ responses. (C) A
concrete example of 1D rotation group acting on periodic state s that can be regarded as the heading
direction of a fly. The sensory neurons form a neuronal population code u(x|s) uniformly covering
the space of s (Eq. 1). (D) Finding a desired operator can be realized by group convolution, i.e.,
finding the peak location of cross-correlation function over the group manifold.

neural circuit mechanism of motion planning [4–9], however, it remains far from clear as well as the
underlying computational theory. Motion planning is also an essential computation for embodied
agents in engineering research, including, e.g., robotic control, reinforcement learning, and machine
learning [10–13], etc. Studying the motion planning neural circuits and their computational theory
will help us understand the brain and can provide brain-inspired circuit models for embodied agents.

To provide theoretical insight into motion planning, the present study defines the sensory-action loop
using the (Lie) group theory. Denote by s as a continuous world state, and u(s) ≡ u(x|s) the evoked
responses of a population of sensory neurons with x as the neuron index. Suppose the motor system
generates the same kind of actions from a Lie Group G (e.g., translation or rotation) to transform
the world state s. The effect of a motor action g ∈ G to the world state s and updated sensory
representation u(s) can be denoted by (Fig. 1A; ◦ denotes the group action in below)[14],

u(s′) = u
(
Rg ◦ s

)
= R̂g ◦ u(s), g ∈ G. (1)

Rg is the group operator (motor action) changing the world state s (Fig. 1A, green), whose effect on
updated sensory responses u(s′) can be summarized as a neural operator R̂g directly acting on the
original response u(s) (Fig. 1A, blue) that can be regarded as the motor-to-sensory neural feedback
in the brain [15]. To represent all world states s under all group transformations, u(s) must satisfy Eq.
(1) for all g ∈ G, and is called equivariance with the group G (group homomorphism) (Fig. 1B). In
the Lie group framework (Eq. 1), motion planning in goal-directed navigation can be formulated as
finding an operator R̂g to bring the sensory response of the current state u(s) into a goal state u(h),

Find R̂g; subject to R̂g ◦ u(s) = u(h), g ∈ G. (2)

An intuitive way to find R̂g is exhaustive search in the group space: apply every operator to u(s) and
select the one transforming u(s) closest to the goal response u(h) (Table S1, Supplementary Info.
(SI)), corresponding to find the peak location in the group convolution (Fig. 1D, bottom) [16, 17],

g∗ = argmax
g

L(g); where L(g) = [u(h) ⋆ u(s)](g) =
〈
u(h), R̂g ◦ u(s)

〉
, (3)

then the optimal group operator is R̂g∗ . The ⋆ denotes the group g convolution, and
〈
u(h), R̂g ◦

u(s)
〉
=

∫
u(x|h)u(x|Rg ◦ s)dx is the inner product. In particular, when s is a 1D variable and R̂g

is a 1D translation operator, the group convolution L(g) (Eq. 3) simplifies into the cross-correlation
function that is extensively used in signal processing [18, 19].

The present study investigates how brain’s neural circuits search group operators R̂g (action) in goal-
directed navigation (Eq. 2). We use the 1D rotation group as a working example to provide insight into
the neural circuit mechanism of general operator search. Although finding 1D rotation operators is
mathematically simple and can be realized by available signal processing algorithms, its neural circuit
implementation has never been explored. We theoretically derive a two-layer nonlinear feedforward
circuit for 1D rotation operator search, which is composed of circuit motifs of connection phase
shift, nonlinear activation function, and pooling, and the derived circuit is similar to Drosophila’s
goal-directed navigation neural circuits [20–23]. We link every neural circuit computation with
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operations in operator search, and provide geometric interpretations of circuit computation in the
group representation space. Moreover, the computational complexity of the derived feedforward
circuit for operator search can be even lower than the standard algorithm based on the fast Fourier
transform in signal processing in certain conditions. We further assemble the derived feedforward
circuit with sensory and motor circuits to form a full neural circuit of the whole sensory-action loop.

Significance. The present study is one of the first studies formulating motion planning as the
group operator search problem, and deriving a biologically plausible neural circuit implementation
with rigorous mathematical analysis. The group operator search formulation of motion planning
can provide a normative approach to generalize existing motion planning algorithms into different
transformations. Moreover, in terms of group equivariant machine learning, the theory and the
sensorimotor transformation circuit model developed in the present study are complementary to many
existing equivariant networks that correspond to the sensory system (e.g., [17, 24–27]).

2 1D rotation neural group operator search

We use the 1D rotation group U(1) as an example to provide insight into the general principle of
group operator search in neural circuits. The U(1) manifold is a unit circle on the complex plane (Fig.
2A), and can be parameterized by the angle θ (corresponding to g in a general Lie group, Eq. 1),

U(1) = {exp(iθ), θ ∈ [−π, π)}, i =
√
−1. (4)

A group element R(θ) ∈ U(1) rotates a 1D stimulus direction s ∈ [−π, π), or its complex represen-
tation eis, by θ, i.e., s into s+ θ (mod 2π), and is denoted as R(θ) ◦ s ≜ eiθeis = ei(s+θ). Based on
Eq. (1), a rotation-equivariant sensory response u(s) should satisfy (suppress “mod 2π” for brevity),

u[R(θ) ◦ s] = u(s+ θ) = R̂(θ) ◦ u(s). (5)

R̂(θ) is the neural operator rotating the sensory representation u(s). Since the rotation operator
changes s in an additive way, i.e, u(x|s) 7→ u(x|s + θ), it can be checked the equivariant sensory
response satisfies u(x|s) = u(x− s) ≡ u(s) [28], where the neuron index x (also called preferred
direction) additively interacts with s, implying the neuronal response only depends on the difference
x− s (Fig. 1D). The rotation-equivariant neural responses u(x− s) have been widely used in neural
coding studies [29–31], and are usually called homogeneous neural codes. To make our theory
general, we leave the concrete profile of u(s) open and will see how the group structure constrains it.

In the case of 1D rotation, the motion planning in goal-directed navigation task is finding a rotation
operator R̂(θ) to rotate the sensory response u(s) into the goal direction, u(h). Due to the simplicity
of U(1) (Eq. 5), the desired rotation operator is R̂(θ∗ = h− s), in that

R̂(h− s) ◦ u(x− s) = u[x− (s+ h− s)] = u(x− h), (6)

whose parameter is the angular difference θ∗ = h− s. Although computing the angular difference is
simple, it is non-trivial to search neural operators R̂(θ) in neural circuits. This is because R̂(θ∗) is an
abstract math object rather than the numerical value θ∗, even if it is indexed by θ∗. This distinction is
reflected by the fact that although the operator’s parameter θ∗ = h− s is arithmetic subtraction, the
neural operator R̂(θ) by no means of arithmetic subtraction between neural responses u(h) and u(s).

2.1 The structure and representation of 1D neural rotation operators

Searching abstract neural operators R̂(θ) first requires neural circuits to represent them. Intuitively,
the representation means a one-to-one mapping between abstract operators with numerical values (e.g.,
neuronal activity), and then searching abstract operators can be converted into common numerical
optimizations and further mapped to neural dynamics. Hence, we study the structure of the neural
operator R̂(θ) to reveal its neural representation. Consider an infinitesimal rotation R̂(δθ) (δθ → 0),
whose effect on the sensory response u(x− s) is (using first-order Taylor expansion),

R̂(δθ) ◦ u(x− s) = u(x− δθ − s) ≈ u(x− s) + δθ(−∂x)u(x− s) = (1 + δθ · Ĵ)u(x− s). (7)

Ĵ ≡ −∂x = −∂/∂x is the 1D rotation generator characterizing the tangent space of infinitesimal
rotations, and can be used as the basis of Lie algebra. By using the infinitesimal rotation, the
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Figure 2: (A) The 1D rotation group manifold. (B) The eigenvalue spectrum of the 1D rotation group
operators. (C-D) The representation of neural responses (C) and desired rotation operator (D) in the
group representation space spanned by operators’ eigenfunctions. (E) Two mathematically equivalent
processes of rotating sensory responses into the goal direction. (F) Sequential motion planning.

differential and exponential form of a rotation operator is (see SI. Sec. 1.1),

d

dθ
R̂(θ) = Ĵ ◦ R̂(θ) ⇔ R̂(θ) = exp(θĴ), (8)

The neural rotation operator R̂(θ) is commutative, meaning the composition of two rotations is the
same regardless of their order, i.e., R̂(θ1)R̂(θ2) = R̂(θ2)R̂(θ1). Commutative group operators share
a common set of eigenfunctions that can be used to represent group operators. It can be checked
{fω(x) = eiωx/

√
2π, ω ∈ Z} is the normalized eigenfunction set of Ĵ ,

Ĵ ◦ fω = −∂xe
iωx/

√
2π = (−iω) · eiωx/

√
2π = ρω(Ĵ) · fω, (9)

with each fω having eigenvalue ρω(Ĵ) ≜ −iω. The eigenvalue ρω(Ĵ) can be regarded as the
representation of Ĵ based on fω . Hereafter, we call the space spanned by the eigenfunctions {fω} as
the representation space. It is worth noting that {fω} are Fourier bases, which are widely used in
frequency analysis in signal processing to extract each frequency component [18, 19]. In contrast,
the current study uses Fourier bases to represent the generator Ĵ and operator R̂(θ).

Since rotation operators can be composed by the generator Ĵ via the exponential map (Eq. 8), the
neural operator’s representation based on the eigenfunction fω is derived as (details at SI. Sec. 1.2),

R̂(θ) ◦ fω = e−iωθ · fω ≜ ρω(θ) · fω, (10)

whose eigenvalue e−iωθ ≜ ρω(θ) is regarded as the representation of rotation operator R̂(θ).
Comparing Eqs. (9 and 10), we see the exponential map from the generator to the operator, i.e.,
R̂(θ) = exp(θĴ), also exists in the representation space, i.e., ρω(θ) = exp(−iωθ) = exp[θ · ρω(Ĵ)].
The closed-form formula of ρ(θ) is the inner product between the rotated and the original eigenfunc-
tions (multiplying both sides of Eq. (10) by f†

ω (†: conjugate), and integrating over x),

ρω(θ) =
〈
R̂(θ) ◦ fω, fω

〉
=

∫ π

−π

[
R̂(θ) ◦ fω

]
f†
ωdx = e−iωθ. (11)

There is an one-to-one mapping between each operator R̂(θ) and its representation ρω(θ). The
advantage of using eigenfunctions to represent abstract operators R̂(θ) is searching abstract operators
(Eq. 3) can be converted into usual numerical optimization in the representation space.

2.2 Rotation operator search in the representation space

Despite the ansatz of the desired operator (Eq. 6), we still need an algorithm explicitly outputting the
operator based on neuronal responses. To derive the numerical computation in the representation
space, we decompose neural responses u(s) and u(h) by using operators’ eigenfunctions fω ,

u(s) =
∑

ω⟨u(s), fω⟩ · fω =
∑

ω U(ω|s)fω ≜ F−1[U(ω|s)], (12)

corresponding to the inverse Fourier transform. Meanwhile the representation U(ω|s) ≡ U(s) (ω is
suppressed unless confusion), called Fourier coefficient, is calculated via Fourier transform,

U(s) = ⟨u(s), fω⟩ =
∫ π

−π
u(s)f†

ωdx ≜ F [u(s)], (13)
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Table 1: Computational complexity. N is the neuron number, i.e., the dimension of u(s).
Group convolution Representation space Feedforward circuit

(Eq. 3, Table S1) via FFT (Eq. 15, Table S2) (sequential motions, Fig. 2F, Table S3)
O(N2) O(N logN) O(N log(|h− s|))

Since u(s) = R̂(s) ◦ u(0), we have U(s) = ρω(s)U(0) = e−iωsU(0), with U(0) the representation
of u(s = 0). Similarly, the representation of the goal neurons’ response u(h) is U(h) = ρω(h)U(0).
Referring both U(s) and U(h) by U(0), their representations are ρω(s) and ρω(h) respectively, and
are geometrically visualized as two vectors of unit length with angle s and h respectively (Fig. 2C).

With sensory and goal neuronal responses’ representations (Eq. 12), the objective function of abstract
rotation operators, L(θ) = ⟨R̂(θ) ◦ u(s), u(h)⟩ (Eq. 3), simplifies into a numerical function as the
inner product of representations of neuronal responses and operators (see details in SI. Sec. 1.2),

L(θ) =
∑

ω

[
U(ω|s)ρω(θ)

]
U(ω|h)† ≤

∑
ω ∥U(ω|s)ρω(θ)∥∥U(ω|h)∥, (14)

where the Cauchy-Schwartz inequality is used and ∥a∥ =
√
aa†. The Eq. (14) is maximized only if

U(ω|s)ρω(θ) = U(ω|h), implying the representation of the required rotation operator is (Fig. 2D),

ρω(θ
∗) = U(h)/U(s) = ρω(h)/ρω(s) = e−iω(h−s) ⇔ θ∗ = argmax

θ
L(θ) = h− s. (15)

In the representation space, the neural operator is a numerical ratio with a closed-form solution,
which provides an algorithm to find the operator rather than checking the ansatz (Eq. 6). Moreover,
the computational complexity of finding operators in the representation space is much lower than the
group convolution (Table 1; SI. Sec. 2): the complexity via the representation space is O(N logN)
with N the neuron number, mainly coming from Fourier transform when using fast Fourier transform
(FFT) (Eq. 13) [18]. In contrast, the complexity of the group convolution (Eq. 3) is O(N2). Once
ρω(θ

∗) is found (Eq. 15), it can be multiplied with U(s) followed by inverse Fourier transform to
rotate the sensory response into the goal direction u(h), i.e., F−1[U(s)ρω(θ

∗)] = F−1[U(h)] = u(h)
(Fig. 2E, dashed lines). Nevertheless, this procedure (Fig. 2E, dashed lines) is physically different
from actual motor actions, which corresponds to firstly mapping ρω(θ

∗) back to the physical operator
R̂(θ∗) and acting on u(s) directly (Fig. 2E, solid line). Hence we explore how the neural circuit finds
the operator R̂(θ∗) and use it to physically rotate sensory response u(s) (Fig. 2, solid line).

3 Towards a neural circuit of motion planning

3.1 Sequential motion planning strategy

In reality, the motor system (muscles) has power constraints and cannot generate actions with too
large amplitude, implying it might not rotate the stimulus direction abruptly within an infinitesimal
time period. Rather, the brain decomposes a strategic, complex motion action into a continuous
sequence of small actions [1, 4], forming a time-continuous process (Fig. 2F),

R̂(θ∗) ◦ u(s0) =
[
· · · R̂(δθt+1)R̂(δθt) · · · R̂(δθ0)

]
◦ u(s0) =

[
· · · R̂(δθt+1)

]
◦ u(st), (16)

where s0 = s is the initial stimulus direction, and st = s0 +
∑t

τ=0 δθτ is the direction after applying
rotation sequence with angles δθ0 to δθt. The sequential motion planning imposes a sensory-action
loop: after the motor system generates a small rotation R̂(δθt) at time t, the sensory response updates
from u(st) to u(st+1), followed by another rotation R̂(δθt+1), which repeats over time until the
stimulus direction s is rotated to the goal h. Differentiating Eq. (16) over t, utilizing the differential
form of operators (Eq. 8), the dynamics of the sensory responses u(st) in the sensory-action loop is,

d

dt
u(st) =

d

dt
R̂(θt) ◦ u(s0) =

dR̂(θt)

dθt

dθt
dt

◦ u(s0) = vtĴR̂(θt) ◦ u(s0) = vtĴ ◦ u(st), (17)

We see the rotation dynamics is determined by the rotation speed vt = dθt/dt. There are multiple
strategies for generating vt sequence and we consider a strategy performing gradient ascent along
the objective function (Eq. 3), i.e., the vt at time t is proportional to the gradient of rotation angle θt,

vt = λ
dL(θt)

dθt
= λ

d
〈
R̂(θt) ◦ u(s0), u(h)

〉
dθt

= λ
∑

ω ∥U(ω|s)∥2ω sin[ω(h− st)], (18)

with λ determining the step size. The rotation speed is a sine function of the direction difference
h− st and representing rotation group parameter (comparing Eqs. 18 and 15, Fig. 3D).
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Figure 3: (A) The derived feedforward motion planning circuit, composed of circuit motifs of con-
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rv± conveys the rotation speed vt. (B) Drosophila’s goal-directed navigation circuit (adapted and
modified from [21]). Neurons are arranged by their preferred direction x. For illustration, only four
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rotate the ρω(θ̄t) by ∓∆θ. The firing rate difference of two output neurons rv± is regarded as the
length difference between horizontal green and pink arrows, which is a sine function with θ̄t = h−st,
the distance to the goal direction h (D).

3.2 A feedforward circuit for motion planning

The closed-form solution of vt in sequential motion planning (Eq. 18) and the optimal operator (Eq.
15) imply vt can be computed by a feedforward circuit in a single propagation of neural inputs, which
would be faster and simpler than a recurrent circuit. We explore how a generic feedforward circuit
computes vt (Eq. 18) via receiving sensory response u(s) and goal response u(h) [29],

rv(x) = F
[ ∫

ws(x, x
′)u(x′ − s)dx′ +

∫
wh(x, x

′)u(x′ − h)dx′], (19)

where F (·) is a nonlinear increasing activation function. ws(x, x
′) and wh(x, x

′) are feedforward
weights from sensory neuron u(x− s) and goal neuron u(x− h). Two issues are to be resolved for
vt computation in feedforward circuits. One is how the feedforward circuit as a nonlinear function of
summed neural inputs (Eq. 19) computes L(θt) as an inner product of neural inputs u(s) and u(h)
(Eq. 18). Another is computing the derivative dL/dθt in the feedforward circuit.

We propose the feedforward circuit approximates the derivative dL(θt)/dθt as a difference form,

vt ≈ λ
L(θt +∆θ)− L(θt −∆θ)

2∆θ
=

λ

2∆θ

[
⟨u(s+), u(h)⟩ − ⟨u(s−), u(h)⟩

]
, (20)

where s± = (s0 + θt)±∆θ = st ±∆θ. To implement the inner product (Eq. 18) in the feedforward
circuit (Eq. 19), we convert the inner product of two neural inputs into,

⟨u(s±), u(h)⟩ =
(
∥u(s±) + u(h)∥2 − ∥u(s±)∥2 − ∥u(h)∥2

)
/2. (21)

∥u(s±)∥2 =
∫
u(x− s±)

2dx where the square function is similar to feedforward circuit’s nonlinear
output (Eq. 19). By using the form in Eq. (21), the two inner products’ difference in Eq. (20) is,

⟨u(s+), u(h)⟩ − ⟨u(s−), u(h)⟩ =
(
∥u(s+) + u(h)∥2 − ∥u(s−) + u(h)∥2

)
/2, (22)

where we used ∥u(s±)∥2 = ∥u(h)∥2, i.e., the norm of neural responses is irrelevant with represented
directions. Eq. (22) suggests computing L(θt +∆θ)− L(θt −∆θ) for vt (Eq. 28) can be achieved
by a two-layer feedforward circuit with each layer containing two neuronal populations (Fig. 3A).

First layer : rθ±(x) = [u(x− s±) + u(x− h)]2,

Second layer : rv± =
∫
rθ±(x)dx = ∥u(s±) + u(h)∥2.

(23)

In the 1st layer, each neuronal population rθ±(x) computes the square of the sum of sensory and
goal inputs, followed by two neurons rv± at the 2nd layer pooling responses rθ±(x) at the 1st layer.
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Receiving rotated sensory input u(s±) by ±∆θ can be realized by feedforward weights with shifted
connection phase (Fig. 3A, rθ± receives connections from u(s) and u(h) with different phases),

wθ±,s(x, x
′) = δ(x− x′ ∓∆θ), (24)

where wθ±,s(x, x
′) is the weight from sensory neuron u(x′ − s) to rθ±(x). Eventually, the difference

of two neurons at the 2nd layer is proportional to the rotation speed vt (combine Eqs. 20 and 22)

(rv+ − rv−) = 2 [⟨u(s+), u(h)⟩ − ⟨u(s−), u(h)⟩] ∝ vt. (25)

Then each rv± can drive a corresponding effector (e.g., muscle) that generates actual motor actions to
rotate the heading direction clockwise or counter-clockwise.

General nonlinear activation functions. The square function for the first layer neurons rθ±(x) (Eq.
23) doesn’t necessarily mean their activation function must be a square function, otherwise our theory
and circuit is limited. Instead, the derived feedforward circuit works well with a general nonlinear
activation function F (u) monotonically increasing with u (Eq. 19). To see the mechanism of general
nonlinear activation functions, we expand it at 0 to the second order,

F (u) ≈ F (0) + F ′(0)u+ F ′′(0)u2/2 ≜ F0 + F1 · u+ F2 · u2. (26)

Then the neuronal responses rθ±(xv) can be approximated as,

rθ±(x) ≈ F0 + F1 · [u(x− s±) + u(x− h)] + F2 · [u(x− s±)
2 + u(x− h)2],

+ 2F2 · u(x− s±)u(x− h),
(27)

Finally, the difference of neurons at the 2nd layer is still proportional to the rotation speed vt,

rv+ − rv− =
∫
rθ+(x)dx−

∫
rθ−(x)dx = 2F2 · [⟨u(s+), u(h)⟩ − ⟨u(s−), u(h)⟩] ∝ vt. (28)

Again, we used the fact that the summed neuronal activities do not depend on the represented
direction, i.e.,

∫
u(x− s)dx =

∫
u(x)dx, and

∫
u(x− s)2dx =

∫
u(x)2dx. Notably, the 1st layer

neuron rθ± must have a nonlinear activation function to enable the feedforward circuit to output the
rotation speed vt, otherwise (setting F2 = 0 in Eq. 28), the neurons at the 2nd layer, rv± will fully
cancel. Overall, the architecture of the derived feedforward circuit utilizes the connection phase shift,
nonlinear activation function, and pooling of neuronal activities to compute the rotation speed vt.

Comparison with Drosophila’s circuit. The derived feedforward circuit is similar to the recently
identified Drosophila’s goal-directed navigation circuit (Fig. 3A-B) [20–22], which also has a two-
layer feedforward architecture receiving the sensory input u(s) (E-PG neurons) and the goal input
u(h) (FC neurons) to compute the rotation speed vt. At the 1st layer in Drosophila’s circuit, PFL3
left (right) neuronal population (Fig. 3B, red (green) neurons) combines the shifted sensory input
u(s) with angle ∓∆θ respectively with the goal input u(h), and output via a nonlinear activation
function, which are similar to rθ± neurons in our feedforward circuit (Fig. 3A). Then the DN left and
right neurons at the 2nd layer (equivalent to rv± neurons) pool all activities of PFL3 right and left
neurons respectively, and their response difference determines the rotation speed vt [20–22].

Neural circuit computational complexity. Considering each rθ±(x) neuron only receives one
feedforward connection from sensory neurons u(s), i.e., wθ±,s is a delta function (Eq. 24), which is
the case in Drosophila’s circuit. Then in each time step during sequential rotations, the feedforward
circuit computes O(N) addition and O(N) multiplication (suppose a square activation function).
Given a fixed goal direction h, the sequential rotation will take O(log |h− s|) time steps to rotate
from the original direction s into h [19]. Hence the total complexity of feedforward circuit during the
whole sequential rotations is O(N log |h − s|). When the stimulus direction s is close to the goal
direction h enough, i.e., |h− s| < N , the computational complexity of the feedforward circuit is even
lower than the widely used fast Fourier transform (Eq. 13) with complexity O(N logN) (Table 1).

3.3 The geometry of feedforward circuit computation

Although the feedforward circuit doesn’t explicitly use the operator’s representation (Eq. 15, Fig.
2E), the representation space (Eq. 9) provides clear geometrical interpretation of the feedforward
circuit computation. Substituting the representation of sensory response u(st) at time t and goal
response u(h) (Eq. 12) into rotation speed neurons rv± (Eq. 27),

rv± = 2F2 ·
∑

ω ∥U(ω|0)∥2
[
ρω(θ̄t ∓∆θ) + ρω(θ̄t ∓∆θ)†

]
+ const, (θ̄t = h− st), (29)
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Figure 4: (A) The full circuit of the sensory-action loop. The diagram is simplified from Drosophila’s
goal-directed navigation circuit to illustrate connections, without influencing the circuit function.
Only neurons on the right side are labeled and names in the parenthesis denoting Drosophila’s
neurons. (B) Top: population response of sensory neurons u(s) in the full circuit. Bottom: The
decoded stimulus direction from u(s) moves towards the goal direction. (C) Right and left DN neural
activities drive the rotation in (B). (D) Difference between right and left DN linearly matches the
moving velocity of sensory representation. (E) Sensory response tracks a moving goal direction.

const is a constant irrelevant with angles (from the first two terms at Eq. (27), RHS). Geometrically,
rv± corresponds to rotate the optimal operator’s representation ρω(θ̄t) by ∓∆θ, and sum the rotated
operator with its complex conjugate (mirrored by the real axis, Fig. 3B), and hence it resides on the
real axis. The difference between rv+ and rv− , exhibited by the length difference of pink and green
arrows in Fig. 3C, is a sine function depending on the optimal operator’s angle θ̄t (Fig. 3D).

4 A full circuit model of the sensory-action loop

We further assemble the derived feedforward motion planning circuit (Fig. 3A) with concrete sensory
and motor circuit modules to construct a full circuit of the sensory-action loop (Fig. 4A) implementing
sequential rotations (Eq. 17). For simplicity, the full circuit model only includes the internal motor-
to-sensory neural feedback (Fig. 1A, blue line) rather than the external loop (Fig. 1A, green lines),
with a mildly implicit assumption that the actual sensory feedback from the physical world is the
same as the internal motor-to-sensory feedback. To be realistic, all neurons in the full circuit have
temporal dynamics, even if our theoretical derivations consider memory-less neurons (Eq. 19). All
connection weights have Gaussian profiles spreading over the neuronal space x (SI.Eq. S12), with
different peak weights, connection widths and phases. Due to the page limit, we briefly introduce key
features of the full circuit here, and its detailed dynamics can be found at SI.Sec. 3.

Sensory and motor circuit modules. The sensory and motor circuit modules are based on a recent
theoretical study that analytically linked Drosophila’s sensory and motor circuit model in its internal
compass circuit with the 1D translation/rotation group [28]. The sensory circuit module u(s) is
modeled by a ring attractor network that has been experimentally verified in Drosophila’s brain (Fig.
4A, blue ring) [32–34]. The ring attractor network uses its rotation-invariant recurrent connections
to generate rotation-equivariant sensory representation u(s) [28]. The motor circuit module has
two neuronal populations rs±(x) (Fig. 4A, P-EN), whose feedback connections to sensory neurons
u(s) are shifted by ∓∆x towards opposite directions (comparing connections from red and green
PB neurons to the ring attractor, Fig. 4A). It was found that these shifted connections give rise to
the rotation generator Ĵ and the firing rate difference

∑
x[rs+(x)− rs−(x)] determines the rotation

speed vt of sensory representation u(s). Hence we call rs± as rotation generator neurons hereafter.

Assemble the full sensory-action circuit. The rotation group interpretation of sensory and motor
circuits [28] provides a clear interface to connect three circuit modules. Functionally, we use
feedforward circuit output neuron rv± to modulate the gain of rotation generator neuron rs± , i.e.,
multiplying each generator neuron rs+(x) or rs−(x) by feedforward circuit output neuron response
(scalar) rv+ or rv− respectively. The gain modulation of rotation generator neurons rs± by rotation
speed vt was indeed observed in experiments [35]. In addition, the feedforward circuit receives the
instantaneous sensory responses u(x− s) (Eq. 19) generated by the ring attractor network.

Theoretical analysis of the full circuit. We perform theoretical analysis of the full circuit dynamics
to verify whether it implements sequential rotations toward the goal direction (Eq. 17). We perform
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perturbative analysis of the whole circuit dynamics around its attractor states, analytically derive the
eigenvector corresponding to the stimulus direction s in the neural dynamics and find the eigenvector
of s has the largest eigenvalue suggesting the circuit dynamics is dominated by the movements along
the stimulus direction. Then throwing away the circuit dynamics along the subspace perpendicular to
the eigenvector of s, we find the sensory responses in the ring attractor embedded into the full circuit
are approximately reduced to a form similar to the sequential rotation dynamics (Eq. 17),

d

dt
u(x− st) ∝ ws±,s(rv+ − rv−) ·

[
(ws,s±∆x)Ĵ ◦ u(x− st)

]
, (30)

where the difference of motion planning circuit’s output neurons rv+ − rv− determines the rotation
speed vt (compared to Eq. 17). In Eq. (30), ws,s± and ∆x denote respectively the peak weight and
the weight shift (absolute value) of the connection from rotation generator neuron rs± to the sensory
neuron u(s) in ring attractor (Fig. 4A), and similarly for ws±,s. Further analysis reveals,

(rv+ − rv−) ∝ wv,θw
2
θ,s ·

∑
ω ∥R(ω|0)∥2 sin (ω∆θ) sin[(ω(h− s))], (31)

where wθ,s and wv,θ are the peak weights from sensory neuron u(s) to neurons rθ± , and the one
from rθ± to the output neuron rv± respectively. ∆θ is the weight phase shift for the weight from u(s)
to rθ± (Eq. (24)). R(ω|0) is the Fourier transformation of r(x) at s = 0. The derivation details can
be found in SI. Sec. 4.3.

We perform numerical simulations of the full sensory-action loop circuit. We fix all circuit parameters
and only change the goal direction h that determines goal neurons’ responses u(h). Fig. 4B shows
the represented stimulus direction s in the ring attractor’s population responses u(s) indeed moves
towards the goal direction h, which is driven by the activity difference between rv± neurons (Fig. 4C.
The full circuit model can also track a moving direction (Fig. 4D), although some delay exists due to
the temporal dynamics of neurons (see Discussion). Numerical simulation also confirms the rotation
speed of sensory responses is proportional to the response difference between rv± (DN neurons).

5 Conclusion and Discussion

Motion planning is important in sensorimotor transformation in the brain and embodied agents. The
present study formulates motion planning as a group operator search problem and investigates the
neural circuit mechanism of operator search goal-directed navigation. Using the 1D rotation group as
an example, we analytically derive searching 1D rotation operators can be realized by a two-layer
feedforward circuit with three circuit motifs of connection phase shift, nonlinear activation function,
and pooling, which is similar to the recently identified goal-directed navigation circuit in Drosophila’s
brain [20–22]. We further assemble the feedforward sensorimotor transformation circuit with sensory
and motor circuit modules into a full circuit of the sensory-action loop which successfully produces
sequential rotation dynamics in tracking goal direction (Fig. 4). Our study provides overarching
connections between Lie group operator search with a biologically plausible neural circuit model
comparable to Drosophila’s circuit. It gains our understanding of neural circuit computations from a
structured computation perspective, and also provides a biologically plausible neural network solution
for artificial intelligence research.

5.1 Comparison to other work

Although the derived feedforward circuit is similar to circuit models in recent neuroscience studies of
Drosophilas [20–22], there are several notable differences. First, recent circuit models required both
neural responses u(s) and u(h) to have a cosine-profile (pure frequency component at ω = 1, Eq. 13)
[20, 21]. Although the cosine profile is experimentally supported, our theory releases the requirement
of neural response profile, e.g., our sensory-action circuit has Gaussian profile neural responses
(Fig. 4A). The generalization may reduce the limitation when deploying the neural circuit model in
real applications. Second, goal-directed navigation circuit models in Drosophila’s research [20–22]
haven’t composed a full circuit of the sensory-action loop as in the present study. In addition, from
the group equivariant machine learning perspective, the group operator search theory and the motion
planning feedforward circuit in the current study correspond to the sensorimotor transformation stage,
which is complementary to many equivariant neural networks corresponding to the sensory system
(e.g., [17, 24–27]) when building embodied agents.

9



5.2 Extensions and limitations of the model

Extension to complicated scenarios. For the sake of concision and biological solidity, we only
demonstrated the 1D rotation case in the main text, but our modeling framework has the potential to
extend to more complicated scenarios. The 2D translation group is a sufficient example to explain
its generality. An important step in motion planning neural circuit is approximating the derivative
of the objective function over the transformation amount (Eq. 18) by the spatial difference in the
neural circuit (Eq. 20), i.e., the sensory representation is rotated to the positive and negative direction
(θt +∆θ and θt −∆θ in Eq. 20). This spatial difference strategy can also be used in the 2D case and
there are two equivalent circuit solutions. One is considering an allocentric representation with an x-y
coordinates, where the sensory representation will be shifted along ±x and ±y, forming 4 neuron
populations analog to PFL3 left and right neurons in our model, which was also considered in spatial
representation circuits [36]. Another strategy operates in an egocentric representation with a polar
coordinate, and the sensory representation will be shifted along the clockwise and counter-clockwise
directions, requiring 2 neuron populations This strategy is supported by a recent experiment ([37]). A
simulation result is shown in Fig. S1.

Non-uniform distribution of neurons. Our model considered neurons are uniformly distributed
in the attractor manifolds, a simplification widely used in continuous attractor networks [38–41].
Although the assumption holds in Drosophila’s brain, the representation is usually non-uniform in
other cases. For non-uniform distributions of neurons in the current circuit model (the x in Eq. S12 is
irregular), the same neural circuit dynamics (Eqs. S13-S15 in the SI.) can still approximately facilitate
motion planning and rotate heading representations. To realize exact computation in the non-uniform
case, the recurrent weights (below Eq.S12 in SI.) need to be fine-tuned numerically, by using a
technique similar to [42]. Overall, we think the non-uniform distribution does not alter the neural
circuit implementation substantially while it requires new theoretical insights to understand why the
system still functions effectively. Besides, the uniform distribution of neurons is only required by the
translation symmetry [28], while it can be non-uniform/imperfect in other group structures, e.g., the
scaling group would require a log coding [43].

False nulling problem. Our feedforward motion planning circuit outputs zero speed when the
heading and goal directions are anti-aligned, which is under debate in experiments (e.g., [20]
observed maximum speed around the anti-aligned direction while [44] observed the opposite). A
reasonable model should not have the ‘false nulling’ problem (settling at the opposite direction [20]),
and one potential circuit solution is introducing PFL2 neurons observed in Drosophila which fire
actively at the anti-aligned direction. That is, PFL2 neurons will speed up turning velocity near the
opposite direction and provide gain modulation to P-EN to E-PG feedback. Moreover, including
PFL2 will only change the λ in our theoretically defined objective function (Eq. 18).

Future work. From the neurobiology perspective, the direct gain modulation from rv± (DN neurons)
to rs± (P-EN neurons) in the full circuit model (Fig. 4A, Eq.S14) needs to be verified by future
experiments. It is likely to be the case in Drosophila’s brain because rs± neurons are gain modulated
by rotation speed [32–34]. From the machine learning point of view, as a proof of concept, we
only study the theory and corresponding circuit model for 1D rotation operator search, where the
group representation theory (Sec. 2.1 - 2.2) appears unnecessary because an ansatz of the optimal
operator can be obtained intuitively (Eq. 6). Nevertheless, the group representation theory and
the research protocol in the present study are necessary for searching complicated group operators
especially non-commutative groups, e.g., SO(3) and SE(2), where obtaining the solution of the
required operator is non-trivial and no longer intuitive (e.g., [13]). The group representation theory is
a normative method that guarantees to find such an operator and derive corresponding circuit models.
Extending the motion planning circuit to search more complicated group operators forms our future
research.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The SI. Sec. 5 has sufficient details about the network simulation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Codes have been included in supplementrary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This is not a study about learning, while the details of model simulation is
presented as SI. Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This is a theoretical study of Lie group theory and dynamical system theory
and doesn’t involve statistics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to SI. Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm our study conform the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical study for basic science research and will not have direct
societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theoretical study for basic science research and will not incur any
risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We adapt one figure from a recent experimental paper (Fig. 3B) and we state
where that figure is from.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The main result of this paper is its theoretical derivations. And the code of
simulating the model is uploaded.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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