
Published in Transactions on Machine Learning Research (09/2025)

RouteFinder: Towards Foundation Models for Vehicle
Routing Problems

Federico Berto∗1,5, Chuanbo Hua∗1,5, Nayeli Gast Zepeda∗2, André Hottung2, Niels A. Wouda3,
Leon Lan4, Junyoung Park1, Kevin Tierney2, Jinkyoo Park1,5

1KAIST 2Bielefeld University 3Rotterdam School of Management 4VU Amsterdam 5Omelet AI4CO‡

Reviewed on OpenReview: https://openreview.net/forum?id=QzGLoaOPiY

Abstract

This paper introduces RouteFinder, a comprehensive foundation model framework to
tackle different Vehicle Routing Problem (VRP) variants. Our core idea is that a foundation
model for VRPs should be able to represent variants by treating each as a subset of
a generalized problem equipped with different attributes. We propose a unified VRP
environment capable of efficiently handling any combination of these attributes. The
RouteFinder model leverages a modern transformer-based encoder and global attribute
embeddings to improve task representation. Additionally, we introduce two reinforcement
learning techniques to enhance multi-task performance: mixed batch training, which enables
training on different variants at once, and multi-variant reward normalization to balance
different reward scales. Finally, we propose efficient adapter layers that enable fine-tuning
for new variants with unseen attributes. Extensive experiments on 48 VRP variants show
RouteFinder outperforms recent state-of-the-art learning methods. Our code is publicly
available at https://github.com/ai4co/routefinder.

1 Introduction

Vehicle Routing Problems (VRPs) are an important class of Combinatorial Optimization (CO) problems that
have received much attention in Operations Research (OR) and Computer Science. Since the VRP is an
NP-hard problem, finding an optimal solution by exhaustively exploring the solution space is not possible for
large instances. Instead, heuristic methods that quickly generate good (but possibly suboptimal) solutions are
commonly used. The OR community has developed many heuristics over the years, including the well-known
Lin-Kernighan-Helsgaun (LKH) heuristic (Helsgaun, 2017), Fast Iterated Local Optimization (FILO) (Accorsi
& Vigo, 2021; 2024) and Hybrid Genetic Search (HGS) (Vidal, 2022; Wouda et al., 2024). While these
algorithms deliver state-of-the-art results for certain VRP variants, they often require expert knowledge and
careful adaptation to be effectively applied in practice. Recently, Neural Combinatorial Optimization (NCO)
approaches have been developed to solve CO problems. By leveraging deep learning, these approaches seek
to learn from data, potentially providing more flexible and scalable solutions (Kool et al., 2019; Hottung &
Tierney, 2020; Kwon et al., 2020; Kim et al., 2022; Berto et al., 2025; Hottung et al., 2025a).

Similar to how the developments in natural language processing have resulted in Large Language Models
(LLMs), research efforts in solving CO problems through machine learning are also trending toward foundation
models (Liu et al., 2024c; Ye et al., 2024a; Liu et al., 2024a; Zhou et al., 2024). However, despite the recent
progress made in learning VRP variants, there is a lack of a unified approach that provides a platform for
effectively finetuning unseen variants (Lin et al., 2024). Such a foundation model for VRPs would have

∗Equal contributions. ‡Authors are members of the AI4CO open research community.

1

https://openreview.net/forum?id=QzGLoaOPiY
https://github.com/ai4co/routefinder


Published in Transactions on Machine Learning Research (09/2025)

important implications for real-world applications as it can be easily adapted to new business requirements
(constraints) outside of the training distribution.

In this work, we introduce RouteFinder, a comprehensive foundation model framework for solving VRPs.
We summarize our key contributions as follows:

• We introduce a general framework to solve different VRP variants via a unified VRP environment
that can handle any number of attributes.

• We propose a modern Transformer-based encoder and introduce Global Attribute Embeddings to
enable the model to better understand and differentiate between VRPs.

• We introduce two novel reinforcement learning techniques, Mixed Batch Training and Multi-Variant
Reward Normalization, to ensure stable and effective training across multiple VRP variants.

• We present Efficient Adapter Layers, a lightweight yet powerful mechanism for finetuning pre-trained
RouteFinder models to tackle new variants with previously unseen attributes.

We evaluate RouteFinder through extensive experiments on 48 VRP variants, i.e., three times as many as
previous works, assessing the impact of each novel component on performance. RouteFinder significantly
outperforms recent multi-task learning models by reducing optimality gaps by more than 10% across all
variants.

2 Related Works

Neural combinatorial optimization for VRPs NCO has emerged as a pivotal solution approach for
VRPs, leveraging advancements in machine learning and neural network architectures (Bengio et al., 2021;
Peng et al., 2021; Mazyavkina et al., 2021; Bogyrbayeva et al., 2024). While several works have explored
enhancing exact solvers for other CO problems with deep learning (Gasse et al., 2019; Prouvost et al., 2020),
these are not generally scalable for real-time complex VRPs (Wu et al., 2024; Kim et al., 2024), which instead
usually employ heuristics in practice. In this work, we aim to learn heuristics for fast solution generation
following the seminal work of Vinyals et al. (2015) who paved the way in applying NCO to VRPs, further
developed by Bello et al. (2016) and Nazari et al. (2018). Subsequent works, including the transformer-based
encoder with self-attention of Kool et al. (2019) and the training methods of POMO (Kwon et al., 2020)
and Sym-NCO (Kim et al., 2022), have significantly enhanced solution quality. These advancements have
been complemented by novel training algorithms, including learning with (partial) problem re-encoding at
each step (Bdeir et al., 2022; Drakulic et al., 2024; Luo et al., 2024; 2025) and population-based approaches
(Grinsztajn et al., 2024; Chalumeau et al., 2024; Hottung et al., 2025a). Despite this progress, challenges
remain in the form of requiring manual tuning for inductive bias and the need for problem-specific models
which impact deployment and generalizability (Liu et al., 2023; Thyssens et al., 2023). The field has also
explored non-autoregressive construction methods that predict promising edges (Joshi et al., 2022; Fu et al.,
2021; Kool et al., 2022; Sun & Yang, 2024), improvement methods that iteratively refine solutions through
local adjustments (Hottung & Tierney, 2020; Ma et al., 2021; 2022; 2024; Hottung et al., 2025b), and test-time
adaptation methods (Hottung et al., 2022; Choo et al., 2022) which allow for solution improvement given
larger time budgets. Recent works additionally explore alternative ways of solving VRPs, such as learning
heuristics for Ant Colony Optimization (Ye et al., 2024b; Kim et al., 2025) and divide-and-conquer (Kim
et al., 2021; Li et al., 2021; Hou et al., 2022; Ye et al., 2024c; Chen et al., 2024; Zheng et al., 2024).

Multi-task learning for VRPs In this work, we develop a unified VRP solver to solve multiple tasks
that can be efficiently fine-tuned to new ones. Due to its promise, multi-task learning for VRPs has garnered
much attention recently. Wang & Yu (2025) introduces a multi-armed bandit method that solves several
VRP variants with limited training budget. Lin et al. (2024) proposes training a backbone model (i.e., deep
layers) for VRPs that can then be adapted via low-dimensional layers, such as linear projections, to fine-tune
different problems efficiently. Drakulic et al. (2025) propose a multi-task model for CO problems trained via
supervised learning, similar to Large Language Models (LLMs). Jiang et al. (2024a) introduce a method to

2



Published in Transactions on Machine Learning Research (09/2025)

transfer different problems to the embedding space via textual description through an LLM. Most related
to this work are the works of Liu et al. (2024a) and Zhou et al. (2024), which use attribute composition
(Ruis et al., 2021) to achieve (zero-shot) generalization on several VRP variants. Liu et al. (2024a) builds on
the Reinforcement-Learning-based POMO (Kwon et al., 2020), on top of which Zhou et al. (2024) employ a
mixture-of-experts model to improve generalization.

3 Preliminaries

3.1 Vehicle Routing Problems

We formulate the classic VRP, the foundation for more complex variants, on a graph G = (N, E), where
N = {0, . . . , m − 1, m, . . . , m + n − 1} represents the nodes, with Nd = {0, . . . , m − 1} denoting the m depots
(m = 1 for the classic VRP) and Nc = {m, . . . , m + n − 1} denoting the n customers. The edges E connect
pairs of nodes, and each edge (i, j) ∈ E has a travel cost cij (e.g., distance or travel duration). Vehicles
depart from the depot to serve each customer exactly once and then return to the depot(s), while minimizing
the total travel cost. Following Vidal et al. (2014), we consider a collection of VRP variants that extend

Open routes (O) 

< L

0.2

0.1

0.3

0.1

0.2
0.1

Duration limits (L)Time windows (TW)

0.1

0.2
0.4

0.5

0.3

Linehaul demands (C) Backhaul demands (B) Mixed backhaul (MB)

Depot Customer Linehaul Backhaul Feasible route Customer time window

sd:0.5

sd:1.2

sd:0.7

sd:0.2
sd:0.3sd:0

sd:0.2 Service duration

<latexit sha1_base64="3DsdrsOQ3l8lsdKN9DOtlI63R7Q=">AAAB9HicdVDLSgMxFM3UV62vqktdBIvgapiptdZdwY3LFuwDOkPJpJk2NMlMk0yhDP0ONy4UcevHuPNvTKcVVPTAhcM593LvPUHMqNKO82Hl1tY3Nrfy24Wd3b39g+LhUVtFicSkhSMWyW6AFGFUkJammpFuLAniASOdYHy78DtTIhWNxL2excTnaChoSDHSRvI9lXAYQ4+RCWz2iyXHvnLcm+oldGwnQ0ZqbrkG3ZVSAis0+sV3bxDhhBOhMUNK9Vwn1n6KpKaYkXnBSxSJER6jIekZKhAnyk+zo+fw3CgDGEbSlNAwU79PpIgrNeOB6eRIj9RvbyH+5fUSHdb8lIo40UTg5aIwYVBHcJEAHFBJsGYzQxCW1NwK8QhJhLXJqWBC+PoU/k/aZdut2pVmpVQ/XcWRByfgDFwAF1yDOrgDDdACGEzAA3gCz9bUerRerNdla85azRyDH7DePgH3t5F6</latexit>X
p  Q

0.1

0.2

0.4
0.5

0.3

Multi-depots (MD)

Figure 1: VRP attributes. Linehaul demands (C), backhaul demands (B), time windows (TW), and multi-depot (MD) are
node attributes, whereas open routes (O), duration limits (L), and mixed backhaul (MB) mode are global attributes. Attribute
combinations can define new VRP variants.

the classic VRP by one or more attributes (see Figure 1). This results in a rich set of routing problems
with practical relevance. Each of these variants offers a unique generalization task for RouteFinder. We
describe the attributes in the following, separating them into node attributes and global attributes. Table 4 in
Appendix A provides a list of all 48 VRP variants considered in this work.

Node attributes

Demand and Vehicle Capacity (C) [q ∈ [0, Q]]: Every customer i ∈ Nc has a linehaul demand qi and is
serviced by vehicles with fixed capacity Q > 0. The total customer demand per vehicle cannot exceed its
capacity at any point.

Backhauls (B) [p ∈ [0, Q]]: Backhauls generalize demand to also account for return shipments. Customers
are either linehaul or backhaul customers. Linehaul customers require delivery of a demand qi that needs to
be transported from the depot to customer i (as in the CVRP), whereas backhaul customers need a pickup
of an amount pi that is transported from the client back to the depot. Vehicles can serve a combination of
linehaul and backhaul customers on a single route, but any linehaul customers must precede the backhaul
customers on the route. An application with returnable bottles is presented in Ropke & Pisinger (2006).

Time Windows (TW) [e, s, l ∈ [0, T ]3]: Every customer i ∈ Nc has a time window [ei, li] during which
service must begin. Service takes si time. The depot has a time window [e0, l0] = [0, T ] and a service duration
of s0 = 0. Vehicles must reach node i before li, but any early arrivals must wait at node i until ei before
service may start.

3



Published in Transactions on Machine Learning Research (09/2025)

Global attributes

Open Routes (O) [o ∈ {0, 1}]: Vehicles are not required to return to the depot after serving all customers.
Open routes can be found in applications with third-party drivers, who are often only compensated until
they have completed their last delivery (Li et al., 2007).

Duration Limits (L) [l ∈ [0, L]]: Imposes a limit on the total travel duration (or length) of each route,
balancing the workload across vehicles, and, e.g., limiting the duration of the work day.

Mixed Backhauls (MB) [µ ∈ {0, 1}]: Relaxes the strict precedence constraint of linehaul customers
preceding backhaul customers: with mixed backhauls, linehaul and backhaul customers may be mixed along
a route. The vehicle’s capacity must still be respected at any point along the route. Since both the current
linehaul and backhaul demands must be tracked per vehicle, this variant requires careful planning.

Multi-depot (MD) [m > 1]: Generalizes single-depot (m = 1) variants to multiple depot nodes m > 1
from which vehicles can start their tour. Each vehicle must return to its starting depot. This variant requires
decisions about depot-to-customer assignments, making the problem more realistic for organizations operating
from multiple facilities (Karakatič & Podgorelec, 2015).

3.2 Learning Neural Solvers for VRPs

Solving VRPs using Autoregressive Sequence Generation Autoregressive (AR) methods address
CO problems by constructing solutions sequentially. The process begins with encoding the problem instance
x (e.g., node and global attributes) using a trainable encoder fθ that maps x to an embedding h = fθ(x).
The solution a is then decoded based on h through a series of actions, where each action determines the next
step in the solution based on the current partial sequence. This is achieved using a decoder gθ. The encoding
and decoding process are formalized as:

πθ(a|x) ≜
T −1∏
t=1

gθ(at|at−1, ..., a0, h), (1a)

where a = (a1, ..., aT ) represents a feasible solution to the CO problem, T the steps in solution construction,
and πθ the stochastic solver mapping problem instance x to a.

Training VRP Solvers via Reinforcement Learning The solver πθ can be trained using either
supervised learning (SL) or reinforcement learning (RL). This paper focuses on RL due to its ability to train
solvers independently of the availability of optimal solutions. Under the RL framework, the training objective
for neural combinatorial optimization solvers is defined as:

θ∗ = argmax
θ

[
Ex∼P (x)

[
Ea∼πθ(a|x)[R(a, x)]

]]
, (2)

where P (x) is the distribution of problem instances, and R(a, x) represents the reward (i.e., the negative
cost), associated with the solution a for the given x. The above training problem can be tackled using various
RL algorithms such as REINFORCE and its modern variants (Kool et al., 2019; Kwon et al., 2020).

4 The RouteFinder Recipe

RouteFinder leverages attribute composition from Liu et al. (2024a); Zhou et al. (2024) to solve multiple
VRP variants. We treat different variants of the VRP as combinations of fundamental attributes (Section 3.1)
and use a common network to learn their representations. We go further than previous works and consider
different combinations of attributes within training batches (see Section 4.3.1). Figure 2 provides an overview
of RouteFinder’s architecture.

4



Published in Transactions on Machine Learning Research (09/2025)

Mixed Batch Training

CVRPB

OVRPLTW

OVRPBMLTW

C TW BO L

...
C TW BO L

C TW BO L

Node
Attributes

Global
Attributes

Encoder

Node Embedding

Global Embedding Encoder Layers

Decoder

CVRPB

OVRPBMLTW
...

Hidden States

Context

CVRPB

OVRPBMLTW
...

Context
Embedding

Decoder
Layers

Action Probabilities

Unified VRP
Environment

+ EAL

+ EAL

+ EAL

+ EAL...

...

CVRPB

OVRPBMLTW
...

Actions

...
reset() step()

N×

Policy
CVRPB

OVRPBMLTW
...

Solutions

...

...

...

done

CVRPB
OVRPBMLTW

OVRPLTW

Rewards

...

Normalized Rewards

Multi-task 
Reward Normalization

CVRPB OVRPLTW OVRPBMLTW

...

Figure 2: RouteFinder overview. The unified VRP environment is used for data generation and solution construction
(Section 4.1). Our Transformer-based encoder (Section 4.2.1) processes node and global embeddings (Section 4.2.2) of problem
instances. During training, we sample multiple variants in the same batch (Section 4.3.1) whose multi-task reward is then
normalized (Section 4.3.2). Efficient Adapter Layers (EAL) are employed for efficient fine-tuning to new variants (Section 4.4).

4.1 Unified VRP Environment

In previous works proposing multi-task learning for VRPs, like MTPOMO (Liu et al., 2024a) and MVMoE
(Zhou et al., 2024), instance variants (CVRP, VRPTW, etc.) are sampled out of the set of available variants
during training. Every instance within that batch is then of the same problem category. This can bias the
optimization at each gradient step toward a specific task, potentially hindering stable and effective training
for a foundation model. We thus propose to learn across problems throughout training and include instances
of various variants within each training batch.

We define an environment capable of modeling all of the previously discussed VRP attributes (see Section 3.1)
simultaneously. Essentially, we build an MDOVRPMBLTW environment: a multi-depot open route vehicle
routing problem with linehauls, (mixed) backhauls, distance limit, and time windows. The environment
supports subsets of the MDOVRPMBLTW by turning attributes “on” or “off”. For example, if an instance
does not have time window constraints, the time windows attribute of each customer is set to [0, ∞], rendering
them irrelevant during solution construction. This modular attribute composition allows us to model up
to 48 different problem types with one single environment. This approach can be easily extended, e.g., by
including different location sampling mechanisms and new constraints, allowing for even more future problem
variants to be modeled within the same environment.

4.2 Model

4.2.1 Transformer-based Architecture

Multi-Head Attention

Norm

Feed Forward

Norm

RMS Norm

Multi-Head Attention

RMS Norm

Feed Forward
SwiGLU

N× N×

Attention Model RouteFinder Transformer

Figure 3: Attention model structure v.s. RouteFinder
transformer structure.

The RouteFinder transformer encoder architecture
shown in Figure 3 introduces key enhancements to the
Attention Model (AM) from Kool et al. (2019), the de-
facto standard in recent works (Liu et al., 2024a; Zhou
et al., 2024). Firstly, the RouteFinder transformer
encoder employs Root Mean Square (RMS) normaliza-
tion (Zhang & Sennrich, 2019), improving stability and
training speed. Secondly, we transition from post-norm to
pre-norm in the transformer layers, applying normalization
before the residual connections, which enhances gradient
flow and promotes faster convergence (Jiang et al., 2024b).
Thirdly, RouteFinder uses a Feed Forward SwiGLU,
(Shazeer, 2020), an extension of the Gated Linear Unit

5



Published in Transactions on Machine Learning Research (09/2025)

(GLU) (Dauphin et al., 2017), instead of the AM’s ReLU-based feed-forward network. This enhances the
model’s capacity to capture complex relationships in the data. Finally, we employ FlashAttention (Dao et al.,
2022; Dao, 2024) in the Multi-Head Attention layer of all models to enhance overall performance. These
improvements build on recent advances in foundation models in areas such as language modeling and biology
(Dubey et al., 2024; Nguyen et al., 2024). By building on modern architectures, we create a robust foundation
model for VRPs. Further details on architecture and modeling are provided in Appendix B.

4.2.2 Global Attribute Embeddings

Global attributes as outlined in Section 3.1 are essential for modeling VRPs. For instance, given an open
(O) attribute, the solver may find optimal routes that do not necessarily loop back to the starting depot.
Previous multi-task learning models for VRPs (Liu et al., 2024a; Zhou et al., 2024) project such features
on the shallow decoder as dynamic features. However, such a design can be suboptimal, since the deep
transformer layers carry out most of the learning and can enable effective attribute mixing, which is essential
for understanding a (new) problem. We therefore design Global Attribute Embeddings for effective problem
representation, which incorporate problem variants and help the deep layers understand which problem is
being faced. Global attributes ϕ0, . . . , ϕk are projected via a projection layer:

h0
g = fθ([ϕ0, . . . , ϕk]), fθ : Rk → Rd (3)

into d-dimensional space. Given our unified VRP representation, some attributes, such as the duration limit
l for unconstrained VRPs, might be ∞. These attributes are padded as 0s before being processed by the
deep transformer layers. We highlight the significance of Global Attribute Embeddings in Appendix D.6,
where an analysis of the t-SNE latent space (Van der Maaten & Hinton, 2008) provides insights into their
interpretability and importance.

4.3 Training

4.3.1 Mixed Batch Training

Optimizing a neural solver for tackling multiple tasks requires careful consideration of its training scheme,
which needs to be robust against different variant distributions. We introduce a flexible approach which we
call Mixed Batch Training (MBT) to efficiently reuse a single dataset to generate multiple problem variants.
This optimizes data storage and processing.

Let X be a dataset of MDOVRPMBLTW problem instances and V be the set of attributes, where each
attribute ν ∈ V is associated with a sampling probability pν . For each instance x ∈ X we can write
x((11)ν∈V ) to conveniently express using indicator functions 11 for each attribute ν ∈ V that the instance x
has attribute ν. The sampling procedure of MBT can be defined as follows:

Xsubsampled = {x((1rand(0,1)<pν
)ν∈V )}x∈X ,

where rand(0, 1) draws an independent sample from U [0, 1]. To sample uniformly across all problem variants,
we set pν = 1

2 , ∀ν ∈ V .

Note that the MDOVRPMBLTW problem variant is the most general problem variant we study in this paper
and can be used to generate any of the other variants by selectively removing any combination of the global
attributes (MD), (O), (MB) and (L), and node attributes (B) and (TW). We first consider OVRPBLTW as
the most general problem variant from which we sample other variants. Then, for zero-shot generalization
and few-shot learning, we additionally sample with multiple depots (MD) and mixed backhauls (MB). This
increases the number of distinct variants from 16 variants that can be generated from OVRPBLTW to 48
variants that can be generated from MDOVRPMBLTW.

MBT is a flexible and scalable approach, capable of adapting to any problem where different constraints
or features might be selectively activated or deactivated. Figure 4 illustrates the stabilizing effect of MBT
during training. Specifically, MBT significantly reduces the variance of the training loss, leading to faster and
more stable convergence, as demonstrated in our experimental results in Section 5.2.

6



Published in Transactions on Machine Learning Research (09/2025)

Without Mixed Batch Training With Mixed Batch Training

Optimal Optimal
CVRP

VRPTW

OVRPB

…

CVRP
VRPTW

OVRPB

…

…

…

0 20000 40000 60000 80000 100000
Step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

L
os

s

MBT

No MBT

Figure 4: [Left] Training without MBT leads to instability, since at each step the optimization is biased toward a single task.
[Middle] Training RouteFinder with MBT allows for stable training. [Right] Effect of MBT on the loss during training.

4.3.2 Multi-task Reward Normalization

As explained in Section 3.2, the objective for RL-based NCO solvers is to maximize the expected reward.
However, in multi-task learning settings different problems can yield rewards on different scales. To counteract
potential biases during learning, we propose to apply reward normalization per problem variant. We implement
four simple normalization techniques to calculate the normalized rewards r

(k)
norm,t for all problem variants

k ∈ {1, ..., K} at training steps t ≥ 1: a) subtraction of the simple mean reward, b) division through the simple
mean reward, c) subtraction of the exponentially smoothed mean, and d) division through the exponentially
smoothed mean. We calculate the average reward r̂

(k)
t up to training step t using the average batch reward

r̄
(k)
t at training step t (see Appendix C.1). The simple mean reward at step t is calculated as:

r̂
(k)
t =

(
(t − 1) · r̂

(k)
t−1 + r̄

(k)
t

)
/t, t ≥ 1. (4)

For the exponential moving average we set r̂
(k)
1 = r̄

(k)
1 and calculate the values for t > 1 based on Hunter

(1986) using a smoothing factor α:

r̂
(k)
t = (1 − α) · r̂

(k)
t−1 + α · r̄

(k)
t , 0 < α < 1, t > 1. (5)

Normalized rewards a)—d) can be calculated from original rewards r
(k)
t with r

(k)
norm,t = r

(k)
t − r̂

(k)
t and

r
(k)
norm,t = r

(k)
t /|r̂(k)

t | for subtraction and division variants, respectively. Let ξ(a, x) = r
(k)
norm(a, x) be a function

calculating the normalized reward for instance x that additionally maps instance x to variant k. The
multi-task reward-normalized gradient becomes:

∇θJ(θ) ≈ 1
N

N∑
i=1

ξ(ai, x) − 1
N

N∑
j=1

ξ(aj , x)

 ∇θ log pθ(ai|x), (6)

i.e., we employ the REINFORCE loss function with the POMO (Kwon et al., 2020) shared mean baseline
(right side of the parenthesis) to improve convergence, where both the reward and the shared baseline are
normalized by ξ.

4.4 Efficient Adapter Layers: Finetuning to Unseen Attributes

Previous multi-task learning works (Liu et al., 2024a; Zhou et al., 2024) train in environments of single-
attribute VRP variants and, using compositionality (Ruis et al., 2021), achieve promising results on zero-shot
generalization to VRP variants combining these individual attributes. In RouteFinder, we go a step
further and investigate how to efficiently generalize our pre-trained foundation model to variants with unseen
attributes. Lin et al. (2024) propose pretraining a backbone model, on top of which specific Adapter Layers
(AL) can be applied for finetuning to new problems. The rationale is that the backbone (i.e., the encoder
layers) may capture transferable knowledge. However, doing so excludes previous information accumulated in

7



Published in Transactions on Machine Learning Research (09/2025)

the projection layers from the raw attribute features to the hidden space, complicating optimization. For
example, if the first two out of k dimensions encoded the Euclidean locations of nodes as (x, y), re-initializing
a new adapter layer from scratch will eliminate such transferable knowledge. Therefore, we propose Efficient
Adapter Layers (EAL), an effective approach to few-shot learning for VRP foundation models.

Consider a linear projection layer W ∈ Rk×d as the original weight matrix for the projection from the raw
attribute to latent space, where k is the number of attributes and d is the hidden dimension. For simplicity,
we consider unbiased linear projections to the latent space. This can be readily extended to general affine
projections using a bias term. To accommodate l new attributes, EAL augments W with zeros. The new
matrix W′ =

[
W 0

]⊤ can be written as:

W′⊤ =

w00 · · · w0k 0 · · · 0
...

. . .
...

...
. . .

...
wd0 · · · wdk 0 · · · 0




k l

d

where 0 ∈ Rl×d is a matrix of zeros. The augmented matrix W′ retains the original k attributes and adds l
new attributes, which are initialized to zero. Doing so does not affect the model for seen attributes like AL
does. Instead, these l dimensions have no effect until fine-tuning on new variants occurs. This allows for new
attributes to be included in any part of the model via EAL, as shown in Figure 2.

5 Experiments

In this section, we empirically demonstrate the state-of-the-art performance of RouteFinder in extensive
experiments on 48 VRP variants. Our code is publicly available1. We address the following research questions:

(RQ1) Does RouteFinder outperform state-of-the-art foundation models on different VRP variants?
(RQ2) How do the individual novel components of RouteFinder contribute to its performance?
(RQ3) Is the proposed EAL effective in finetuning RouteFinder models to unseen VRP variants?

Hardware All training runs are conducted on NVIDIA A100 GPUs and take between 9 to 24 hours per
model. Evaluation is conducted on an AMD Ryzen Threadripper 3960X 24-core CPU with a single RTX
3090 GPU.

Baselines Traditional solvers: We use PyVRP (Wouda et al., 2024), an open-source, state-of-the-art
heuristic VRP solver built on top of HGS-CVRP (Vidal, 2022), and the popular Google OR-Tools (Perron &
Furnon, 2023). Both solve each instance on a single CPU core with a time limit of 10 and 20 seconds for
instances with 50 and 100 nodes, respectively. We parallelize traditional solvers across 16 CPU cores as in
Zhou et al. (2024). Neural solvers: We consider recent multi-task learning baselines for the VRP, including
the recent MTPOMO (Liu et al., 2024a), which is based on POMO (Kwon et al., 2020), and MVMoE (Zhou
et al., 2024), which introduces mixture-of-experts (Fedus et al., 2022) to improve the model performance.
Our models: We consider three versions of RouteFinder, denoted as RF in the tables: one considering the
(MT)POMO encoder (RF-POMO), one with the MVMoE model with four experts and hierarchical gating
(RF-MoE), and one with our modern Transformer-based Encoder (RF-TE). We use Reward Normalization
with division through the exponentially smoothed mean with α = 0.25. Further details are available in
Appendix B.

Data Generation To train and evaluate RouteFinder across a diverse set of VRP variants, we employ a
unified data generation process detailed in Appendix A.1. Problem instances are generated using our modular
environment that supports all combinations of seven core VRP attributes: capacity (C), open routes (O),

1https://github.com/ai4co/routefinder

8

https://github.com/ai4co/routefinder


Published in Transactions on Machine Learning Research (09/2025)

Table 1: Performance on 1000 test VRP instances. The lower, the better (↓). “∗” represents the best-known solutions.
RouteFinder (RF) models outperform state-of-the-art neural baselines in all settings.

Solver n = 50 n = 100 Solver n = 50 n = 100

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

C
V

R
P

HGS-PyVRP 10.372 * 10.4m 15.628 * 20.8m

V
R

PT
W

HGS-PyVRP 16.031 * 10.4m 25.423 * 20.8m
OR-Tools 10.572 1.907% 10.4m 16.280 4.178% 20.8m OR-Tools 16.089 0.347% 10.4m 25.814 1.506% 20.8m
MTPOMO 10.518 1.411% 2s 15.934 1.988% 7s MTPOMO 16.410 2.364% 1s 26.412 3.873% 7s
MVMoE 10.501 1.242% 2s 15.888 1.694% 9s MVMoE 16.404 2.329% 2s 26.389 3.788% 9s
RF-POMO 10.508 1.314% 2s 15.908 1.826% 7s RF-POMO 16.367 2.094% 1s 26.336 3.575% 7s
RF-MoE 10.499 1.226% 2s 15.876 1.622% 9s RF-MoE 16.389 2.234% 2s 26.322 3.519% 9s
RF-TE 10.504 1.274% 2s 15.857 1.505% 7s RF-TE 16.364 2.077% 1s 26.235 3.178% 7s

O
V

R
P

HGS-PyVRP 6.507 * 10.4m 9.725 * 20.8m

V
R

PL

HGS-PyVRP 10.587 * 10.4m 15.766 * 20.8m
OR-Tools 6.553 0.686% 10.4m 9.995 2.732% 20.8m OR-Tools 10.570 2.343% 10.4m 16.466 5.302% 20.8m
MTPOMO 6.718 3.209% 1s 10.210 4.965% 6s MTPOMO 10.775 1.734% 1s 16.149 2.434% 7s
MVMoE 6.702 2.965% 2s 10.177 4.621% 9s MVMoE 10.751 1.505% 2s 16.099 2.115% 9s
RF-POMO 6.698 2.904% 1s 10.180 4.659% 6s RF-POMO 10.751 1.523% 1s 16.107 2.174% 6s
RF-MoE 6.697 2.886% 2s 10.139 4.229% 9s RF-MoE 10.737 1.388% 2s 16.070 1.941% 9s
RF-TE 6.684 2.687% 1s 10.121 4.055% 6s RF-TE 10.749 1.502% 1s 16.051 1.827% 6s

V
R

PB

HGS-PyVRP 9.687 * 10.4m 14.377 * 20.8m

O
V

R
PT

W

HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
OR-Tools 9.802 1.159% 10.4m 14.933 3.853% 20.8m OR-Tools 10.519 0.078% 10.4m 17.027 0.583% 20.8m
MTPOMO 10.033 3.564% 1s 15.082 4.922% 6s MTPOMO 10.668 1.479% 1s 17.420 2.892% 7s
MVMoE 10.005 3.270% 2s 15.023 4.508% 8s MVMoE 10.669 1.492% 2s 17.416 2.872% 10s
RF-POMO 9.996 3.174% 1s 15.016 4.468% 6s RF-POMO 10.657 1.378% 1s 17.391 2.720% 7s
RF-MoE 9.980 3.015% 2s 14.973 4.164% 8s RF-MoE 10.674 1.539% 2s 17.387 2.697% 10s
RF-TE 9.977 2.989% 1s 14.942 3.952% 6s RF-TE 10.652 1.326% 1s 17.327 2.346% 7s

V
R

PB
L

HGS-PyVRP 10.186 * 10.4m 14.779 * 20.8m
V

R
PB

LT
W

HGS-PyVRP 18.361 * 10.4m 29.026 * 20.8m
OR-Tools 10.331 1.390% 10.4m 15.426 4.338% 20.8m OR-Tools 18.422 0.332% 10.4m 29.830 2.770% 20.8m
MTPOMO 10.672 4.697% 1s 15.712 6.251% 7s MTPOMO 18.990 2.128% 1s 30.898 3.624% 7s
MVMoE 10.637 4.354% 2s 15.640 5.758% 9s MVMoE 18.985 2.100% 2s 30.892 3.608% 10s
RF-POMO 10.593 3.942% 1s 15.628 5.695% 6s RF-POMO 18.937 1.851% 1s 30.796 3.284% 7s
RF-MoE 10.575 3.765% 2s 15.541 5.121% 9s RF-MoE 18.957 1.960% 2s 30.808 3.323% 10s
RF-TE 10.578 3.803% 1s 15.528 5.039% 6s RF-TE 18.941 1.877% 1s 30.688 2.923% 7s

V
R

PB
T

W

HGS-PyVRP 18.292 * 10.4m 29.467 * 20.8m

V
R

PL
T

W

HGS-PyVRP 16.356 * 10.4m 25.757 * 20.8m
OR-Tools 18.366 0.383% 10.4m 29.945 1.597% 20.8m OR-Tools 16.441 0.499% 10.4m 26.259 1.899% 20.8m
MTPOMO 18.639 1.878% 1s 30.437 3.285% 7s MTPOMO 16.824 2.823% 1s 26.891 4.368% 7s
MVMoE 18.640 1.883% 2s 30.436 3.281% 9s MVMoE 16.811 2.750% 2s 26.868 4.277% 9s
RF-POMO 18.601 1.670% 1s 30.341 2.961% 7s RF-POMO 16.750 2.382% 1s 26.783 3.948% 7s
RF-MoE 18.616 1.757% 2s 30.341 2.954% 9s RF-MoE 16.777 2.550% 2s 26.774 3.912% 9s
RF-TE 18.600 1.676% 1s 30.241 2.619% 7s RF-TE 16.762 2.454% 1s 26.689 3.579% 7s

O
V

R
PB

HGS-PyVRP 6.898 * 10.4m 10.335 * 20.8m

O
V

R
PB

L

HGS-PyVRP 6.899 * 10.4m 10.335 * 20.8m
OR-Tools 6.928 0.412% 10.4m 10.577 2.315% 20.8m OR-Tools 6.927 0.386% 10.4m 10.582 2.363% 20.8m
MTPOMO 7.108 3.005% 1s 10.878 5.224% 7s MTPOMO 7.112 3.055% 1s 10.884 5.276% 6s
MVMoE 7.089 2.741% 2s 10.840 4.861% 9s MVMoE 7.098 2.846% 2s 10.847 4.928% 9s
RF-POMO 7.086 2.688% 1s 10.836 4.821% 7s RF-POMO 7.087 2.693% 1s 10.837 4.830% 6s
RF-MoE 7.080 2.513% 2s 10.805 4.522% 9s RF-MoE 7.083 2.635% 2s 10.806 4.534% 9s
RF-TE 7.071 2.479% 1s 10.772 4.208% 6s RF-TE 7.074 2.508% 1s 10.778 4.262% 6s

O
V

R
PB

LT
W

HGS-PyVRP 11.668 * 10.4m 19.156 * 20.8m

O
V

R
PB

T
W

HGS-PyVRP 11.669 * 10.4m 19.156 * 20.8m
OR-Tools 11.681 0.106% 10.4m 19.305 0.767% 20.8m OR-Tools 11.682 0.109% 10.4m 19.303 0.757% 20.8m
MTPOMO 11.817 1.260% 1s 19.637 2.496% 7s MTPOMO 11.814 1.229% 1s 19.635 2.485% 7s
MVMoE 11.822 1.301% 2s 19.641 2.518% 10s MVMoE 11.819 1.271% 2s 19.638 2.503% 10s
RF-POMO 11.805 1.157% 1s 19.609 2.344% 8s RF-POMO 11.804 1.148% 1s 19.607 2.339% 7s
RF-MoE 11.824 1.312% 2s 19.607 2.334% 10s RF-MoE 11.823 1.304% 2s 19.606 2.328% 10s
RF-TE 11.805 1.150% 1s 19.551 2.048% 7s RF-TE 11.805 1.151% 1s 19.550 2.042% 7s

O
V

R
PL

HGS-PyVRP 6.507 * 10.4m 9.724 * 20.8m

O
V

R
PL

T
W

HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
OR-Tools 6.552 0.668% 10.4m 10.001 2.791% 20.8m OR-Tools 10.497 0.114% 10.4m 17.023 0.728% 20.8m
MTPOMO 6.719 3.227% 1s 10.214 5.002% 6s MTPOMO 10.670 1.500% 1s 17.420 2.889% 7s
MVMoE 6.707 3.030% 2s 10.184 4.696% 9s MVMoE 10.671 1.511% 2s 17.419 2.885% 10s
RF-POMO 6.701 2.949% 1s 10.180 4.659% 6s RF-POMO 10.657 1.375% 1s 17.393 2.731% 7s
RF-MoE 6.696 2.864% 2s 10.140 4.249% 9s RF-MoE 10.673 1.532% 2s 17.386 2.693% 10s
RF-TE 6.686 2.721% 1s 10.120 4.052% 6s RF-TE 10.653 1.341% 1s 17.327 2.347% 7s

backhauls (B), duration limits (L), time windows (TW), mixed backhauls (MB), and multi-depots (MD).
Node locations are uniformly sampled in [0, 1]2, while vehicle capacity is set relative to the number of nodes,
i.e., C = 40 for n = 50 and C = 50 for n = 100. Linehaul and backhaul demands are integers uniformly
sampled from {1, . . . , 9}, with each customer having either a linehaul or backhaul demand with probability
0.8 and 0.2, respectively. Time windows are generated using a randomized offset procedure ensuring feasibility
with lengths sampled uniformly from [0.18, 0.2], and service times are sampled uniformly from [0.15, 0.18].
Duration limits are drawn from the distribution described in Appendix A.1, i.e., ensuring reachability while

9



Published in Transactions on Machine Learning Research (09/2025)

introducing meaningful constraints. For multi-depot problems, three depots are used by default. Attribute
combinations are sampled uniformly using mixed batch training with with pν = 0.5, ∀ν ∈ V to cover all
variants equally.

Training Each model is trained for 300 epochs on 100,000 VRP instances that are generated on the fly
and include all attributes – except for (MB) and (MD) which are only used in finetuning. We use the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of 3 × 10−4 and batch size of 256. At epochs 270 and
295, the learning rate is multiplied by 0.1. Note that our setup differs from the one in Liu et al. (2024a) and
Zhou et al. (2024) in that we do not artificially restrict the variants with single attributes (such as only (B)
or (TW)) but train on all available variants, similarly to how LLMs are trained on all available data. This is
readily available through our unified VRP environment (more details in Appendix A).

Evaluation We evaluate all approaches on 1,000 instances of held-out test data for each size n of each variant.
We roll out greedy solutions for all NCO approaches using multi-starts and 8× symmetric augmentations
resulting in n × 8 solutions per instance from which the best is selected (Liu et al., 2024a; Zhou et al., 2024).

5.1 (RQ1) Main Results

In-distribution Table 1 shows the in-distribution testing results for 50 and 100 nodes n. RouteFinder
models consistently outperform neural baselines across all variants by more than 10%. While changing the
encoder to the MVMoE’s structure (RF-MoE) may slightly improve the performance in limited settings – with
a higher inference cost due to the more complex structure of mixture-of-experts – the proposed Transformer
Encoder (RF-TE) outperforms the other models in almost all settings, particularly for n = 100.

Out-of-distribution For CVRP, the training distribution with 100 nodes considers a vehicle capacity
C = 50. We study generalization over different capacities C ∈ {30, 50, 70, 90, 110, 130, 150, 200} and show the
results in Table 2. POMO trained on CVRP performs best for capacities close to the training distribution,
but RouteFinder demonstrates superior generalization and finds the best solutions for larger capacities.

Table 2: Comparison of our model with single-task POMO on out-of-distribution CVRP instances.

Vehicle Capacity 30 50 70 90 110 130 150 200
Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

POMO_CVRP 22.95 * 15.72 * 12.91 * 11.48 * 10.64 * 10.04 * 9.75 * 9.24 *
MTPOMO 23.29 1.50% 15.87 0.94% 13.07 1.24% 11.69 1.77% 10.88 2.30% 10.34 2.90% 10.04 2.97% 9.59 3.77%
MVMoE 23.04 0.43% 15.83 0.67% 12.99 0.61% 11.54 0.49% 10.67 0.33% 10.06 0.12% 9.74 -0.09% 9.21 -0.28%
RF-POMO 23.10 0.69% 15.84 0.77% 13.03 0.90% 11.61 1.07% 10.76 1.17% 10.17 1.26% 9.86 1.12% 9.38 1.51%
RF-MoE 23.13 0.80% 15.81 0.58% 13.00 0.74% 11.59 0.89% 10.74 0.92% 10.14 0.95% 9.82 0.69% 9.31 0.75%
RF-TE 22.96 0.06% 15.79 0.44% 12.95 0.29% 11.47 -0.07% 10.56 -0.71% 9.92 -1.22% 9.59 -1.67% 9.02 -2.36%

MTPOMO

RouteFinder (full)

No Transformer Encoder

No Global Embeddings

No Mixed Batch
Training

No Reward Normalization

3.2

3.4

3.6

3.8

4.0

A
ve

ra
ge

G
ap

(%
)

Figure 5: Ablation study on RouteFinder components.

We further evaluate out-of-distribution val-
ues for additional attributes (Appendix D.1)
and large-scale CVRPLIB instances (Ap-
pendix D.2), and find that RouteFinder can
consistently generalize more robustly in real-
world settings than neural baselines, including
single-variant POMO (Kwon et al., 2020).

5.2 (RQ2) Ablation Studies

Contribution of components We conduct
ablation studies to evaluate the impact of our
individual contributions.

Figure 5 compares the performance of RouteFinder (RF-TE) against its variants with ablated components,
using the results for MTPOMO as a baseline. All components contribute to the performance of RouteFinder.

10



Published in Transactions on Machine Learning Research (09/2025)

Effect of MBT on training loss and convergence speed We compare two RouteFinder models
trained with identical hyperparameters on n = 50, one with and one without MBT. By keeping the overall
sampling distribution the same but mixing variants in the same batch, MBT allows for a more stable gradient
across the different tasks, resulting in a substantially more stable loss compared to training without it.

In Figure 6 we show the validation gaps on held-out instances exemplarily for two variants, CVRP and
OVRPBLTW. In addition to stabilizing the training loss, MBT also speeds up convergence. Figure 11 in
Appendix D.5.1 shows that this holds for all 16 variants that can be generated from OVRPBLTW.

0 50 100 150 200 250
Epochs

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

G
ap

(%
)

CVRP

MBT

No MBT

0 50 100 150 200 250
Epochs

1.0

1.2

1.4

1.6

1.8

2.0

G
ap

(%
)

OVRPBLTW

Figure 6: Mixed Batch Training (MBT) improves convergence during training, shown here for the CVRP and OVRPBLTW.

Further ablation studies We study the ablation of single Transformer Encoder components and find
that the combination of all components provides the best performance (Appendix D.3). We further study
the effect of different Reward Normalization techniques (Appendix D.4), and the importance of MBT for
convergence speed (Appendix D.5.1) and its effect on imbalanced variant distributions (Appendix D.5.2).
Finally, we visualize the rich latent space of RouteFinder via t-SNE (Van der Maaten & Hinton, 2008) and
compare it to those from MTPOMO and MVMoE, where we find that RouteFinder generates more and
better defined clusters, indicating a better-learned representation due to the Global Attribute Embeddings
(Appendix D.6).

5.3 (RQ3) Finetuning with EAL

We finally evaluate RouteFinder (RF-TE) in few-shot learning, finetuning with our proposed EAL to 32
unseen variants, introducing the multi-depot (MD) and mixed backhauls (MB) attributes. Most of these
variants are modeled with a learning approach for the first time in this work. We compare 1) zero-shot
performance of RouteFinder, 2) training a new model from scratch, 3) AL from Lin et al. (2024), which
adds new adapter layers while keeping the pre-trained backbone, and 4) our proposed EAL. We train a model
from scratch and finetune RouteFinder with AL and EAL similarly to the main experiments, but for 10
epochs and 10,000 instances sampled for each. Table 3 shows that EAL consistently outperforms baselines in
few-shot learning, including a 20% relative improvement over AL. We also compare AL and EAL at “step 0”,
i.e., after replacing the new adapter layers. Notably, while AL with the untrained new layers greatly degrades
the performance unless further training is performed, EAL maintains the zero-shot performance without
additional training, providing a much better starting point.

We conduct additional experiments on zero-shot generalization and finetuning across three different settings
of unseen variants in order of difficulty: (a) mixed backhaul, (b) multi-depot, and (c) mixed backhaul & multi-
depot. We again train for 10 epochs with 10,000 instances sampled for each epoch, and use RouteFinder
models with Transformer Encoder (RF-TE). We show the validation gap trends for these three settings in
Figure 7, comparing training from scratch, finetuning with AL, and with EAL. For AL and EAL we continue
training from the checkpoints that result from the main experiments in Section 5.1. We can see that EAL,
having a much better starting point than AL and training from scratch, clearly dominates the other two
methods. This dominance becomes more pronounced with increasing difficulty of the finetuning task from
MB to MB&MD, indicating it is a suitable method for efficient finetuning to new tasks.

11



Published in Transactions on Machine Learning Research (09/2025)

Table 3: Finetuning performance on 1,000 with new multi-depot (MD) and mixed backhaul (MB) variants. RouteFinder’s
EAL maintains the zero-shot performance and performs significantly better than AL (Lin et al., 2024).

MDVRPMB MDOVRPMB MDVRPMBL MDVRPMBTW MDOVRPMBL MDOVRPMBTW MDVRPMBLTW MDOVRPMBLTW
Method Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap
HGS-PyVRP 10.68 * 7.66 * 10.71 * 19.29 * 7.66 * 12.96 * 19.31 * 12.96 *
OR-Tools 12.22 14.37% 8.88 15.83% 12.23 14.23% 22.39 16.12% 8.87 15.73% 14.49 11.79% 22.43 16.16% 14.49 11.79%
Zero-shot 14.99 40.80% 10.77 40.67% 15.28 43.27% 28.43 47.93% 10.76 40.62% 18.49 43.14% 28.80 49.69% 18.50 43.17%
Train (scratch) 13.12 22.88% 9.37 22.32% 13.24 23.72% 22.85 18.56% 9.38 22.44% 15.13 16.75% 22.90 18.65% 15.11 16.60%
AL (step 0) 34.12 223.14% 26.36 245.53% 27.41 158.88% 48.94 155.28% 24.11 216.01% 31.53 144.89% 46.80 143.89% 30.08 133.48%
AL 13.10 22.70% 9.36 22.14% 13.20 23.36% 22.90 18.76% 9.38 22.46% 15.28 17.91% 23.02 19.26% 15.39 18.77%
EAL (step 0) 14.99 40.80% 10.77 40.67% 15.28 43.27% 28.43 47.93% 10.76 40.62% 18.49 43.14% 28.80 49.69% 18.50 43.17%
EAL 12.70 18.98% 8.53 11.35% 12.68 18.56% 21.41 11.05% 8.54 11.43% 13.93 7.41% 21.44 11.09% 13.91 7.32%

0 2 4 6 8 10

Epochs

5

10

15

20

25

30

A
ve

ra
ge

G
ap

A
cr

os
s

Ta
sk

s
(%

) EAL
AL
Scratch

(a) Mixed backhaul

0 2 4 6 8 10
Epochs

10

15

20

25

30

35

A
ve

ra
ge

G
ap

A
cr

os
s

T
as

k
s

(%
) EAL

AL

Scratch

(b) Multi-depot

0 2 4 6 8 10
Epochs

20

30

40

A
ve

ra
ge

G
ap

A
cr

os
s

T
as

k
s

(%
) EAL

AL

Scratch

(c) Mixed backhaul & multi-depot

Figure 7: Validation gaps averaged across new tasks including unseen features (a) mixed backhaul (MB), (b) multi-depot (MD),
and (c) their combination (MB&MD) for retraining from scratch, AL and EAL finetuning.

In Appendix D.7 we provide more detailed results on finetuning for unseen variants as well as additional
results on finetuning with EAL for single-variant models. These results show that finetuning RouteFinder
to unseen attributes achieves better results than finetuning single-variant models based on POMO. This is a
strong argument for foundation models in routing, as the ability to quickly adapt to new tasks is critical in
real-world routing problems.

6 Conclusion

In this work, we presented RouteFinder, a comprehensive framework to develop foundation models for
VRPs. Extensive evaluations on 48 VRP variants showed that RouteFinder outperforms state-of-the-art
neural baselines. RouteFinder represents an early attempt to learn a foundation model across VRP variants.
While demonstrating strong generalization, it does so at a slight expense in solution quality for in-distribution
results compared to models trained on single variants. For future work, we plan to extend RouteFinder
to support further variants in the vast VRP literature. We also intend to improve the model with exciting
research directions, including decomposition methods (Ye et al., 2024c; Zheng et al., 2024) and end-to-end
construction and improvement (Kong et al., 2024).

Acknowledgements

We are deeply grateful to the members of the AI4CO open research community for their invaluable contributions
to RouteFinder and related projects, including RL4CO. Our thanks also extend to OMELET for providing
additional computing resources. This work was supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant, funded by the Korean government (MSIT) [Grant No.
2022-0-01032, Development of Collective Collaboration Intelligence Framework for Internet of Autonomous
Things]. Nayeli Gast Zepeda and André Hottung received support from the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Grant No. 521243122. We also gratefully acknowledge the
Paderborn Center for Parallel Computing (PC2) for providing valuable computing time for this project.

12



Published in Transactions on Machine Learning Research (09/2025)

References
Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger,

Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure prediction of biomolecular
interactions with AlphaFold 3. Nature, pp. 1–3, 2024.

Luca Accorsi and Daniele Vigo. A fast and scalable heuristic for the solution of large-scale capacitated vehicle
routing problems. Transportation Science, 55(4):832–856, 2021.

Luca Accorsi and Daniele Vigo. Routing one million customers in a handful of minutes. Computers &
Operations Research, 164:106562, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

The Jin Ai and Voratas Kachitvichyanukul. A particle swarm optimization for the vehicle routing problem
with simultaneous pickup and delivery. Computers & Operations Research, 36(5):1693–1702, 2009.

Sanjeev Arora, Wei Hu, and Pravesh K Kothari. An analysis of the t-sne algorithm for data visualization. In
Conference on learning theory, pp. 1455–1462. PMLR, 2018.

Mustafa Avci and Seyda Topaloglu. An adaptive local search algorithm for vehicle routing problem with
simultaneous and mixed pickups and deliveries. Computers & Industrial Engineering, 83:15–29, 2015.

Ahmad Bdeir, Jonas K Falkner, and Lars Schmidt-Thieme. Attention, filling in the gaps for generalization
in routing problems. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 505–520. Springer, 2022.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui Wang,
Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou, Jieyi Bi,
Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool, Zhiguang Cao, Jie
Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun Kwon, Lin Xie, and Jinkyoo Park.
RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark. In Proceedings
of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2025.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee. Learning
generalizable models for vehicle routing problems via knowledge distillation. Advances in Neural Information
Processing Systems, 35:31226–31238, 2022.

Aigerim Bogyrbayeva, Meraryslan Meraliyev, Taukekhan Mustakhov, and Bissenbay Dauletbayev. Learning
to solve vehicle routing problems: A survey. IEEE Transactions on Intelligent Transportation Systems,
2024.

Léo Boisvert, Hélène Verhaeghe, and Quentin Cappart. Towards a Generic Representation of Combinatorial
Problems for Learning-Based Approaches. In International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pp. 99–108. Springer, 2024.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre Laterre,
and Tom Barrett. Combinatorial optimization with policy adaptation using latent space search. Advances
in Neural Information Processing Systems, 36, 2024.

Xinwei Chen, Yurui Li, Yifan Yang, Li Zhang, Shijian Li, and Gang Pan. Extnco: A Fine-Grained Divide-
and-Conquer Approach for Extending Nco to Solve Large-Scale Traveling Salesman Problem. Available at
SSRN 4679437, 2024.

13



Published in Transactions on Machine Learning Research (09/2025)

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and Youngjune
Gwon. Simulation-guided beam search for neural combinatorial optimization. Advances in Neural Informa-
tion Processing Systems, 35:8760–8772, 2022.

Tri Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. International
Conference on Learning Representations, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. Advances in Neural Information Processing Systems, 35:16344–16359,
2022.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated convolutional
networks. In International conference on machine learning, pp. 933–941. PMLR, 2017.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO: Bisimulation
Quotienting for Efficient Neural Combinatorial Optimization. Advances in Neural Information Processing
Systems, 36, 2024.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. GOAL: A Generalist Combinatorial Optimization
Agent Learning. In International Conference on Learning Representations, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning. arXiv preprint
arXiv:2209.01667, 2022.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily large tsp
instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 7474–7482, 2021.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers for
vehicle routing problems via ensemble with transferrable local policy. IJCAI, 2024.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial
optimization with graph convolutional neural networks. Advances in neural information processing systems,
32, 2019.

Marc Goetschalckx and Charlotte Jacobs-Blecha. The vehicle routing problem with backhauls. European
Journal of Operational Research, 42(1):39–51, 1989. ISSN 0377-2217. doi: 10.1016/0377-2217(89)90057-X.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Winner
Takes It All: Training Performant RL Populations for Combinatorial Optimization. Advances in Neural
Information Processing Systems, 36, 2024.

Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman
and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle routing
problem. European Conference on Artificial Intelligence, 2020.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial optimization
problems. International Conference on Learning Representations, 2022.

André Hottung, Mridul Mahajan, and Kevin Tierney. PolyNet: Learning Diverse Solution Strategies for
Neural Combinatorial Optimization. International Conference on Learning Representations, 2025a.

14



Published in Transactions on Machine Learning Research (09/2025)

André Hottung, Paula Wong-Chung, and Kevin Tierney. Neural Deconstruction Search for Vehicle Routing
Problems. Transactions on Machine Learning Research, 2025b.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned heuristics
to solve large-scale vehicle routing problems in real-time. In The Eleventh International Conference on
Learning Representations, 2022.

J. Stuart Hunter. The Exponentially Weighted Moving Average. Journal of Quality Technology, 18(4):203–210,
1986. doi: 10.1080/00224065.1986.11979014.

Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. UNCO: Towards unifying neural combinatorial
optimization through large language model. arXiv preprint arXiv:2408.12214, 2024a.

Zixuan Jiang, Jiaqi Gu, Hanqing Zhu, and David Pan. Pre-RMSNorm and Pre-CRMSNorm transformers:
equivalent and efficient Pre-LN transformers. Advances in Neural Information Processing Systems, 36,
2024b.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the travelling
salesperson problem requires rethinking generalization. Constraints, 27(1):70–98, 2022.

Sašo Karakatič and Vili Podgorelec. A survey of genetic algorithms for solving multi depot vehicle routing
problem. Applied Soft Computing, 27:519–532, 2015.

Hyeonah Kim, Jinkyoo Park, and Changhyun Kwon. A neural separation algorithm for the rounded capacity
inequalities. INFORMS Journal on Computing, 36(4):987–1005, 2024.

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve NP-hard routing problems. Advances
in Neural Information Processing Systems, 34:10418–10430, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetricity for neural combinatorial
optimization. Advances in Neural Information Processing Systems, 35:1936–1949, 2022.

Minsu Kim, Sanghyeok Choi, Hyeonah Kim, Jiwoo Son, Jinkyoo Park, and Yoshua Bengio. Ant colony
sampling with gflownets for combinatorial optimization. In AISTATS, 2025.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International Conference
on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Çağrı Koç, Gilbert Laporte, and İlknur Tükenmez. A review of vehicle routing with simultaneous pickup and
delivery. Computers & Operations Research, 122:104987, 2020.

Çagri Koç and Gilbert Laporte. Vehicle routing with backhauls: Review and research perspectives. Computers
& Operations Research, 91:79–91, 2018. ISSN 0305-0548. doi: 10.1016/j.cor.2017.11.003.

Detian Kong, Yining Ma, Zhiguang Cao, Tianshu Yu, and Jianhua Xiao. Efficient Neural Collaborative Search
for Pickup and Delivery Problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! International
Conference on Learning Representations, 2019.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic programming for
vehicle routing problems. In International conference on integration of constraint programming, artificial
intelligence, and operations research, pp. 190–213. Springer, 2022.

Jerome Ku, Eric Nguyen, David W Romero, Garyk Brixi, Brandon Yang, Anton Vorontsov, Ali Taghibakhshi,
Amy X Lu, Dave P Burke, Greg Brockman, et al. Systems and Algorithms for Convolutional Multi-Hybrid
Language Models at Scale. arXiv preprint arXiv:2503.01868, 2025.

15



Published in Transactions on Machine Learning Research (09/2025)

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. POMO:
Policy optimization with multiple optima for reinforcement learning. Advances in Neural Information
Processing Systems, 33:21188–21198, 2020.

Feiyue Li, Bruce Golden, and Edward Wasil. The open vehicle routing problem: Algorithms, large-scale test
problems, and computational results. Computers & Operations Research, 34(10):2918–2930, 2007. ISSN
0305-0548. doi: https://doi.org/10.1016/j.cor.2005.11.018.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances in
Neural Information Processing Systems, 34:26198–26211, 2021.

Ivan Lima, Eduardo Uchoa, D Oliveira, and E Queiroga. CVRPLIB: Capacitated vehicle routing problem
library. Date accessed, 8(02):2022, 2014.

Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and Senthilnath Jayavelu.
Cross-Problem Learning for Solving Vehicle Routing Problems. IJCAI, 2024.

Fei Liu, Xi Lin, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-Task Learning for Routing Problem
with Cross-Problem Zero-Shot Generalization. Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2024a.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang.
Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model. In
International Conference on Machine Learning, 2024b.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang.
Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Mode. In
ICML, 2024c.

Shengcai Liu, Yu Zhang, Ke Tang, and Xin Yao. How good is neural combinatorial optimization? A systematic
evaluation on the traveling salesman problem. IEEE Computational Intelligence Magazine, 18(3):14–28,
2023.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with heavy
decoder: Toward large scale generalization. Advances in Neural Information Processing Systems, 36, 2024.

Fu Luo, Xi Lin, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang. Boosting Neural
Combinatorial Optimization for Large-Scale Vehicle Routing Problems. International Conference on
Learning Representations, 2025.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learning
to iteratively solve routing problems with dual-aspect collaborative transformer. Advances in Neural
Information Processing Systems, 34:11096–11107, 2021.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Hongliang Guo, Yuejiao Gong, and Yeow Meng Chee.
Efficient Neural Neighborhood Search for Pickup and Delivery Problems. International Joint Conference
on Artificial Intelligence, 2022.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions of routing
problems with flexible neural k-opt. Advances in Neural Information Processing Systems, 36, 2024.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for combina-
torial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement learning for
solving the vehicle routing problem. Advances in neural information processing systems, 31, 2018.

Eric Nguyen, Michael Poli, Matthew G Durrant, Armin W Thomas, Brian Kang, Jeremy Sullivan, Madelena Y
Ng, Ashley Lewis, Aman Patel, Aaron Lou, et al. Sequence modeling and design from molecular to genome
scale with Evo. bioRxiv, pp. 2024–02, 2024.

16



Published in Transactions on Machine Learning Research (09/2025)

Yun Peng, Byron Choi, and Jianliang Xu. Graph learning for combinatorial optimization: a survey of
state-of-the-art. Data Science and Engineering, 6(2):119–141, 2021.

Laurent Perron and Frédéric Didier. CP-SAT, 2024.

Laurent Perron and Vincent Furnon. OR-Tools. Google, 2023.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and Andrea Lodi.
Ecole: A Gym-like Library for Machine Learning in Combinatorial Optimization Solvers. In Learning
Meets Combinatorial Algorithms at NeurIPS2020, 2020.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M Pawan
Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi, et al.
Mathematical discoveries from program search with large language models. Nature, 625(7995):468–475,
2024.

Stefan Ropke and David Pisinger. A unified heuristic for a large class of Vehicle Routing Problems with
Backhauls. European Journal of Operational Research, 171(3):750–775, 2006. doi: 10.1016/j.ejor.2004.09.004.

Frank Ruis, Gertjan Burghouts, and Doina Bucur. Independent prototype propagation for zero-shot composi-
tionality. Advances in Neural Information Processing Systems, 34:10641–10653, 2021.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time window constraints.
Operations research, 35(2):254–265, 1987.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
Advances in Neural Information Processing Systems, 36, 2024.

Daniela Thyssens, Tim Dernedde, Jonas K Falkner, and Lars Schmidt-Thieme. Routing Arena: A Benchmark
Suite for Neural Routing Solvers. arXiv preprint arXiv:2310.04140, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine learning
research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Thibaut Vidal. Hybrid genetic search for the CVRP: Open-source implementation and SWAP* neighborhood.
Computers & Operations Research, 140:105643, 2022.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. A unified solution framework
for multi-attribute vehicle routing problems. European Journal of Operational Research, 234(3):658–673,
2014. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2013.09.045.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

Chenguang Wang and Tianshu Yu. Efficient training of multi-task neural solver with multi-armed bandits.
Transactions on Machine Learning Research, 2025.

Niels A Wouda and Leon Lan. ALNS: A Python implementation of the adaptive large neighbourhood search
metaheuristic. Journal of Open Source Software, 8(81):5028, 2023.

Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package. INFORMS
Journal on Computing, 36(4):943–955, 2024. doi: 10.1287/ijoc.2023.0055.

17



Published in Transactions on Machine Learning Research (09/2025)

Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L Maskell,
and You Zhou. Neural combinatorial optimization algorithms for solving vehicle routing problems: A
comprehensive survey with perspectives. arXiv preprint arXiv:2406.00415, 2024.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park, and
Guojie Song. ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution. In Advances
in Neural Information Processing Systems, 2024a.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. DeepACO: Neural-enhanced Ant Systems
for Combinatorial Optimization. Advances in Neural Information Processing Systems, 36, 2024b.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learning global
partition and local construction for solving large-scale routing problems in real-time. AAAI 2024, 2024c.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Information
Processing Systems, 32, 2019.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. UDC: A Unified Neural
Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems. Advances in Neural
Information Processing Systems, 2024.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable neural
methods for vehicle routing problems. In International Conference on Machine Learning, pp. 42769–42789.
PMLR, 2023.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. MVMoE: Multi-Task
Vehicle Routing Solver with Mixture-of-Experts. In International Conference on Machine Learning, 2024.

18



Published in Transactions on Machine Learning Research (09/2025)

A Unified VRP Environment Details

We consider the seven attributes from Section 3.1 for instance generation through our environment definition
explained in Section 4.1. Leveraging our environment’s modular structure, we build the 16 VRP variants as
used in MVMoE (Zhou et al., 2024), but by differentiating between traditional (B) and mixed (MB) backhauls,
as defined in Avci & Topaloglu (2015), we extend that number to 24. By considering multi-depot problems,
we further increase that number to 48 variants that can be solved with RouteFinder (see Table 4).

Table 4: The 48 VRP variants we consider. All variants include the base Capacity (C). The k = 5 features O, B, L, TW, and
MD can be combined into any subset, including the empty set and itself (i.e., a power set) with 2k = 32 possible combinations.
The Mixed (M) global feature creates new Mixed Backhaul (MB) variants in generalization studies, adding 16 more variants.

VRP Variant Capacity
(C)

Open Route
(O)

Backhaul
(B)

Mixed
(M)

Duration Limit
(L)

Time Windows
(TW)

Multi-depot
(MD)

CVRP ✓
OVRP ✓ ✓
VRPB ✓ ✓
VRPL ✓ ✓
VRPTW ✓ ✓
OVRPTW ✓ ✓ ✓
OVRPB ✓ ✓ ✓
OVRPL ✓ ✓ ✓
VRPBL ✓ ✓ ✓
VRPBTW ✓ ✓ ✓
VRPLTW ✓ ✓ ✓
OVRPBL ✓ ✓ ✓ ✓
OVRPBTW ✓ ✓ ✓ ✓
OVRPLTW ✓ ✓ ✓ ✓
VRPBLTW ✓ ✓ ✓ ✓
OVRPBLTW ✓ ✓ ✓ ✓ ✓
VRPMB ✓ ✓ ✓
OVRPMB ✓ ✓ ✓ ✓
VRPMBL ✓ ✓ ✓ ✓
VRPMBTW ✓ ✓ ✓ ✓
OVRPMBL ✓ ✓ ✓ ✓ ✓
OVRPMBTW ✓ ✓ ✓ ✓ ✓
VRPMBLTW ✓ ✓ ✓ ✓ ✓
OVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDCVRP ✓ ✓
MDOVRP ✓ ✓ ✓
MDVRPB ✓ ✓ ✓
MDVRPL ✓ ✓ ✓
MDVRPTW ✓ ✓ ✓
MDOVRPTW ✓ ✓ ✓ ✓
MDOVRPB ✓ ✓ ✓ ✓
MDOVRPL ✓ ✓ ✓ ✓
MDVRPBL ✓ ✓ ✓ ✓
MDVRPBTW ✓ ✓ ✓ ✓
MDVRPLTW ✓ ✓ ✓ ✓
MDOVRPBL ✓ ✓ ✓ ✓ ✓
MDOVRPBTW ✓ ✓ ✓ ✓ ✓
MDOVRPLTW ✓ ✓ ✓ ✓ ✓
MDVRPBLTW ✓ ✓ ✓ ✓ ✓
MDOVRPBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDVRPMB ✓ ✓ ✓ ✓
MDOVRPMB ✓ ✓ ✓ ✓ ✓
MDVRPMBL ✓ ✓ ✓ ✓ ✓
MDVRPMBTW ✓ ✓ ✓ ✓ ✓
MDOVRPMBL ✓ ✓ ✓ ✓ ✓ ✓
MDOVRPMBTW ✓ ✓ ✓ ✓ ✓ ✓
MDVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDOVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓ ✓

We describe additional details of the Unified VRP environment, including data generation in Appendix A.1
and environment logic in Appendix A.2. For a better understanding, we invite the reader to look at the source
code, which we tried our best to comment on for clarity, at https://github.com/ai4co/routefinder.

19

https://github.com/ai4co/routefinder


Published in Transactions on Machine Learning Research (09/2025)

A.1 Data generation

We now explain the individual steps in the data generation process we use for our modular VRP environment,
including the node attributes and global attributes.

While throughout the main part of this paper, we have focused on routing problems with a single depot, our
unified environment can actually handle problems with multiple depots, where we define m as the number of
depots. For comparability to the neural baselines, the main experiments were run on single-depot problems,
but we report results for multi-depot problems (Appendix D.7).

Locations We generate m + n locations randomly with xi and yi ∼ U(0, 1), ∀i ∈ {0, ..., m + n − 1}, where
[xi, yi], i ∈ {0, ..., m − 1} denote the m depots and [xi, yi], i ∈ {m, ..., m + n − 1}, the n customer nodes.
Note that this setting can be expanded to consider more realistic distributions as in (Bi et al., 2022; Zhou
et al., 2023; Gao et al., 2024), and our implementation is already set up in such a way to allow for different
distributions in the future via the get_sampler method.

Multiple depots (MD) Depot nodes, in principle, have the same node attributes as customer nodes.
The location, however, is the only attribute that is generated in the same way, which is explained below.
For all other attributes, the values are fixed and identical for all depots. Linehaul and backhaul demands,
as well as service durations, are set to zero, while the time windows of all depots in an instance are set to
[ei, li] = [0, tmax ], i ∈ {0, ..., m − 1}, where tmax denotes the system end time and M the number of depots.
For problems without time windows, tmax is set to ∞. In the unseen variants experiments of Appendix D.7,
we employ m = 3 depots for the MD finetuning variants.

Vehicle capacity (C) The vehicle capacity C is a fixed value applied to all vehicles and calculated
according to:

C =


30 +

⌊ 1000
5 + n−1000

33.3
⌋

if 1000 < n

30 +
⌊

n
5

⌋
if 20 < n ≤ 1000

30 otherwise

which is commonly used in NCO for VRP approaches (Kool et al., 2019; Kwon et al., 2020).

Linehaul and backhaul demands (C) / (B) / (MB) We generate demands according to the following
scheme:

1. Generate linehaul demands qi for all customers i ∈ Nc by sampling uniformly from the set of integers
{1, 2, ..., 9}.

2. Generate backhaul demands pi for all customers i ∈ Nc by sampling uniformly from the set of integers
{1, 2, ..., 9}.

3. For each customer i ∈ Nc, generate a temporary decision variable zi ∈ {0, 1} with probabilities
P(zi = 0) = 0.8 and P(zi = 1) = 0.2.

• If zi = 0, keep the linehaul demand qi and set the backhaul demand pi = 0.
• If zi = 1, set the linehaul demand qi = 0 and keep the backhaul demand pi.

This demand generation scheme ensures that each customer has either a linehaul demand or a backhaul
demand, but not both. With a probability of 0.8, a customer will have only a linehaul demand, and their
backhaul demand will be set to 0. Conversely, with a probability of 0.2, a customer will have only a backhaul
demand, and their linehaul demand will be set to 0. It is important to note that not all customers are
typically backhaul customers, even in a backhaul setting. Therefore, this scheme allows for the consideration
of both linehaul and backhaul demands in backhaul problem settings while ensuring that each customer has
only one type of demand.

20



Published in Transactions on Machine Learning Research (09/2025)

We note that this can be easily extended to the case of VRP with simultaneous pickup and delivery (VRPSPD),
in which a customer can have both linehaul and backhaul demand (Ai & Kachitvichyanukul, 2009; Koç
et al., 2020). In such a case, we could duplicate the customer node into two nodes with the same attributes,
such as locations, but different values for linehaul (pickup) and backhaul (delivery) in the current VRP
environment or allow for both linehaul and backhaul to be present at the same time in a single node with
small modifications in the action masking.

Backhaul class (B) / (MB) For testing the few-shot setting described in Section 5.3, we generate instances
with mixed backhauls. The instances themselves are actually identical to instances with the traditional
backhaul, and we use a global attribute in the instance to differentiate between them. For this purpose, we
allow either setting a fixed value ∈ {1, 2} or sampling from {1, 2} for every customer with equal probabilities
p(1) = p(2) = 0.5, allowing for different backhaul settings within one batch, if needed (see the batching
procedure described in Section 4.3.1). Note that we sample from {1, 2} instead of boolean sampling because
we plan to extend the number of backhaul settings in the future.

Open routes (O) For open routes, we generate a boolean vector with all True values. During sampling
(see Section 4.3.1), the actual ratio of open route instances is defined, not at the initial instance generation
(i.e., we temporarily change the True value to False for every batch element with a certain probability).

Time Windows (TW) We generate the time windows [ei, li] and service times si in several steps for all
customers i ∈ Nc:

1. Generate service times si ∈ [0.15, 0.18].

2. Generate time window lengths ti ∈ [0.18, 0.2].

3. Calculate the maximum distance from any of the depots j ∈ {0, ..., m − 1} to customer i: dmax =
maxj(dij).

4. Calculate upper bounds for time window start times hi = tmax−si−ti

dmax
− 1.

5. Calculate time window start times as ei = (1 + (hi − 1) · ui) · dmax with ui ∼ U(0, 1).

6. Calculate time window end times as li = ei + ti.

When calculating the action mask, we have the constraint that the expected arrival time should be earlier
than the end time of nodes; if the problem is a closed problem, we should also consider the time back to
the depot, i.e., max(tcurr + dij , ej) + sj + dmax < l0. We note that for simplicity, we set the vehicle speed to
1.0 in equations and normalize time windows accordingly so that travel time from two nodes is the same
numerically as the distance between them. This can be easily modified in the code.

We mention as an alternative TW generation procedure the one from the Solomon benchmark (Solomon,
1987; Li et al., 2021), which may perform better in that benchmark, as done in Zhou et al. (2024).

Distance limit (L) The distance limit is sampled from a uniform distribution to ensure meaningful and
feasible constraints. Specifically, we sample L from U(2 · max(d0i), lmax)), where d0i is the distance from the
depot to customer i, and lmax = 3.0 is a predefined upper bound. This approach ensures that L is always
greater than the round trip to the farthest customer (2 · max(d0i)), making all customers reachable, while
also allowing for variation in the constraint tightness. For the multi-depot case we replace max(d0i) with
minj(maxi(dij)), i ∈ {m, ..., m + n}, j ∈ {0, ..., m}, i.e., we first get the maximum distance from any customer
node to each of the depots and then take the minimum out of those distances. By taking the maximum in
the first step we ensure that all customers are reachable, and by taking the minimum across depots, we make
the problem more challenging, because even though all nodes can in principle be serviced, some may only be
serviced by one (or a subset) of the available depots. This sampling method produces more variation than
previous works Liu et al. (2024a); Zhou et al. (2024) (where there was virtually no difference in solutions
of (L) and non-(L) variants), as it guarantees feasible instances while still providing a range of challenging
scenarios.

21



Published in Transactions on Machine Learning Research (09/2025)

Attribute Normalization and Scaling All demands, both linehauls and backhauls, are scaled to lie in
[0, 1] through division by the vehicle capacity. q′

i = qi/C, p′
i = pi/C. All other features are already sampled

from a normalized range. Note that during loading instances from e.g. CVRPLib, we normalize features
before passing them to the policy - for instance, locations are normalized between 0 and 1.

A.2 Environment Logic

To determine available actions for the Unified VRP environment formulation, the constraints for the individual
problems have to be combined in the action mask (action_mask in the code following RL4CO, where True
means that the action is feasible (Berto et al., 2025)). We build a logical test structure, essentially separating
the checks in the action mask according to the individual VRP problem types and then bringing them all
together again. The individual action_mask checks are the following:

a) Can reach in time: depending on the current time and the travel distance to every node not yet visited,
can we reach that node before its service time window ends? tcurr + dij < lj , where tcurr is the current
time.

b) Does not exceed distance limit: depending on the current length of the route, if we travel to any available
node, will we exceed the total distance limit for the route? lcurr + dij < L, where lcurr is the current length.

c) Can reach depot: there are two types of constraints from time windows (TW) and distance limit (L):

• If we need to ensure we can reach the depot in time, i.e., the current time plus traveling time to the
depot must be smaller than the system end time: max(tcurr + dij , ej) + sj + dj0 < tmax .

• If we need to ensure we can reach the depot without exceeding the distance limit, i.e., the current
distance plus the traveling distance to the depot must be smaller than the distance limit: lcurr + dij +
dj0 < L.

For the multi-depot case we replace dj0 in both these constraints with djk, where k ∈ {0, ..., m − 1}
indexes the depot the current route started from. For open routes, this will always be set to True, i.e.,
this constraint does not apply.

d) Demand constraints for backhaul problems:

• Checks for all backhauls problems:
– Does the linehaul demand exceed vehicle capacity if we add a node’s demand to the current

vehicle? ccurr + qj < C, where ccurr is the used capacity.
– Does the backhaul demand exceed vehicle capacity if we add a node’s demand to the current

vehicle? ccurr + pj < C, where ccurr is the used capacity.
• Checks for traditional backhaul settings:

– Carrying backhaul: if we are already picking up backhaul demands, we cannot service any linehaul
demands on this route anymore.

– If we are not carrying backhaul demands yet, are there any unserved linehaul demands left?
– If there are no linehaul demands left or we are already carrying backhauls, are there still unserved

backhaul demands?
• Checks for mixed backhaul settings:

– Cannot service linehaul demands: depending on the backhaul demands currently loaded in the
vehicle, do we have space left for further linehaul demands?

We additionally remark that our definition of backhauls follows the generally accepted definition in
the OR community, originally due to Goetschalckx & Jacobs-Blecha (1989). This definition differs
from the routing problems with backhaul considered in several recent papers in the machine learning
(e.g., Liu et al. (2024a); Zhou et al. (2024)), who define backhaul customers as having a negative
demand of the same commodity used for linehaul, and do not consider the precedence constraint that
all linehaul must be completed before backhaul may start on the route. The problem setting with a
single commodity is not commonly studied in the OR literature since it implies pickups may be used

22



Published in Transactions on Machine Learning Research (09/2025)

for deliveries at later customers, while the relaxation of the precedence constraint is more properly
referred to as a mixed backhaul problem (Koç & Laporte, 2018).

e) Already visited: every customer node needs to be visited exactly once.

We bring together checks a) to e) and introduce an additional check for the depot: if we are currently in the
depot and there are still unserved customers, we cannot select the depot as the next action to ensure the
model cannot get stuck during decoding.

For the multi-depot case we further extend this check. If we are currently in a depot and there are unserved
customers, we cannot visit any depot. If no further customers can be serviced, all depots are available actions
again. However, if we are currently in a depot and no customers can be served from this depot, we mask it
out so as to service the remaining customers from the remaining depots that can actually service them.

Combining these checks in this way allows us to meticulously check for individual VRP settings while at the
same time maintaining the necessary flexibility the unified environment formulation requires.

B RouteFinder Model Details

RouteFinder follows the encoder-decoder architecture from the Attention Model (Kool et al., 2019), a
transformer-like architecture based on the attention mechanism (Vaswani et al., 2017). We additionally
improve the encoder architecture in RF-TE as explained in Section 4.2. We focus the explanation on modeling
all attributes possible with the MDOVRPMBLTW, noting that in the main training runs, we do so without
considering attributes from multi-depots and mixed backhaul, whose additional parameters are added upon
EAL finetuning.

B.1 Multi-Head Attention

At the core of RouteFinder lies the Multi-Head Attention (MHA) mechanism, proposed by Vaswani et al.
(2017). MHA concurrently attends to information from various representation subspaces, facilitating the
capture of diverse relationships between input elements. Notably, MHA is capable of handling a variable
number of elements.

The MHA operation starts by linearly projecting the input sequences of queries Q, keys K, and values V to
H distinct subspaces using learned projection matrices W Q

i , W K
i , and W V

i , respectively, where H denotes
the number of attention heads: Qi = QW Q

i , Ki = KW K
i , Vi = V W V

i for i = 1, . . . , H. Subsequently, the
attention weights for each head are computed by performing a scaled dot product between the projected
queries and keys, followed by a softmax operation:

Ai = Softmax
(

QiK
T
i√

dk

+ M

)
(7)

where dk represents the dimension of the keys, acting as a scaling factor to prevent the dot products from
growing too large, Softmax(xi) = exp(xi)∑N

j=1
exp(xj)

and M is an optional attention mask that can be used to

prevent attending to certain positions (e.g., infeasible actions), which can be done by setting elements to −∞.
The output of each attention head is then calculated as a weighted sum of the projected values, using the
attention weights: Zi = AiVi.

Lastly, the outputs from all attention heads are concatenated and linearly projected using a learned matrix
W O to yield the final output of the MHA operation:

MHA(Q, K, V ) = Concat(Z1, . . . , ZH)W O (8)

While the MHA grows quadratically, i.e., with sequence length (i.e., number of nodes) N , it grows as O(N2),
several efficient implementations have been proposed over the years, and we use FlashAttention (Dao et al.,
2022; Dao, 2024) to speed up the model.

23



Published in Transactions on Machine Learning Research (09/2025)

B.2 Encoder

The Encoder transforms an input instance x into a hidden embedding h. The Encoder architecture consists
of the following main components: 1) Global Embedding, 2) Node Embedding, and 3) a series of Encoder
Layers. We consider a VRP instance of n locations as having n + 1 nodes, where node 0 is the depot and
nodes {1, . . . , n} are n customers. For problems with multiple depots, we define m as the number of depots,
i.e., nodes {0, . . . , m − 1} are the depot nodes, and m, . . . , m + n − 1 are the n customer nodes.

Global Embedding Since Global Attributes contain a single value for all the m + n problem nodes, we
embed them in depot nodes, in a similar fashion to how traditional solvers as PyVRP encode information
about the global problem structure on depot nodes.. Global Embeddings include global attributes Open
Routes o ∈ {0, 1}, Duration Limits l ∈ [0, L], and Mixed Backhauls flag µ ∈ {0, 1}, as well as the locations
of the depot node(s) [xi, yi] ∈ R2, i ∈ {0, . . . , m − 1} and the system end time lmax (i.e., the depot(s) time
window). In practice, for the multi-depot case with m > 1, the global attributes are projected on the depot
nodes. In RouteFinder, the global embedding f is a linear projection layer Wg ∈ Rk×d where k = 6
features and d = 128 is the hidden dimension. The initial projected global hidden embedding per depot gi

can be written as h
(0)
gi = Wg[xi, yi, lmax, o, l, µ]⊤.

Node Embedding The node embeddings, on the other hand, capture customer-specific attributes and are
projected onto the remaining n nodes. These attributes include for nodes i ∈ {m, . . . m + n − 1}: Linehaul
demands qi ∈ [0, Q], Time Windows parameters ei, si, li ∈ [0, T ]3 where e and l denote the time window’s
start and end and s is the service time, the Backhaul demands pi ∈ [0, Q], and finally the node locations
[xi, yi] ∈ R2. In RouteFinder this a linear projection layer Wn ∈ Rk×d where k = 7 features and d = 128
is the hidden dimension. The initial projected node hidden embedding can be written for each node ni as
h

(0)
ni = Wn[xi, yi, qi, ei, si, li, pi]⊤.

Raw Features to Hidden States The projected global embedding and node embeddings are concatenated
to obtain the initial hidden representation h(0) ∈ R(m+n)×d, where m + n is the total number of nodes (m
depots + n customers) and d is the hidden dimension:

(9)
bmh(0) = Concat(h(0)

g1
, . . . , h(0)

gm
, h(0)

n1
, . . . , h(0)

nn
) (10)

The initial hidden representation h(0) is then passed through a series of Encoder Layers to refine and enrich
the representation. Each Encoder Layer consists of a Multi-Head Attention (MHA) layer and a Multi-Layer
Perceptron (MLP) layer, as described in Equation (12) and Equation (13), respectively.

The Encoder can be represented as:

h = EncoderBlocks(h(0)) (11)

Each EncoderBlock consists of two sub-layers: a Multi-Head Attention (MHA) layer and a Multi-Layer
Perceptron (MLP) layer (or SwiGLU as we propose). The MHA layer allows the model to capture dependencies
between different positions in the input sequence, while the MLP layer applies non-linear transformations to
the features at each position. The input to each EncoderBlock is first passed through the MHA layer, which
computes the self-attention using the input as queries, keys, and values:

ĥ = Norm
(

h(ℓ−1) + MHA(h(ℓ−1), h(ℓ−1), h(ℓ−1))
)

(12)

where h(ℓ−1) represents the input to the ℓ-th EncoderBlock, and Norm denotes a normalization operation, in
RouteFinder we employ Instance Normalization (IN). The output of the MHA layer, ĥ, is then passed
through the MLP layer, which applies a series of linear transformations with non-linear activations:

h(ℓ) = Norm
(

ĥ + MLP(ĥ)
)

(13)

The pointwise MLP layer consists of two linear layers with a non-linear activation function as ReLU, between
them.

24



Published in Transactions on Machine Learning Research (09/2025)

Transformer-based Encoder We further explicit our proposed Transformer-based encoder. Each En-
coderBlock consists of two sub-layers: a Multi-Head Attention (MHA) layer and a Feed Forward SwiGLU
layer (Shazeer, 2020). The MHA layer captures dependencies between different positions in the input sequence,
while the SwiGLU layer applies non-linear transformations to the features. We employ RMS normalization
(Zhang & Sennrich, 2019) and pre-norm architecture for improved stability and faster convergence:

ĥ = h(ℓ−1) + MHA(RMSNorm(h(ℓ−1)), RMSNorm(h(ℓ−1)), RMSNorm(h(ℓ−1))) (14)
h(ℓ) = ĥ + SwiGLU(RMSNorm(ĥ)) (15)

where h(ℓ−1) represents the input to the ℓ-th EncoderBlock. The SwiGLU MLP (Shazeer, 2020) is defined as:

SwiGLU(x) = W3(SiLU(W1x) ⊙ (W2x) (16)

where ⊙ denotes the Hadamard product, SiLU is the activation function (Elfwing et al., 2018), and W1, W2
and W3 are learnable weight matrices2. We use FlashAttention (Dao et al., 2022; Dao, 2024) in the MHA
layer for enhanced performance.

B.3 Decoder

The Decoder autoregressively constructs the solution based on the Encoder output h and the state st at the
current step t.

Context Embedding The context embedding is used to modify the query embedding of the problem
node of the current partial solution. It consists of a linear layer that projects the concatenated current node
embedding and state embedding to the embedding space. The state embedding is computed by projecting the
following: the current node embedding ht and a set of dynamic features from state st, i.e. the available load
ct, current time tt, current distance traveled dt, the available backhaul load bt – i.e. the difference between
the vehicle capacity Q and the used backhaul capacity, which is necessary because if we pick up items, the
deliverable quantity must exceed the remaining capacity after pick up for mixed backhauls (MB) – as well as
the location of the origin depot o we have to return to at step t: [xo

t , yo
t ] for the multi-depot variants (MD).

In RouteFinder the context embedding Wc ∈ Rd×(d+k) is a linear projection matrix, d = 128 is the hidden
dimension, and k = 6 is the number of state features. The context embedding at step t is thus computed as
h(t)

c = WcConcat([ht; [ct, tt, dt, bt, xo
t , yo

t ]])⊤.

Attention and Pointer Mechanism The query qt is obtained directly from the context embedding
qt = h(t)

c and then passed into a masked MHA layer and final single-head attention to obtain logits z:

hc
t = MHA(qt, Kg

t , V g
t , Mt), (17)

z = V p
t hc

t√
dk

(18)

where Mt is the set of feasible actions (i.e., the action_mask), and projections Kg
t , V g

t , V p
t = W g

k h, W g
v h, W p

v h
are precomputed once as cache. We note that Equation (18) is usually referred to as the pointer mechanism
(Vinyals et al., 2015).

Logits processing Finally, logits z are transformed into a probability distribution:

p = Softmax (C · tanh(z)) (19)

where logits for infeasible actions can be masked, and C is the tanh clipping that serves in improving the
exploration, which we set to 10 according to Bello et al. (2016).

2In our code this is the ParallelGatedMLP inspired by the StripedHyena architectures (Ku et al., 2025).

25



Published in Transactions on Machine Learning Research (09/2025)

Action selection During training, we use the POMO multistart sampling.

For the multi-depot case we force the first action to start from all depots in the instance. For the single-depot
case we force the first action to start with every customer node to maximize diversity. Note that if num_starts
is not divisible by the number of depots m, the resulting tensor will not have an equal number of indices for
each depot, i.e., the number of starts will not be distributed evenly across the depots, as we use the modulo
operator for the assignment.

During testing, we also employ multistart but with greedy selection (i.e., selecting the maximum probability).
Prior to the selection, a dihedral augmentation is also performed prior to encoding instance x in the encoder,
which enables exploring 8× as many solutions with 4 rotations × 2 flips. We note that additional augmentations
and techniques can be performed during inference, which can further boost evaluation performance (Kim
et al., 2022; Ma et al., 2022; Choo et al., 2022; Luo et al., 2024). For fairness of comparison, we do not employ
additional augmentations but assume that this could further boost the performance of RouteFinder.

B.4 EAL Modeling

We describe in more detail the procedure for Efficient Adapter Layers (EAL) modeling. Our initial model
trained from Section 5.1 has linear projections layers as referenced in full detail in Appendix B.2 and
Appendix B.3 without additional parameters for mixed backhaul and multi-depots.

B.4.1 EAL for mixed backhauls

This adds, as explained in Section 4.4, a single (l = 1) parameter row W′
0 for the mixed backhaul flag µ to

the global embedding. Moreover, we add l = 1 rows for the context embedding resulting W′
c for the available

backhaul load bt at step t, i.e. the difference between the vehicle capacity Q and the used backhaul capacity.

B.4.2 EAL for multi-depots

In this case, we do not modify the global embedding but directly project multiple times global attributes
and depot locations at each depot node as explained in Appendix B.2. However, we modify the context
embedding W′

c by adding l = 2 rows to keep track of the location of the origin depot o we have to return to
at step t: [xo

t , yo
t ].

B.4.3 EAL for multi-depots & mixed backhauls

Here we combine the EAL implementations of the previous two paragraphs. We add the l = 1 parameter row
W′

0 for the mixed backhaul flag µ to the global embedding and project the global embedding m according
to the number of depots and modify the context embedding W′

c by adding l = 3 rows to keep track of the
available backhaul load bt and the location of the origin depot [bt, xo

t , yo
t ].

C Additional Material

C.1 Details for Average Batch Reward for Multi-task Reward Normalization

At each training step t = 1, . . . , T we train on a batch of b = 1, . . . , B problem instances, each of which
belongs to one of the k ∈ K problem variants covered by RouteFinder. Let 1b,k ∈ {0, 1} be an indicator
function such that:

1b,k =
{

1 if instance b is of type k

0 otherwise

which is efficiently calculated in our unified VRP environment based on vectorized checks. The reward r
(k)
bt

for instance b of variant k at training step t can then be expressed as r
(k)
bt = rbt · 1b,k. The average batch

26



Published in Transactions on Machine Learning Research (09/2025)

reward r̄
(k)
t for variant k at training step t over all instances of type k in a batch can then be expressed as:

r̄
(k)
t =

∑B
b=1 r

(k)
bt∑B

b=1 1b,k

=
∑B

b=1 rbt · 1b,k∑B
b=1 1b,k

, ∀k ∈ K.

This average batch reward r̄
(k)
t is the basis for the reward normalization explained in Section 4.3.2.

C.2 Hyperparameter Details

We report in Table 5 the hyperparameter details common across the main experiments. RouteFinder
variants additionally employ the proposed contributions as outlined in the main experiments of Section 5.1.

Table 5: Experiment hyperparameters. Values with “/” indicate different choices depending on the model, i.e., on the right are
values for the Transformer-Based encoder.

Hyperparameter Value
Model
Embedding dimension 128
Number of attention heads 8
Number of encoder layers 6
Use Pre-norm False / True
Normalization Instance / RMSNorm
Feedforward hidden dimension 512
Feedforward structure MLP / Gated MLP
Feedforward activation ReLU / SwiGLU
Tanh clipping 10.0
Mask logits True
Training
Train decode type multistart sampling
Val & Test decode type multistart greedy
Augmentation function dihedral
Batch size 256
Train data per epoch 100,000
Reward normalization Exponentially smoothed mean
Normalization α 0.25
Optimization
Optimizer Adam
Learning rate 3e-4
Weight decay 1e-6
LR scheduler MultiStepLR
LR milestones [270, 295]
LR gamma 0.1
Gradient clip value 1.0
Max epochs 300

C.3 Additional Discussion

Motivation Foundation models have been successful in several areas in recent years, including large
language models (Achiam et al., 2023), computer vision (Kirillov et al., 2023) as well as other domains
such as biology (Abramson et al., 2024; Nguyen et al., 2024). However, foundation models for discrete
decision-making, such as CO and our target VRPs, are still under-explored as an area - one reason being
the lack of large, high-quality open datasets that can effectively be employed to train such models - which

27



Published in Transactions on Machine Learning Research (09/2025)

motivates our use of RL. Such foundation models may not only obtain solutions faster than traditional OR
counterparts but also avoid the requirement of possibly decades of research and resources to tackle a single
task, while a foundation model may automatically learn heuristics without supervision.

Generalist, or specialized? Another open question is the idea of generality behind the model. In
RouteFinder, we argue that a model might not need to be extremely complex and be specialized for a
specific application (such as routing). One such reason is that with larger model capabilities comes larger
size and inference time, which is crucial for real-world deployment. An interesting future direction would
be to attempt to generalize a model as a "foundation model for CO", for instance, based on a general
formulation (Boisvert et al., 2024), and see whether the additional training and inference costs are worth a
(possible) boost in optimality gaps and generalization ability. Such a model may be able to attain a better
few-shot generalization to totally unseen attributes, either with adapter layers (Lin et al., 2024) or with
our proposed EAL. However, we believe that tailored, specialized foundation models as RouteFinder for
VRPs may be more practical and efficient. We note that an orthogonal direction to ours is the use of LLMs
as hyper-heuristics (Romera-Paredes et al., 2024; Liu et al., 2024b; Ye et al., 2024a), which starts from a
generalist LLM agent to generate algorithms that can be used to improve the optimization of CO problems
as VRPs. However, such models are not used at inference time due to the inefficiency of using billions of
parameters that are not tailored for the problem at hand.

Going forward in specialized foundation models for VRPs, there are several challenges yet to be addressed.
One such challenge is the still sub-par performance compared to state-of-the-art solvers (Wouda & Lan,
2023; Wouda et al., 2024), which may be offset on a larger scale by several means, including decompositions.
Another way to attain better performance would be to integrate with local search (Ye et al., 2024b; Kim et al.,
2025) and hybridize constructive (the current policy paradigm) with improvement methods (Ma et al., 2021;
2024) to guarantee monotonic improvements given larger time budgets. Finally, given the robust cross-task
performance even compared to single-task models, we believe expanding to more VRP variants (and their
attribute distributions) may further improve overall performance.

C.4 Licenses for used assets

Table 6 lists the used assets and their licenses. Our code is licensed under the MIT License.

Table 6: Used assets and their licenses.

Type Asset License Usage

Code

POMO (Kwon et al., 2020) MIT License Evaluation
MTPOMO (Liu et al., 2024a) MIT License Evaluation
MVMoE (Zhou et al., 2024) MIT License Evaluation
RL4CO (Berto et al., 2025) MIT License Evaluation

AL (Lin et al., 2024) MIT License Evaluation
ORTools (Perron & Didier, 2024) Apache-2.0 Evaluation

PyVRP (Wouda et al., 2024) MIT License Evaluation
Dataset CVRPLIB (Lima et al., 2014) Available for any non-commercial use Testing

D Additional Empirical Results

This Section supplements the main paper with several experiments evaluating various aspects of
RouteFinder:

• Appendix D.1: here we motivate our RouteFinder foundation model for VRPs when compared to
single-variant models in 1) finetuning performance and 2) out-of-distribution generalization.

• Appendix D.2: we evaluation large-scale and real-world distributions in CVRPLIB.

• Appendix D.3: we study the effect and interactions of Transformer Encoder components.

28



Published in Transactions on Machine Learning Research (09/2025)

• Appendix D.4: here, we show the effect of different reward normalization techniques.

• Appendix D.5: here we study Mixed Batch Training and its effect on 1) training stability and 2)
imbalanced variant distributions.

• Appendix D.6: we study the latent learning representation ability of different models via t-SNE
across 1) encoding layers 2) effect of different attributes on the latent embeddings.

• Appendix D.7: this section adds additional experiments for zero-shot and finetuning performances
with EAL on three unseen new attribute setups: 1) with mixed backhauls 2) with multi-depots and 3)
with both mixed backhauls and multi-depots as well as comparison to finetuning with single-variant
models.

D.1 Out-of-Distribution Attribute Generalization

In this section, we study our foundation model and ask the following question: how does RouteFinder
perform when compared to models trained specifically on a single variant? To answer this question, we
compare RouteFinder and other multi-task learning methods with POMO trained on single variants,
including CVRP, VRPL, VRPTW, OVRP, and VRPB. For fairness of comparison, we train the POMO
models with the same hyperparameters as the other models (from Table 5), including the same batch size,
learning rate, and training epochs on n = 100 nodes.

We also study out-of-distribution generalization for unseen attribute values of time windows (C) and duration
limits (L), for multi-task learning models and single-variant POMO ones. We compare cost values and gaps
(the lower, the better) to the results of POMO training specifically for that single variant, similarly to Liu
et al. (2024a, Appendix D). All experiments are performed on 1000 variants for each setting with n = 100.

In VRPTW, we consider different values of the time interval, i.e., the minimum and maximum values from
which service times si and time window lengths ti are sampled (points 1 and 2 for time window generation of
Appendix A.1). In distribution, these values are sampled from [0.15, 0.20]. In the out-of-distribution settings,
we consider them as {[0.05, 0.1], [0.15, 0.20], . . . , [0.85, 0.9], [0.85, 1.0]}. The results in Table 7 demonstrate
again that for values differing from the in-training distribution, our model obtains better results than POMO
trained solely on VRPTW.

Table 7: Comparison of our model with single-task POMO on out-of-distribution VRPTW instances.

Time Interval [0.05, 0.10] [0.15, 0.20] [0.25, 0.30] [0.35, 0.40] [0.45, 0.50] [0.55, 0.60] [0.65, 0.70] [0.75, 0.80] [0.80, 0.85] [0.95, 1.00]
Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

POMO_VRPTW 25.30 * 26.27 * 28.11 * 31.36 * 35.25 * 39.66 * 44.43 * 48.17 * 52.60 * 55.24 *
MTPOMO 25.51 0.84% 26.59 1.20% 28.27 0.57% 31.28 -0.26% 35.05 -0.56% 39.51 -0.39% 44.34 -0.21% 48.25 0.17% 52.85 0.47% 55.67 0.78%
MVMoE 25.47 0.66% 26.57 1.15% 28.25 0.50% 31.19 -0.54% 34.97 -0.79% 39.34 -0.82% 44.15 -0.63% 48.05 -0.26% 52.68 0.14% 55.61 0.68%
RF-POMO 25.45 0.58% 26.49 0.85% 28.23 0.44% 31.32 -0.11% 35.19 -0.18% 39.58 -0.22% 44.41 -0.06% 48.20 0.06% 52.61 0.02% 55.22 -0.03%
RF-MoE 25.43 0.51% 26.49 0.85% 28.21 0.35% 31.25 -0.35% 35.10 -0.43% 39.54 -0.32% 44.35 -0.19% 48.13 -0.09% 52.53 -0.14% 55.18 -0.10%
RF-TE 25.33 0.10% 26.40 0.50% 28.14 0.11% 31.17 -0.61% 34.91 -0.95% 39.30 -0.93% 44.08 -0.80% 47.86 -0.65% 52.40 -0.38% 55.16 -0.14%

For VRPL, we consider different distance limit values l. During training, we sample feasible instances with
lmax = 3.0 as described in Appendix A.1. For out-of-distribution settings, we test distances for values
of l = {2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5}. Interestingly, as shown in Table 8, our model already outperforms
POMO_VRPL in distribution, and the trend is maintained for larger values of l.

Finally, Appendix D.2 reports the results for large-scale CVRPLIB, which demonstrate RouteFinder better
generalize across sizes and real-world distributions than other multi-task models and single-variant ones.
Overall, we can see that RouteFinder is robust, and its advantage is more pronounced the further away
from the training distribution we go. This motivates future work in foundation models for VRPs, where we
believe that exploring diverse solutions and variants will significantly advance the field.

D.2 CVRPLIB Evaluation

We report in Table 9 the results for large-scale CVRPLIB (Lima et al., 2014) with sizes greater than 500 as
done in MVMoE (Zhou et al., 2024). We report the original POMO (Kwon et al., 2020) alongside versions

29



Published in Transactions on Machine Learning Research (09/2025)

Table 8: Comparison of our model with single-task POMO on out-of-distribution VRPL instances.

Distance Limit 2.9 3.0 3.1 3.2 3.3 3.4 3.5
Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

POMO_VRPL 15.84 * 16.00 * 16.04 * 15.52 * 16.02 * 15.74 * 15.85 *
MTPOMO 15.92 0.49% 16.08 0.53% 16.12 0.54% 15.59 0.47% 16.11 0.60% 15.81 0.48% 15.92 0.43%
MVMoE 15.88 0.22% 16.03 0.22% 16.08 0.27% 15.54 0.11% 16.04 0.15% 15.78 0.25% 15.88 0.20%
RF-POMO 15.91 0.41% 16.04 0.27% 16.09 0.33% 15.56 0.28% 16.06 0.29% 15.78 0.29% 15.87 0.13%
RF-MoE 15.86 0.12% 16.03 0.21% 16.05 0.08% 15.53 0.09% 16.04 0.15% 15.77 0.21% 15.87 0.12%
RF-TE 15.82 -0.17% 15.96 -0.21% 16.02 -0.10% 15.50 -0.10% 16.00 -0.11% 15.72 -0.11% 15.82 -0.16%

Table 9: Results on large-scale CVRPLIB instances from the X set. All models are only trained on the uniformly distributed data
with the size n = 100 and evaluated via greedy rollouts. Results for methods with † are drawn from Zhou et al. (2024), models
trained with single features excluding feature compositions (except for OVRPTW). Training on multiple variants enhances
generalization across models.

Set-X POMO† MTPOMO † MVMoE† MVMoE-L† MTPOMO MVMoE RF-TE

Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n502-k39 69226 75617 9.232% 77284 11.640% 73533 6.222% 74429 7.516% 69226 9.410% 76338 10.274% 71791 3.705%

X-n513-k21 24201 30518 26.102% 28510 17.805% 32102 32.647% 31231 29.048% 24201 42.511% 32639 34.866% 28465 17.619%

X-n524-k153 154593 201877 30.586% 192249 24.358% 186540 20.665% 182392 17.982% 154593 14.771% 170999 10.612% 174381 12.800%

X-n536-k96 94846 106073 11.837% 106514 12.302% 109581 15.536% 108543 14.441% 94846 16.109% 105847 11.599% 103272 8.884%

X-n548-k50 86700 103093 18.908% 94562 9.068% 95894 10.604% 95917 10.631% 86700 27.851% 104289 20.287% 100956 16.443%

X-n561-k42 42717 49370 15.575% 47846 12.007% 56008 31.114% 51810 21.287% 42717 30.770% 53383 24.969% 49454 15.771%

X-n573-k30 50673 83545 64.871% 60913 20.208% 59473 17.366% 57042 12.569% 50673 20.210% 61524 21.414% 55952 10.418%

X-n586-k159 190316 229887 20.792% 208893 9.761% 215668 13.321% 214577 12.748% 190316 19.125% 212151 11.473% 205575 8.018%

X-n599-k92 108451 150572 38.839% 120333 10.956% 128949 18.901% 125279 15.517% 108451 21.098% 126578 16.714% 116560 7.477%

X-n613-k62 59535 68451 14.976% 67984 14.192% 82586 38.718% 74945 25.884% 59535 30.523% 73456 23.383% 67267 12.987%

X-n627-k43 62164 84434 35.825% 73060 17.528% 70987 14.193% 70905 14.061% 62164 23.193% 70414 13.271% 67572 8.700%

X-n641-k35 63682 75573 18.672% 72643 14.071% 75329 18.289% 72655 14.090% 63682 30.321% 71975 13.023% 70831 11.226%

X-n655-k131 106780 127211 19.134% 116988 9.560% 117678 10.206% 118475 10.952% 106780 12.731% 119057 11.497% 112202 5.078%

X-n670-k130 146332 208079 42.197% 190118 29.922% 197695 35.100% 183447 25.364% 146332 24.809% 168226 14.962% 168999 15.490%

X-n685-k75 68205 79482 16.534% 80892 18.601% 97388 42.787% 89441 31.136% 68205 36.550% 82269 20.620% 77847 14.137%

X-n701-k44 81923 97843 19.433% 92075 12.392% 98469 20.197% 94924 15.870% 81923 13.319% 90189 10.090% 89932 9.776%

X-n716-k35 43373 51381 18.463% 52709 21.525% 56773 30.895% 52305 20.593% 43373 37.657% 52250 20.467% 49669 14.516%

X-n733-k159 136187 159098 16.823% 161961 18.925% 178322 30.939% 167477 22.976% 136187 28.910% 156387 14.833% 148463 9.014%

X-n749-k98 77269 87786 13.611% 90582 17.229% 100438 29.985% 94497 22.296% 77269 32.182% 92147 19.255% 85171 10.227%

X-n766-k71 114417 135464 18.395% 144041 25.891% 152352 33.155% 136255 19.086% 114417 16.692% 130505 14.061% 129935 13.563%

X-n783-k48 72386 90289 24.733% 83169 14.897% 100383 38.677% 92960 28.423% 72386 50.140% 96336 33.087% 83185 14.919%

X-n801-k40 73305 124278 69.536% 85077 16.059% 91560 24.903% 87662 19.585% 73305 24.536% 87118 18.843% 86164 17.542%

X-n819-k171 158121 193451 22.344% 177157 12.039% 183599 16.113% 185832 17.525% 158121 22.148% 179596 13.581% 174441 10.321%

X-n837-k142 193737 237884 22.787% 214207 10.566% 229526 18.473% 221286 14.220% 193737 19.429% 230362 18.904% 208528 7.635%

X-n856-k95 88965 152528 71.447% 101774 14.398% 99129 11.425% 106816 20.065% 88965 33.103% 105801 18.924% 98291 10.483%

X-n876-k59 99299 119764 20.609% 116617 17.440% 119619 20.463% 114333 15.140% 99299 15.240% 114016 14.821% 107416 8.174%

X-n895-k37 53860 70245 30.421% 65587 21.773% 79018 46.710% 64310 19.402% 53860 96.818% 69099 28.294% 64871 20.444%

X-n916-k207 329179 399372 21.324% 361719 9.885% 383681 16.557% 374016 13.621% 329179 18.134% 373600 13.494% 352998 7.236%

X-n936-k151 132715 237625 79.049% 186262 40.347% 220926 66.466% 190407 43.471% 132715 50.654% 161343 21.571% 163162 22.942%

X-n957-k87 85465 130850 53.104% 98198 14.898% 113882 33.250% 105629 23.593% 85465 48.127% 123633 44.659% 102689 20.153%

X-n979-k58 118976 147687 24.132% 138092 16.067% 146347 23.005% 139682 17.404% 118976 16.711% 131754 10.740% 129952 9.225%

X-n1001-k43 72355 100399 38.759% 87660 21.153% 114448 58.176% 94734 30.929% 72355 82.677% 88969 22.962% 85929 18.760%

Avg. Gap 29.658% 16.796% 26.408% 19.607% 30.202% 18.795% 12.303%

of MTPOMO and MVMoE that were initially trained on mixtures of only CVRP, OVRP, VRPL, VRPB,
VRPTW, and OVRPTW for more than 3× longer than our setting with all variants. Interestingly, training
on all variants improves the generalization performance of MVMoE compared to the original setting, while

30



Published in Transactions on Machine Learning Research (09/2025)

it decreases the MTPOMO one (possibly due to the fact several more CVRP instances were sampled in
MVMoE’s setting). Notably, RouteFinder vastly outperforms other SOTA single and multi-task RL
baselines.

D.3 Effect of Transformer Encoder Components

We study the effect of the proposed Transformer Encoder by ablating its components, in particular:

1. RouteFinder: uses the full proposed Transformer Encoder as described in Section 4.2.1.

2. RouteFinder (No RMSNorm): removes the RMSNorm in pre-norm, but keeps the SwiGLU MLP.

3. RouteFinder (No SwiGLU): removes the SwiGLU MLP, but leaves the RMSNorm

4. RouteFinder (No SwiGLU, No RMSNorm): removes all components and is equivalent to the
commonly used Attention Model-style encoder (Kool et al., 2019).

RouteF
inder

RouteF
inder

(N
o RMSNorm

)

RouteF
inder

(N
o SwiG

LU)

RouteF
inder

(N
o SwiG

LU, No RMSNorm
)

2.05

2.10

2.15

2.20

A
v
g

G
a
p

%
(a

ll
va

ri
an

ts
,
n

=
50

)

Figure 8: Effect of encoder components.

We show in Figure 8 the effect of each component on the test gaps for n = 50 nodes, averaged across the
16 variants of Table 9. The full RouteFinder provides the best performance. We additionally study the
behavior of each single component on validation data during the training epochs across different variants in
Appendix D.3. Interestingly, as shown in Appendix D.3, while the final performance for the variant with no
RMSNorm outperforms the baseline due to its enhanced capability in representation learning, its convergence
is slower in the beginning. However, the full Transformer Encoder containing both RMSNorm and SwiGLU
not only performs the best, but also converges the fastest, indicating the importance of each single component.

FlashAttention speedup FlashAttention (Dao et al., 2022; Dao, 2024) is a recent exact attention algorithm
that can be used to significantly speed up computations with mixed precision. This can be applied to any
model with an attention-based mechanism, so we apply it by default to all neural networks compared in this
work. Overall, we can improve training and inference speed by up to 20%+ with no performance degradation.

31



Published in Transactions on Machine Learning Research (09/2025)

0 50 100 150 200 250
Epochs

2

3

G
ap

(C
V

R
P

)

0 50 100 150 200 250
Epochs

2

3

4

5

G
ap

(V
R

P
T

W
)

0 50 100 150 200 250
Epochs

4

6

G
ap

(O
V

R
P

)

0 50 100 150 200 250
Epochs

2

3

4

G
ap

(V
R

P
L

)

0 50 100 150 200 250
Epochs

4

6

8

G
ap

(V
R

P
B

)

0 50 100 150 200 250
Epochs

2

3

G
ap

(O
V

R
P

T
W

)

0 50 100 150 200 250
Epochs

4

6

8

10

G
ap

(V
R

P
B

L
)

0 50 100 150 200 250
Epochs

2

3

4

G
ap

(V
R

P
B

L
T

W
)

0 50 100 150 200 250
Epochs

2

3

4

G
ap

(V
R

P
B

T
W

)

0 50 100 150 200 250
Epochs

3

4

5

6

G
ap

(V
R

P
L
T

W
)

0 50 100 150 200 250
Epochs

3

4

5

6

G
ap

(O
V

R
P

B
)

0 50 100 150 200 250
Epochs

3

4

5

6

G
ap

(O
V

R
P

B
L

)

0 50 100 150 200 250
Epochs

1.0

1.5

2.0

2.5

G
ap

(O
V

R
P

B
L
T

W
)

0 50 100 150 200 250
Epochs

1.0

1.5

2.0

2.5

G
ap

(O
V

R
P

B
T

W
)

0 50 100 150 200 250
Epochs

4

6

G
ap

(O
V

R
P

L
)

0 50 100 150 200 250
Epochs

2

3

G
ap

(O
V

R
P

L
T

W
)

RouteFinder RouteFinder (No RMSNorm) RouteFinder (No SwiGLU) RouteFinder (No SwiGLU, No RMSNorm)

Figure 9: Ablation study on proposed encoder components over training.

32



Published in Transactions on Machine Learning Research (09/2025)

D.4 Effect of Reward Normalization Techniques

In this section, we study the effect of different reward normalization techniques, i.e., 1)—4) from Section 4.3.2.

No Normalization

Cumul (Div)

Cumul (Sub)

Exp (Sub, 0.1)

Exp (Sub, 0.25)

Exp (Div, 0.1)

Exp (Div, 0.25)

9.885

9.890

9.895

9.900

9.905

A
ve

ra
ge

G
ap

(%
)

Figure 10: Effect of reward normalization.

Figure 10 shows that reward normalization successfully improves performance across variants. We also show
different values of α for the exponential moving averages and find that the division through the exponentially
smoothed mean with α = 0.25 works best. Future normalization research may further improve performance.

D.5 Studies on Mixed Batch Training

D.5.1 Effect on convergence speed

In addition to the effect of MBT on the training loss shown in Section 5.2, we also show the validation gaps
on held-out instances in Figure 11, where MBT speeds up convergence across all variants.

33



Published in Transactions on Machine Learning Research (09/2025)

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

G
ap

(C
V

R
P

)

0 50 100 150 200 250
Epochs

2.0

2.5

3.0

3.5

4.0

G
ap

(V
R

P
T

W
)

0 50 100 150 200 250
Epochs

3

4

5

G
ap

(O
V

R
P

)

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

3.0

G
ap

(V
R

P
L

)

0 50 100 150 200 250
Epochs

3

4

5

6

G
ap

(V
R

P
B

)

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

G
ap

(O
V

R
P

T
W

)

0 50 100 150 200 250
Epochs

4

5

6

7

G
ap

(V
R

P
B

L
)

0 50 100 150 200 250
Epochs

2.0

2.5

3.0

3.5

G
ap

(V
R

P
B

L
T

W
)

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

3.0

G
ap

(V
R

P
B

T
W

)

0 50 100 150 200 250
Epochs

3

4

G
ap

(V
R

P
L
T

W
)

0 50 100 150 200 250
Epochs

3

4

5

G
ap

(O
V

R
P

B
)

0 50 100 150 200 250
Epochs

3

4

5

G
ap

(O
V

R
P

B
L

)

0 50 100 150 200 250
Epochs

1.00

1.25

1.50

1.75

2.00

G
ap

(O
V

R
P

B
L
T

W
)

0 50 100 150 200 250
Epochs

1.00

1.25

1.50

1.75

2.00

G
ap

(O
V

R
P

B
T

W
)

0 50 100 150 200 250
Epochs

3

4

5

G
ap

(O
V

R
P

L
)

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

G
ap

(O
V

R
P

L
T

W
)

MBT No MBT

Figure 11: Mixed Batch Training (MBT) allows for better convergence across all variants.

34



Published in Transactions on Machine Learning Research (09/2025)

D.5.2 Effect on imbalanced variant distributions

As explained in Section 4.3.1, we can sample variants uniformly by setting the probability of sampling base
attributes ν as pν = 0.5. We study the behavior of MBT in imbalanced attribute distributions. We train
RouteFinder models from scratch with the same setting as the main experiments for 50 epochs with 10, 000
instances of size 50 sampled per epoch, with and without MBT, and at different values of the sampling
probability for time window attributes pTW as 0.5, 0.25, and 0.10. Figure 12 shows the validation gaps over
the training.

0 1000 2000 3000

Steps

0

5

10

15

20

25

G
ap

(%
)

pTW = 0.50

0 1000 2000 3000

Steps

0

5

10

15

20

25
pTW = 0.25

0 1000 2000 3000

Steps

0

5

10

15

20

25
pTW = 0.10

0 1000 2000 3000

Steps

0

5

10

15

20

25

G
ap

(%
)

pTW = 0.50

0 1000 2000 3000

Steps

0

5

10

15

20

25
pTW = 0.25

0 1000 2000 3000

Steps

0

5

10

15

20

25
pTW = 0.10

C
V

R
P

V
R

P
T

W

MBT No MBT

Figure 12: Effect of Mixed Batch Training (MBT) on imbalanced variant distributions with varying probability pTW of sampling
time windows (TW). MBT stabilizes the training not only for the downsampled TW variants such as VRPTW but also improves
the performance for variants with more samples as CVRP.

Decreasing pTW (towards the right of the plot) results in fewer time window attributes; thus, the convergence
is slower for variants such as VRPTW. On the other hand, variants like the CVRP will be sampled with
higher probability, which results in slightly faster convergence. MBT plays an important role in stabilizing
the training for all cases. Interestingly, while its effect is more moderate for the majority samples (CVRP),
this effect is higher on minority samples as VRPTW, where it results in a stable training curve, yielding fast
convergence.

D.6 T-SNE Visualizations

For interpretability, we study the representations learned from the model across different variants. Given
their high dimensionality, we employ t-SNE (Van der Maaten & Hinton, 2008) to project them in 2D space.
We employ the implementation from scikit-learn with the default perplexity of 30 and use 100 instances
of size 100 for each of the 16 variants of the main experiments from Section 5.1.

D.6.1 Layer-wise visualization

We study RouteFinder’s Transformer Encoder layers. As shown in Figure 13, distinct clusters emerge at
different model layers, indicating that the model progressively separates the problem variants with increasing
depth. Early layers (Layer 1) exhibit high overlap between different variants, suggesting shared feature
extraction. However, as we proceed to deeper layers (Layer 6), the clusters become more distinct, particularly
for more complex variants such as OVRPB, VRPBLTW, and VRPBTW, signifying the model’s capacity to
capture and differentiate intricate problem structures.

35



Published in Transactions on Machine Learning Research (09/2025)

−40 −20 0 20 40

−20

0

20

40

Layer 1

−40 −20 0 20 40

−40

−20

0

20

40

Layer 2

−40 −20 0 20 40

−40

−20

0

20

40

Layer 3

−40 −20 0 20 40

−60

−40

−20

0

20

40

Layer 4

−40 −20 0 20 40

−60

−40

−20

0

20

40

Layer 5

−40 −20 0 20 40

−40

−20

0

20

40

Layer 6

CVRP

OVRP

VRPB

VRPL

VRPTW

OVRPTW

OVRPB

OVRPL

VRPBL

VRPBTW

VRPLTW

OVRPBL

OVRPBTW

OVRPLTW

VRPBLTW

OVRPBLTW

Figure 13: Visualization of RouteFinder’s Transformer Encoder latent space via t-SNE analysis by layer. Problem patterns
become more visible with deeper layers, generating distinct clusters.

D.6.2 Comparison across models and VRP variants

We also compare t-SNE analyses across the models, in particular, MTPOMO and MVMoE, compared to our
RouteFinder with Transformer Encoder layers, with embeddings taken in the last encoder layer for all
models. In particular, we aim to analyze the differences in latent representation problem variants across the
four attributes: open routes (O), distance limits (L), backhauls (B), and time windows (TW). Figure 14 shows
that RouteFinder generates more and defined clusters, indicating a better-learned representation (Arora
et al., 2018). For open routes, RouteFinder has more defined clusters than the baselines. In distance limits,
our model generates double the clusters, which indicates different relations between attributes; for instance,
the model clearly separates backhaul variants VRPB and VRPBL (green and grey, respectively), while other
models do not clearly do this. This also holds in the backhaul attribute clusters, where RouteFinder more
clearly separates different types of time windows as well as distance limits. Finally, for time windows clusters,
we notice the most striking difference – while MTPOMO and MVMoE fail to distinguish between time
window variants, resulting in a single and sparse cluster, RouteFinder separates time window variants with
and without the open (O) attribute into two separate clusters thanks to the Global Attribute Embeddings.

36



Published in Transactions on Machine Learning Research (09/2025)

Open Routes (O) Distance Limits (L) Backhauls (B) Time Windows (TW)
M

T
P

O
M

O

−50 0 50

−20

0

20

40

Constraint Open Routes

−50 0 50

−20

0

20

40

Constraint Duration Limits

−50 −25 0 25

−20

0

20

40

Constraint Backhauls

−40 −20

−30

−20

−10

0

10

20

Constraint Time Window

OVRP

OVRPTW

OVRPB

OVRPL

OVRPBL

OVRPBTW

OVRPLTW

OVRPBLTW

VRPL

OVRPL

VRPBL

VRPLTW

OVRPBL

OVRPLTW

VRPBLTW

OVRPBLTW

VRPB

OVRPB

VRPBL

VRPBTW

OVRPBL

OVRPBTW

VRPBLTW

OVRPBLTW

VRPTW

OVRPTW

VRPBTW

VRPLTW

OVRPBTW

OVRPLTW

VRPBLTW

OVRPBLTW

M
V

M
oE

−50 0 50

−20

−10

0

10

20

30

Constraint Open Routes

−50 0 50

−20

−10

0

10

20

30

Constraint Duration Limits

−50 −25 0 25

−20

−10

0

10

20

30

Constraint Backhauls

−40 −20

−20

−10

0

10

20

Constraint Time Window

OVRP

OVRPTW

OVRPB

OVRPL

OVRPBL

OVRPBTW

OVRPLTW

OVRPBLTW

VRPL

OVRPL

VRPBL

VRPLTW

OVRPBL

OVRPLTW

VRPBLTW

OVRPBLTW

VRPB

OVRPB

VRPBL

VRPBTW

OVRPBL

OVRPBTW

VRPBLTW

OVRPBLTW

VRPTW

OVRPTW

VRPBTW

VRPLTW

OVRPBTW

OVRPLTW

VRPBLTW

OVRPBLTW

R
ou

te
F

in
de

r

−20 0 20

0

10

20

30

40

Constraint Open Routes

−25 0 25 50

−40

−20

0

20

40

Constraint Duration Limits

−25 0 25 50

−40

−20

0

20

40

Constraint Backhauls

−40 −30 −20 −10

−20

0

20

40

Constraint Time Window

OVRP

OVRPTW

OVRPB

OVRPL

OVRPBL

OVRPBTW

OVRPLTW

OVRPBLTW

VRPL

OVRPL

VRPBL

VRPLTW

OVRPBL

OVRPLTW

VRPBLTW

OVRPBLTW

VRPB

OVRPB

VRPBL

VRPBTW

OVRPBL

OVRPBTW

VRPBLTW

OVRPBLTW

VRPTW

OVRPTW

VRPBTW

VRPLTW

OVRPBTW

OVRPLTW

VRPBLTW

OVRPBLTW

−20 0 20

0

10

20

30

40

Constraint Open Routes

−25 0 25 50

−40

−20

0

20

40

Constraint Duration Limits

−25 0 25 50

−40

−20

0

20

40

Constraint Backhauls

−40 −30 −20 −10

−20

0

20

40

Constraint Time Window

OVRP

OVRPTW

OVRPB

OVRPL

OVRPBL

OVRPBTW

OVRPLTW

OVRPBLTW

VRPL

OVRPL

VRPBL

VRPLTW

OVRPBL

OVRPLTW

VRPBLTW

OVRPBLTW

VRPB

OVRPB

VRPBL

VRPBTW

OVRPBL

OVRPBTW

VRPBLTW

OVRPBLTW

VRPTW

OVRPTW

VRPBTW

VRPLTW

OVRPBTW

OVRPLTW

VRPBLTW

OVRPBLTW

Figure 14: Analysis of the t-SNE latent space for the last encoder layer for different attributes. RouteFinder yields well-defined,
tightly grouped, and distinct clusters on all variants – a strong indicator of its capability to generalize and specialize effectively
in solving diverse VRP variants. For example, unlike the baselines, RouteFinder distinctly separates time window variants into
two clusters with and without open routes (bottom-right image) thanks to the Global Attribute Embeddings.

D.7 Finetuning with EAL

D.7.1 Finetuning to Unseen Variants

We conduct additional experiments on zero-shot generalization of various models and finetuning across three
different settings of unseen variants in order of difficulty:

1. Mixed backhauls (MB): this is the setting from Section 5.3. We report the results in full in Table 10
and trends over epochs in Figure 7a.

2. Multi-depot (MD): we add more attributes for finetuning approaches as per Appendix B.4 with data
generated as in Appendix A.1. Results are reported in Table 11 and trends over epochs in Figure 7b.

37



Published in Transactions on Machine Learning Research (09/2025)

3. Mixed backhauls & multi-depot (MB&MD): this is the hardest setting, which considers as finetuning
variants only the ones containing both the unseen MB and MD attributes at the same time from
Table 4. Full results are in Table 12 with trends over epochs in Figure 7c.

We keep the same methodology as outlined in Section 5.3, i.e., 10 epochs with 10k instances sampled for
each epoch. We use RouteFinder models with Transformer Encoder (RF-TE), untrained for the scratch
training and pretrained from the same checkpoints as the main experiments in Section 5.1 for AL and EAL
finetuning. Additional details on EAL modeling are available in Appendix B.4.

Table 10: Zero-shot, retraining, and fine-tuning performance on unseen mixed backhaul (MB) variants. "∅" are models and
fine-tuning methods evaluated in zero-shot settings. EAL maintains the zero-shot performance and performs best overall.

VRPMB OVRPMB VRPMBL VRPMBTW OVRPMBL OVRPMBTW VRPMBLTW OVRPMBLTW
Method Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap
HGS-PyVRP 13.54 * 9.01 * 13.78 * 25.51 * 9.01 * 16.97 * 25.85 * 16.97 *
OR-Tools 14.93 10.27% 10.59 17.54% 15.42 11.90% 29.97 17.48% 10.59 17.54% 19.31 13.78% 30.44 17.76% 19.31 13.78%
MTPOMO∅ 15.04 11.32% 10.87 20.65% 15.41 11.97% 28.31 11.06% 10.85 20.43% 18.51 9.08% 28.73 11.27% 18.51 9.12%
MVMoE∅ 14.99 10.94% 10.85 20.42% 15.33 11.37% 28.32 11.10% 10.82 20.14% 18.55 9.33% 28.70 11.16% 18.55 9.30%
RF-POMO∅ 14.98 10.90% 10.84 20.31% 15.29 11.12% 28.53 11.94% 10.84 20.32% 18.62 9.72% 28.89 11.89% 18.62 9.71%
RF-MoE∅ 14.93 10.49% 10.76 19.49% 15.21 10.47% 28.20 10.63% 10.76 19.40% 18.45 8.74% 28.55 10.57% 18.45 8.72%
RF-TE∅ 14.88 10.13% 10.72 19.02% 15.18 10.32% 28.29 10.87% 10.72 19.01% 18.45 8.68% 28.65 10.82% 18.45 8.69%
Train (scratch) 15.18 12.13% 10.40 15.38% 15.48 12.37% 28.11 10.17% 10.46 16.08% 18.85 11.09% 28.69 10.95% 18.86 11.19%
AL∅ 43.15 221.25% 37.98 323.23% 32.81 139.84% 59.17 133.55% 29.15 224.37% 39.03 131.09% 66.62 158.21% 40.92 141.51%
AL 14.91 10.10% 10.14 12.53% 15.12 9.73% 27.79 8.92% 10.18 12.95% 18.52 9.13% 28.33 9.56% 18.51 9.05%
EAL∅ 14.88 10.13% 10.72 19.02% 15.18 10.32% 28.29 10.87% 10.72 19.01% 18.45 8.68% 28.65 10.82% 18.45 8.69%
EAL 14.59 7.89% 9.66 7.19% 14.78 7.39% 26.69 4.61% 9.65 7.13% 17.60 3.70% 27.13 4.90% 17.59 3.65%

Table 11: Zero-shot, retraining, and fine-tuning performance on unseen multi-depot (MD) variants. "∅" denotes models and
fine-tuning methods evaluated in zero-shot settings. EAL maintains the zero-shot performance and performs best overall.

MDCVRP MDOVRP MDVRPB MDVRPL MDVRPTW MDOVRPTW MDOVRPB MDOVRPL
Method Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap
HGS-PyVRP 11.89 * 7.97 * 11.64 * 11.90 * 19.33 * 13.00 * 8.69 * 7.97 *
OR-Tools 12.52 5.27% 8.16 2.33% 12.22 5.01% 12.52 5.24% 19.62 1.55% 13.09 0.74% 8.87 2.15% 8.16 2.33%
MTPOMO∅ 16.07 35.74% 10.28 29.06% 15.18 30.66% 16.30 37.58% 26.68 38.56% 17.57 35.67% 10.94 26.08% 10.28 29.07%
MVMoE∅ 16.02 35.35% 10.24 28.59% 15.12 30.13% 16.25 37.17% 26.67 38.51% 17.57 35.68% 10.89 25.56% 10.24 28.60%
RF-POMO∅ 16.03 35.46% 10.23 28.52% 15.11 30.10% 16.25 37.19% 26.60 38.16% 17.54 35.43% 10.88 25.48% 10.23 28.55%
RF-MoE∅ 16.01 35.24% 10.20 28.06% 15.06 29.69% 16.21 36.89% 26.60 38.11% 17.54 35.44% 10.84 25.02% 10.20 28.06%
RF-TE∅ 15.98 35.02% 10.18 27.82% 15.05 29.53% 16.20 36.76% 26.51 37.64% 17.48 34.96% 10.82 24.74% 10.18 27.84%
Train (scratch) 14.44 21.59% 9.88 23.87% 14.86 27.75% 14.50 21.99% 23.33 20.82% 15.48 19.16% 10.76 23.84% 9.89 24.07%
AL∅ 33.91 188.76% 25.02 215.12% 33.56 189.58% 31.06 164.78% 49.08 155.57% 31.17 141.42% 26.30 203.65% 24.12 203.73%
AL 14.23 19.84% 9.67 21.28% 14.84 27.57% 14.33 20.51% 22.64 17.18% 15.05 15.81% 10.69 23.12% 9.69 21.45%
EAL∅ 15.98 35.02% 10.18 27.82% 15.05 29.53% 16.20 36.76% 26.51 37.64% 17.48 34.96% 10.82 24.74% 10.18 27.84%
EAL 12.96 9.14% 8.64 8.37% 13.05 12.15% 12.99 9.31% 21.14 9.43% 13.81 6.24% 9.46 8.88% 8.64 8.33%

MDVRPBL MDVRPBTW MDVRPLTW MDOVRPBL MDOVRPBTW MDOVRPLTW MDVRPBLTW MDOVRPBLTW
Method Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap
HGS-PyVRP 11.68 * 22.03 * 19.35 * 8.69 * 14.369 * 13.00 * 22.06 * 14.37 *
OR-Tools 12.22 4.66% 22.40 1.69% 19.66 1.58% 8.87 2.13% 14.49 0.87% 13.09 0.70% 22.43 1.70% 14.49 0.86%
MTPOMO∅ 15.80 35.54% 30.55 39.23% 27.13 40.71% 10.94 26.11% 19.69 37.62% 17.58 35.70% 31.09 41.52% 19.69 37.64%
MVMoE∅ 15.73 34.95% 30.55 39.22% 27.12 40.67% 10.90 25.66% 19.69 37.62% 17.58 35.74% 31.06 41.39% 19.69 37.61%
RF-POMO∅ 15.71 34.80% 30.46 38.80% 27.04 40.22% 10.89 25.49% 19.66 37.38% 17.54 35.43% 30.97 41.00% 19.66 37.37%
RF-MoE∅ 15.65 34.25% 30.47 38.87% 27.03 40.18% 10.84 25.03% 19.66 37.40% 17.55 35.45% 30.98 41.06% 19.66 37.42%
RF-TE∅ 15.62 33.98% 30.36 38.36% 26.93 39.69% 10.82 24.78% 19.59 36.95% 17.48 34.95% 30.86 40.49% 19.60 36.96%
Train (scratch) 15.05 28.91% 26.43 20.03% 23.41 21.08% 10.77 24.02% 16.86 17.41% 15.50 19.28% 26.52 20.30% 16.88 17.54%
AL∅ 32.08 175.25% 51.70 136.04% 47.65 147.90% 25.00 188.85% 32.45 127.08% 29.94 131.91% 50.14 128.59% 30.93 116.41%
AL 14.95 28.03% 25.81 17.19% 22.70 17.33% 10.70 23.14% 16.47 14.66% 15.07 15.98% 25.84 17.16% 16.48 14.71%
EAL∅ 15.62 33.98% 30.36 38.36% 26.93 39.69% 10.82 24.78% 19.59 36.95% 17.48 34.95% 30.86 40.49% 19.60 36.96%
EAL 13.16 12.70% 23.88 8.42% 21.18 9.47% 9.46 8.85% 15.18 5.61% 13.81 6.24% 23.94 8.54% 15.17 5.60%

RouteFinder models perform the best in zero-shot generalization across all experiments; moreover, EAL
finetuning achieves the same zero-shot performance as the backbone RouteFinder model RF-TE thanks
to the zero-padded initialization, while AL does not due to the introduction of untrained embedding layers.
Notably, experiments with multi-depots are much harder than mixed backhaul variants since they require the
model to understand multiple starting (and returning) point locations and to schedule vehicle assignments
to their respective depots efficiently. EAL performs the best across all variants in finetuning performance.
Remarkably, EAL’s performance compared to AL and retraining a model from scratch is more prominent

38



Published in Transactions on Machine Learning Research (09/2025)

Table 12: Zero-shot, retraining, and fine-tuning performance on unseen variants with combined multi-depots (MD) and mixed
backhauls (MB). "∅" denotes models and fine-tuning methods evaluated in zero-shot settings. EAL finetuning maintains the
zero-shot performance and performs best overall.

MDVRPMB MDOVRPMB MDVRPMBL MDVRPMBTW MDOVRPMBL MDOVRPMBTW MDVRPMBLTW MDOVRPMBLTW
Method Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap
HGS-PyVRP 10.68 * 7.66 * 10.71 * 19.29 * 7.66 * 12.96 * 19.31 * 12.96 *
OR-Tools 12.22 14.37% 8.88 15.83% 12.23 14.23% 22.39 16.12% 8.87 15.73% 14.49 11.79% 22.43 16.16% 14.49 11.79%
MTPOMO∅ 15.14 42.22% 10.91 42.57% 15.49 45.23% 28.44 48.01% 10.90 42.45% 18.56 43.63% 28.93 50.36% 18.56 43.65%
MVMoE∅ 15.08 41.67% 10.90 42.41% 15.40 44.37% 28.46 48.12% 10.88 42.13% 18.61 44.04% 28.89 50.19% 18.60 43.95%
RF-POMO∅ 15.09 41.78% 10.90 42.41% 15.37 44.05% 28.68 49.27% 10.90 42.37% 18.69 44.70% 29.08 51.15% 18.69 44.69%
RF-MoE∅ 15.02 41.08% 10.82 41.40% 15.29 43.34% 28.38 47.67% 10.82 41.36% 18.50 43.19% 28.77 49.56% 18.50 43.22%
RF-TE∅ 14.99 40.80% 10.77 40.67% 15.28 43.27% 28.43 47.93% 10.76 40.62% 18.49 43.14% 28.80 49.69% 18.50 43.17%
Train (scratch) 13.12 22.88% 9.37 22.32% 13.24 23.72% 22.85 18.56% 9.38 22.44% 15.13 16.75% 22.90 18.65% 15.11 16.60%
AL∅ 34.12 223.14% 26.36 245.53% 27.41 158.88% 48.94 155.28% 24.11 216.01% 31.53 144.89% 46.80 143.89% 30.08 133.48%
AL 13.10 22.70% 9.36 22.14% 13.20 23.36% 22.90 18.76% 9.38 22.46% 15.28 17.91% 23.02 19.26% 15.39 18.77%
EAL∅ 14.99 40.80% 10.77 40.67% 15.28 43.27% 28.43 47.93% 10.76 40.62% 18.49 43.14% 28.80 49.69% 18.50 43.17%
EAL 12.70 18.98% 8.53 11.35% 12.68 18.56% 21.41 11.05% 8.54 11.43% 13.93 7.41% 21.44 11.09% 13.91 7.32%

with the increasing difficulty of the finetuning task from MB to MB+MD, indicating it is a suitable method
for efficient deployment in finetuning to new tasks.

D.7.2 Finetuning with EAL for Single-Variant Models

We finetune all POMO models with the same setting as the experiment with unseen mixed backhaul and
multi-depots (MB&MD) from Appendix D.7.1 with EAL.

Table 13: Fine-tuning performance on unseen variants of single-variant POMO models and RouteFinder. Finetuning a
foundation model for VRPs is crucial for fast adaptation to downstream tasks.

MDVRPMB MDOVRPMB MDVRPMBL MDVRPMBTW MDOVRPMBL MDOVRPMBTW MDVRPMBLTW MDOVRPMBLTW
Method Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap
HGS-PyVRP 10.68 * 7.66 * 10.71 * 19.29 * 7.66 * 12.96 * 19.31 * 12.96 *
OR-Tools 12.22 14.37% 8.88 15.83% 12.23 14.23% 22.39 16.12% 8.87 15.73% 14.49 11.79% 22.43 16.16% 14.49 11.79%
POMO_CVRP 13.34 24.97% 9.66 26.01% 13.43 25.50% 25.19 30.84% 9.66 25.97% 25.14 30.39% 17.66 36.50% 17.65 36.43%
POMO_VRPL 13.36 25.14% 9.88 28.97% 13.37 24.99% 28.15 46.43% 9.86 28.70% 28.02 45.58% 20.79 60.98% 20.74 60.53%
POMO_OVRP 13.31 24.62% 9.54 24.45% 13.35 24.77% 26.03 35.27% 9.55 24.63% 26.03 35.07% 18.65 44.21% 18.66 44.30%
POMO_VRPTW 13.91 30.27% 10.17 32.77% 13.99 30.72% 24.70 28.13% 10.22 33.43% 24.78 28.43% 16.74 29.32% 16.80 29.77%
POMO_VRPB 13.00 21.69% 9.25 20.63% 13.06 22.07% 22.50 16.66% 9.23 20.44% 22.53 16.64% 14.96 15.39% 14.97 15.54%
RouteFinder 12.70 18.98% 8.53 11.35% 12.68 18.56% 21.41 11.05% 8.54 11.43% 13.93 7.41% 21.44 11.09% 13.91 7.32%

Table 13 shows that fine-tuning our RouteFinder foundation model achieves the best results, even when
comparing variants that include only unseen features for both. For instance, POMO trained only on VRP with
backhauls (POMO_VRPB in the table) was trained by sampling many more (classical) backhaul features,
but RouteFinder can still fine-tune better on MDVRPMB. Models trained on similar features as the target
ones (e.g., POMO_VRPTW being trained on time windows) can overall fine-tune better to variants that
include these features (e.g., time windows) than other models. This is expected, but our foundation model
performs even better. This is a strong motivation for practitioners and researchers: developing foundation
models for VRPs is crucial for fast adaptation to new tasks that may arise in real-world scenarios, such as
adding new constraints or attributes.

E Visualizations

We provide qualitative visualizations for the solutions of randomly picked instances from the instances of
the main results of Table 1 for different models: MTPOMO, MVMoE, and RouteFinder model variants
RF-POMO, RF-MoE, RF-TE.

39



Published in Transactions on Machine Learning Research (09/2025)

CV
RP

3

8

7
4

7

4

3

7

2

5

3

4

1

2

6

6

9

7 6

2

7

43
6

5

9

1
7

7

3

5

2

9

4

9

6

1

9

4

9 8

6

4

4

1

2

6

8

5 7

2

7

5

2

6

5

5
6

1

9

5

9

3

6

7

3

8 9

5

1

4

3

6

6

1

7

6

7

1

2

4
4

1

3

6

7

1
4

4

2

5

7

5

1

1

3

7

4

8
2

MTPOMO (14.868)

3

8

7
4

7

4

3

7

2

5

3

4

1

2

6

6

9

7 6

2

7

43
6

5

9

1
7

7

3

5

2

9

4

9

6

1

9

4

9 8

6

4

4

1

2

6

8

5 7

2

7

5

2

6

5

5
6

1

9

5

9

3

6

7

3

8 9

5

1

4

3

6

6

1

7

6

7

1

2

4
4

1

3

6

7

1
4

4

2

5

7

5

1

1

3

7

4

8
2

MVMoE (14.820)

3

8

7
4

7

4

3

7

2

5

3

4

1

2

6

6

9

7 6

2

7

43
6

5

9

1
7

7

3

5

2

9

4

9

6

1

9

4

9 8

6

4

4

1

2

6

8

5 7

2

7

5

2

6

5

5
6

1

9

5

9

3

6

7

3

8 9

5

1

4

3

6

6

1

7

6

7

1

2

4
4

1

3

6

7

1
4

4

2

5

7

5

1

1

3

7

4

8
2

RF-POMO (14.735)

3

8

7
4

7

4

3

7

2

5

3

4

1

2

6

6

9

7 6

2

7

43
6

5

9

1
7

7

3

5

2

9

4

9

6

1

9

4

9 8

6

4

4

1

2

6

8

5 7

2

7

5

2

6

5

5
6

1

9

5

9

3

6

7

3

8 9

5

1

4

3

6

6

1

7

6

7

1

2

4
4

1

3

6

7

1
4

4

2

5

7

5

1

1

3

7

4

8
2

RF-MOE (14.809)

3

8

7
4

7

4

3

7

2

5

3

4

1

2

6

6

9

7 6

2

7

43
6

5

9

1
7

7

3

5

2

9

4

9

6

1

9

4

9 8

6

4

4

1

2

6

8

5 7

2

7

5

2

6

5

5
6

1

9

5

9

3

6

7

3

8 9

5

1

4

3

6

6

1

7

6

7

1

2

4
4

1

3

6

7

1
4

4

2

5

7

5

1

1

3

7

4

8
2

RF-TE (14.806)

OV
RP

8

7
5

8
7

29

2

2

1

8

4

7

9

6

8

2

5

6

4

1

9

7
3

1

9

5

1

5
2

1

2

6

5

2

7

8

6

8 7

3

8

9

5

8

7

3

2

7

6

2

6
2

78
7

7

29
8

8
8

3

5

7

5
2

3

8

1

2

8

4

2

9

1

9

8

8

4

3

5

4

6
7

9

5

5

3

4

5

2

2

2

3

1
2

3

6

8

MTPOMO (10.885)

8

7
5

8
7

29

2

2

1

8

4

7

9

6

8

2

5

6

4

1

9

7
3

1

9

5

1

5
2

1

2

6

5

2

7

8

6

8 7

3

8

9

5

8

7

3

2

7

6

2

6
2

78
7

7

29
8

8
8

3

5

7

5
2

3

8

1

2

8

4

2

9

1

9

8

8

4

3

5

4

6
7

9

5

5

3

4

5

2

2

2

3

1
2

3

6

8

MVMoE (10.805)

8

7
5

8
7

29

2

2

1

8

4

7

9

6

8

2

5

6

4

1

9

7
3

1

9

5

1

5
2

1

2

6

5

2

7

8

6

8 7

3

8

9

5

8

7

3

2

7

6

2

6
2

78
7

7

29
8

8
8

3

5

7

5
2

3

8

1

2

8

4

2

9

1

9

8

8

4

3

5

4

6
7

9

5

5

3

4

5

2

2

2

3

1
2

3

6

8

RF-POMO (10.872)

8

7
5

8
7

29

2

2

1

8

4

7

9

6

8

2

5

6

4

1

9

7
3

1

9

5

1

5
2

1

2

6

5

2

7

8

6

8 7

3

8

9

5

8

7

3

2

7

6

2

6
2

78
7

7

29
8

8
8

3

5

7

5
2

3

8

1

2

8

4

2

9

1

9

8

8

4

3

5

4

6
7

9

5

5

3

4

5

2

2

2

3

1
2

3

6

8

RF-MOE (10.789)

8

7
5

8
7

29

2

2

1

8

4

7

9

6

8

2

5

6

4

1

9

7
3

1

9

5

1

5
2

1

2

6

5

2

7

8

6

8 7

3

8

9

5

8

7

3

2

7

6

2

6
2

78
7

7

29
8

8
8

3

5

7

5
2

3

8

1

2

8

4

2

9

1

9

8

8

4

3

5

4

6
7

9

5

5

3

4

5

2

2

2

3

1
2

3

6

8

RF-TE (10.748)

VR
PB

6

1

7
9

4

2

7

8

1
1

3
9

9
3

2

1
4

9

7

5
8

4

3

9

9

6

5

1

9

5

3
1

2
7

4

4

7

5

9
5

9

55
9

4

2

5
5

5

9

8

2

1

2

7

6

9

6
6

4

4

6

7

8

7

3

1

8

8

4 6

5

3

9

1

1

27
4

9

9

3

5

9

7

6
7

8

2 4

8

4

3

36

3

5

29
5

MTPOMO (16.429)

6

1

7
9

4

2

7

8

1
1

3
9

9
3

2

1
4

9

7

5
8

4

3

9

9

6

5

1

9

5

3
1

2
7

4

4

7

5

9
5

9

55
9

4

2

5
5

5

9

8

2

1

2

7

6

9

6
6

4

4

6

7

8

7

3

1

8

8

4 6

5

3

9

1

1

27
4

9

9

3

5

9

7

6
7

8

2 4

8

4

3

36

3

5

29
5

MVMoE (16.366)

6

1

7
9

4

2

7

8

1
1

3
9

9
3

2

1
4

9

7

5
8

4

3

9

9

6

5

1

9

5

3
1

2
7

4

4

7

5

9
5

9

55
9

4

2

5
5

5

9

8

2

1

2

7

6

9

6
6

4

4

6

7

8

7

3

1

8

8

4 6

5

3

9

1

1

27
4

9

9

3

5

9

7

6
7

8

2 4

8

4

3

36

3

5

29
5

RF-POMO (16.351)

6

1

7
9

4

2

7

8

1
1

3
9

9
3

2

1
4

9

7

5
8

4

3

9

9

6

5

1

9

5

3
1

2
7

4

4

7

5

9
5

9

55
9

4

2

5
5

5

9

8

2

1

2

7

6

9

6
6

4

4

6

7

8

7

3

1

8

8

4 6

5

3

9

1

1

27
4

9

9

3

5

9

7

6
7

8

2 4

8

4

3

36

3

5

29
5

RF-MOE (16.296)

6

1

7
9

4

2

7

8

1
1

3
9

9
3

2

1
4

9

7

5
8

4

3

9

9

6

5

1

9

5

3
1

2
7

4

4

7

5

9
5

9

55
9

4

2

5
5

5

9

8

2

1

2

7

6

9

6
6

4

4

6

7

8

7

3

1

8

8

4 6

5

3

9

1

1

27
4

9

9

3

5

9

7

6
7

8

2 4

8

4

3

36

3

5

29
5

RF-TE (16.266)

VR
PL

5

2

5

9

2

9

3

8

1
2

4

1

9

6

1

7
7

7
8

3

5

8

6

4

5

8

9

6

1

7

2

9
8

1

9

5

4

4

5

4

5

8
7

1

2

4 9

8

8

3
2

6

9

86

3

1

7

41

9
6

6 53 8

5

3

1

8

8
6

8

7

2

26

5

8

7

3

4

5 5

2

9 6

5

4
7

4

6
9

3

3
5

8

5

7

3

MTPOMO (17.359)

5

2

5

9

2

9

3

8

1
2

4

1

9

6

1

7
7

7
8

3

5

8

6

4

5

8

9

6

1

7

2

9
8

1

9

5

4

4

5

4

5

8
7

1

2

4 9

8

8

3
2

6

9

86

3

1

7

41

9
6

6 53 8

5

3

1

8

8
6

8

7

2

26

5

8

7

3

4

5 5

2

9 6

5

4
7

4

6
9

3

3
5

8

5

7

3

MVMoE (17.350)

5

2

5

9

2

9

3

8

1
2

4

1

9

6

1

7
7

7
8

3

5

8

6

4

5

8

9

6

1

7

2

9
8

1

9

5

4

4

5

4

5

8
7

1

2

4 9

8

8

3
2

6

9

86

3

1

7

41

9
6

6 53 8

5

3

1

8

8
6

8

7

2

26

5

8

7

3

4

5 5

2

9 6

5

4
7

4

6
9

3

3
5

8

5

7

3

RF-POMO (17.368)

5

2

5

9

2

9

3

8

1
2

4

1

9

6

1

7
7

7
8

3

5

8

6

4

5

8

9

6

1

7

2

9
8

1

9

5

4

4

5

4

5

8
7

1

2

4 9

8

8

3
2

6

9

86

3

1

7

41

9
6

6 53 8

5

3

1

8

8
6

8

7

2

26

5

8

7

3

4

5 5

2

9 6

5

4
7

4

6
9

3

3
5

8

5

7

3

RF-MOE (17.245)

5

2

5

9

2

9

3

8

1
2

4

1

9

6

1

7
7

7
8

3

5

8

6

4

5

8

9

6

1

7

2

9
8

1

9

5

4

4

5

4

5

8
7

1

2

4 9

8

8

3
2

6

9

86

3

1

7

41

9
6

6 53 8

5

3

1

8

8
6

8

7

2

26

5

8

7

3

4

5 5

2

9 6

5

4
7

4

6
9

3

3
5

8

5

7

3

RF-TE (17.208)

VR
PT

W

6

47

7

2

6

5

1

9
8

3
4

2
3

7

4

2
6
6

1
5

1
6

1

6

4 8

2

5

7

6

9

8
6

3

6

38

2
4

2

3

3

4

6

5

9

8

2

3

3

6
9

3

1

47 4

1
7

8

9

1

39

5

4

2

8

3

5

9

8

3

65

3

2

1

4

9

5

2

4

9

2

3

4

9

7

2

4

2

4

7

4
4 8

6
6

MTPOMO (28.076)

6

47

7

2

6

5

1

9
8

3
4

2
3

7

4

2
6
6

1
5

1
6

1

6

4 8

2

5

7

6

9

8
6

3

6

38

2
4

2

3

3

4

6

5

9

8

2

3

3

6
9

3

1

47 4

1
7

8

9

1

39

5

4

2

8

3

5

9

8

3

65

3

2

1

4

9

5

2

4

9

2

3

4

9

7

2

4

2

4

7

4
4 8

6
6

MVMoE (28.094)

6

47

7

2

6

5

1

9
8

3
4

2
3

7

4

2
6
6

1
5

1
6

1

6

4 8

2

5

7

6

9

8
6

3

6

38

2
4

2

3

3

4

6

5

9

8

2

3

3

6
9

3

1

47 4

1
7

8

9

1

39

5

4

2

8

3

5

9

8

3

65

3

2

1

4

9

5

2

4

9

2

3

4

9

7

2

4

2

4

7

4
4 8

6
6

RF-POMO (28.511)

6

47

7

2

6

5

1

9
8

3
4

2
3

7

4

2
6
6

1
5

1
6

1

6

4 8

2

5

7

6

9

8
6

3

6

38

2
4

2

3

3

4

6

5

9

8

2

3

3

6
9

3

1

47 4

1
7

8

9

1

39

5

4

2

8

3

5

9

8

3

65

3

2

1

4

9

5

2

4

9

2

3

4

9

7

2

4

2

4

7

4
4 8

6
6

RF-MOE (28.292)

6

47

7

2

6

5

1

9
8

3
4

2
3

7

4

2
6
6

1
5

1
6

1

6

4 8

2

5

7

6

9

8
6

3

6

38

2
4

2

3

3

4

6

5

9

8

2

3

3

6
9

3

1

47 4

1
7

8

9

1

39

5

4

2

8

3

5

9

8

3

65

3

2

1

4

9

5

2

4

9

2

3

4

9

7

2

4

2

4

7

4
4 8

6
6

RF-TE (28.195)

OV
RP

TW

6

7

72

1
1

73

5

3

2

1

2
3

9 5

5

6

4

35
77

3

7

8

1

1

1

9 7

4

4

1

2

5

7

9

4
2

7

1

5

7
1

1

2

6

32

2

6

6

92

2

2

31

8 1

9

2

2

3

1

9 1
9

4

32

8
2

9

4

7

9
3

9

5

2

9

7

1

9

9

3

9

3

5

5

7

6

2

2

6

3

6
4

MTPOMO (16.875)
6

7

72

1
1

73

5

3

2

1

2
3

9 5

5

6

4

35
77

3

7

8

1

1

1

9 7

4

4

1

2

5

7

9

4
2

7

1

5

7
1

1

2

6

32

2

6

6

92

2

2

31

8 1

9

2

2

3

1

9 1
9

4

32

8
2

9

4

7

9
3

9

5

2

9

7

1

9

9

3

9

3

5

5

7

6

2

2

6

3

6
4

MVMoE (16.706)
6

7

72

1
1

73

5

3

2

1

2
3

9 5

5

6

4

35
77

3

7

8

1

1

1

9 7

4

4

1

2

5

7

9

4
2

7

1

5

7
1

1

2

6

32

2

6

6

92

2

2

31

8 1

9

2

2

3

1

9 1
9

4

32

8
2

9

4

7

9
3

9

5

2

9

7

1

9

9

3

9

3

5

5

7

6

2

2

6

3

6
4

RF-POMO (16.654)
6

7

72

1
1

73

5

3

2

1

2
3

9 5

5

6

4

35
77

3

7

8

1

1

1

9 7

4

4

1

2

5

7

9

4
2

7

1

5

7
1

1

2

6

32

2

6

6

92

2

2

31

8 1

9

2

2

3

1

9 1
9

4

32

8
2

9

4

7

9
3

9

5

2

9

7

1

9

9

3

9

3

5

5

7

6

2

2

6

3

6
4

RF-MOE (16.784)
6

7

72

1
1

73

5

3

2

1

2
3

9 5

5

6

4

35
77

3

7

8

1

1

1

9 7

4

4

1

2

5

7

9

4
2

7

1

5

7
1

1

2

6

32

2

6

6

92

2

2

31

8 1

9

2

2

3

1

9 1
9

4

32

8
2

9

4

7

9
3

9

5

2

9

7

1

9

9

3

9

3

5

5

7

6

2

2

6

3

6
4

RF-TE (16.652)

OV
RP

B 8

2
6

2

9

1

3 6

7

32

4
7

6

5

7

1
4

3

8

3

6

8

3

7 74

8

3

9

6

3 117
8

12

5

5

8

3

6

4

2

6

66

8

4

5

8

3

3

6

6

4

1

5

1

24

8

7

4
7

3

8

5

6 1

8

8

9 1

7

4 5
6

8
8

5

8

9
5

7

5

4

8

5 52

1

79

6

3

2

1

9

MTPOMO (10.213)

8

2
6

2

9

1

3 6

7

32

4
7

6

5

7

1
4

3

8

3

6

8

3

7 74

8

3

9

6

3 117
8

12

5

5

8

3

6

4

2

6

66

8

4

5

8

3

3

6

6

4

1

5

1

24

8

7

4
7

3

8

5

6 1

8

8

9 1

7

4 5
6

8
8

5

8

9
5

7

5

4

8

5 52

1

79

6

3

2

1

9

MVMoE (10.063)

8

2
6

2

9

1

3 6

7

32

4
7

6

5

7

1
4

3

8

3

6

8

3

7 74

8

3

9

6

3 117
8

12

5

5

8

3

6

4

2

6

66

8

4

5

8

3

3

6

6

4

1

5

1

24

8

7

4
7

3

8

5

6 1

8

8

9 1

7

4 5
6

8
8

5

8

9
5

7

5

4

8

5 52

1

79

6

3

2

1

9

RF-POMO (10.098)

8

2
6

2

9

1

3 6

7

32

4
7

6

5

7

1
4

3

8

3

6

8

3

7 74

8

3

9

6

3 117
8

12

5

5

8

3

6

4

2

6

66

8

4

5

8

3

3

6

6

4

1

5

1

24

8

7

4
7

3

8

5

6 1

8

8

9 1

7

4 5
6

8
8

5

8

9
5

7

5

4

8

5 52

1

79

6

3

2

1

9

RF-MOE (10.044)

8

2
6

2

9

1

3 6

7

32

4
7

6

5

7

1
4

3

8

3

6

8

3

7 74

8

3

9

6

3 117
8

12

5

5

8

3

6

4

2

6

66

8

4

5

8

3

3

6

6

4

1

5

1

24

8

7

4
7

3

8

5

6 1

8

8

9 1

7

4 5
6

8
8

5

8

9
5

7

5

4

8

5 52

1

79

6

3

2

1

9

RF-TE (9.904)

OV
RP

L

5

5

1

5

3

9
6

2

6

6

8 1
2

3

3

16 3

8

5

3

7

3

7

7

1

8 2

8

3

5

4

6

2
1

7

9

5
2

8 5

9

5

2

6

1

1

6

3

5

4

7

3

7
2

2

8

7

1
9

6

5
9

6

1

7

7

5

7

1

4
2

2

31

9

4
55

4

8

7

3

1
6
4

2

8

3

6

1

4

2

1

8

5

6

6
7

9

MTPOMO (9.967)
5

5

1

5

3

9
6

2

6

6

8 1
2

3

3

16 3

8

5

3

7

3

7

7

1

8 2

8

3

5

4

6

2
1

7

9

5
2

8 5

9

5

2

6

1

1

6

3

5

4

7

3

7
2

2

8

7

1
9

6

5
9

6

1

7

7

5

7

1

4
2

2

31

9

4
55

4

8

7

3

1
6
4

2

8

3

6

1

4

2

1

8

5

6

6
7

9

MVMoE (9.983)
5

5

1

5

3

9
6

2

6

6

8 1
2

3

3

16 3

8

5

3

7

3

7

7

1

8 2

8

3

5

4

6

2
1

7

9

5
2

8 5

9

5

2

6

1

1

6

3

5

4

7

3

7
2

2

8

7

1
9

6

5
9

6

1

7

7

5

7

1

4
2

2

31

9

4
55

4

8

7

3

1
6
4

2

8

3

6

1

4

2

1

8

5

6

6
7

9

RF-POMO (10.021)
5

5

1

5

3

9
6

2

6

6

8 1
2

3

3

16 3

8

5

3

7

3

7

7

1

8 2

8

3

5

4

6

2
1

7

9

5
2

8 5

9

5

2

6

1

1

6

3

5

4

7

3

7
2

2

8

7

1
9

6

5
9

6

1

7

7

5

7

1

4
2

2

31

9

4
55

4

8

7

3

1
6
4

2

8

3

6

1

4

2

1

8

5

6

6
7

9

RF-MOE (9.978)
5

5

1

5

3

9
6

2

6

6

8 1
2

3

3

16 3

8

5

3

7

3

7

7

1

8 2

8

3

5

4

6

2
1

7

9

5
2

8 5

9

5

2

6

1

1

6

3

5

4

7

3

7
2

2

8

7

1
9

6

5
9

6

1

7

7

5

7

1

4
2

2

31

9

4
55

4

8

7

3

1
6
4

2

8

3

6

1

4

2

1

8

5

6

6
7

9

RF-TE (9.918)

Figure 15: Solutions for CVRP, OVRP, VRPB, VRPL, VRPTW, OVRPTW, OVRPB, OVRPL.

40



Published in Transactions on Machine Learning Research (09/2025)

VR
PB

L

5

2

4

1

9

6

4

7

3

3

5
2

1

4

3

8

39

9

6

6

8
9

2

9

8

2

1

2 2

6
6

9

9

77 5 7

3

2

1

7

1

6

5
6

2
49

1

2
4

9

5

1

6

8
6

6

88

8
6

9 5

8
5

1

2

82

6

5

2

9

6

2 4

1

2

2

6

4

7

3

9

9

7

8

1

1

1

1

1
9

4

2

3 5

2

MTPOMO (15.996)

5

2

4

1

9

6

4

7

3

3

5
2

1

4

3

8

39

9

6

6

8
9

2

9

8

2

1

2 2

6
6

9

9

77 5 7

3

2

1

7

1

6

5
6

2
49

1

2
4

9

5

1

6

8
6

6

88

8
6

9 5

8
5

1

2

82

6

5

2

9

6

2 4

1

2

2

6

4

7

3

9

9

7

8

1

1

1

1

1
9

4

2

3 5

2

MVMoE (16.078)

5

2

4

1

9

6

4

7

3

3

5
2

1

4

3

8

39

9

6

6

8
9

2

9

8

2

1

2 2

6
6

9

9

77 5 7

3

2

1

7

1

6

5
6

2
49

1

2
4

9

5

1

6

8
6

6

88

8
6

9 5

8
5

1

2

82

6

5

2

9

6

2 4

1

2

2

6

4

7

3

9

9

7

8

1

1

1

1

1
9

4

2

3 5

2

RF-POMO (15.900)

5

2

4

1

9

6

4

7

3

3

5
2

1

4

3

8

39

9

6

6

8
9

2

9

8

2

1

2 2

6
6

9

9

77 5 7

3

2

1

7

1

6

5
6

2
49

1

2
4

9

5

1

6

8
6

6

88

8
6

9 5

8
5

1

2

82

6

5

2

9

6

2 4

1

2

2

6

4

7

3

9

9

7

8

1

1

1

1

1
9

4

2

3 5

2

RF-MOE (15.747)

5

2

4

1

9

6

4

7

3

3

5
2

1

4

3

8

39

9

6

6

8
9

2

9

8

2

1

2 2

6
6

9

9

77 5 7

3

2

1

7

1

6

5
6

2
49

1

2
4

9

5

1

6

8
6

6

88

8
6

9 5

8
5

1

2

82

6

5

2

9

6

2 4

1

2

2

6

4

7

3

9

9

7

8

1

1

1

1

1
9

4

2

3 5

2

RF-TE (15.879)

VR
PB

TW

3

8

6

4

9

6
2

7
4

3

1

7

5

7

6

7

1

4 5

51

6

9

78

4 1
3

7

5

6 8

2

7

4

6

7

2 2
6

4

7

9

1

5

7

8

4
2

1

9

3

5

2
9

6

6

6
3

41

8

2

7

3

3

1

7

6

5

8

544

2

5

1

2

6 7

7

3

2

9

3

8

2

6

1 5

5

7

6

8

8
2

7
5

2

2

MTPOMO (34.826)

3

8

6

4

9

6
2

7
4

3

1

7

5

7

6

7

1

4 5

51

6

9

78

4 1
3

7

5

6 8

2

7

4

6

7

2 2
6

4

7

9

1

5

7

8

4
2

1

9

3

5

2
9

6

6

6
3

41

8

2

7

3

3

1

7

6

5

8

544

2

5

1

2

6 7

7

3

2

9

3

8

2

6

1 5

5

7

6

8

8
2

7
5

2

2

MVMoE (35.204)

3

8

6

4

9

6
2

7
4

3

1

7

5

7

6

7

1

4 5

51

6

9

78

4 1
3

7

5

6 8

2

7

4

6

7

2 2
6

4

7

9

1

5

7

8

4
2

1

9

3

5

2
9

6

6

6
3

41

8

2

7

3

3

1

7

6

5

8

544

2

5

1

2

6 7

7

3

2

9

3

8

2

6

1 5

5

7

6

8

8
2

7
5

2

2

RF-POMO (34.369)

3

8

6

4

9

6
2

7
4

3

1

7

5

7

6

7

1

4 5

51

6

9

78

4 1
3

7

5

6 8

2

7

4

6

7

2 2
6

4

7

9

1

5

7

8

4
2

1

9

3

5

2
9

6

6

6
3

41

8

2

7

3

3

1

7

6

5

8

544

2

5

1

2

6 7

7

3

2

9

3

8

2

6

1 5

5

7

6

8

8
2

7
5

2

2

RF-MOE (34.695)

3

8

6

4

9

6
2

7
4

3

1

7

5

7

6

7

1

4 5

51

6

9

78

4 1
3

7

5

6 8

2

7

4

6

7

2 2
6

4

7

9

1

5

7

8

4
2

1

9

3

5

2
9

6

6

6
3

41

8

2

7

3

3

1

7

6

5

8

544

2

5

1

2

6 7

7

3

2

9

3

8

2

6

1 5

5

7

6

8

8
2

7
5

2

2

RF-TE (34.252)

VR
PL

TW

5

2

4

4

3

3

5
6

6

5

8 64

3

9

9

3

2

3

5

2

1
4

5

9
8

6

4

1
9

7

3
6

4

6

4

4

7

7
8

7

6
7

5
4

56

8

1

4
2

3

1

6

8

5

9

1

8

6
4

2

5

6
4

2

4

7

4
1

2

3

9

6

1

7

8

7
2

1 1

7

3

2

4

6 7

4

6

5

2

9
7

1

2

5

9

75

2

MTPOMO (31.368)

5

2

4

4

3

3

5
6

6

5

8 64

3

9

9

3

2

3

5

2

1
4

5

9
8

6

4

1
9

7

3
6

4

6

4

4

7

7
8

7

6
7

5
4

56

8

1

4
2

3

1

6

8

5

9

1

8

6
4

2

5

6
4

2

4

7

4
1

2

3

9

6

1

7

8

7
2

1 1

7

3

2

4

6 7

4

6

5

2

9
7

1

2

5

9

75

2

MVMoE (30.742)

5

2

4

4

3

3

5
6

6

5

8 64

3

9

9

3

2

3

5

2

1
4

5

9
8

6

4

1
9

7

3
6

4

6

4

4

7

7
8

7

6
7

5
4

56

8

1

4
2

3

1

6

8

5

9

1

8

6
4

2

5

6
4

2

4

7

4
1

2

3

9

6

1

7

8

7
2

1 1

7

3

2

4

6 7

4

6

5

2

9
7

1

2

5

9

75

2

RF-POMO (31.140)

5

2

4

4

3

3

5
6

6

5

8 64

3

9

9

3

2

3

5

2

1
4

5

9
8

6

4

1
9

7

3
6

4

6

4

4

7

7
8

7

6
7

5
4

56

8

1

4
2

3

1

6

8

5

9

1

8

6
4

2

5

6
4

2

4

7

4
1

2

3

9

6

1

7

8

7
2

1 1

7

3

2

4

6 7

4

6

5

2

9
7

1

2

5

9

75

2

RF-MOE (30.911)

5

2

4

4

3

3

5
6

6

5

8 64

3

9

9

3

2

3

5

2

1
4

5

9
8

6

4

1
9

7

3
6

4

6

4

4

7

7
8

7

6
7

5
4

56

8

1

4
2

3

1

6

8

5

9

1

8

6
4

2

5

6
4

2

4

7

4
1

2

3

9

6

1

7

8

7
2

1 1

7

3

2

4

6 7

4

6

5

2

9
7

1

2

5

9

75

2

RF-TE (30.167)

OV
RP

BL

12

5

8

7

3

4
6

9

2

3

8

6

6

6

4

37

8

1
9

1

5

3 7

8
8

2

3
3

1

6

2

7

7

1

1
5

8

1

3
4

2 7

1

5

6

1

1

3

8

6 9

7

5

2

4

99

5
3

5

6
2

4 4

1

1
1

6

4

2

5

1

4

13
6

9

49

5

9

5

5

7

5
6

5
9

1

22

9

9

9
4

4

9
5

MTPOMO (11.674)
12

5

8

7

3

4
6

9

2

3

8

6

6

6

4

37

8

1
9

1

5

3 7

8
8

2

3
3

1

6

2

7

7

1

1
5

8

1

3
4

2 7

1

5

6

1

1

3

8

6 9

7

5

2

4

99

5
3

5

6
2

4 4

1

1
1

6

4

2

5

1

4

13
6

9

49

5

9

5

5

7

5
6

5
9

1

22

9

9

9
4

4

9
5

MVMoE (11.499)
12

5

8

7

3

4
6

9

2

3

8

6

6

6

4

37

8

1
9

1

5

3 7

8
8

2

3
3

1

6

2

7

7

1

1
5

8

1

3
4

2 7

1

5

6

1

1

3

8

6 9

7

5

2

4

99

5
3

5

6
2

4 4

1

1
1

6

4

2

5

1

4

13
6

9

49

5

9

5

5

7

5
6

5
9

1

22

9

9

9
4

4

9
5

RF-POMO (11.505)
12

5

8

7

3

4
6

9

2

3

8

6

6

6

4

37

8

1
9

1

5

3 7

8
8

2

3
3

1

6

2

7

7

1

1
5

8

1

3
4

2 7

1

5

6

1

1

3

8

6 9

7

5

2

4

99

5
3

5

6
2

4 4

1

1
1

6

4

2

5

1

4

13
6

9

49

5

9

5

5

7

5
6

5
9

1

22

9

9

9
4

4

9
5

RF-MOE (11.562)
12

5

8

7

3

4
6

9

2

3

8

6

6

6

4

37

8

1
9

1

5

3 7

8
8

2

3
3

1

6

2

7

7

1

1
5

8

1

3
4

2 7

1

5

6

1

1

3

8

6 9

7

5

2

4

99

5
3

5

6
2

4 4

1

1
1

6

4

2

5

1

4

13
6

9

49

5

9

5

5

7

5
6

5
9

1

22

9

9

9
4

4

9
5

RF-TE (11.507)

OV
RP

BT
W 5

8

1 1

3
2

4

6
46

4
5

22

4

1
6

7

9

5
1

3

5
8

9
1

5

2

3

6

3

6

9

9

1

6

3

7

3

7

5

6

1

4
3

3

9

5

7

2

2

7
3

9

1

5

7
1

6

1

5

2
7

96 8
7

3

2

86
2

7
24

6

4

7

3

4

9

5

3

8

9

7

8

1 4

2

9

6
2

5
3

3 7

3

5

9

MTPOMO (21.495)

5
8

1 1

3
2

4

6
46

4
5

22

4

1
6

7

9

5
1

3

5
8

9
1

5

2

3

6

3

6

9

9

1

6

3

7

3

7

5

6

1

4
3

3

9

5

7

2

2

7
3

9

1

5

7
1

6

1

5

2
7

96 8
7

3

2

86
2

7
24

6

4

7

3

4

9

5

3

8

9

7

8

1 4

2

9

6
2

5
3

3 7

3

5

9

MVMoE (21.299)

5
8

1 1

3
2

4

6
46

4
5

22

4

1
6

7

9

5
1

3

5
8

9
1

5

2

3

6

3

6

9

9

1

6

3

7

3

7

5

6

1

4
3

3

9

5

7

2

2

7
3

9

1

5

7
1

6

1

5

2
7

96 8
7

3

2

86
2

7
24

6

4

7

3

4

9

5

3

8

9

7

8

1 4

2

9

6
2

5
3

3 7

3

5

9

RF-POMO (21.520)

5
8

1 1

3
2

4

6
46

4
5

22

4

1
6

7

9

5
1

3

5
8

9
1

5

2

3

6

3

6

9

9

1

6

3

7

3

7

5

6

1

4
3

3

9

5

7

2

2

7
3

9

1

5

7
1

6

1

5

2
7

96 8
7

3

2

86
2

7
24

6

4

7

3

4

9

5

3

8

9

7

8

1 4

2

9

6
2

5
3

3 7

3

5

9

RF-MOE (21.572)

5
8

1 1

3
2

4

6
46

4
5

22

4

1
6

7

9

5
1

3

5
8

9
1

5

2

3

6

3

6

9

9

1

6

3

7

3

7

5

6

1

4
3

3

9

5

7

2

2

7
3

9

1

5

7
1

6

1

5

2
7

96 8
7

3

2

86
2

7
24

6

4

7

3

4

9

5

3

8

9

7

8

1 4

2

9

6
2

5
3

3 7

3

5

9

RF-TE (21.542)

OV
RP

LT
W

4

3

65

2

8

4

6

3

9

4

9

3
3

9 9

5
6

2 3

1

1

9

4

1

7
8

6

2
7

4

4

7

1
2

1

37 5

41

6

2

3

5

2

9

6
4

5

2

8

8

2

5

7

8

3

7

4

3

7

3

7

68

3

9

5

6

3
4

2
78

6

1

4
4

7
2

2

1

27

2

1

8

5

9

1

3

7

2

6
6

6
9

2

3
MTPOMO (14.763)

4

3

65

2

8

4

6

3

9

4

9

3
3

9 9

5
6

2 3

1

1

9

4

1

7
8

6

2
7

4

4

7

1
2

1

37 5

41

6

2

3

5

2

9

6
4

5

2

8

8

2

5

7

8

3

7

4

3

7

3

7

68

3

9

5

6

3
4

2
78

6

1

4
4

7
2

2

1

27

2

1

8

5

9

1

3

7

2

6
6

6
9

2

3
MVMoE (14.775)

4

3

65

2

8

4

6

3

9

4

9

3
3

9 9

5
6

2 3

1

1

9

4

1

7
8

6

2
7

4

4

7

1
2

1

37 5

41

6

2

3

5

2

9

6
4

5

2

8

8

2

5

7

8

3

7

4

3

7

3

7

68

3

9

5

6

3
4

2
78

6

1

4
4

7
2

2

1

27

2

1

8

5

9

1

3

7

2

6
6

6
9

2

3
RF-POMO (14.623)

4

3

65

2

8

4

6

3

9

4

9

3
3

9 9

5
6

2 3

1

1

9

4

1

7
8

6

2
7

4

4

7

1
2

1

37 5

41

6

2

3

5

2

9

6
4

5

2

8

8

2

5

7

8

3

7

4

3

7

3

7

68

3

9

5

6

3
4

2
78

6

1

4
4

7
2

2

1

27

2

1

8

5

9

1

3

7

2

6
6

6
9

2

3
RF-MOE (14.697)

4

3

65

2

8

4

6

3

9

4

9

3
3

9 9

5
6

2 3

1

1

9

4

1

7
8

6

2
7

4

4

7

1
2

1

37 5

41

6

2

3

5

2

9

6
4

5

2

8

8

2

5

7

8

3

7

4

3

7

3

7

68

3

9

5

6

3
4

2
78

6

1

4
4

7
2

2

1

27

2

1

8

5

9

1

3

7

2

6
6

6
9

2

3
RF-TE (14.569)

VR
PB

LT
W

9

66
7

8
9

4

3

3

7

1

7

9

5 2
4

2

1

7

5

9

8

2

5

3

8

85

8

5

7

8

6

7

8

6

5

9

69
4

3

7

9

6

7

9 3

6
3

6

6

6
9

6
2

2

1

2

8

2

3

5

1

5

2

5

1

9

5

3

7

9
7

4

1

2

3
6

7

8

52

6

24

8
8

4

8
1

8

1

8

9

5

2
7

6
8

MTPOMO (35.849)

9

66
7

8
9

4

3

3

7

1

7

9

5 2
4

2

1

7

5

9

8

2

5

3

8

85

8

5

7

8

6

7

8

6

5

9

69
4

3

7

9

6

7

9 3

6
3

6

6

6
9

6
2

2

1

2

8

2

3

5

1

5

2

5

1

9

5

3

7

9
7

4

1

2

3
6

7

8

52

6

24

8
8

4

8
1

8

1

8

9

5

2
7

6
8

MVMoE (35.858)

9

66
7

8
9

4

3

3

7

1

7

9

5 2
4

2

1

7

5

9

8

2

5

3

8

85

8

5

7

8

6

7

8

6

5

9

69
4

3

7

9

6

7

9 3

6
3

6

6

6
9

6
2

2

1

2

8

2

3

5

1

5

2

5

1

9

5

3

7

9
7

4

1

2

3
6

7

8

52

6

24

8
8

4

8
1

8

1

8

9

5

2
7

6
8

RF-POMO (35.730)

9

66
7

8
9

4

3

3

7

1

7

9

5 2
4

2

1

7

5

9

8

2

5

3

8

85

8

5

7

8

6

7

8

6

5

9

69
4

3

7

9

6

7

9 3

6
3

6

6

6
9

6
2

2

1

2

8

2

3

5

1

5

2

5

1

9

5

3

7

9
7

4

1

2

3
6

7

8

52

6

24

8
8

4

8
1

8

1

8

9

5

2
7

6
8

RF-MOE (36.033)

9

66
7

8
9

4

3

3

7

1

7

9

5 2
4

2

1

7

5

9

8

2

5

3

8

85

8

5

7

8

6

7

8

6

5

9

69
4

3

7

9

6

7

9 3

6
3

6

6

6
9

6
2

2

1

2

8

2

3

5

1

5

2

5

1

9

5

3

7

9
7

4

1

2

3
6

7

8

52

6

24

8
8

4

8
1

8

1

8

9

5

2
7

6
8

RF-TE (35.671)

OV
RP

BL
TW

3
8

3
7

4

6

2

3

1

8

9 4

8

9

5

6

7
1

2
8

86
7

1

1

1

4

8

6
1

4

5

3

2

5
4

3

7

7

8
24

2

6

7

1 4

9

2
7

8

3 1

1

1
9

9

6

91

8

2

4

57

6

8

1

6

76

6

8

6

6 7

369

7

7

42

6

1

6

7

1

7
3

8 7

9

1

5

1

5

6

5

4

MTPOMO (19.734)

3
8

3
7

4

6

2

3

1

8

9 4

8

9

5

6

7
1

2
8

86
7

1

1

1

4

8

6
1

4

5

3

2

5
4

3

7

7

8
24

2

6

7

1 4

9

2
7

8

3 1

1

1
9

9

6

91

8

2

4

57

6

8

1

6

76

6

8

6

6 7

369

7

7

42

6

1

6

7

1

7
3

8 7

9

1

5

1

5

6

5

4

MVMoE (19.733)

3
8

3
7

4

6

2

3

1

8

9 4

8

9

5

6

7
1

2
8

86
7

1

1

1

4

8

6
1

4

5

3

2

5
4

3

7

7

8
24

2

6

7

1 4

9

2
7

8

3 1

1

1
9

9

6

91

8

2

4

57

6

8

1

6

76

6

8

6

6 7

369

7

7

42

6

1

6

7

1

7
3

8 7

9

1

5

1

5

6

5

4

RF-POMO (19.894)

3
8

3
7

4

6

2

3

1

8

9 4

8

9

5

6

7
1

2
8

86
7

1

1

1

4

8

6
1

4

5

3

2

5
4

3

7

7

8
24

2

6

7

1 4

9

2
7

8

3 1

1

1
9

9

6

91

8

2

4

57

6

8

1

6

76

6

8

6

6 7

369

7

7

42

6

1

6

7

1

7
3

8 7

9

1

5

1

5

6

5

4

RF-MOE (19.588)

3
8

3
7

4

6

2

3

1

8

9 4

8

9

5

6

7
1

2
8

86
7

1

1

1

4

8

6
1

4

5

3

2

5
4

3

7

7

8
24

2

6

7

1 4

9

2
7

8

3 1

1

1
9

9

6

91

8

2

4

57

6

8

1

6

76

6

8

6

6 7

369

7

7

42

6

1

6

7

1

7
3

8 7

9

1

5

1

5

6

5

4

RF-TE (19.510)

Figure 16: Solutions for VRPBL, VRPBTW, VRPLTW, OVRPBL, OVRPBTW, OVRPLTW, VRPBLTW, OVRPBLTW.

41


	Introduction
	Related Works
	Preliminaries
	Vehicle Routing Problems
	Learning Neural Solvers for VRPs

	The RouteFinder Recipe
	Unified VRP Environment
	Model
	Transformer-based Architecture
	Global Attribute Embeddings

	Training
	Mixed Batch Training
	Multi-task Reward Normalization

	Efficient Adapter Layers: Finetuning to Unseen Attributes

	Experiments
	(RQ1) Main Results
	(RQ2) Ablation Studies
	(RQ3) Finetuning with EAL

	Conclusion
	Unified VRP Environment Details
	Data generation
	Environment Logic

	RouteFinder Model Details
	Multi-Head Attention
	Encoder
	Decoder
	EAL Modeling
	EAL for mixed backhauls
	EAL for multi-depots
	EAL for multi-depots & mixed backhauls


	Additional Material
	Details for Average Batch Reward for Multi-task Reward Normalization
	Hyperparameter Details
	Additional Discussion
	Licenses for used assets

	Additional Empirical Results
	Out-of-Distribution Attribute Generalization
	CVRPLIB Evaluation
	Effect of Transformer Encoder Components
	Effect of Reward Normalization Techniques
	Studies on Mixed Batch Training
	Effect on convergence speed
	Effect on imbalanced variant distributions

	T-SNE Visualizations
	Layer-wise visualization
	Comparison across models and VRP variants

	Finetuning with EAL
	Finetuning to Unseen Variants
	Finetuning with EAL for Single-Variant Models


	Visualizations

