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Collaborative Metapath Enhanced Corporate Default Risk
Assessment on Heterogeneous Graph

Anonymous Author(s)∗†

ABSTRACT
Default risk assessment for small companies is a tough problem in
financial services. Most small businesses expose fragility to external
impacts and few information on their insecure finances. Recent
efforts utilize advanced Heterogeneous Graph Neural Networks
(HGNNs) with metapaths to exploit interactive features in corporate
activities for risk analysis. However, few works are proposed for
traditional commercial banks. Given a real financial graph, how to
detect corporate default risks? We identify two challenges for the
task. (1)Massive noisy connections hinder HGNNs to achieve strong
results. (2) Multiple semantic connections greatly increase transitive
default risk, while existing hierarchical aggregation schemes do
not leverage such connection patterns.

In this work, we propose a novel Heterogeneous Graph Co-
Attention Network (HetCAN) for corporate default risk assessment.
HetCAN aims to take advantage of collaborative metapaths to distill
effective risky features by a co-attentive aggregation mechanism,
consisting of two attention scores and pairwise importance learning.
First, the local attention score models the importance of neighbors
under each metapath by considering holistic metapath context. Sec-
ond, the global attention score further adjusts the importance of
neighbors by combining these local attention scores to filter valu-
able/noisy signals. Then, HetCAN employs pairwise importance
learning to enhance attention scores of multi-metapath neighbors
for risky feature distillation. Extensive experiments verify that Het-
CAN outperforms state-of-the-art methods in accurately predicting
default risks on large-scale banking datasets.

CCS CONCEPTS
• Information systems → Data mining; • Applied comput-
ing→ Enterprise modeling; • Computing methodologies→
Neural networks.

KEYWORDS
default risk, finance, heterogeneous graph, graph neural network,
attention mechanism
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1 INTRODUCTION
Corporate default risk assessment is a fundamental problem, that
lies at the cornerstone of various financial services. In particu-
lar, early risk warning for small companies is crucial to prevent
considerable losses. Unlike the large enterprises, most small busi-
nesses are fragile to external impacts and their financial stability
is considered weak. Here, our task is to predict whether a small
company will fail to repay its loans in the future. Conventional
methods [7, 36, 50] infer the default probability bymachine learning
models based on large amounts of historical data. However, since
small companies scarcely publish financial reports and statements,
the modeling usually suffers from deficient and outdated data. Fur-
thermore, learning-based methods treat each company solely, but
seldom fully exploit interactions rich in financial activities, which
leads to unsatisfactory prediction results [2, 48, 54].

A modern company constantly leaves traces in the digital world.
For example, the company transfers money to its counterparty in
a transaction system. Thus, each company obtains a large num-
ber of connections, which naturally form a graph with abundant
semantics. In fact, such graph contains valuable signals for risk
assessment. To take advantage of interactive data, we adopt het-
erogeneous graphs (HGs) for modelling the problem. HGs are a
powerful tool to represent real-world systems through a series of
objects (nodes) and relations (edges) with diverse types [37]. Fig-
ure 1a illustrates an example of HG schema, which contains three
views: fund view denotes transaction relations, industry view de-
notes industrial chain relations, and equity view denotes investment
relations. Additionally, we adopt metapath [38] (ordered sequence
of node and edge types) to model specific semantic connections
between companies in our scenario, as shown in Figure 1b.

To accurately spot default risks, we conduct an in-depth explo-
ration on real financial graphs and obtain two observations. First,
a few semantic connections preserve information strongly related
to default risks, while most are noisy and irrelevant. For example,
default companies universally look low-risk, mainly by their daily
money transfer links with normal hubs (like public utilities, on-
line platforms). Second, multiple semantic connections increase the
transitive default risk. Concretely, the connection patterns where
companies are linked by diverse metapaths have great impacts on
default prediction. It is motivated to extract the risky factors from
such locally connected structures, called “transitive risky features”.
Detailed analyses are presented in Section 2.2 to uncover the key
graph properties toward our assessment task.

Given a HG under such setting, corporate default risk assessment
can be further regarded as a node classification problem. Recently,
deep learning on HGs has experienced great advancements, with
Heterogeneous Graph Neural Networks (HGNNs) showing strong
results on a wide range of tasks: recommendation [9, 10, 47, 53],
fraud detection [20, 27, 30, 45], traffic forecast [15, 33] and finan-
cial analysis [17, 28, 42, 55]. HGNNs derive node representations

1
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Figure 1: The illustrative example for modeling the scenario via heterogeneous graph.

mainly based on hierarchical aggregation, which adopt metapaths
to capture neighborhood information of the same semantic and
then fuse diverse semantics.

However, based on the above observations, HGNNs have to face
two challenges. (1) Massive noisy connections hinder HGNNs to
obtain satisfying results. The general message passing aggregates
metapath-based neighbors regardless of whether they are similar
to the target node. A few works [20, 51, 52] attempt to improve
the aggregation by a class of similarity metrics against noises, but
they discard intermediate nodes and edges along metapath, which
are beneficial to noise discrimination. (2) Hierarchical aggregation
schemes do not fully exploit multiple semantic connections. Typical
HGNNs utilize each metapath separately in fine-grained aggrega-
tion and disregard the correlation among diverse metapaths [41].
Intuitively, such connection patterns indicate higher importance
and correlation between companies, which contribute to learning
the transitive risky features. Thus, existing methods incur informa-
tion loss and easily lead to suboptimal prediction.

In this paper, we propose a novel Heterogeneous Graph Co-
AttentionNetwork (HetCAN) for corporate default risk assessment.
Our model aims to make use of collaborative metapaths to learn
effective risky features by a well-designed co-attention mechanism.
Specifically, we introduce two attention scores. First, the local at-
tention score models the similarity-based importance of neighbors
to the target node by considering holistic metapath context, which
makes full use of node and edge information along metapath. For
this purpose, we devise a metapath context encoder by recurrent
skipping networks. Second, the global attention score adjusts the
importance of neighbors by fusing local attention scores under
different metapaths to discern valuable/noisy signals. To further ex-
ploit multiple semantic connections, we propose a pairwise impor-
tance learning method, which divides global attention scores into
two groups with respect to the number of metapaths, and optimizes

a margin loss to increase the importance weights of multi-metapath
neighbors, guiding the distillation of transitive risky features.

Our main contributions are summarized as follows:

• We conduct quantitative analyses on real financial graphs
to confirm the intuition that multiple semantic connections
have great impact on the small company defaults, while in
the presence of massive noisy connections.

• We propose a novel HetCAN for corporate default risk
assessment on HGs. The model carefully takes advantage
of collaborative metapaths to characterize risky features
by a co-attention mechanism, consisting of two attention
scores and pairwise importance learning.

• We thoroughly evaluate the proposed model on large-scale
banking datasets with 24.81 million nodes and 129.54 mil-
lion edges. The results demonstrate that HetCAN outper-
forms other competitors in predicting default risks for small
companies. The code has been open-sourced1.

2 PRELIMINARY
In this section, we present the problem statement of our work and
the empirical observations of real financial graph.

2.1 Problem Statement
Company default is not only driven by intrinsic behaviors but de-
rived from externally associated entities as well. It turns out that
financial institutions have abundant interactive relations between
companies (see Figure 1a). Thus, our focus is to make use of inter-
active data for corporate default risk assessment.

Definition 2.1 Heterogeneous Graph. A heterogeneous graph is
denoted as G = (V, E), where V is a node set associated with a

1https://github.com/adlington/HetCAN
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Figure 2: Connection analysis. (a) Empirical degree distri-
bution of fund view and its power law fit in a log-log scale,
where the vertical axis represents the complementary cu-
mulative distribution function (CCDF). (b) The default ratio
under different number of metapaths.

node type mapping function𝜓 :V→A, and E is an edge set asso-
ciated with an edge type mapping function 𝜗 : E→R. Respectively,
A and R are the sets of node and edge types, with |A| + |R| > 2.

Figure 1b shows the graph schema of G, which contains three
types of nodes and five types of edges with respective attributes.
Formally, for a node type𝐴 ∈ A, X𝐴 ∈ R |V𝐴 |×𝑑𝐴 denotes the node
attribute matrix with |V𝐴 | nodes and 𝑑𝐴 attributes. Likewise, for
an edge type 𝑅 ∈ R, X𝑅 ∈ R | E𝑅 |×𝑑𝑅 denotes the edge attribute
matrix with |E𝑅 | edges and 𝑑𝑅 attributes.

Definition 2.2Metapath. A metapath Φ is a path defined in the

form of 𝐴1
𝑅1→ 𝐴2

𝑅2→ · · · 𝑅𝑙−1→ 𝐴𝑙 , which describes a collection of
relations 𝑅1 ◦ 𝑅2 ◦ · · · ◦ 𝑅𝑙−1 between 𝐴1 and 𝐴𝑙 , where ◦ is the
composition operator on relations.

Given a metapath Φ of a HG, a metapath instance 𝜙 is a node
sequence following the schema defined by Φ. Themetapath-based
neighborsNΦ

𝑣 are the nodes which connect to node 𝑣 via metapath
instances of Φ. The metapath context HΦ

𝑢𝑣 is the set of metapath
instances of Φ between node 𝑢 and 𝑣 . Besides, our approach can
jointly use node and edge information along metapath, which we
refer to as “holistic metapath context”.

The formalization of our problem is as follows.

Problem 2.1 Corporate Default Risk Assessment. Our purpose
is to infer whether a small company will be default over a period
of time. In particular, given the heterogeneous graph G = (V, E)
and the training set D = {(𝑣,𝑦𝑣)} (where 𝑦𝑣 ∈ {0, 1}, i.e. nor-
mal/default), the task is to predict the default probability 𝑦𝑢 of each
small company 𝑢 ∈ U (where the testing set U ⊆ V), based on
both features and interactive information distilled from G.

2.2 Exploratory Analysis
We empirically demonstrate that the key graph properties have
obvious impacts to corporate default risk assessment. The statistical
results are reported in Figure 2, which are conducted on the real
financial graph data (see Section 4.1). The observations inspire us to
take advantage of these graph properties for modeling, as detailed
below (see Appendix A.1 for other analyses).

Noisy connection analysis. We investigate fund view (i.e.
transaction relations) to demonstrate the prevalent noisy connec-
tions. In general, financial networks conform to the scale-free prop-
erties [12, 19]. Thus, we fit the degree distribution of fund view to
a power-law distribution by using a released statistical method [6].
Figure 2a exhibits the power-law behavior with lower bound around
160 and exponent around 2.6, where the large-degree nodes (i.e.
hub companies) shown in the bottom right corner have a fatter
tail than the fitted distribution. We further study these hub compa-
nies from three perspectives: 1) Topology: approximately 0.004% of
all the companies generate transaction connections with at least
27.3% companies. 2) Industry: a majority of them are public service
companies, engaged in the fields of tax agency, electric power, in-
surance, etc. 3) Behaviors: compared to the overall statistics, the
average transaction amount decreases by 37.8% and the average
transaction volume increases by 63.1%. Inspired by these behaviors,
we leverage edge information to identify noisy connections.

Multiple semantic connection analysis.We next study the
correlation between connection patterns and default risks. First,
we collect the metapath-based neighbors of each small company.
Then, we divide companies into separate groups: companies with
default neighbors and companies with no default neighbors. We
further count the number of metapaths between companies and
neighbors for comparison. Figure 2b shows the results, where the
default ratio (i.e. the proportion of default companies) is calculated
in each group respectively. We observe that companies with de-
fault neighbors have higher default risk than those without default
neighbors. Additionally, more metapaths between companies and
default neighbors lead to higher default risk. Thus, it is promising
to characterize the transitive risky features from neighbors with
multiple semantic connections for the problem.

3 METHODOLOGY
In this section, we introduce the proposed HetCAN. Figure 3 shows
the overall framework, which is divided into four parts: (a) Hetero-
geneous content encoding distills holistic metapath context in a
hierarchical manner. (b) Co-attentive aggregation adopts two atten-
tion scores, including local attention score to model the similarity-
based importance of neighbors and global attention score to further
adjust the importance of neighbors, yielding node-level attention
values. (c) Pairwise importance learning exploits multiple semantic
connections to extract transitive risky features, by optimizing a
proposed margin loss. (d) Semantic fusion learns the importance
over diverse metapaths, yielding final node embeddings for the
downstream task. The algorithm is stated in Appendix A.2.

3.1 Heterogeneous Content Encoding
We begin with the heterogeneous content encoding to exploit as-
pects of information from metapaths. Existing HGNNs [11, 44] dis-
card intermediate nodes and edges along metapath, which results in
significant loss of information. Hence, we design ametapath context
encoder to distill the semantic information ingrained in metapath
instances by using recurrent skipping networks (RSNs) [13]. By
integrating RNNs with residual learning, RSNs capture the rela-
tional dependencies of nodes, which focus on learning from paths
for knowledge graph (KG) embedding.

3
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Figure 3: The architecture of the proposed model.

3.1.1 Feature transformation. We first project feature vectors into
a unified latent vector space. Different node types and edge types
have separate feature spaces, which cause obstacles for exploiting
neighborhood information. Thus, we represent each type of nodes
and edges via a simple linear transformation. Given a node type
𝐴 ∈ A and an edge type 𝑅 ∈ R, for each node 𝑣 ∈ V𝐴 and each
edge 𝑒 ∈ E𝑅 , we define the projection as below:

h𝑣 = W𝐴x𝑣 , h𝑒 = W𝑅x𝑒 (1)

where x𝑣 ∈ X𝐴 and x𝑒 ∈ X𝑅 are the initial attribute vectors,
h𝑣 ∈ R𝑑 and h𝑒 ∈ R𝑑 are the projected embedding vectors of nodes
and edges,W𝐴 ∈ R𝑑×𝑑𝐴 andW𝑅 ∈ R𝑑×𝑑𝑅 are type-specific weight
matrices. Let 𝑑 be the latent vector size.

3.1.2 Metapath instance encoding. We next use RSNs to encode
all nodes and edges along metapath. Given a metapath instance
𝜙 = 𝑣1

𝑒1→ 𝑣2
𝑒2→ · · · 𝑒𝑙→ 𝑣𝑙+1,we first define the embedding sequence

of 𝜙 , formed as {z1, z2, . . . , z2𝑙+1}, which satisfies: when 𝑡 is an odd
number, z𝑡 is the projected node embedding, i.e. z𝑡 = h𝑣 , where
𝑣 = 𝑣𝑖 and 𝑖 = 𝑡+1

2 ; otherwise, z𝑡 is the projected edge embedding,
i.e. z𝑡 = h𝑒 , where 𝑒 = 𝑒 𝑗 and 𝑗 = 𝑡

2 . Then, we propose using the
skipping operation of the following form:

h′𝑡 =
{

GRU
(
h′
𝑡−1, 𝑧𝑡

)
𝑡 = 1, 3, . . . , 2𝑙 + 1

W𝐻GRU
(
ℎ′
𝑡−1, 𝑧𝑡

)
+W𝑉 z𝑡−1 𝑡 = 2, 4, . . . , 2𝑙 (2)

where h′𝑡 is the output hidden state of RSN at time step 𝑡 , and
W𝐻 ,W𝑉 ∈ R𝑑×𝑑 are parameter weight matrices shared at different
time steps. We adopt GRU [5] as RNN units to learn long-term
dependencies in the embedding sequence. The final output vector
h′2𝑙+1 is the distilled embedding of the given metapath instance, i.e.
h𝜙 = h′2𝑙+1.

3.1.3 Metapath context encoding. Finally, we apply the mean pool-
ing operation to derive the embedding vector of metapath context,
formed as

hΦ𝑢𝑣 =
1��HΦ
𝑢𝑣

�� ∑︁
𝜙∈HΦ

𝑢𝑣

h𝜙 (3)

whereHΦ
𝑢𝑣 is the metapath context between 𝑢 and 𝑣 .

3.2 Co-attentive Aggregation
We next state how to take advantage of collaborative metapaths
to learn effective risky features. HGNNs [11, 44, 49] often adopt
hierarchical aggregation, including node-level and semantic-level
attentions, to learn the importance of nodes and metapaths. The
node-level attention is extended from classic GAT, which suffers
from the limitation of discerning valuable/noisy signals. Although
recent works [20, 51, 52] improve the aggregation by a class of
node similarity metrics against noisy neighbors, it still remains two
problems in face of real financial graphs. (1) The data deficiency
of small companies impairs the performance of attention scoring
methods based on node feature similarity. For example, some up-
stream and downstream companies have dissimilar features, while
they have high-volume transactions, implying strong importance.
(2) The attention scoring methods, which rely on single semantic
connections, struggle to discern redundant information. Recall that
the connection patterns where companies are linked with multiple
types of metapaths can benefit the identification of transitive risky
features (see Section 2.2).

To tackle these problems, we take advantage of more information
(including holistic metapath context and collaborative metapaths)
to filter valuable/noisy signals. A key idea of our approach is that
we introduce the following two attention scores.
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3.2.1 Local attention score. The local attention score 𝑠Φ𝑢𝑣 models
the similarity-based importance of neighbor 𝑣 to target node 𝑢
under a metapath Φ. We estimate 𝑠Φ𝑢𝑣 from two measurable aspects.
First, we consider the similarity of node features. Intuitively, assume
that neighbors with similar features are more important for the
target node than dissimilar ones. Second, we consider the holistic
metapath context for better importance estimation. Formally,

𝑠Φ𝑢𝑣 = 𝜎

(
𝜂Φh𝑢 · h𝑣 + (1 − 𝜂Φ) a⊤Φ · h

Φ
𝑢𝑣

)
(4)

where 𝜎 (·) is the activation function and we choose tanh(·) in this
work, 𝜂Φ is the metapath-specific learnable parameter, h𝑢 ·h𝑣 is the
dot-product similarity of node embeddings. The linear weighting
operation a⊤Φ · h

Φ
𝑢𝑣 will take the holistic metapath context into

calculation, where aΦ ∈ R𝑑 is the parameterized attention vector,
hΦ𝑢𝑣 is the metapath context embedding.

3.2.2 Global attention score. We further distill the importance of
metapath-based neighbor 𝑣 to target node 𝑢 by considering other
metapaths. The choice is to fuse the local attention scores between
𝑢 and 𝑣 under different metapaths into the global attention score
𝑔Φ𝑢𝑣 , which is defined as follows:

𝑔Φ𝑢𝑣 = (1 − 𝛿)𝑠Φ𝑢𝑣 + 𝛿
∑︁

𝜑∈P\{Φ}
𝑠
𝜑
𝑢𝑣 (5)

where 𝛿 is the learnable parameter,P is themetapath set andP\{Φ}
includes the rest metapaths. Let 𝑠𝜑𝑢𝑣 = 0 if 𝑣 and𝑢 are not connected
via metapath 𝜑 . We use 𝛿 to adjust the weight for other metapaths.
In particular, when 𝛿 = 0, formula (5) returns to the local attention
score. Note that we adopt 𝛿 for collaborative metapaths, avoiding
the rise of model complexity (see Appendix A.3).

3.2.3 Neighbor aggregation. We normalize the global attention
score with the softmax function, yielding the attention 𝛼Φ𝑢𝑣 as fol-
lows:

𝛼Φ𝑢𝑣 =

exp
(
𝑔Φ𝑢𝑣

)
∑
𝑖∈NΦ

𝑢
exp

(
𝑔Φ
𝑢𝑖

) (6)

The final attention 𝛼Φ
𝑢𝑣 is used to aggregate neighbor messages

as
mΦ
𝑢 = WΦ

𝑀

∑︁
𝑣∈NΦ

𝑢

𝛼Φ𝑢𝑣

[
h𝑣 ∥hΦ𝑢𝑣

]
(7)

whereWΦ
𝑀
∈ R𝑑×2𝑑 is the weight matrix, ∥ is the vector concate-

nation.
Then, we adopt the pre-activation residual connections [26] for

learning the metapath-specific embedding, which is to avoid over-
smoothing. We have

hΦ𝑢 = 𝜎

(
mΦ
𝑢 + h𝑢

)
(8)

where 𝜎 (·) is the ReLU activation function.

3.3 Pairwise Importance Learning
In this section, we introduce how to utilize multiple semantic con-
nections to guide feature learning. Inspired by [39], we define the
problem as learning to rank attention scores. The aim is to increase
the importance of neighbors linked with multiple metapaths, en-
suring higher attention over those with a single metapath.

For each node 𝑢, we first divide the metapath-based neighbors
NΦ
𝑢 into two groups: multi-metapath neighbors and single-metapath

neighbors, denoted byMΦ
𝑢 and NΦ

𝑢 \MΦ
𝑢 . Then, we compute the

average of global attention scores for each group:

T
(
MΦ

𝑢

)
=

1��MΦ
𝑢

�� ∑︁
𝑣∈MΦ

𝑢

𝑔Φ𝑢𝑣 (9)

T
(
NΦ
𝑢 \MΦ

𝑢

)
=

1��NΦ
𝑢 \MΦ

𝑢

�� ∑︁
𝑣∈NΦ

𝑢 \𝑀Φ
𝑢

𝑔Φ𝑢𝑣 (10)

Intuitively, while T
(
MΦ

𝑢

)
is higher than T

(
NΦ
𝑢 \MΦ

𝑢

)
, it is

more likely to obtain higher importance weights of the multi-
metapath neighbors. Hence, we propose a multi-metapath impor-
tance aware loss function, aiming to maximize the gap between
the importance weights of multi-metapath neighbors and single-
metapath neighbors. The loss function is defined as

Lmargin =
∑︁
Φ∈P

∑︁
𝑢∈V

max
(
0, 𝜌 −

(
T

(
MΦ

𝑢

)
− T

(
NΦ
𝑢 \MΦ

𝑢

)))
(11)

where 𝜌 is a constant margin threshold.
Unlike pairwise margin losses [43, 46], we optimize the loss func-

tion by keeping distance between different groups above the certain
threshold without narrowing distances between same groups. This
is because neighbors under the same number of metapaths may
have different importance, thereby encouraging them close may
hinder effective feature learning. Additionally, we use average value
instead of unit value for expressing the importance of each group
in order to relax the constraints from traditional pairwise losses,
accelerating convergence of the loss function.

3.4 Semantic Fusion and Model Learning
3.4.1 Semantic fusion. So far, we have obtained the metapath-
specific embeddings of node 𝑢 in the form of

{
hΦ1
𝑢 , hΦ2

𝑢 . . . , hΦ𝐾𝑢
}
.

We next model the importance over diverse metapaths by semantic-
level aggregation. The attention weights of metapaths are computed
by the following operations.

𝛽Φ𝑖 =

exp
(
a⊤
𝑆
· 𝜎

(
W𝑆h

Φ𝑖
𝑢

))
∑
Φ𝑗 ∈P exp

(
a⊤
𝑆
· 𝜎

(
W𝑆h

Φ𝑗
𝑢

)) (12)

q𝑢 =
∑︁
Φ𝑖 ∈P

𝛽Φ𝑖h
Φ𝑖
𝑢 (13)

where a𝑆 ∈ R𝑑 is the learnable semantic preference vector,W𝑆 ∈
R𝑑×𝑑 is the weight matrix, 𝜎 (·) is the activation function and here
we use tanh(·), and 𝛽Φ𝑖 is the attention weights over metapath Φ𝑖 .
The output embedding q𝑢 is summed by a weighted average of all
the metapath specific embeddings of the target node 𝑢.

3.4.2 Model learning. We next feed the fused embeddings to MLP
classifier for predicting the default probability, as follows:

𝑦𝑢 = MLP (q𝑢 ) (14)

The overall objective function of our proposed HetCAN model
is a combination of margin loss and classification loss. Formally,

L = Lclf + 𝜆Lmargin + Lreg (15)
5
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where 𝜆 is the weight for the margin loss, L𝑟𝑒𝑔 is the L2 regular-
ization to prevent over-fitting, L𝑐𝑙 𝑓 is the classification loss of the
following form:

L𝑐𝑙 𝑓 = − 1
|D|

∑︁
(𝑢,𝑦𝑢 ) ∈D

𝑦𝑢 log𝑦𝑢 + (1 − 𝑦𝑢 ) log (1 − 𝑦𝑢 ) (16)

4 EXPERIMENTS
In this section, we conduct extensive experiments on real-world
datasets for evaluating the effects of our proposed methods.

4.1 Experimental Settings
4.1.1 Datasets. We evaluate HetCAN on two real-world datasets
collected from a major commercial bank in China. In Table 1,
SC21H1 contains about 252 thousand small companies (Jan.01, 2021
- Jun.30, 2021) for training and testing and SC21H2 contains about
247 thousand small companies (Jul.01, 2021 - Dec.31, 2021) for out-
of-time testing. The size of training/validation/testing set of SC21H1
is set to 0.5/0.2/0.3. All the samples refer to small companies with
no loans that obtained their loan by bank within the given time.
We adopt the ground truth labels by financial experts. The positive
samples are the small companies that have delayed or failed in the
payments of principal and interests over seven days. Totally, we
collect about 10 thousand default samples with the default ratio
close to 2.0%.

We build HGs on the beginning time of each dataset, which
consist of over 24.81 million nodes and 129.54 million edges (see
Table 1). Note that over 95% of the company nodes are small com-
panies. To enrich information for nodes, we exclude features with
miss rate over 90% and extract 456 attributes for company node,
from the aspects of corporate user profile, credit status, contractual
capability, business information, and account behavior. For other
types of nodes and edges, we collect a certain number of attributes
ranging from 5 to 22 except the belong relation, such as personal
credit score, industrial scale, amount, frequency, etc.

4.1.2 Baselines. We compare HetCAN against diverse baseline
methods. Concretely, the traditional machine learning methods
include Logistic Regression (LR), LightGBM [21] and Multi-Layer
Perception (MLP), which only use target node features to train clas-
sifiers. The homogeneous GNNs include GCN [22], GraphSAGE [14]
and GAT [40], which capture node features and structural infor-
mation but overlook heterogeneity. The HGNNs include HAN [44],
MAGNN [11], HGT [18] and Simple-HGN [34], which exploit het-
erogeneous node features and structural information.

We derive the following three variants of HetCAN.
• HetCAN\𝐸 only considers node feature similarity in local

attention score, i.e. without holistic metapath context.
• HetCAN\𝐴 only adopts local attention score for attention

calculation, i.e. without global attention score.
• HetCAN\𝐿 removes themargin loss for training, i.e. without

pairwise importance learning.

4.1.3 Implementation and evaluation. Our implementation is based
on DGL with PyTorch backend. For the large datasets, we do neigh-
bor sampling on HGs and the sampling size of neighbors is set
to 10. We randomly initialize the model parameters with a Xavier

Table 1: The statistical information of datasets.

Dataset Node Edge #Label Default Ratio

SC21H1

Transfer:102,605,728
Company:12,793,669 Belong:11,349,549
Person: 12,014,090 Up/downstream:1,316 251,963 1.96%

Industry: 447 Control:13,832,259
Invest:1,754,576

SC21H2

Transfer:103,478,322
Company:13,052,256 Belong:11,973,522
Person: 12,332,867 Up/downstream:1,316 247,165 2.09%

Industry: 447 Control:14,854,227
Invest:1,777,744

initializer and choose Adam as the optimizer. Moreover, we set
the batch size to 256, the learning rate to 0.001, the margin value
to 1 and set the dropout rate to 0.5 and the weight decay to 0.01
to prevent overfitting. We also perform early stopping during the
training if the validation performance is not improved for 30 epochs.
The parameters of baselines are set up either as their default values
or the same as in our model (see baseline settings in Appendix A.4).
For homogeneous GNNs, we discard the node and edge type of
HGs and use it as the input. Note that we will run each algorithm 5
times to report the average results.

In addition, the model performance is evaluated mainly via AUC
(Area Under the ROC Curve) and KS (Kolmogorov Smirnov), which
are extensively applied in banking scenarios. Higher scores of AUC
and KS signify better prediction on defaults.

4.2 Real-world Performance
We evaluate different methods on real-world datasets. As shown in
Table 2, the main observations are summarized as follows:

• Our HetCANmodel outperforms other competitors by a sig-
nificant margin on both datasets. Its AUC and KS improve
at least 1.7% and 7.5% compared with the best performance
of other methods, respectively. The obvious improvement
of KS indicates that our model has better ability to dis-
criminate between default and normal companies, which is
critical to real applications.

• Machine learning methods achieve lower AUC and KS than
graph learning methods. This is because traditional fea-
ture engineering seldom leverages interactive relations in
corporate activities, yielding poor performance.

• Homogeneous GNNs obtain relatively better results than
machine learning methods, with at least 0.5% increased
AUC and 3.7% increased KS. The results verify the effec-
tiveness of structural information in financial graphs. In
addition, GAT performs better than GCN and GraphSAGE,
implying that the attention-based aggregation is more effi-
cient for distilling risky features.

• Heterogeneous GNNs aremore effective than homogeneous
GNNs, due to the capability of exploiting heterogeneous
contents. However, these baseline HGNNs show the limited
capability in taking full advantage of graph information

6
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Table 2: Comparison of performance results.

Method
SC21H1 SC21H2

AUC KS AUC KS
LR 0.7404 0.3266 0.7210 0.2803

LightGBM 0.7598 0.3570 0.7429 0.3102
MLP 0.7557 0.3565 0.7374 0.3086
GCN 0.7636 0.3703 0.7468 0.3245

GraphSAGE 0.7675 0.3814 0.7503 0.3346
GAT 0.7709 0.3854 0.7535 0.3477
HAN 0.7636 0.3782 0.7477 0.3376

MAGNN 0.7714 0.3848 0.7539 0.3518
HGT 0.7673 0.3801 0.7489 0.3454

Simple-HGN 0.7743 0.3978 0.7573 0.3681
HetCAN\𝐸 0.7810 0.4168 0.7672 0.3973
HetCAN\𝐴 0.7762 0.4035 0.7588 0.3790
HetCAN\𝐿 0.7796 0.4105 0.7647 0.3883
HetCAN 0.7877 0.4277 0.7781 0.4047

(i.e. holistic metapath context, multiple semantic connec-
tions) beneficial for assessing default risks, which results
in suboptimal prediction.

4.3 Ablation Study
Next, we conduct ablation studies to validate the effects of each
component in our model, which include three variants: HetCAN\𝐸 ,
HetCAN\𝐴 and HetCAN\𝐿 . As shown in Table 2, the experimental
results of all HetCAN variants in terms of AUC and KS deteriorate
to some degree, which indicate that these components contribute to
performance improvement. We further observe that almost all the
variants work better than the baselines, which empirically demon-
strates the effectiveness of leveraging these key graph properties for
corporate default risk assessment. Additionally, it is worth noting
that HetCAN\𝐴 exhibits the most obvious performance degrada-
tion among all the variants, implying that our proposed attention
scores play an essential role in taking advantage of collaborative
metapaths to benefit the downstream prediction. Without consid-
ering collaborative metapaths, the model is limited to learn much
effective risky features from the real financial graphs due to their
massive noisy connections. Moreover, in spite of less performance
loss compared with HetCAN\𝐴 , the results of HetCAN\𝐿 confirm
that with the guidance of feature learning by multiple semantic
connections can further improve default prediction, which make
the whole HetCAN obtain the best performance.

4.4 Co-attention Analysis
We make an in-depth analysis on the proposed co-attention mecha-
nism by HetCAN and HetCAN\𝐿 . For each metapath, we compute
the attention weights of the neighbors for all target nodes and
then the average attention weights of each target node. Likewise,
the neighbors are divided into two groups: single-metapath neigh-
bors and multi-metapath neighbors. The lifting ratio of attention
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(b) HetCAN\𝐿

Figure 4: Boxplot of the lifting ratio of attention weights for
single-metapath neighbors and multi-metapath neighbors
(SMNs and MMNs for short) on SC21H2 dataset (see SC21H1
results in Appendix A.5).
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Figure 5: Parameter study on SC21H2 dataset (see SC21H1
results in Appendix A.5).

weights over average weights in each group are presented in Fig-
ure 4. The results show that the distribution of attention weights
is relatively uniform between two groups. That is, multi-metapath
neighbors have higher values than most single-metapath neighbors,
implying that multiple semantic connections can be captured by
our approach. Additionally, HetCAN further promotes the lifting
ratio for multi-metapath neighbors in comparison to HetCAN\𝐿 ,
validating the effectiveness of pairwise importance learning for
such connection patterns.

4.5 Parameter Sensitivity
We examine the parameter sensitivity of HetCAN through tuning a
single parameter while keeping others unchanged. Figure 5 exhibits
the performance results of different parameter settings on SC21H2
dataset. First, we study how the margin loss influences prediction
by varying the weight between 0 and 1. In Figure 5a, the model
performance continuously increases until reaching a saturation
at about 0.5, indicating the effectiveness of constructing pairwise
importance learning. But higher weights may cause large domi-
nance of the margin loss in total objective function, which limits the
learning effects. Second, we report the results of adjusting the em-
bedding size in Figure 5b. With the increase of the embedding size,
both AUC and KS rise and then drop. Small values hinder the model
to learn sufficient information from data. Large values cause over-
fitting and redundancy, which may degenerate the performance.
Here, the optimal size is set to around 128.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

attention
valuesneighbors

CtC based-

0.42

0.14

0.27

0.08

0.09

C0

C2

C5

C4

C3

C1

(a)

0.74

0.23

0.03C9

C8

C7

C6

attention
values

CcPcC based
neighbors

-

(b)

CbIbC

CtC

CcPcC

Normal 
Company

Default 
Company

Target 
Company

Figure 6: Visualization of attention weights in HetCAN.

4.6 Case Study
We adopt case studies on connection patterns to further investigate
the advantages of HetCAN. Concretely, we pick two representative
default companies that LightGBM (commonly used for the task) fails
to identify, and visualize their attention weights in the co-attentive
aggregation layers. In Figure 6a, we observe that C1 obtains the
highest attention value for C0 under the metapath CtC, while C1
connects to C0 via another metapath CbIbC, implying that these two
companies face the same industry risks. Our model can make use
of the industrial relation (i.e. CbIbC) to alleviate noisy transactions.
We provide another case that the collaborative metapaths can distill
transitive risky features. In Figure 6b, C7 gets the highest attention
value for C6 under CcPcC, due to their substantial fund transfers (i.e.
CtC) between companies of the same controller, which is considered
as high risk behaviors.

Additionally, we analyze the predictions by HetCAN. The subsets
of companies which have the above two connection patterns (i.e.
CtC and CbIbC, CtC and CcPcC) contain 16.59% and 1.89% of the
total true positive predictions. HetCAN has detected 44.34% and
46.15%more default companies than LightGBM in these two subsets,
respectively. Therefore, our HetCAN provides the interpretability
and capability of taking advantage of multiple semantic connections
for default prediction in the real financial graphs.

5 RELATEDWORK
In this work, our focus is to use HGNN methods for the corporate
default risk assessment problem.

Heterogeneous Graph Neural Networks.Many HGNNs ex-
tend the architectures from GNNs over homogeneous graphs [14,
22, 40], for capturing the structural and semantic information in
heterogeneous graphs. These methods can be classified into two
categories: (1) Metapath-based HGNNs adopt metapaths to aggre-
gate neighborhood information of the same semantic and then fuse
diverse semantics. HAN [44] proposed a graph attention network
architecture to learn the importance of nodes and metapaths on
metapath-based homogeneous graphs. MAGNN [11] extended HAN
by exploiting intermediate nodes along metapath. (2) Metapath-
free HGNNs directly aggregate information from neighbors by
node and edge type aware modules to capture diverse semantics.
HGT [18] employed a meta-relation based mutual attention mecha-
nism for modeling heterogeneity. Simple-HGN [34] extended GAT

via learnable edge-type embeddings for attention calculation. To
our knowledge, this is the first work which considers both massive
noisy connections and multiple semantic connections in HGs. More-
over, our work leverages credit information rich in heterogeneous
edges, which is crucial for financial scenarios.

Co-Attention Mechanism. Co-attention mechanism is derived
from attention mechanism [1] by incorporating multiple inputs for
joint learning. Recent works have verified its effect of capturing
the interactions between different modalities [8, 31, 35]. In graph-
learning communities, co-attention mechanism has been widely
studied for applications: recommendation [16, 29], fake news detec-
tion [32] and traffic forecast [25]. Most studies adopt co-attention
mechanism to model the influence between different aspects for
better representation. Inspired by the idea, we take advantage of
collaborative metapaths to distill the effective risky features in real
financial graphs by designing a co-attention mechanism.

Graph-based Risk Assessment. Recent efforts attempt to ex-
ploit various corporate relations for risk assessment. Transaction
networks contain key credit-related information and inter-company
relationships, which are effective for risk analysis [23, 24]. Equity
data form another considerable financial networks between com-
panies and shareholders, beneficial for spotting credit risks [54]. A
few works [2, 3] make use of investment relations and shared-news
relations extracted from listed company information to analyze fi-
nancial risks. Guarantee networks provide powerful transitive risky
features for early warning [4], which are too sparse for small com-
panies. Most closely related to ours is Yang’s work on supply-chain
mining for default prediction [48], where the upstream and down-
stream relationships are predicted by a semi-supervised model. Our
industrial chain graph is focused on the concrete dependencies
among industries and companies. In brief, our work differs from
existing works in its setting of real banking graph data (i.e. fund,
industry, equity), and the use of domain knowledge to reflect small
company default risk from different perspectives.

6 CONCLUSION
In this paper, we focus on default risk assessment for small com-
panies on heterogeneous graphs. By elaborately analyzing real
financial graphs, we reveal the key graph properties related to the
problem, which include massive noisy connections and multiple
semantic connections. Based on these findings, we propose a novel
HGNN model, named HetCAN, for corporate default risk assess-
ment task. HetCAN aims to take advantage of collaborative metap-
aths to enhance the distillation of risky features by a co-attention
mechanism, consisting of two attention scores and pairwise im-
portance learning. Experiments on large-scale banking datasets
verify that HetCAN is effective to default risk prediction for small
companies. In future work, we will explore how to utilize more
connections (like location data) and information (like economic
data) and further improve the risk assessment on HGs.
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A APPENDIX

Table 3: Data deficiency of small companies (SCs for short)
and the effects of information supplement fromview-specific
neighbors.

Feature set SCs
SCs filled by neighbors

Equity Industry Fund All
User profile 18.4% 17.3% 15.1% 7.1% 7.0%
Credit status 48.7% 46.6% 41.0% 25.2% 25.0%
Solvency 89.5% 88.9% 83.8% 58.1% 58.0%
Operation 55.3% 54.4% 48.9% 22.4% 22.3%
Activity 7.1% 6.0% 4.7% 1.6% 1.4%

Equity Industry Fund0.0
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Figure 7: The default ratio under different views.

A.1 Other Exploratory Analyses
Two statistical analyses are conducted to demonstrate two perspec-
tives. First, small companies suffer from universal data deficiency,
which can be alleviated by exploring their semantic connections.
Second, the semantic connections have certain impact on small
company default risk.

Feature Analysis. We investigate the status of banking data
for expressing small companies. The investigation is performed on
five sets of features, including user profile (i.e. client and account
information), credit status (i.e. credit report and blacklist), solvency
(i.e. contractual capability), operation (i.e. financial performance)
and activity (i.e. account behavior and transaction action). For each
set, we count the number of missing values over the total attributes
for each small company and then compute the average missing
rate. In Table 3, we find that small companies suffer significant
deficiency in various aspects of attribute information.

Next, we verify that the data deficiency problem for small com-
panies can be mitigated through aggregating their neighbors. For
this purpose, we count missing attributes of a target company to-
gether with the metapath-based neighbors. To reveal the effects of
different neighbors, five experimental groups are defined for com-
parison, including small companies themselves, small companies
with neighbors guided by metapaths from a single view (equity,
industry, fund), and small companies with neighbors from three
views. As shown in Table 3, the results exhibit that feature sets
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Figure 8: Boxplot of the lifting ratio of attention weights for
single-metapath neighbors and multi-metapath neighbors
(SMNs and MMNs for short), which is conducted on SC21H1
dataset.
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Figure 9: Parameter sensitivity analysis on SC21H1 dataset.

obtain enhancement to varying degree, where the average missing
rates decrease by 80% at most. Besides, we observe that the semantic
connections of each view improve the information of small compa-
nies and complete semantic connections achieve the best average
missing rates.

Impact analysis. We further study the correlation between
semantic connections and default risks. For each view, we collect the
metapath-based neighbors of each small company. Then, we divide
companies into two groups: companies with default neighbors
and companies with no default neighbors. The default ratio (i.e.
the proportion of default companies) is calculated in each group
respectively. The comparative results are shown in Figure 7. We find
that the semantic connections of three views have distinct impact on
small company default risk, which motivates us to take advantage
of corporate interactive relations for modeling the problem.

A.2 Pseudo Code
Algorithm 1 shows the overall forward propagation process of our
proposed HetCAN. We can stack multiple layers to expand the
receptive field for better representation.

A.3 Complexity Analysis
For simplicity, we use the number of nodes (denoted |V|), the
number of edges (denoted |E |), the maximum size of the node
attribute (denoted 𝑑1), the maximum size of the edge attribute
(denoted 𝑑2), and the embedding size (denoted 𝑑). Given a metap-
ath Φ, we assume the number of metapath-based node pairs (de-
noted 𝑛Φ

𝑝𝑎𝑖𝑟
), the number of metapath instances (denote 𝑛Φ

𝑝𝑎𝑡ℎ
), the

length of metapath as 𝑙Φ. Then, the time complexity of feature
10
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Algorithm 1: HetCAN forward propagation
Input: Heterogeneous graph G = (V, E), node types A, edge types R, node attribute matrices {X𝐴,∀𝐴 ∈ A}, edge attribute

matrices {X𝑅,∀𝑅 ∈ R}, target node setU, metapath set P, number of layers 𝐿
Output: Default probabilities 𝑦 and global attention scores 𝑔

1 for node type 𝐴 ∈ A do
2 Node feature transformation h0

𝑣 ←W𝐴x𝑣,∀x𝑣 ∈ X𝐴;
3 end
4 for edge type 𝑅 ∈ R do
5 Edge feature transformation h𝑒 ←W𝑅x𝑒 ,∀x𝑒 ∈ X𝑅 ;
6 end
7 for 𝑢 ∈ U do
8 for 𝑙 = 1, · · · , 𝐿 do
9 for Φ ∈ P do
10 Calculate metapath context embedding [hΦ𝑢𝑣]𝑙 for all 𝑣 ∈ NΦ

𝑢 using Eq. (2) and Eq. (3);
11 Calculate local attention scores [𝑠Φ𝑢𝑣]𝑙 for all 𝑣 ∈ NΦ

𝑢 using Eq. (4);
12 end
13 for Φ ∈ P do
14 Calculate global attention scores [𝑔Φ𝑢𝑣]𝑙 for all 𝑣 ∈ NΦ

𝑢 using Eq. (5);
15 Calculate attention values [𝛼Φ𝑢𝑣]𝑙 for all 𝑣 ∈ NΦ

𝑢 using Eq. (6);
16 Calculate the metapath-specific embedding [hΦ𝑢 ]𝑙 using Eq. (7) and Eq. (8);
17 end
18 Calculate the attention weights [𝛽Φ]𝑙 for all Φ ∈ P using Eq. (12);
19 Fuse the metapath-specific embeddings h𝑙𝑢 ←

∑
Φ∈P [𝛽Φ]𝑙 [hΦ𝑢 ]𝑙 ;

20 end

21 𝑦𝑢 ← MLP
(
h𝐿𝑢

)
;

22 end
23 return 𝑦,𝑔

transformation is 𝑂 (𝑑1𝑑 |V| + 𝑑2𝑑 |E |). For metapath Φ, the time
complexity of the metapath context encoder is 𝑂 (𝑙Φ𝑑2𝑛Φ

𝑝𝑎𝑡ℎ
), and

the time complexity of the co-attentive aggregation is 𝑂 (𝑑2 |V| +
𝑑𝑛Φ

𝑝𝑎𝑖𝑟
). Finally, the time complexity of HetCAN is 𝑂 (𝑑1𝑑 |V| +

𝑑2𝑑 |E |+
∑
Φ∈P (𝑙Φ𝑑2𝑛Φ

𝑝𝑎𝑡ℎ
+ 𝑑2 |V| + 𝑑𝑛Φ

𝑝𝑎𝑖𝑟
)). Despite the utiliza-

tion of collaborative metapaths, we can see that the complexity
of the co-attentive aggregation is on par with the classic metpath-
based HGNNs [44].

A.4 Baseline Settings
We report the detailed settings of the baseline models in our exper-
iments. For LightGBM, the tree number is set as 1000 and the tree
depth is set as 7, respectively. For MLP, we have 𝐿 = 2, 𝑑 = 128. For
homogeneous GNNs, the common hyperparameters include 𝐿 = 3,
𝑑 = 128, 𝜎 = ReLU(·). We adopt GCN as the aggregator function
for GraphSAGE, and 𝑛ℎ = 1 for GAT. For metapath-based HGNNs
(i.e. HAN and MAGNN), we have 𝐿 = 2, 𝑑 = 128, 𝜎 = ReLU (·),
𝑛ℎ = 1. For HGT, we use layer normalization in each layer, and
𝐿 = 3,𝑑 = 64,𝑛ℎ = 8. For Simple-HGN, we have 𝐿 = 3,𝑑 = 𝑑𝑒 = 128,
𝜎 = ELU (·), 𝑛ℎ = 8, 𝛽 = 0.05. Additionally, for all GNN methods,
we randomly initialize the model parameters with a Xavier initial-
izer and choose Adam as the optimizer. Moreover, we respectively
set the batch size to 256, the learning rate to 0.001, the sampling

size of neighbors to 10, the dropout rate to 0.5 and the weight decay
to 0.01.

A.5 Other Experimental Results
The experiment results on SC21H1 dataset, which include the co-
attention analysis shown in Figure 8 and the parameter analysis
shown in Figure 9, respectively. We can have similar conclusions
in the former evaluation works.
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