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Abstract—Given a sampling measure for the wavelet trans-
form (resp. the short-time Fourier transform) with the wavelet
(resp. window) being chosen from the family of Laguerre (resp.
Hermite) functions, we provide quantitative upper bounds on
the radius of any ball that does not intersect the support of the
measure. The estimates depend on the condition number, i.e.,
the ratio of the sampling constants, but are independent of the
structure of the measure. Our proofs are completely elementary
and rely on explicit formulas for the respective transforms.

Index Terms—sampling measures, wavelet transform, short-
time Fourier transform, frames.

I. INTRODUCTION

This article draws inspiration from the paper ’How large
are the spectral gaps?’ by Iosevich and Pedersen [12], as
well as the recent work by Papageorgiou and van Velthoven
[19], who gave quantitative estimates for relative denseness
for exponential frames and coherent frames on groups of
polynomial growth, respectively. The main objective of this
paper is to obtain a similar result for the wavelet transform
using a specific family of orthogonal functions as wavelets.
In particular, we establish an upper bound on the radius of
any ball in wavelet phase space that does not intersect the
support of a sampling measure. Our proof follows a different
approach than [19] since the (ax + b)-group underlying the
wavelet transform exhibits exponential growth. In addition,
we discuss sampling measures for the short-time Fourier
transform (STFT) and provide a bound which, in principle,
could readily be obtained using the ideas of [19]. Given that
the proof strategy closely mirrors that of the wavelet transform
and that our elementary approach provides explicit constants,
we chose to include the statement in this article.

Let (X, ν) be a metric measure space and H be a closed
subspace of L2(X, ν). A measure µ on X is called a sampling
measure if there are constants A,B > 0 s.t.

A∥F∥2L2
ν
≤
∫
X

|F (z)|2dµ(z) ≤ B∥F∥2L2
ν
, F ∈ H.

As we already pointed out, we focus on the cases when H is
the range of the wavelet transform or of the STFT. A measure
µ is called (γ,R)-dense if µ(BR(z)) ≥ γ > 0 for every
z ∈ X , and relatively dense if there exist R > 0 and γ > 0
s.t. µ is (γ,R)-dense.

There are various qualitative and quantitative results relating
sampling measures and relative denseness. For one, it is well-
known that the support of a sampling measure for the wavelet
transform as well as the STFT is necessarily relatively dense,
see, e.g., [7], [14], [16], [18]. If a sampling measure for the

STFT is discrete, i.e., µ =
∑
λ∈Λ δλ with Λ ⊂ R2d discrete,

then the density theorem for Gabor frames provides a more
refined analysis assuring that the lower Beurling density of Λ
is greater or equal than one for every window function [11].
For the wavelet transform, however, no such general result
is known and all existing density statements either require a
particular structure of the sampling points and / or choice of the
wavelet function [5], [20], [22], [23]. See [15] for a discussion
of the difficulties that occur in this setting.

Previous quantitative results on relative denseness primarily
focused on estimates of the sampling constants A and B in
terms of R and γ. This approach was studied, e.g., in [4], [6],
[10], [13] for µ = χΩν (here χΩ denotes the characteristic
function of a measurable set Ω), or in [24] for a discrete
measure µ leading to explicit frame bounds. Here, we study
the converse problem of providing an upper bound on R in
terms of A and B given that µ is not (γ,R)-dense.

We prove our main estimates in Theorem 3 for a family of
orthogonal wavelets ψαn , n ∈ N0, α > 0, defined in Fourier
domain in terms of the generalized Laguerre polynomials (see
equation (4)). The ranges of the respective wavelet transforms
play important roles in various fields as they may be identified
with Bergman spaces of analytic functions on the upper half-
plane and the unit disk (n = 0), and with hyperbolic Landau
level spaces in quantum mechanics, see [1], [2], [6] for detailed
discussions of these connections. It seems that the statement
of Theorem 3 was previously unknown, even in the literature
on Bergman spaces. The only result, that we are aware of, that
exhibits a conceptual similarity, is [21, Lemma 4.1].

Our proofs follow the general strategy developed in [12]
and rely on explicit formulas of the wavelet transform and the
STFT. This approach allowed us to derive elementary bounds
on the quotient of, e.g., two wavelet transforms

z 7→Wψα
n
ψα0 (z)/Wψα

n
ψα0 (w

−1 · z), z, w ∈ C+, z ̸= w,

on certain regions in phase space which is then partitioned
accordingly.

II. SAMPLING MEASURES FOR THE WAVELET TRANSFORM

A. Basic Wavelet Theory

We use the standard notation H2(C+) for the Hardy space
of analytic functions in C+ equipped with the norm

∥f∥2H2 := sup
0<s<∞

∫ ∞

−∞
|f(x+ is)|2 dx <∞.



Let z = x+ is ∈ C+. The time-scale shift π(z) of a function
ψ ∈ H2(C+) is defined as

π(z)ψ(t) := TxDsψ(t) = s−
1
2ψ(s−1(t− x)).

One may identify C+ with the (ax+ b)-group via the multi-
plication

z ·w = x+sx′+ iss′, z = x+ is, w = x′+ is′ ∈ C+. (1)

Then the neutral element is i, and the inverse element of z is
z−1 = −x/s+ i/s. Throughout this paper ”·” will exclusively
be used to denote the group multiplication (1). The wavelet
transform of f ∈ H2(C+) with respect to a wavelet ψ is
defined as

Wψf(z) = ⟨f, π(z)ψ⟩ .

A wavelet ψ is called admissible if

0 <

∫
R+

∣∣ψ̂(ξ)∣∣2 dξ
ξ

=: Cψ <∞, (2)

where ψ̂ denotes the Fourier transform of ψ. For an admis-
sible wavelet ψ, the wavelet transform Wψ : H2(C+) →
L2(C+, s−2dz) is a constant multiple of an isometry, i.e.,∫

C+

|Wψf(z)|2 s−2dz = Cψ ∥f∥2H2 , (3)

where dz denotes the Lebesgue measure on C+. A family of
vectors {π(λ)ψ}λ∈Λ ⊂ H2(C+) is called a wavelet frame if
there exist constants A,B > 0 s.t. for every f ∈ H2(C+)

A∥f∥2H2 ≤
∑
λ∈Λ

|Wψf(λ)|2 ≤ B∥f∥2H2 .

A measure µ is called a sampling measure for the wavelet
transform Wψ if for every f ∈ H2(C+)

A∥f∥2H2 ≤
∫
C+

|Wψf(z)|2dµ(z) ≤ B∥f∥2H2 .

In this terminology, a wavelet frame {π(λ)ψ}λ∈Λ corresponds
to the sampling measure µ =

∑
λ∈Λ δλ, where δλ denotes the

Kronecker delta.

B. Pseudohyperbolic Metric and Möbius Transform
The pseudohyperbolic metric on C+ is given by

ρC+(z, w) :=

∣∣∣∣z − w

z − w

∣∣∣∣ , z, w ∈ C+,

and the pseudohyperbolic disk of radius R > 0 centered at
z ∈ C+ is denoted by DR(z) := {ω ∈ C+ : ρC+(z, w) < R}.
Note that ρC+ only takes values in the half open interval [0, 1)
and that ρC+(z, w) = ρC+(z−1 · w, i).

Let DR(z) ⊂ C denote the Euclidean disk of radius R > 0
centered at z ∈ C. We write for short DR := DR(0) and
D := D1. The Möbius transform T : D → C+,

T (u) := i
1 + u

1− u
, u ∈ D,

is bijective and maps the pseudohyperbolic distance in C+ to
the pseudohyperbolic distance in D, i.e., for u, v ∈ D

ρC+(T (u), T (v)) =

∣∣∣∣ v − u

1− uv

∣∣∣∣ =: ρD(u, v).

C. Quantitative Bounds for Gaps in C+\supp(µ)
We will establish our main result for wavelets chosen from

the orthonormal basis {ψαn}n∈N0 ⊂ H2(C+), α > 0, which is
defined in the Fourier domain via

ψ̂αn(t) :=

√
2α+2πn!

Γ(n+ α+ 1)
t
α
2 e−tLαn(2t), t > 0, (4)

where Lαn denotes the generalized Laguerre polynomial of
degree n, see, e.g., [17, Chapter 18]

Lαn(t) =

n∑
k=0

(−1)k

k!

(
n+ α

n− k

)
tk, t > 0.

We need an explicit formula for the inner products of time-
scale shifted versions of ψα0 and ψαn which can be found, e.g.,
in [6, Proposition 1].

Proposition 1: Let α > 0, and z = x + is as well as
w = x′ + is′ be in C+. For every n ∈ N0, one has

⟨π(w)ψαn ,π(z)ψα0 ⟩ = cαn

(
z − w

z − w

)n(
2
√
ss′

i(w − z)

)α+1

,

where cαn =
√
Γ(n+ α+ 1)/Γ(α+ 1)n! .

Upon applying the Möbius transform, a straightforward com-
putation shows that for u, v ∈ D∣∣⟨π(T (v))ψα0 , π(T (u))ψαn⟩∣∣

= cαn ρD(u, v)
n

(
(1− |u|2) (1− |v|2)

|1− uv|2

)α+1
2

.

In particular, ⟨π(T (v))ψα0 , π(T (u))ψαn
〉

is nonzero whenever
u ̸= v which implies that the following auxiliary function is
well-defined for u ̸= v

Hα
n (u, v) : =

∣∣∣∣∣
〈
π(T (0))ψα0 , π(T (u))ψ

α
n

〉〈
π(T (v))ψα0 , π(T (u))ψ

α
n

〉∣∣∣∣∣
2

=

(
ρD(0, u)

ρD(u, v)

)2n( |1− uv|2

1− |v|2

)α+1

=
|u|2n|1− uv|2(n+α+1)

|u− v|2n(1− |v|2)α+1
.

Note that this expression is rotationally invariant, i.e.,
Hα
n (ue

iφ, veiφ) = Hα
n (u, v) for any φ ∈ (0, 2π].

Lemma 2: Let v = |v| and u = |u|e−iφ with 0 < |v| <
R ≤ |u| < 1. If |φ| ≤ (1− |v|R), then

Hα
n (u, v) ≤ 2n+α+1 (1− |v|R)2n+α+1

(1− |v|/R)2n
.

Proof: First, we note that |1 − βeiφ|2 = 1 + β2 − 2β cosφ.
Therefore,

Hα
n (u, v) =

|u|2n
∣∣1− |uv|eiφ

∣∣2(n+α+1)∣∣|u|e−iφ − |v|
∣∣2n (1− |v|2)α+1

≤
∣∣1− |uv|eiφ

∣∣2(n+α+1)

(1− |v|/|u|)2n (1− |v|R)α+1



≤ (1 + |uv|2 − 2|uv| cosφ)n+α+1

(1− |v|/R)2n (1− |v|R)α+1
. (5)

Observe that 2(1 − cosφ) ≤ φ2 for every φ ∈ R. Using the
assumption on φ we hence deduce that

1 + |uv|2 − 2|uv| cosφ = (1− |uv|)2 + 2|uv|(1− cosφ)

≤ (1− |v|R)2 + φ2

≤ 2(1− |v|R)2.

Plugging this estimate into (5) shows

Hα
n (u, v) ≤

2n+α+1(1− |v|R)2(n+α+1)

(1− |v|/R)2n (1− |v|R)α+1

=
2n+α+1(1− |v|R)2n+α+1

(1− |v|/R)2n
,

which concludes the proof. □

With this auxiliary result in place, we are now ready to
prove our main result.

Theorem 3: Let n ∈ N0, α > 0, and µ be a sampling
measure for the wavelet transform with wavelet ψαn and
sampling constants A,B > 0.

If there exists z ∈ C+ s.t. µ(DR(z)) = 0, then

R ≤ 1−
(
Cn,α
π

A

B

)1/α

, (6)

where

Cn,α =

{
4−(α+1), n = 0,

6−(2n+α+1), n ∈ N.

Proof: We partition D\{0} into K circular sectors

Sk =
{
reiφ ∈ D\{0} :

π(2k − 1)

K
≤ φ <

π(2k + 1)

K

}
,

k = 0, ...,K−1, and pick K points vk = re2πik/K ∈ Sk with
r < R. The appropriate choice of K and r in terms of R will
be determined later. Moreover, we set Pk = T (Sk) and point
out that by a straightforward computation w ∈ (z ·Pk)\DR(z)
if and only if T−1(z−1 · w) ∈ Sk\DR. Therefore, if µ is a
sampling measure s.t. µ(DR(z)) = 0, then

A = A∥π(z)ψα0 ∥2H2

≤
∫
C+

∣∣⟨π(z)ψα0 , π(w)ψαn⟩|2dµ(w)
=

∫
C+

∣∣⟨ψα0 , π(z−1 · w)ψαn⟩|2dµ(w)

=

K∑
k=1

∫
z·Pk

∣∣∣∣ ⟨ψα0 , π(z−1 · w)ψαn⟩
⟨π(T (vk))ψα0 , π(z−1 · w)ψαn⟩

∣∣∣∣2 ×
×
∣∣⟨π(T (vk))ψα0 , π(z−1 · w)ψαn⟩

∣∣2dµ(w)
=

K∑
k=1

∫
z·Pk

Hα
n

(
T−1(z−1 · w), vk

)
×

×
∣∣⟨π(z · T (vk))ψα0 , π(w)ψαn⟩∣∣2dµ(w)

≤
K∑
k=1

sup
u∈Sk\DR

Hα
n (u, vk)×

×
∫
C+

∣∣⟨π(z · T (vk))ψα0 , π(w)ψαn⟩∣∣2dµ(w)
≤ KB sup

u∈S0\DR

Hα
n (u, v0),

where we used that
∥∥π(z)ψα0 ∥∥H2 = 1 and the rotational

invariance of Hα
n in the final step.

Let us choose r = Rκ for κ > 1, and K = ⌈π/(1− rR)⌉.
Any u = |u|eiφ ∈ S0\DR satisfies |u| ≥ R as well as |φ| ≤
π/K ≤ (1− rR). We may thus apply Lemma 2 to show that

A ≤
⌈

π

1−R1+κ

⌉
2n+α+1B

(1−R1+κ)2n+α+1

(1−Rκ−1)2n

≤ π 2n+α+2B
(1−R1+κ)2n+α

(1−Rκ−1)2n
.

This inequality simplifies to A ≤ π 2α+2B(1−R1+κ)α if
n = 0. Since the right hand side is continuous for κ ≥ −1,
we conclude that the inequality holds in the limit κ → 1.
Using 1 − R2 ≤ 2(1 − R) and solving for R thus shows
R ≤ 1−

(
A/(π4α+1B)

)1/α
.

For n ∈ N, we choose κ = 2 and note that 1 − R3 ≤
3(1 − R)which allows us to conclude that R ≤ 1 −(
A/(4π62n+αB)

)1/α
. □

Remark 4: (1). One could improve the constants in The-
orem 3 by optimizing the choice of r in our proof. However,
due to page limitations, we chose not to pursue this idea.

(2). If µ =
∑
λ∈Λ δλ for some discrete set Λ ⊂ C+, then µ

is a sampling measure if and only if {π(λ)ψαn}λ∈Λ is a wavelet
frame. Theorem 3 thus provides a bound on the maximal radius
of a pseudohyperbolic disk that does intersect Λ.

(3). Our approach is independent of the Hilbert space
structure and a slight adaptation would therefore also provide
bounds on the gaps of Lp-sampling measures where the Lpµ-
norm of Wψα

n
f is compared to the Lp-co-orbit space norm of

f . The resulting bound on R is then dependent on p. We refer
to [8] for an introduction to co-orbit theory.

III. BERGMAN SPACES

Let Aα(C+) be the space of holomorphic functions on the
upper half plane that satisfy

∥F∥2Aα
:=

∫
C+

|F (z)|2sαdz <∞.

A measure µ is called a sampling measure for Aα(C+) if

A∥F∥2Aα
≤
∫
C+

|F (z)|2sαdµ(z) ≤ B∥F∥2Aα

The Bergman transform Bα : H2(C+) → Aα(C+)

Bαf(z) = s−
α
2 −1Wψα+1

0
f(z)

is a constant multiple of an isometric isomorphism. This prop-
erty immediately yields the following corollary of Theorem 3.



Corollary 5: Let µ be a sampling measure for Aα(C+)
with constants A,B > 0. If µ(DR(z)) = 0 for some z ∈ C+,
then

R ≤ 1−
(

1

4α+1π

A

B

)1/α

, (7)

To the best of our knowledge, this result is not known even
for the special case that µ =

∑
λ∈Λ δλ is a discrete measure ,

i.e., if Λ is a set of stable sampling for Aα(C+).

IV. SAMPLING MEASURES FOR THE SHORT-TIME FOURIER
TRANSFORM

The short-time Fourier transform (STFT) of a function f ∈
L2(R) using a window g ∈ L2(R) is given by

Vgf(z) = ⟨f, π(z)g⟩, z ∈ C,

where π(z)g(t) = e2πiξtg(t− x), z = x+ iξ. The STFT has,
among other useful features, the covariance property

Vg(π(w)f)(z) = e−2πix′(ξ−ξ′)Vgf(z − w), (8)

w = x′ + iξ′, and satisfies Moyal’s formula∫
C
|Vgf(z)|2dz = ∥f∥22∥g∥22, f, g ∈ L2(R).

For a thorough introduction to time-frequency analysis we
refer to [9]. A measure µ is called a sampling measure for
the STFT if there exist A,B > 0 s.t. for any f ∈ L2(R)

A∥f∥22 ≤
∫
C
|Vgf(z)|2dµ(z) ≤ B∥f∥22.

If µ =
∑
λ∈Λ δλ (for Λ ⊂ C discrete) is a sampling measure,

then {π(λ)g}λ∈Λ forms a Gabor frame, i.e., for f ∈ L2(R)

A∥f∥22 ≤
∑
λ∈Λ

|⟨f, π(λ)g⟩|2 ≤ B∥f∥22.

If {π(λ)g}λ∈Λ is a Gabor frame and if |Vgg(z)|2 ≲ (1 +
|z|)−(2+σ), for some σ > 0, then Theorem 1.3 in Papageorgiou
and van Velthoven’s paper [19] established quantitative bounds
for the maximal radius of balls that do not intersect Λ. Their
proof can be readily adapted for windows with exponential
or Gaussian decay, as well as for general sampling measures
which would improve the upper bound on the radius in [19,
Theorem 1.3] from a polynomial dependence to a logarithmic
one (compare to Theorem 7 below). We nevertheless chose
to include our proof of Theorem 7 based on the elementary
ideas developed in Section II as it directly provides explicit
constants.

We assume that the window function is chosen from the
family of Hermite functions hn(t) := cn e

−πt2 d
dte

−2πt2 ,
where cn is defined s.t. ∥hn∥2 = 1. It is well-known that
|Vhn

h0(z)| = Cn|z|ne−π|z|
2/2, for some Cn ∈ R+, see, e.g.,

[4]. Let us define the auxiliary function

Hn(z, w) =

∣∣∣∣ ⟨π(0)h0, π(z)hn⟩⟨π(w)h0, π(z)hn⟩

∣∣∣∣2

=
|z|2n

|z − w|2n
e−π(|z|

2−|z−w|2), (9)

where we used (8). Note that, just like in the wavelet case,
Hn is rotationally invariant, i.e., Hn(ze

iφ, weiφ) = Hn(z, w),
φ ∈ (0, 2π].

Lemma 6: Let n ∈ N0, w = R/2, and z = reiφ with r ≥ R
and |φ| ≤ π/5. Then

Hn(z, w) ≤ 4ne−πR
2/2.

Proof: First, we note that

|z − w|2 = R2/4 + r2 −Rr cosφ

≥ R2/4 + r2 −Rr = (r −R/2)2 ≥ r2/4.

Second, if |φ| ≤ π/5, then cosφ ≥ 3/4. Consequently,

|z|2 − |z − w|2 = r2 −R2/4− r2 +Rr cosφ

≥ −R2/4 + 3rR/4 ≥ R2/2.

Plugging the previous two estimates into (9) yields

Hn(z, w) ≤
r2n

r2n/4n
e−πR

2/2 = 4ne−πR
2/2,

which was to be shown. □

Theorem 7: Let n ∈ N0, and µ be a sampling measure for
the STFT with window hn and sampling bounds A,B > 0. If
µ(DR(z)) = 0 for some z ∈ C, then

R2 ≤ 2

π
log

(
4n5

B

A

)
. (10)

Proof: We proceed similarly to the proof of Theorem 3. First,
we divide C\{0} into 5 segments

Sk =
{
reiφ : r > 0, π(2k − 1)/5 ≤ φ ≤ π(2k + 1)/5

}
,

and choose the points uk = R/2 e2πik/5, k = 0, 1, .., 5.
If µ(DR(z)) = 0, then an application of (8), the rotational
invariance of Hn and Lemma 6 shows

A = A∥π(z)h0∥22

≤
∫
C

∣∣⟨π(z)h0, π(w)hn⟩|2dµ(w)
=

∫
C

∣∣⟨h0, π(w−z)hn⟩|2dµ(w)

=

5∑
k=1

∫
z+Sk

Hn(w−z, uk)
∣∣⟨π(uk)h0, π(w−z)hn⟩

∣∣2dµ(w)
≤

5∑
k=1

sup
γ∈Sk\DR

Hn(γ, uk)

∫
C

∣∣⟨π(z+uk)h0, π(w)hn⟩∣∣2dµ(w)
≤ 5B sup

γ∈S0\DR

Hn(γ, u0) ≤ 4n5Be−πR
2/2.

Solving for R then completes the proof. □

Remark 8: Like in Section III, the bounds of Theorem 7
can be directly translated to bounds for sampling measures
on the Bargmann-Fock space of entire functions (n = 0), and
to (true) polyanalytic Bargmann-Fock spaces (n ≥ 1), see [3].
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