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Abstract001

Formulating statements that support diverse or002
controversial stances on specific topics is vi-003
tal for platforms that enable user expression,004
reshape political discourse, and drive social005
critique and information dissemination. With006
the rise of Large Language Models (LLMs),007
controllable text generation towards specific008
stances has become a promising research area009
with applications in shaping public opinion010
and commercial marketing. However, current011
datasets often focus solely on pure texts, lack-012
ing multimodal content and effective context,013
particularly in the context of stance detection.014
In this paper, we formally define and study015
the new problem of stance-driven controllable016
content generation for tweets with text and017
images, where given a multimodal post (text018
and image/video), a model generates a stance-019
controlled response. To this end, we create the020
Multimodal Stance Generation Dataset (Stance-021
Gen2024), the first resource explicitly designed022
for multimodal stance-controllable text gener-023
ation in political discourse. It includes posts024
and user comments from the 2024 U.S. presi-025
dential election, featuring text, images, videos,026
and stance annotations to explore how multi-027
modal political content shapes stance expres-028
sion. Furthermore, we propose a Stance-029
Driven Multimodal Generation (SDMG)030
framework that integrates weighted fusion of031
multimodal features and stance guidance to im-032
prove semantic consistency and stance control.033
We release the dataset and code1 for public use034
and further research.035

1 Introduction036

In the contemporary era of digital interconnected-037

ness, online platforms have emerged as pivotal are-038

nas for political discourse, social critique, and infor-039

mation dissemination. The ability to identify and040

craft statements that encapsulate the multifaceted,041

1https://anonymous.4open.science/r/StanceGen-BE9D

Figure 1: An overview of our task. The input consists
of tweet text, visual images, and a specified stance.

and often divergent, perspectives on specific issues 042

is of paramount importance. Such capability not 043

only empowers users to articulate their viewpoints 044

with greater efficacy but also propels the dynamic 045

evolution of these digital ecosystems. With the 046

advent of generative artificial intelligence (AI) sys- 047

tems built upon large language models (LLMs), 048

automated generating controllable content for a 049

given stance or topic has emerged as a burgeon- 050

ing research frontier (Schiller et al., 2021; Li et al., 051

2024), offering the potential to automatically gener- 052

ate texts that consistently align with predetermined 053

stance parameters and other attribute constraints. 054

While existing studies predominantly focus on 055

textual stance detection (Küçük and Can, 2021; 056

Zhang et al., 2024) which involves classifying tex- 057

tual inputs into discrete categories such as sup- 058

port, opposition, or neutrality. However, the 059

emerging paradigm of generating stance-aligned 060

responses from multimodal inputs - termed Stance- 061

Driven Multimodal Controlled Statement Genera- 062

tion, SDMCSG - remains critically underexplored. 063

The aim of SDMCSG is to generate the correspond- 064

ing statement for a given stance towards a target, 065

which can be an entity, concept, event, idea, opin- 066

ion, claim, or topic that is either explicitly men- 067

tioned or implied within the multimodal input con- 068

texts. As illustrated in Figure 1 with a 2024 U.S. 069

presidential campaign example, When presented 070
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with Vice President Kamala Harris’s supportive071

stance, as well as her multimodal post featuring072

campaign text and an official portrait, our frame-073

work enables models to generate supportive user074

comments that maintain ideological consistency075

with both the visual and textual cues. This capa-076

bility addresses a critical gap in political commu-077

nication systems, where authentic opinion expres-078

sion requires synchronized understanding of multi-079

modal stance indicators and controlled generation080

of positionally coherent responses.081

In order to push forward the research of mul-082

timodal stance-driven controlled content genera-083

tion, we create the Multimodal Stance Generation084

Dataset (StanceGen2024), the first resource explic-085

itly designed for multimodal stance-controllable086

text generation in political discourse. This dataset087

includes posts from candidates and user comments088

from various social platforms during the 2024 U.S.089

presidential election, featuring rich text, images,090

and video content, along with stance annotations.091

The primary goal of this dataset is to explore how092

multimodal political content interacts across differ-093

ent media and influences users’ stance expression,094

thereby providing a real and diverse foundation for095

future multimodal stance generation tasks.096

StanceGen2024 is not limited to traditional text097

data; it also includes multimodal information such098

as images and videos related to the election, of-099

fering more comprehensive contextual information100

than single-modal text data. These multimodal ele-101

ments play an essential background role in specific102

political topics, deepening the semantic connection103

between textual and visual content. With this data,104

we aim to explore how to combine text and visual105

content in the political domain to generate more106

precise and stance-consistent responses.107

Furthermore, we propose an innovative stance-108

driven multimodal generation framework that op-109

timizes generation effects by weighted fusion of110

multimodal features and stance guidance. In this111

framework, we not only consider the varying impor-112

tance of modalities such as text and images but also113

apply weighted processing to the features of each114

modality, ensuring that the generated text maintains115

semantic consistency while better adhering to the116

stance requirements. Through this fusion strategy,117

we can effectively enhance the fluency, relevance,118

and stance control of the generated content, making119

the text more aligned with user expectations and120

accurately reflecting the diversity and complexity121

of political discourse. Based on this, we improved122

and fine-tuned the LLaVa open-source model with 123

instruction-based tuning. The results show that 124

our approach achieves a balance between control- 125

lability and generation quality, yielding favorable 126

outcomes. 127

Our main contributions are as follows: 128

• We introduce StanceGen2024, the first multi- 129

modal dataset explicitly designed for stance- 130

controlled generation in political discourse. It 131

pairs multimodal posts (text, images, videos) 132

from the 2024 U.S. presidential election with 133

stance-annotated user responses, enabling sys- 134

tematic exploration of how multimodal con- 135

text shapes ideological expression. 136

• We propose a novel framework integrating 137

weighted cross-modal attention and stance 138

guidance mechanisms. This architecture dy- 139

namically prioritizes stance-critical features 140

(e.g., politically charged visuals) and enforces 141

stance consistency during generation, address- 142

ing the limitations of text-centric approaches. 143

• A series of experiments on our datasets 144

demonstrate that our method is effective and 145

provides a new insight. 146

2 Related Work 147

2.1 Related Datasets for Stance-Controlled 148

Generation 149

Currently, there is no specialized dataset designed 150

for the generation of text controlled by stance. Tra- 151

ditional controllable text generation tasks (Liang 152

et al., 2024b; Liu et al., 2024) have utilized 153

sentiment-focused datasets such as the SST-5 154

dataset (Socher et al., 2013) and IMDB (Maas et al., 155

2011). Two popular datasets like P-Stance (Li et al., 156

2021) and Twitter Stance Election 2020 (Liang 157

et al., 2024a), are used for stance detection tasks. 158

The P-Stance dataset is a large-scale stance detec- 159

tion resource, consisting of 21,574 tweets extracted 160

from over 2.8 million tweets collected from Twitter, 161

and it only contains pure text. Twitter Stance Elec- 162

tion 2020 is a multimodal stance detection dataset 163

used for detecting stances in multimodal content. 164

Both of these datasets are collected using specific 165

labels. To the best of our knowledge, there exists 166

no publicly available dataset that supports stance- 167

controlled statement generation with both multi- 168

modal integration and contextual interaction capa- 169

bilities. Our work addresses this critical limitation 170
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by introducing StanceGen2024, a novel benchmark171

that combines target topic with multimodal features172

in political discourse.173

2.2 Controllable Text Generation174

LLMs have introduced new methods for control-175

lable text generation, enhancing the manipulation176

of text attributes. Post-processing techniques (Yang177

and Klein, 2021) allow modifications after genera-178

tion to control attributes, while prefix tuning (Qian179

et al., 2022) adjusts the initial prompts to guide180

the generation process. Aspect-controlled con-181

tent generation has also gained attention, with182

early work (Schiller et al., 2021) enabling con-183

trol over topics, stances, and aspects at the sen-184

tence level. Recent advancements in stance-driven185

text generation include the PCTG-X model (Yang186

et al., 2024), DEBATUNE (Li et al., 2024), and187

DATG (Liang et al., 2024c). These methods pri-188

marily focus on text-based datasets and do not ad-189

dress how to handle ultimodal inputs effectively.190

We propose a novel stance-driven multimodal con-191

trolled statement generation framework that inte-192

grates weighted fusion of multimodal features and193

stance guidance to improve semantic consistency194

and stance controllability.195

3 Building the Dataset196

This section details the creation and specifics of197

the Multimodal Stance Generation Dataset (Stance-198

Gen2024). StanceGen2024 is a novel dataset de-199

signed for multi-modal stance-controllable text gen-200

eration, focusing on political discourse during the201

2024 U.S. Presidential Election. The dataset com-202

prises posts from the official Twitter profiles of203

Kamala Harris and Donald Trump, along with204

user comments. Unlike existing datasets (Li et al.,205

2021; Liang et al., 2024a), which primarily sup-206

port stance detection and are often limited to tex-207

tual content, MTSE2024 is designed to facilitate208

stance-controlled text generation with rich multi-209

modal information. While previous multi-modal210

datasets mostly rely on tweets collected through211

specific hashtags, they often lack an explicit con-212

nection between posts and responses. In contrast,213

StanceGen2024 explicitly captures the interaction214

between tweets and their corresponding comments.215

This provides a more realistic training resource for216

studying context-aware stance generation.217

3.1 Data Construction 218

We use the Twitter Streaming API to collect tweets. 219

Similar to previous works (Mohammad et al., 220

2016; Conforti et al., 2020) that focused on presi- 221

dential candidates, we concentrate on two political 222

figures in the 2024 presidential election: Donald 223

Trump and Kamala Harris. The collection period 224

spans from July 21, 2024, when Harris replaced 225

Biden as the Democratic presidential candidate, 226

to November 6, 2024, when the election results 227

were announced. We directly collect posts from the 228

two candidates’ Twitter profiles during this period, 229

along with user comments under these posts. For 230

both posts and user comments, we retain English 231

text and tweets that contain at least one image or 232

a video/GIF. For videos and GIFs, we keep only 233

their first frame, as consecutive frames often con- 234

tain highly similar visual information. For posts 235

with multiple images, we pair each image with the 236

corresponding text to form multiple samples. 237

Given the complexity of the stance-driven mul- 238

timodal controlled statement generation task, con- 239

siderable effort must be dedicated to ensuring the 240

dataset’s quality, effectiveness, and comprehensive- 241

ness. Our focus is on the following key aspects: 242

(1) Multimodal Unified Timestamps: We syn- 243

chronized timestamps across text, images, and 244

videos to ensure the correct alignment of differ- 245

ent data modalities. 246

(2) Annotation Quality Control: Annotators 247

underwent training, which included a review of the 248

context surrounding candidates’ posts and relevant 249

news during the 2024 campaign. Before starting, 250

annotators had to pass a preliminary test to ensure 251

their understanding of the task and the nuances of 252

the political context. 253

(3) Topic Segmentation: We categorized the 254

posts into broad themes based on their political con- 255

tent, such as appeals for support, policy discussion, 256

and campaign highlights, providing a structured 257

overview of the election discourse. 258

Beyond stance-controlled text generation, 259

StanceGen2024 is also well-suited for a variety of 260

other tasks, including multimodal stance detection, 261

political discourse analysis, and sentiment analysis. 262

This versatility makes the dataset a valuable re- 263

source for understanding political communication 264

and generating contextually aligned responses. 265
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3.2 Preprocessing266

To ensure dataset quality, we applied several pre-267

processing steps: 1) We retained tweets with 10268

to 128 words, excluding those outside this range269

to balance informativeness and conciseness. 2)270

We removed irrelevant content, including URLs,271

@usernames, and unnecessary punctuation, while272

preserving functional punctuation and meaning-273

ful emojis or special characters. 3) Only English274

tweets were kept to focus on building an English275

stance-controllable dataset.276

3.3 Data Annotation277

Our dataset is centered on multimodal stance gener-278

ation within the context of political discourse. We279

meticulously annotate both tweets and their asso-280

ciated user comments with political stances (e.g.,281

against or favor) and with topic categories that cap-282

ture broad themes such as voter mobilization, po-283

litical ideology, and candidate image projection.284

Given the complexity of integrating textual and vi-285

sual modalities, our annotation process is executed286

in two stages.287

In the initial stage, due to the widely recognized288

text comprehension capabilities of large-scale mod-289

els, we employ several large-scale models (GPT-290

4o (Hurst et al., 2024), DeepSeek-V3 (DeepSeek-291

AI et al., 2024) and Qwen 2.5-Max (Team, 2024))292

to perform coarse-grained annotations of stances293

and topics. For instances where model outputs294

are highly consistent, the stance is considered295

clear; however, for cases with inconsistent annota-296

tions—which may indicate ambiguity or neutral-297

ity—manual fine-grained calibration is conducted.298

To this end, we engaged three graduate students299

specializing in multimodal research to serve as an-300

notators for this calibration process. These anno-301

tators received comprehensive training covering302

key political events during the 2024 campaign, the303

context behind the candidates’ posts, and guide-304

lines for interpreting multimodal content. Only305

those who successfully passed a rigorous prelimi-306

nary test were permitted to proceed with the formal307

annotation.308

To ensure consistency and reliability, each data309

instance was independently annotated by two anno-310

tators. In cases of disagreement, a third annotator311

reviewed the sample and determined the final la-312

bel. This meticulous process not only guarantees313

a high standard of annotation quality but also ren-314

ders the dataset a valuable resource for a range of315

Candidate Posts Post Images Favor Against Samples
Harris 837 199 1,596 10,529 12,126
Trump 202 156 5,269 7,630 12,899

Table 1: Statistics of the StanceGen2024 Dataset.

Figure 2: Comparison of Comment Categories for Har-
ris and Trump

applications beyond stance generation, including 316

multimodal stance detection and political discourse 317

analysis. 318

3.4 Quality Assessment 319

We evaluate inter-annotator agreement using Co- 320

hen’s Kappa Statistic (Cohen, 1960), with an av- 321

erage score of 0.719 for StanceGen2024. This in- 322

dicates substantial agreement between annotators. 323

Additionally, Cohen’s Kappa in related stance de- 324

tection datasets (Liang et al., 2024a) typically hov- 325

ers around 0.7, further validating the high quality 326

of our dataset. 327

4 Dataset Characteristics 328

Our multimodal dataset consists of 1,039 posts and 329

25,025 comments, primarily focusing on political 330

discourse during the 2024 U.S. presidential elec- 331

tion, as detailed in Table 1. 332

Through an analysis of the post content, we 333

categorize them into four main types: Calls for 334

Voter Support, Sharing Political Ideologies, Self- 335

Promotionand and Reporting Achievements, 336

with a category labeled as "Other" for posts that do 337

not clearly fall into these categories. These classifi- 338

cations reflect the key topics of discourse shared by 339

the candidates on Twitter and illustrate the different 340

ways they interacted with voters via social media 341

during the election period. The specific distribution 342

is shown in Figure 2. 343

Regarding the comments, we annotated both 344

the stance (support or opposition) and the com- 345

ment style for each entry. The comment styles 346
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Figure 3: Comparison of Post Categories between Har-
ris and Trump

are mainly divided into Sarcasm, Direct Expres-347

sion, Examples, Questions/Counterquestions,348

Humor/Irony, and other categories. These styles349

demonstrate the different ways users express their350

attitudes toward the candidates and their posts. For351

Harris’s posts, 86.8% of the comments were op-352

positional, while only 13.1% expressed support.353

For Trump’s posts, 59.1% of comments were op-354

positional, and 40.8% expressed support. These355

figures align with the public sentiment during the356

election period and the eventual election outcome,357

indicating a higher level of opposition to Harris.358

The distribution is shown in Figure 3.359

Given the multimodal nature of the dataset, we360

also analyzed the proportion of comments that in-361

cluded visual content. Since user comments do not362

always include images or videos, some comments363

are purely textual. In the final dataset, 26.6% of the364

comments included images, while 8.9% included365

videos. This distribution shows that while most366

comments are text-based, multimodal elements still367

play a role in enriching the expression of comments368

and advancing multimodal stance generation.369

5 Methodology370

In this section, we will introduce in detail our371

proposed Stance-driven Multimodal Generation372

(SDMG) Framework. Given a text S, an image373

I and a specific stance y, the goal of multi-modal374

stance-controlled text generation is to generate a375

response R that aligns with a specific stance label376

y for a target t, based on S and I . To achieve this,377

we propose a stance-driven multimodal generation378

framework that leverages both textual and visual379

modalities. Our framework integrates a weighted 380

fusion of multimodal features and stance guidance, 381

prompting pre-trained models to generate contex- 382

tually consistent and stance-controlled responses. 383

The architecture of our proposed framework is il- 384

lustrated in Figure 4. 385

5.1 Visual Encoder 386

We adopt the Vision Transformer (ViT) architecture 387

based on the CLIP model (Radford et al., 2021) to 388

process image information. ViT splits the input im- 389

age into an N ×N sequence of image patches and 390

utilizes the Transformer structure to extract image 391

features. On this basis, we introduce a learnable 392

target prompt vector PV and insert it into the ViT 393

input sequence, thus guiding the model to focus on 394

specific target areas (such as people or objects). 395

Given the input image V0, we first split it into an 396

N ×N sequence of image patches, which are used 397

as the input to the ViT. The target prompt vector PV 398

is introduced as a learnable parameter to help the 399

model focus on specific targets within the image. 400

The input sequence to ViT can be represented as: 401

Xinput = [xV [CLS]0, PV , V0] (1) 402

where xV [CLS]0 is the [CLS] token of the first 403

layer, used to aggregate global visual information, 404

PV is the target prompt vector guiding the model 405

to focus on specific targets, and V0 is the sequence 406

of image patches after splitting. 407

After processing through ViT, the output of the 408

first layer is: 409

L1[xV [CLS]1, Z1, V1] (2) 410

where xV [CLS]k is the [CLS] token of the k-th 411

layer, responsible for aggregating visual informa- 412

tion, Z1 is the intermediate feature representation 413

from the first layer of the Transformer, and V1 is the 414

feature representation of the image patches after 415

the first layer’s processing. 416

5.2 Textual Encoder 417

We adopt the text encoder from the CLIP (Radford 418

et al., 2021) model. After processing through multi- 419

ple layers of self-attention mechanisms, the output 420

feature of the text encoder is the embedding of the 421

first [CLS] token T ∈ Rdt , which represents the 422

global semantic information of the entire text: 423

T = Transformer(Tinput)CLS (3) 424
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Figure 4: The overall architecture of our proposed method SDMG.

where Transformer(Tinput) represents the text se-425

quence processed by the Transformer network, and426

the embedding T of the [CLS] token serves as the427

global semantic representation of the text.428

5.3 TSA and Multi-modal Fusion429

Building on the textual and visual embeddings,430

we introduce the Task-Sensitive Attention (TSA)431

mechanism, which dynamically computes the inter-432

action weights between the visual and textual fea-433

tures to capture task-relevant dependencies. Specif-434

ically, TSA utilizes cross-modal attention to model435

the relationships between visual and textual modal-436

ities, ensuring that both contribute effectively to437

the final output.438

5.3.1 Input Features439

The input features for TSA include the visual fea-440

ture V ∈ Rdv , extracted from the [CLS] token441

embedding of the visual encoder, and the textual442

feature T ∈ Rdt , extracted from the [CLS] token443

embedding of the text encoder. These features rep-444

resent the global semantic information from both445

the visual and textual modalities, where dv and446

dt denote the dimensionalities of the visual and447

textual features, respectively.448

5.3.2 Feature Projection449

To facilitate attention weight computation, both450

the visual and textual features are projected into451

the same dimensional space d. This projection is452

achieved by using learnable weight matrices:453

Q = WqV, K = WkT, Vf = WvV (4)454

where Wq ∈ Rd×dv , Wk ∈ Rd×dt , and Wv ∈ 455

Rd×dv are the weight matrices, and Q ∈ Rd, K ∈ 456

Rd, and Vf ∈ Rd are the query, key, and value 457

vectors, respectively. 458

5.3.3 Attention Weight Calculation 459

The attention weight is computed by taking the dot 460

product of the query Q and key K, followed by 461

normalization using the Softmax function. This 462

yields the attention weights, which are then used to 463

weigh the visual features: 464

Attention(Q,K, Vf ) = Softmax
(
QKT

√
d

)
Vf

(5) 465

where QKT /
√
d represents the scaled dot-product 466

attention, and Softmax converts the similarity 467

scores into a probability distribution, indicating the 468

importance of textual features for visual features. 469

The final output is the weighted visual feature Vf . 470

5.3.4 Multi-modal Feature Fusion 471

To combine the features from both modalities, we 472

fuse the weighted visual features Vf with the origi- 473

nal textual features T . The fusion can be performed 474

either by concatenation or addition: 475

Ffused = Concat(Vf , T ) or Ffused = Vf + T
(6) 476

where Ffused ∈ R2d or Rd is the fused multi-modal 477

feature representation, which is used for down- 478

stream tasks such as stance-controlled generation. 479
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MODALITY MODEL Controllability ↑ CMSS ↑ Relevance ↑ Perplexity ↓
Textual GPT4 0.8648 0.1951 0.5499 26.3243

LLaMA3 0.8379 0.1985 0.5371 15.4041
Visual GPT4-Vision 0.7792 0.2175 0.5437 20.9887

Qwen-VL 0.5764 0.2674 0.5463 19.2609
Multi-modal GPT4-Vision 0.9013 0.2400 0.5098 22.5884

Qwen-VL 0.6682 0.2825 0.4996 17.5113
LLaVA 0.7214 0.2096 0.5173 198.5888

LLaVA-SDMG 0.9257 0.1908 0.5442 58.6329

Table 2: Stance-driven controllable statement generation task performance on StanceGen2024, evaluating Relevance
(↑), CMSS (↑), Controllability (↑), and Perplexity (↓). Bold indicates top performance; underline marks second-best.

MODALITY MODEL Controllability ↑ CMSS ↑ Relevance ↑ Perplexity ↓
H T H T H T H T

Textual
GPT4 0.8515 0.8781 0.2105 0.1797 0.5661 0.5337 24.0868 28.5617

LLaMA3 0.8511 0.8246 0.2102 0.1868 0.5477 0.5266 14.0936 16.7146

Visual
GPT4-Vision 0.7427 0.8158 0.2225 0.2124 0.5487 0.5388 20.8939 21.0836

Qwen-VL 0.5369 0.6160 0.2806 0.2543 0.5517 0.5409 19.3511 19.1707

Multi-modal

GPT4-Vision 0.8940 0.9087 0.2404 0.2397 0.5177 0.5018 22.9812 22.1955
Qwen-VL 0.5777 0.7587 0.2889 0.2760 0.5067 0.4924 17.8656 17.1569

LLaVA 0.7386 0.7042 0.2168 0.2024 0.5180 0.5167 113.1138 284.0637
LLaVA-SDMG 0.9402 0.9112 0.1902 0.1915 0.5489 0.5395 54.7436 62.5221

Table 3: Stance-driven controllable statement generation Task Performance on StanceGen2024, evaluating Relevance
(↑), CMSS (↑), Controllability (↑), and Perplexity (↓). The results are separated for Harris (H) and Trump (T) to
highlight individual performance on each target. Bold indicates top performance; underline marks second-best.

6 Experiments480

6.1 Comparison Models481

Pure textual modality baselines: (1) LLaMA3482

(Dubey et al., 2024), the Meta-Llama-3-8b-instruct;483

(2) GPT4 2. Multi-modal baselines: (1) Qwen-484

VL (Bai et al., 2023), the Qwen-VL-Chat7b; (2)485

GPT4-Vision3; (3) LLaVA (Liu et al., 2023) (llava-486

v1.5-7b).487

6.2 Metrics488

To effectively evaluate the outcomes of our tasks,489

we employ the following metrics: (1) Controlla-490

bility: Controllability measures the proportion of491

generated outputs that correctly exhibit the desired492

stance values, which is measured by employing a493

RoBERTa model (Liu et al., 2019) based classifier.494

(2) Perplexity: Perplexity measures the fluency of495

replies, which is assessed by GPT-2 large. (3) Rel-496

evance: Relevance evaluates the contextual align-497

ment between the real comments and the generated498

comments, calculated by the BAAI/bge-large-en-499

v1.5 model (Xiao et al., 2024). (4) Cross-modal500

2https://openai.com/research/gpt-4
3https://openai.com/research/ gpt-4v-system-card

Semantic Similarity(CMSS): Semantic Similar- 501

ity evaluates how closely the generated text aligns 502

with the content of the input image, calculated us- 503

ing the CLIP model (Radford et al., 2021) (the 504

clip-vit-large-patch14-336). This model computes 505

the similarity in a shared embedding space for both 506

text and image input. 507

6.3 Instruction Finetuning 508

We aim to enable the model to generate statements 509

with a specific stance (favor or against) based on a 510

given social media post, which includes both text 511

and images. LLaVA’s vision-language understand- 512

ing allows it to leverage both modalities, resulting 513

in more contextually appropriate comments. LoRA 514

fine-tuning enables the model to learn real social 515

media commenting styles, making the generated 516

text more natural. 517

We fine-tuned LLaVA with our SDMG Frame- 518

work using DeepSpeed ZeRO-2 (Rajbhandari et al., 519

2020) and LoRA (Hu et al., 2021), resulting in the 520

model referred to as LLaVA-SDMG. The dataset 521

was split 8:2 for training and testing. Training used 522

the AdamW optimizer with a learning rate of 2e-4, 523

a batch size of 16, and a maximum sequence length 524
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of 2048 tokens.525

6.4 Result Analysis526

The performance of different LLMs and modality527

input on the Stance-driven controllable generation528

task for the StanceGen2024 dataset is respectively529

shown in Table 2 and Table 3.530

6.4.1 Controllability531

It can be seen that our proposed LLaVA-SDMG.532

demonstrates strong performance in controllability,533

particularly in the multi-modal setting, consistently534

outperforming its counterparts across different535

datasets. For the Multi-modal task, LLaVA-SDMG536

achieves the highest controllability score with Har-537

ris (AVG: 0.9402) and Trump (AVG: 0.9112), indi-538

cating its superior ability to maintain control over539

the stance of generated content. This outperforms540

other models, such as GPT4-Vision (AVG: 0.9013541

for Harris and 0.9087 for Trump) and Qwen-VL542

(AVG: 0.6682 for Harris and 0.7587 for Trump),543

by a significant margin.544

This is likely primarily due to its weighted mul-545

timodal feature fusion approach, as well as instruc-546

tion fine-tuning. The weighted fusion allows the547

model to flexibly adjust the importance of visual548

and textual information based on stance require-549

ments during generation. When the visual infor-550

mation strongly aligns with the stance, the model551

can increase the weight of visual features to en-552

hance the influence of visual content on the gen-553

erated text’s stance, resulting in comments that554

better align with the stance requirements. Addition-555

ally, instruction fine-tuning further improves the556

model’s ability to understand and generate text that557

adheres to specific stance instructions, contributing558

to its strong stance controllability.559

6.4.2 Response Quality560

In terms of response quality, LLaVA-SDMG con-561

sistently demonstrates a strong balance between562

stance controllability and overall response qual-563

ity. The relatively low correlation between gener-564

ated text and images may stem from the weighted565

modality fusion process, where the model consid-566

ers the input text to be more relevant to the stance567

and assigns it higher weight. As a result, the model568

focuses more on the stance rather than the image.569

Based on our observations, the images in the can-570

didates’ posts within our dataset predominantly571

convey the topic, with minimal impact on stance.572

The relevance to real-world comments is second- 573

best, while perplexity has improved significantly 574

compared to the base model before enhancement, 575

clearly resulting in better generation outcomes. 576

This is intuitive, as stance controllability and re- 577

sponse quality can indeed be somewhat contradic- 578

tory. It is difficult to ensure that generated sen- 579

tences exhibit both strong stance controllability 580

and high generation quality. Our approach effec- 581

tively controls stance while preserving text fluency 582

and relevance, demonstrating its ability to balance 583

stance attribute preservation with maintaining the 584

quality of the generated text. 585

Our approach is primarily applied to the open- 586

source LLaVA model, and while it demonstrates 587

some fluency weaknesses compared to powerful 588

commercial large models, it still yields meaningful 589

results. 590

6.4.3 Different Modal Inputs 591

The results in the table indicate that different modal- 592

ities have varying impacts on the final outcomes. 593

Multimodal input significantly enhances the stance 594

controllability of LLaVA-SDMG, but it also in- 595

creases perplexity, suggesting challenges when han- 596

dling complex multimodal tasks. Overall, visual 597

information has a limited impact on stance and 598

mainly provides topic context. Textual input plays 599

a more significant role in stance controllability. 600

While multimodal input improves controllability, it 601

may lead to a trade-off in the fluency and relevance 602

of the generated text. However, purely textual or 603

visual input performs less effectively than multi- 604

modal input, as the latter results are more balanced 605

and coherent. 606

7 Conclusion 607

This paper presents the new task of stance-driven 608

multimodal controlled statement generation and 609

introduces StanceGen2024, a novel dataset com- 610

bining text, images, and video with stance annota- 611

tions for political discourse. We propose a frame- 612

work that integrates multimodal feature fusion with 613

stance guidance, enhancing semantic consistency 614

and stance control in generated textual statements. 615

Our experiments show that the LLaVA-SDMG 616

model, fine-tuned with this approach, effectively 617

balances stance consistency with fluency. While 618

challenges remain in fully leveraging visual content 619

and ensuring fluency, our work lays the foundation 620

for future research in stance-controlled multimodal 621

content generation. 622
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Limitations623

The StanceGen2024 dataset focuses on the 2024624

U.S. presidential election, limiting its generalizabil-625

ity to other political contexts or topics. Addition-626

ally, stance labeling in complex political discourse627

can be subjective, leading to potential inconsisten-628

cies despite efforts to ensure high-quality annota-629

tions. Ethics Statement630

Ethics Statement631

Political discourse is inherently biased, and stance632

detection may inadvertently amplify such biases.633

The models trained on our dataset may reflect the634

political biases present in the original posts, and635

this could pose challenges for ensuring fairness and636

neutrality in generated content.637
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