
Under review as a conference paper at ICLR 2021

CAN ONE HEAR THE SHAPE OF A NEURAL NETWORK?:
SNOOPING THE GPU VIA MAGNETIC SIDE CHANNEL

Anonymous authors
Paper under double-blind review

ABSTRACT

We examine the magnetic flux emanating from a graphics processing unit’s (GPU)
power cable, as acquired by a cheap $3 induction sensor, and find that this signal
betrays the detailed topology and hyperparameters of a black-box neural network
model. The attack acquires the magnetic signal for one query with unknown input
values, but known input dimension and batch size. The network reconstruction
is possible due to the modular layer sequence in which deep neural networks are
evaluated. We find that each layer component’s evaluation produces an identifiable
magnetic signal signature, from which layer topology, width, function type, and
sequence order can be inferred using a suitably trained classifier and an optimiza-
tion based on integer programming. We study the extent to which network specifi-
cations can be recovered, and consider metrics for comparing network similarity.
We demonstrate the potential accuracy of this side channel attack in recovering
the details for a broad range of network architectures, including random designs.
We consider applications that may exploit this novel side channel exposure, such
as adversarial transfer attacks. In response, we discuss countermeasures to protect
against our method and other similar snooping techniques.

1 INTRODUCTION

The Graphics Processing Unit (GPU) is a favored vehicle for executing a neural network. As it com-
putes, it also hums—electromagnetically. What can this hum tell us? Could listening to the GPU’s
electromagnetic (EM) radiation reveal details about the neural network? We study this question and
find that magnetic induction sensing reveals a detailed network structure, including both topology
and hyperparameter values, from inferences of otherwise unknown networks running on GPUs.

Reverse engineering a network structure has attracted increasing research effort, motivated by sev-
eral concerns. First, it has been well known that the performance of a network model hinges on its
judiciously designed structure—but finding an effective design is no easy task. Significant time and
energy is expended in searching and fine-tuning network structures (Zoph et al., 2018). Moreover,
in industry, optimized network structures are often considered confidential intellectual property. It
is therefore important to understand the extent to which this valuable, privileged information can be
compromised.

Worse yet, a reverse engineered “surrogate” model also makes the black-box “victim” model more
susceptible to adversarial transfer attacks (Papernot et al., 2017; Liu et al., 2016), in which a vul-
nerability identified in the surrogate is exploited on the victim. Success in the exploit is contingent
on the ability of the surrogate to successfully model the vulnerabilities of the victim. Recovering
accurate, detailed network topology and hyperparameters informs the modeling of a good surrogate.

We examine the fluctuation of magnetic flux from the GPU’s power cable, and ask whether a passive
observer can glean the information needed to reconstruct neural network structure. Remarkably, we
show that, through magnetic induction sensing, a passive observer can reconstruct the complete
network structure even for large and deep networks.

Threat model. We consider an adversary that (i) is able to place a magnetic induction sensor in
close proximity to the GPU’s power cable, (ii) knows the dimension of the input feature vector, and
(iii) is able to launch a query of known batch size. We also consider that our attacker uses the same
deep learning framework (e.g., PyTorch, TensorFlow) as the black-box model. The adversary is
otherwise weak, lacking access to the model source, binaries, training data, and underlying training
data distribution; without ability to execute code on the host CPU and GPU; and without knowledge
of the input values and output results of the launched queries. Not only that—it also lacks direct

1

Under review as a conference paper at ICLR 2021

vo
lts 5.0

4.5

ms20 251550 10

4.0

3.5

3.0

2.5
conv BN relu MP conv con

vBN BNaddrelu relu

Figure 1: Leaked magnetic signal. (left) Our induction sensor captures a magnetic signal when
a CNN is running on the GPU. We observe strong correlation between the signal and the network
steps. Across two steps, the GPU has to synchronize, resulting in a sharp drop of the signal level
(highlighted by selected red circles). (right) We can accurately classify the network steps and re-
construct the topology, as indicated by the labels under the x-axis. Here we highlight the signal
regions associated with convolutions (conv), batch-norm (BN), Relu non-linear activations (relu),
max-pooling (MP), and adding steps together (add).

access to the GPU hardware, beyond the proximity to the power cable. The adversary only requires
access to their own GPU hardware, matching the brand/version of the victim, e.g., as purchased on
the open market.

Physical principle. The GPU consumes energy at a variable rate that depends on operations per-
formed. Every microprocessor instruction is driven by transistor electron flows, and different in-
structions require different power levels (Grochowski & Annavaram, 2006). The many compute
cores of a GPU amplify the fluctuation in energy consumption, and so too the current drawn from
the power cable. Current induces magnetic flux governed by the Biot-Savart law (Griffiths, 2005),
and current fluctuations induce EM ripples whose propagation through the environment is governed
by the Ampère-Maxwell law. Even a cheap, $3 magnetic induction sensor (see Fig. 2) placed within
a few millimeters of the power cable suffices to record these EM ripples.

Technique and results. To reconstruct the black-box network’s structure, we propose a two-step
approach. First, we estimate the network topology, such as the number and types of layers, and
types of activation functions, using a suitably trained neural network classifier. Then, for each layer,
we estimate its hyperparameters using another set of deep neural network (DNN) models. The in-
dividually estimated hyperparameters are then jointly optimized by solving an integer programming
problem to enforce consistency between the layers. We demonstrate the potential accuracy of this
side-channel attack in recovering the details for a wide range of networks, including large, deep
networks such as ResNet101. We further apply this recovery approach to demonstrate black-box
adversarial transfer attacks.

1.1 RELATED WORK: MODEL EXTRACTION BY QUERIES AND SIDE-CHANNEL ANALYSIS

Our work falls under the umbrella of black-box model extraction. Absent access to the model’s
internals, one might infer structure from observed input-output pairs. For instance, Tramèr et al.
(2016) demonstrated that, for simple models such as decision trees and support vector machines
hosted on a cloud, certain internal information can be extracted via a multitude of queries. This
approach, which was extended to infer details of deep neural networks (Oh et al., 2019; Liu et al.,
2016; Duddu & Rao, 2019), is typically able to recover certain information, such as optimization
learning rate and network structure type, but has not demonstrated recovery of full structural details.

A contrasting approach, side-channel analysis (SCA), extracts information gained from the physical
implementation of a model, rather than in the mathematical model itself. Analysis of timing (Kocher,
1996), power (Kocher et al., 1999; Luo et al., 2015), cache flushes (Yarom & Falkner, 2014), and
audio (Genkin et al., 2014) have been prominently demonstrated to extract secret keys from crypto-
graphic procedures such as the Digital Signature and Advanced Encryption Standards.

SCA was recently used to infer machine learning models by observing power consumption pro-
files (Xiang et al., 2020; Wei et al., 2018; Dubey et al., 2019), timing information (Duddu et al.,
2018) and memory/cache access (Hu et al., 2020; Hong et al., 2019; Hua et al., 2018; Yan et al.,
2020). These methods placed a malware process on the machine hosting the black-box model. Our
threat model does not involve introducing processes on the host.

2

Under review as a conference paper at ICLR 2021

Recently, Batina et al. (2019) exploited EM radiation for network model extraction. They focused
on EM radiation from embedded processors. In contrast to GPUs, embedded processors emit a
relatively weak EM signal, necessitating delicate measurement devices and even mechanical opening
of the chip package.

Our advance. All these previous works are demonstrated on shallow networks (e.g., fewer than 20
layers). It remains unclear whether these methods can also extract deep network models, ones that
are structurally more complex and more prevalent in practice. We demonstrate successful recovery
of the full structure of deep networks, such as RetNet101 (He et al., 2016). With that, we hope to
raise awareness of the GPU’s EM radiation as an information-rich, easily-probed side channel.

2 MAGNETIC SIGNALS FROM GPUS

Before getting into the weeds, let us provide our intuition: we think of the magnetic signal as the
GPU’s “speech.” The GPU speaks a series of “words,” demarcated by silence. Each word names
the computational step that was executed. Let us now refine this explanation further, and ground it
in physical principles.

We use step to refer to performing a specific kind of network operation, such as a linear operation,
batch normalization, pooling, activation function, etc. A layer is a sequences of steps, e.g., a (i) lin-
ear operation, then (ii) pooling, then (iii) activation. While there may be data dependencies between
steps, there are no such dependencies within a step.

The parallel nature of GPU computation lends itself to a natural implementation of networks,
wherein each step is executed in parallel, i.e., single instruction multiple data (SIMD) parallelism.
Transitions between steps, however, are synchronized (Buck, 2007): in our example above, activa-
tion begins only after pooling completes. This cross-step synchronization allows for implementa-
tions structured into modules, or GPU kernels. This modular approach is employed in widely-used
deep learning frameworks such as PyTorch and TensorFlow (Paszke et al., 2019; Abadi et al., 2016).

Signal. Kernel execution demands transistor flips, which place electric load on the GPU processor,
in turn emitting magnetic flux from its power cable. An induction sensor measures this flux and
produces proportional voltage. The time-varying voltage is our acquired signal (see Fig. 1).

Different steps correspond to different GPU kernels, transistor flips, electric loads, and signal char-
acteristics, which are distinguished even by the naked eye (see Fig. 1). Cross-step synchronization
involves idling, dramatically reducing electric load and signal level (see Fig. 1). These rapid sharp
drops demarcate steps.

We observe that signal strongly correlates to the kind of GPU operations, rather than the specific
values of computed floating point numbers. We verify this by examining signals using both PyTorch
and TensorFlow and on multiple kinds of GPUs (see Sec. 5).

The signal is also affected by the input to the network. Although the specific input data values do
not influence the signal, the input data size does. When the GPU launches a network, the size of
its single input (e.g., image resolution) is fixed. But the network may be provided with a batch of
input data (e.g., multiple images). As the batch size increases, more GPU cores will be utilized in
each step. The GPU consequently draws more power, which in turn strengthens the signal. Once all
GPU cores are involved, further increase of input batch size will not increase the signal strength, but
elongate the execution time until the GPU runs out of memory.

Therefore, in launching a query to the black-box network model, the adversary should choose a
batch size sufficiently large to activate a sufficient number of GPU cores to produce a sufficient
signal-to-noise ratio. We find that the range of the proper batch sizes is often relatively large (e.g.,
64 ∼ 96 for ImageNet networks), loosely depending on the size of the single input’s features and
the parallel computing ability of the GPU. In practice, the adversary can choose the batch size by
experimenting with their own GPUs under various image resolutions.

Notably however, we do not require knowledge of batch size to robustly recover network topology
(as opposed to hyperparameters), only that the batch size is sufficiently large enough to provide
a clear signal. While we used a consumer friendly sensor with limited sampling rate (see 4.1)
and corresponding signal-to-noise ratio (SNR), a sensor with high sampling rate and SNR would
correspondingly require a smaller minimum batch size.

3

Under review as a conference paper at ICLR 2021

3 SIGNAL ANALYSIS AND NETWORK RECONSTRUCTION

We prepare for the attack by training several recovery DNN models; we refer to training before
the attack as pretraining. After the attacker launches a batch query (whose input and output values
are irrelevant) we recover structure from the acquired signal in two stages: (i) topology and (ii)
hyperparameters. To recover topology, a pretrained DNN model associates a step to every signal
sample. This per-sample classification partitions the signal into segments corresponding to steps.
We estimate hyperparameters for each individual segment in isolation, using a step-specific pre-
trained DNN model, and resolve inconsistencies between consecutive segments using an integer
program. The pretraining of our recovery DNN models is hardware-specific, and good recovery
requires pretraining on like hardware.

3.1 TOPOLOGY RECOVERY

Bidirectional Long Short Term Memory (biLSTM) networks are well-suited for processing time-
series signals (Graves et al., 2005). We train a biLSTM network to classify each signal sample si
predicting the step C(si) that generated si (see Fig. 1-b). The training dataset consists of annotated
signals constructed automatically (see Sec. 4.2). We train the biLSTM by minimizing the standard
cross-entropy loss between the predicted per-sample labels and the ground-truth labels (see Appx. A
for details). By identifying the sequence of steps, we recovered the layers of the network, including
their type (e.g., fully connected, convolution, recurrent, etc.), activation function, and any subsequent
forms of pooling or batch normalization. What remains is to recover layer hyperparameters.

3.2 HYPERPARAMETER ESTIMATION

Hyperparameter consistency. The number of hyperparameters that describe a layer type depends
on its linear step. For instance, a CNN layer type’s linear step is described by size, padding, kernel
size, number of channels, and stride hyperparameters. Hyperparameters within a layer must be
intra-consistent. Of the six CNN hyperparameters (stride, padding, dilation, input, output, and
kernel size), any one is determined by the other five. Hyperparameters must also be inter-consistent
across consecutive layers: the output of one layer must fit the input of the next. A brute-force search
of consistent hyperparameters easily becomes intractable for deeper networks; we therefore first
estimate hyperparameters for each layer in isolation, and then jointly optimize to obtain consistency.

Initial estimation. We estimate a specific hyperparameter of a specific layer type, by pretraining
a DNN. We pretrain a suite of such DNNs, one for each (layer type, hyperparameter) pairing. Once
the layers (and their types) are recovered, we estimate each hyperparameter using these pretrained
(layer type, hyperparameter) recovery DNNs.

Each DNN is comprised of two 1024-node fully connected layers with dropout. The DNN accepts
two (concatenated) feature vectors describing two signal segments: the linear step and immedi-
ately subsequent step. That subsequent step (e.g., activation, pooling, batch normalization) tends to
require effort proportional to the linear step’s output dimensions, thus its inclusion informs the esti-
mated output dimension. Each segment’s feature vector is assembled by (i) partitioning the segment
uniformly into N windows, and computing the average value of each window, (ii) concatenating the
time duration of the segment. The concatenated feature vector has a length of 2N + 2.

The DNN is trained with our automatically generated dataset (see Sec. 4.2). The choice of loss
function depends on the hyperparameter type: For a hyperparameter drawn from a wide range, such
as a size, we minimize mean squared error between the predicted size and the ground truth (i.e.,
regression). For a hyperparameter drawn from a small discrete distribution, such as stride, we mini-
mize the cross-entropy loss between the predicted value and the ground truth (i.e., classification). In
particular, we used regression for sizes, and classification for all other parameters.

Joint optimization. The initial estimates of the hyperparameters are generally not fully accurate,
nor consistent. To enforce consistency, we jointly optimize all hyperparameters, seeking values that
best fit their initial estimates, subject to consistency constraints. Our optimization minimizes the
convex quadratic form

min
xi∈Z0+

∑
i∈X

(xi − x∗i)
2
, subject to consistency constraints, (1)

where X is the set of all hyperparameters across all layers; x∗i and xi are the initial estimate and
optimal value of the i-th hyperparameter, respectively. The imposed consistency constraints are:

4

Under review as a conference paper at ICLR 2021

top view side view

GPU power cable

Analog-to-Digital

Converter

GND

USB output

GPU

Sensor placed on the power cable

Figure 2: Placement of the magnetic induction sensor on the power cord works regardless of the
GPU model, providing a common weak-spot to enable current-based magnetic side-channel attacks.

(i) The output size of a layer agrees with the input size of the next next layer.
(ii) The input size of the first layer agrees with the input feature size.

(iii) The output size of a CNN layer does not exceed its input size (due to convolution).
(iv) The hyperparameters of a CNN layer satisfy

sout =

⌊
sin + 2β − γ(k − 1)− 1

α
+ 1

⌋
, (2)

where α, β, γ, and k denote the layer’s stride, padding, dilation, and kernel size, respectively.
(v) Heuristic constraint: the kernel size must be odd.

Among these constraints, (i-iii) are linear constraints, which preserves the convexity of the problem.
The heuristic (v) can be expressed as a linear constraint: for every kernel size parameter kj , we
introduce a dummy variable τj , and require kj = 2τj+1 and τj ∈ Z0+. Constraint (iv) , however, is
troublesome, because the appearance of kernel size α and dilation γ, both of which are optimization
variables, make the constraint nonlinear.

Since all hyperparameters are non-negative integers, the objective must be optimized via integer
programming: IP in general case is NP-complete (Papadimitriou & Steiglitz, 1998), and the non-
linear constraint (iv) does not make life easier. Fortunately, both α and γ have very narrow ranges
in practice: α is often set to be 1 or 2, and γ is usually 1, and they rarely change across all CNN
layers in a network. As a result, they can be accurately predicted by our DNN models; we therefore
retain the initial estimates and do not optimize for α and γ, rendering (2) linear. Even if DNN mod-
els could not reliably recover α and γ, one could exhaustively enumerate the few possible α and γ
combinations, and solve the IP problem (1) for each combination, and select the best recovery.

The IP problem with a quadratic objective function and linear constraints can be easily solved,
even when the number of hyperparameters is large (e.g., > 1000). In practice, we use IBM
CPLEX (Cplex, 2009), a widely used IP solver. Optimized hyperparameters remain close to the
initial DNN estimates, and are guaranteed to define a valid network structure.

4 EXPERIMENTAL SETUP

4.1 HARDWARE SENSORS

We use the DRV425 fluxgate magnetic sensor from Texas Instruments for reliable high-frequency
sensing of magnetic signals (Instruments, 2020; Petrucha & Novotny, 2018). This sensor, though
costing only $3 USD, outputs robust analog signals with a 47kHz sampling rate and ±2mT sensing
range. For analog to digital conversion (ADC), we use the USB-204 Digital Acquisition card, a
5-Volt ADC from Measurement Computing (Computing, 2020). This allows a 12-bit conversion of
the signal, mapping sensor readings from -2mT∼2mT to 0V∼5V.

4.2 DATASET CONSTRUCTION

Sensor placement. To avoid interference from other electric components, we place the sensor
near the GPU’s magnetic induction source, anywhere along the power cable. Because magnetic flux
decays inversely proportional to the squared distance from the source, according to the Biot-Savart
law (Griffiths, 2005), we position the sensor within millimeters of the cable casing (see Fig. 2).

Data capture. Pretraining the recovery DNN models (recall Sec. 3) requires an annotated dataset
with pairwise corresopndence between signal and step types (see Fig. 2). We can automat-
ically generate an annotated signal for a given network and specific GPU hardware, simply

5

Under review as a conference paper at ICLR 2021

by executing a query (with arbitrary input values) on the GPU to acquire the signal. Times-
tamped ground-truth GPU operations are made available by most deep learning libraries (e.g.,
torch.autograd.profiler in PyTorch and tf.profiler in TensorFlow). A difficulty in this
process lies in the fact that the captured (47kHz) raw signals and the ground truth GPU traces run on
different clocks. Similar to the use of clapperboard to synchronize picture and sound in filmmaking,
we precede the inference query with a short intensive GPU operation to induce a sharp spike in the
signal, yielding a synchronization landmark (see Fig. S3). We implemented this “clapperboard” by
filling a vector with random floating point numbers.
Training Set. The set of networks to be annotated could in principle consist solely of randomly
generated networks, on the basis that data values and “functionality” are irrelevant to us, and the
training serves to recover the substeps of a layer; or of curated networks or those found in the wild,
on the basis that such networks are more indicative of what lies within the black-box. We chose
to construct our training set as a mixture of both of these approaches. All in all we consider 500
networks for training leading to a total of 5708 network steps we aim to identify. We will release
the complete training and test datasets, along with source code and hardware schematics for full
reproducibility.

5 RESULTS

This section presents the major empirical evaluations of our method. We refer the reader to Appx. B
for complete results, additional experiments, and more thorough discussion.

5.1 ACCURACY OF NETWORK RECONSTRUCTION

Test dataset. We construct a test dataset fully separate from the training dataset. Our test dataset
consists of 64 randomly generated networks in a way similar to Sec. 4.2. The number of layers
ranges from 30 to 50 layers. To diversify our zoology of test models, we also include smaller
networks that are under 10 layers, LSTM networks, as well as ResNets (18, 34, 50, and 101).
Altogether, each test network has up to 514 steps. In total, the test dataset includes 5708 network
steps, broken down into 1808 activation functions, 1975 additional batch normalization and pooling,
and 1925 convolutional, fully connected, and recurrent layers. When we construct these networks,
their input image resolutions are randomly chosen from [224×224, 96×96, 64×64, 48×48, 32×32]:
the highest resolution is used in ImageNet, and lower ones are used in datasets such as CIFAR.

Table 1: Classification accuracy of network steps on
TITAN V.

Layer Type Prec. Rec. F1 # samples
LSTM .997 .992 .995 8704
Conv .993 .996 .994 447968
Fully-connected .901 .796 .846 10783
Add .984 .994 .989 22714
BatchNorm .953 .955 .954 47440
MaxPool .957 .697 .806 4045
AvgPool .371 .760 .499 675
ReLU .861 .967 .911 28512
ELU .464 .825 .594 2834
LeakyReLU .732 .578 .646 9410
Sigmoid .694 .511 .588 8744
Tanh .773 .557 .648 4832
Weighted Avg. .968 .967 .966 -

Topology reconstruction. As discussed
in Sec. 3, we use a biLSTM model to pre-
dict the network step for each single sample.
Table 1 reports its accuracy, measured on an
Nvidia TITAN V GPU. There, we also break
the accuracy down into measures of individ-
ual types of network steps, with an overall
accuracy of 96.8%. An interesting observa-
tion is that the training and test datasets are
both unbalanced in terms of signal samples
(see last column of Table 1). This is because
in practice convolutional layers are computa-
tionally the most expensive, while activation
functions and pooling are lightweight. Also,
certain steps like average pooling are much
less frequently used. While such data imbal-
ance does reflect reality, when we use them to
train and test, most of the misclassifications occur at those rarely used, lightweight network steps,
whereas the majority of network steps are classified correctly.

We evaluate the quality of topology reconstruction using normalized Levenshtein distance (i.e., one
of the edit distance metrics) that has been used to evaluate network structure similarity (Graves et al.,
2006; Hu et al., 2020). Here, Levenshtein distance measures the minimum number of operations—
including adding/removing network steps and altering step type—needed to fully rectify a recovered
topology. This distance is then normalized by the total number of steps of the target network.

We report the detailed results in Fig. S2 in the appendix. Among the 64 tested networks, 40 of the
reconstructed networks match precisely their targets, resulting in zero Levenshtein distance. The

6

Under review as a conference paper at ICLR 2021

Table 2: Model extraction accuracy on CIFAR-10 across different GPUs.
Model Target Titan-V Titan-X GTX-1080 GTX-960
VGG-11 89.03 89.61 89.63 88.46 88.3
VGG-16 90.95 91.08 91.03 89.33 90.78
AlexNet 81.68 85.26 85.11 85.27 85.03
ResNet-18 92.77 92.61 92.82 92.79 92.04
ResNet-34 92.21 92.28 92.95 90.81 92.71
ResNet-50 90.89 91.8 91.97 91.2 91.29
ResNet-101 91.58 91.91 91.85 91.37 91.72

average normalized Levenshtein distance of all tested networks is 0.118. To provide a sense of
how the Levenshtein distance is related to the network’s ultimate performance (i.e., its classification
accuracy), we conduct an additional experiment and discuss it in Appx. B.1.

DNN hyperparameter estimation. Next, we report the test accuracies of our DNN models (dis-
cussed in Sec. 3.2) for estimating hyperparameters of convolutional layers. Our test data here con-
sists of 1804 convolutional layers. On average, our DNN models have 96∼97% accuracy. The
break-down accuracies for individual hyperparameters are shown in Table S3 of the appendix.

Reconstruction quality measured as classification accuracy. Ultimately, the reconstruction
quality must be evaluated by how well the reconstructed network performs in the task that the
original network aims for. To this end, we test seven networks, including VGGs, AlexNet, and
ResNets, that have been used for CIFAR-10 classification (shown in Table 2). We treat those net-
works as black-box models and reconstruct them from their magnetic signals. We then train those
reconstructed networks and compare their test accuracies with the original networks’ performance.
Both the reconstructed and original networks are trained with the same training dataset for the same
number of epochs. The results in Table 2 show that for all seven networks, including large networks
(e.g., ResNet101), the reconstructed networks perform almost as well as their original versions. We
also conduct similar experiments on ImageNet and report the results in Table S1 of Appx. B.2.

GPU transferability. Our proposed attack requires the adversary to have the same brand/version
of GPU as the victim, but not necessarily the same physical copy (see Fig. S3). Here, we obtain
two copies of an Nvidia GTX-1080 GPU running on two different machines, using one to generate
training data and another one for black-box reconstruction. We demonstrate that in this setting the
models can still be well reconstructed. The experiment details and results are described in Appx. B.3.

5.2 TRANSFER ATTACK

To demonstrate a potential exploit of this side-channel exposure, we use reconstructed networks to
launch adversarial transfer attack. Transfer attack relies on a surrogate model, one that approximates
the target model, to craft adversarial examples of the target model. In a black-box setting, it is known
to be hard in general case to find an effective surrogate model (Demontis et al., 2019). But under our
threat model, the adversary can recover the network structure of a black-box model from the leaked
magnetic signals, and use it as the surrogate model.

Here we test on six networks found in the wild, ranging from VGGs to AlexNet to ResNets (listed
in Table 3). For each network (and each column in Table 3), we treat it as a black-box model
and reconstruct its structure by running it on four different GPUs (listed in Table 3), obtaining
four reconstructed versions. Afterwards, we train each reconstructed network and use it to craft
adversarial examples for transfer attacking the original network. The transfer attack success rates
are reported in the top four rows of Table 3, which are compared against several baselines shown
in the bottom half of the table. Using our side-channel-based surrogate model, the transfer attack
success rate is comparable to the white-box transfer attack baseline, that is, using the target model’s
network structure (but trained separately) to attack the target model itself. In other words, our side-
channel-based reconstruction effectively turn a black-box attack into a white-box attack.

We also conducted additional experiments for transfer attacks on MNIST dataset. We reconstruct
network models downloaded online and then launch attacks. The results are reported in Appx. B.4.

5.3 DISCUSSION: DEFENSES AGAINST MAGNETIC SIDE CHANNEL LEAKAGE

At this point, we have shown the robustness and accuracy of the magnetic side channel exploits.
Traditionally countermeasures fall under the category of either prevention, detection, or jamming.

7

Under review as a conference paper at ICLR 2021

Table 3: Transfer attack results on CIFAR-10.
Target Model

ResNet-18 ResNet-34 ResNet-101 VGG-11 VGG-16 AlexNet
So

ur
ce

M
od

el
GTX-960 98.56 92.51 91.20 63.41 72.57 58.90
GTX-1080 97.88 90.86 86.24 64.69 55.19 56.83
TITAN-X 98.32 93.45 84.47 61.89 77.36 68.41
TITAN-V 98.48 93.65 91.27 64.39 72.77 60.17
VGG-11 65.86 57.82 57.52 60.24 65.50 39.95
VGG-16 74.00 61.54 54.23 41.60 74.29 29.57
ResNet-18 97.70 90.72 80.27 47.98 86.64 30.56
ResNet-34 97.21 92.46 82.30 51.42 85.60 32.34
ResNet-101 92.53 86.98 92.95 53.98 83.04 30.55
AlexNet 10.11 9.59 10.19 11.60 10.42 62.70

Since our approach is passive in that it does not alter any code or hardware operation of GPUs,
detection methods which consist of somehow discovering someone is listening to the GPU are not
applicable to magnetic leakage. Here we focus on prevention and jamming.

Prevention As shown in Figure 1, each rise and drop of the magnetic signals correspond to the
boundary between GPU operations. This is only possible when the input batch is large enough to
keep every GPU operation sustained and stabilized at a high-load state. To prevent this behavior,
one can keep the input sufficiently small (e.g. 1 single image) such that the magnetic signals never
reach any stable state and suffer from a low signal-to-noise ratio, rendering our sensing setup fu-
tile. Another way to prevent magnetic side channel leakage is to use a non-standard framework for
inference which the adversary does not have any training data to start with.

Jamming While running on tiny input batch size might be infeasible for large input dataset, we
find jamming also an effective defense mechanism. Specifically, during the inference of a large input
batch, we ran a third-party CUDA GPU stress test in the background (Timonen, 2020). We found
that the magnetic signals are completely distorted because of the constantly high utilization of GPU.
Moreover, we observe little speed degradation for the foreground inference. The main caveat with
this approach is higher power consumption and the possible effects on the lifetime of a GPU.

Another possible defense mechanism results from the fact that we are not tracking the actual
dataflow in the GPU. For example, we can correctly identify two GPU operations, convolution
and batch norm, in a long sequence. But there is no evidence proving the dataflow follows the same
pattern—the output from convolution could be a deadend and batch norm takes input from a previ-
ous GPU operation. This mismatch between the dataflow and the underlying network model makes
it hard to decipher robustly. While this defense can handle arbitrary input and networks in theory, we
are unsure about the implementation hurdles of this defense and how modern deep learning libraries
optimize for such unconventional graphs.

6 CONCLUDING REMARKS

We set out to study what can be learned from passively listening to a magnetic side channel in the
proximity of a running GPU. Our prototype shows it is possible to extract both the high-level net-
work topology and detailed hyperparameters. To better understand the robustness and accuracy, we
collected a dataset of magnetic signals by inferencing through thousands of layers on four different
GPUs. We also investigated how one might use this side channel information to turn a black-box
attack into a white-box transfer attack.

Limitations. In our formulation, we assume networks progress in a linear fashion and do not
handle complex graph network with intricate branching topologies. We cannot tell if a network is
trained with dropout since dropout layers do not appear at inference time. Indeed, any operation that
only appears during training is beyond the capability of magnetic side channel snooping.

Our reconstruction DNNs require knowledge of the victim’s GPU model and version. When these
are unknown, the adversary may still exhaustively pretrain multiple sets of reconstruction DNNs for
all GPU models and at runtime scan through all reconstruction options. Software upgrades, which
can lead to significant performance boost and therefore alter the emitted magnetic signals, may be

8

Under review as a conference paper at ICLR 2021

viewed as further increasing the set of possible GPU models. In our experiments, we keep all the
software versions constant, including OS verion, CUDA version, and PyTorch/Tensorflow version.

Ethical Considerations. Our main intention is to study the extent to which a magnetic side chan-
nel can leak information. We hope to help people understand that running deep learning inferences
on GPUs can leak critical information, and in particular model architecture and hyperparameters,
to nearby induction sensors. Sharing these findings creates the potential for malicious use. We
introduced several viable defense mechanisms in 5.3.

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), pp. 265–283, 2016.

Lejla Batina, Dirmanto Jap, Shivam Bhasin, and S Picek. Csi nn: Reverse engineering of neural
network architectures through electromagnetic side channel. In Proceedings of the 28th USENIX
Security Symposium. USENIX Association, 2019.

Ian Buck. Gpu computing: Programming a massively parallel processor. In International Sympo-
sium on Code Generation and Optimization (CGO’07), pp. 17–17. IEEE, 2007.

Measurement Computing. USB-200 Series Single Gain Multifunction USB Devices (accessed
Oct 1, 2020), 2020. URL https://www.mccdaq.com/usb-data-acquisition/
USB-200-Series.aspx.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea,
Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial attacks transfer? explaining transfer-
ability of evasion and poisoning attacks. In 28th USENIX Security Symposium Security 19), pp.
321–338, 2019.

Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Maskednet: The first hardware inference engine
aiming power side-channel protection. arXiv: Cryptography and Security, 2019.

Vasisht Duddu and D Vijay Rao. Quantifying (hyper) parameter leakage in machine learning. arXiv
preprint arXiv:1910.14409, 2019.

Vasisht Duddu, Debasis Samanta, D Vijay Rao, and Valentina E Balas. Stealing neural networks via
timing side channels. arXiv preprint arXiv:1812.11720, 2018.

Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via low-bandwidth acoustic crypt-
analysis. In Annual Cryptology Conference, pp. 444–461. Springer, 2014.

Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional lstm networks for im-
proved phoneme classification and recognition. In International Conference on Artificial Neural
Networks, pp. 799–804. Springer, 2005.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tem-
poral classification: labelling unsegmented sequence data with recurrent neural networks. In
Proceedings of the 23rd international conference on Machine learning, pp. 369–376, 2006.

David J Griffiths. Introduction to electrodynamics, 2005.

Ed Grochowski and Murali Annavaram. Energy per instruction trends in intel microprocessors.
Technology@ Intel Magazine, 4(3):1–8, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

9

https://www.mccdaq.com/usb-data-acquisition/USB-200-Series.aspx
https://www.mccdaq.com/usb-data-acquisition/USB-200-Series.aspx

Under review as a conference paper at ICLR 2021

Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Dana Dachman-Soled, and Tudor Dumitraş.
How to 0wn the nas in your spare time. In International Conference on Learning Representations,
2019.

Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie, Yufei Ding,
Chang Liu, Timothy Sherwood, et al. Deepsniffer: A dnn model extraction framework based
on learning architectural hints. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 385–399, 2020.

Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse engineering convolutional neural networks
through side-channel information leaks. In 2018 55th ACM/ESDA/IEEE Design Automation Con-
ference (DAC), pp. 1–6. IEEE, 2018.

Texas Instruments. DRV425: Fully-integrated fluxgate magnetic sensor for open-loop applications
(accessed Oct 1, 2020), 2020. URL https://www.ti.com/product/DRV425.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Annual international
cryptology conference, pp. 388–397. Springer, 1999.

Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In
Annual International Cryptology Conference, pp. 104–113. Springer, 1996.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial exam-
ples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and David Kaeli. Side-channel power analysis
of a gpu aes implementation. In 2015 33rd IEEE International Conference on Computer Design
(ICCD), pp. 281–288. IEEE, 2015.

Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards reverse-engineering black-box neural
networks. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 121–
144. Springer, 2019.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and com-
plexity. Courier Corporation, 1998.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications security, pp. 506–519, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

Vojtech Petrucha and David Novotny. Testing and application of an integrated fluxgate sensor
drv425. Journal of Electrical Engineering, 69(6):418–421, 2018.

Ville Timonen. Multi-GPU CUDA stress test (accessed Oct 1, 2020), 2020. URL https://
github.com/wilicc/gpu-burn.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction apis. In 25th {USENIX} Security Symposium ({USENIX} Security
16), pp. 601–618, 2016.

Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. I know what you see: Power side-channel
attack on convolutional neural network accelerators. In Proceedings of the 34th Annual Computer
Security Applications Conference, pp. 393–406, 2018.

Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin Chen, Yi Liu, Zhefu
Wu, Qi Xuan, and Xiaoniu Yang. Open dnn box by power side-channel attack. IEEE Transactions
on Circuits and Systems II: Express Briefs, 2020.

10

https://www.ti.com/product/DRV425
https://github.com/wilicc/gpu-burn
https://github.com/wilicc/gpu-burn

Under review as a conference paper at ICLR 2021

Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache telepathy: Leveraging shared re-
source attacks to learn {DNN} architectures. In 29th {USENIX} Security Symposium ({USENIX}
Security 20), pp. 2003–2020, 2020.

Yuval Yarom and Katrina Falkner. Flush+ reload: a high resolution, low noise, l3 cache side-channel
attack. In 23rd {USENIX} Security Symposium ({USENIX} Security 14), pp. 719–732, 2014.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

11

Under review as a conference paper at ICLR 2021

Supplementary Document
Can one hear the shape of a neural network?:
Snooping the GPU via Magnetic Side Channel

A BILSTM NETWORK STRUCTURE

Classifying steps in a network model requires taking in a time-series signal and converting it to
labeled operations. The EM signal responds only to the GPU’s instantaneous performance, but
because the GPU executes a neural network sequence, there is rich context in both the window
before and after any one segment of the signal. Some steps are often followed by others, such as
pooling operations after a series of convolutions. We take advantage of this bidirectional context
in our sequence to sequence classification problem by utilizing a BiLSTM network to classify the
observed signal. To retrive a network’s topology, we pass normalized EM values into a two-layer
BLSTM network, with dropout of 0.2 in between. From there we compute a categorical cross-
entropy loss on a time-distributed output that we achieve by sliding an input window across our EM
signal. This approach proves robust, and is the method used by all of our experiments, and on all
GPU’s tested.

The segmented output of our BiLSTM network on our extracted signal is for the most part unambigu-
ous. Operations that follow one another (i.e. convolution, non-linear activation function, pooling)
are distinct in their signatures and easily captured from the context enabled by the sliding window
signal we use as input to the BiLSTM classifier. Issues arise for very small-sized steps, closer to our
sensor’s sampling limit. In such regions a non-linear activation may be over-segmented and split
into two (possibly different) activation steps. To ensure consistency we postprocess the segmented
results to merge identical steps that are output in sequence, cull out temporal inconsistencies such
as pooling before a non-linear activation, and remove activation functions that are larger than the
convolutions that precede them.

B ADDITIONAL EXPERIMENTS

B.1 USING LEVENSHTEIN DISTANCE TO MEASURE NETWORK RECONSTRUCTION QUALITY

To provide a sense of how the Levenshtein edit distance is related to the network’s ultimate perfor-
mance, we consider AlexNet (referred as model A) and its five variants (refered as model B, C, D,
and E, respectively). The variants are constructed by randomly altering some of the network steps
in model A. The Levenshtein distances between model A and its variants are 1, 2, 2, 5, respectively
(see Fig. S1), and the normalized Levenshtein distances are shown in the brackets of Fig. S1. We
then measure the performance (i.e., standard test accuracy) of these models on CIFAR-10. As the
edit distance increases, the model’s performance drops.

C
la

ss
ifi

ca
tio

n
te

st
 a

cc
ur

ac
y

0.7

0.732

0.765

0.798

0.83

A B C D E

0.771

0.8080.8060.811
0.822

Edit Distance: 0 1(0.05) 2 (0.11) 5 (0.28)2 (0.11)

Figure S1: The model’s classification accuracy drops as its Levenshtein distance from the original
model (model A: AlexNet) increases.

B.2 RECONSTRUCTION QUALITY ON IMAGENET

We treat ResNet18 and ResNet50 for ImageNet classification as our black-box models, and recon-
struct them from their magnetic signals. We then train those reconstructed networks and compare
their test accuracies with the original networks’ performance. Both the reconstructed and original

12

Under review as a conference paper at ICLR 2021

Table S1: Model reconstruction evaluated on ImageNet classification.

Model ResNet18 ResNet50
Original Extracted Original Extracted

Top-1 Acc. 64.130 64.608 62.550 61.842
Top-5 Acc. 86.136 86.195 85.482 84.738
KL Div. - 2.39 - 4.85

10%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalized edit distance

20%

30%

40%

50%

60%

10%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalized edit distance

20%

30%

40%

50%

60%

Figure S2: Distribution of normalized Levenshtein distance. (left) We plot the distribution of
the normalized Levenshtein distances between the reconstructed and target networks. This results,
corresponding to Table 1 in the main text, use signals collected on Nvidia TITAN V. (right) We also
conduct similar experiments on two Nvidia GTX-1080 GPUs. One is used for collecting training
signals, and the other is used for testing our side-channel-based reconstruction algorithm.

networks are trained with the same training dataset for the same number of epochs. The results
are shown in Table S1, where we report both top-1 and top-5 classification accuracies. In addition,
we also report a KL-divergence measuring the difference between the 1000-class image label distri-
bution (over the entire ImageNet test dataset) predicted by the original network and that predicted
by the reconstructed network. Not only are those KL-divergence values small, we also observe
that for the reconstructed network that has a smaller KL-divergence from the original network (i.e.,
ResNet18), its performance approaches more closely to the original network.

B.3 GPU TRANSFERABILITY

Here we verify that (i) the leaked magnetic signals are largely related to GPU brand/version but not
the other factors such as CPUs and (ii) the signal characteristics from two physical copies of the
same GPU type stay consistent.

We obtain two copies of an Nvidia GTX-1080 GPU running on two different machines. When
we run the same network structure on both GPUs, the resulting magnetic signals are similar to
each other, as shown in Fig. S3. This suggests that the GPU cards are indeed the primary sources
contributing the captured magnetic signals.

Next, we use one GPU to generate training data and another one to collect signals and test our
black-box reconstruction. The topology reconstruction results are shown in Table S2, arranged in the
way similar to Table 1, and the distribution of normalized Levenshtein edit distance over the tested
networks are shown in Fig. S2-right. These accuracies are very close to the case wherein a single
GPU is used. The later part of the reconstruction pipeline (i.e., the hyperparameter recovery) directly
depends on the topology reconstruction. Therefore, it is expected that the final reconstruction is also
very similar to the single-GPU results.

B.4 TRANSFER ATTACKS ON MNIST

We also conduct transfer attack experiments on MNIST dataset. We download four networks online,
which are not commonly used. Two of them are convolutional networks (referred as CNN1 and
CNN2), and the other two are fully connected networks (referred as DNN1 and DNN2). None of
these networks appeared in the training dataset. We treat these networks as black-box models, and
reconstruct a network for each of them. We then use the four reconstructed models to transfer attack
the four original models, and the results are shown in Table S4. As baselines, we also use the four
original models to transfer attack each other including themselves.

13

Under review as a conference paper at ICLR 2021

Table S2: Classification accuracy of network steps (GTX-1080).
Prec. Rec. F1 # samples

LSTM .997 .999 .998 12186
Conv .985 .989 .987 141164
Fully-connected .818 .969 .887 9301
Add .962 .941 .951 30214
BatchNorm .956 .944 .950 48433
MaxPool .809 .701 .751 1190
AvgPool .927 .874 .900 294
ReLU .868 .859 .863 11425
ELU .861 .945 .901 8311
LeakyReLU .962 .801 .874 3338
Sigmoid .462 .801 .585 5106
Tanh .928 .384 .543 8050
Weigted Avg. .945 .945 .945 -

Table S3: DNN estimation accuracies. Using the 1804 convolutional layers in our test dataset, we
measure the accuracies of our DNN models for estimating the convolutional layers’ hyperparame-
ters. Here, we break the accuracies down into the accuracies for individual hyperparameters.

Kernel Stride Padding Image-in Image-out
Precision 0.971 0.976 0.965 0.968 0.965

Recall 0.969 0.975 0.964 0.969 0.968
F1 Score 0.969 0.975 0.962 0.967 0.965

In Table S4, every row shows the transfer attack success rates when we use different source (surro-
gate) models to attack a specific original model (CNN1, CNN2, DNN1, or DNN2). Each column
labeled as “extr.” corresponds to the extracted (reconstructed) model whose target model is given
in the previous column right before it. In addition, we also show all the models’ test accuracies
on MNIST in the last row of the table. The results show that all the reconstructed models approx-
imate their targets closely, both in terms of their abilities for launching transfer attacks and their
classification performance.

C SENSOR SETUP

The magnetic induction signal we utilize comes from digitally converting analog readings of a Texas
Instruments DRV425 fluxgate sensor with Measurement Computing’s USB-204 Digital Acquisition
Card. The sensor samples at a frequency of 47Khz and the converter operates at 50Khz to map the
originally -2mT∼2mT readings across 0 to 5 Volts using a 12-bit conversion. Calibrating the sensor
requires (a) that the sensor is within range of the electromagnetic signal and that (b) the sensor
orientation is consistent. The magnetic induction signal falls off at a rate inversely proportional to
distance squared, and so the sensor must be placed within 7mm of the GPU power cable for reliable

vo
lts

2.5

5

5

2.5

ms60306 12 18 24 5436 42 480

Figure S3: Here we plot the resulting signals from the same network model deployed on two differ-
ent instances of a NVIDIA-GTX 1080 (running on two different computers). In the green boxes on
the left are the spikes that we inject on purpose (discussed in Sec. 4.2) to synchronize the measured
signal with the runtime trace of the GPU operations.

14

Under review as a conference paper at ICLR 2021

Table S4: MNIST results.
Source Model

CNN1 extr. CNN2 extr. DNN1 extr. DNN2 extr.

Ta
rg

et

CNN1 .858 .802 .226 .202 .785 .795 .476 527
CNN2 .395 .319 .884 .878 .354 .351 .354 .211
DNN1 .768 .812 .239 .223 .999 .999 .803 .885
DNN2 .703 .768 .219 .194 .975 .979 .860 .874

Accuracy .989 .987 .993 .991 .981 .981 .980 .983

measurement. Flipping the flat sensor over will result in a sign change of the magnetic induction
signal, thus a uniform orientation should be maintained to avoid preprocessing readings across the
dataset to align.

15

	Introduction
	Related Work: Model Extraction by Queries and Side-Channel Analysis

	Magnetic Signals from GPUs
	Signal Analysis and Network Reconstruction
	Topology Recovery
	Hyperparameter Estimation

	Experimental Setup
	Hardware Sensors
	Dataset Construction

	Results
	Accuracy of Network Reconstruction
	Transfer Attack
	Discussion: Defenses Against Magnetic Side Channel Leakage

	Concluding Remarks
	BiLSTM Network Structure
	Additional Experiments
	Using Levenshtein Distance to Measure Network Reconstruction Quality
	Reconstruction Quality on ImageNet
	GPU Transferability
	Transfer Attacks on MNIST

	Sensor Setup

