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Abstract

Supervised fine-tuning (SFT) is a critical step001
in aligning large language models (LLMs) with002
human instructions and values, yet many as-003
pects of SFT remain poorly understood. We004
trained a wide range of base models on a va-005
riety of datasets including code generation,006
mathematical reasoning, and general-domain007
tasks, resulting in 1,000+ SFT models un-008
der controlled conditions. We then identi-009
fied the dataset properties that matter most010
and examined the layer-wise modifications011
introduced by SFT. Our findings reveal that012
some training–task synergies persist across all013
models while others vary substantially, em-014
phasizing the importance of model-specific015
strategies. Moreover, we demonstrate that016
perplexity consistently predicts SFT effective-017
ness—often surpassing superficial similarity018
between trained data and benchmark—and019
that mid-layer weight changes correlate most020
strongly with performance gains. We will re-021
lease these 1,000+ SFT models and benchmark022
results to accelerate further research.023

1 Introduction024

Recent advances in large language models (LLMs)025

have greatly improved natural language understand-026

ing and generation. However, purely pre-trained027

LLMs often fail to align with human intentions028

or specific tasks (Ouyang et al., 2022), prompt-029

ing increasing focus on alignment techniques. Su-030

pervised fine-tuning (SFT) trains models to fol-031

low human instructions, and remains widely used032

and effective for improving downstream perfor-033

mance (Wei et al.; Guan et al., 2024).034

Although recent works have explored how model035

size and training-data characteristics influence036

downstream tasks in the context of SFT (Jin and037

Ren, 2024; Dong et al., 2024), large-scale re-038

search specifically examining which aspects of039

SFT datasets benefit different base models remains040

limited. While some studies compare or analyze041

publicly available models (Oyama et al., 2025), 042

these are not controlled experiments and often in- 043

troduce biases—such as favoring certain model 044

families. Consequently, it remains unclear how 045

SFT of various models on different datasets affects 046

benchmark performance, how relationships among 047

datasets and benchmarks vary across models, and 048

which internal weights are most responsible for 049

these effects. Furthermore, there are several SFT 050

training approaches including Low-Rank Adapta- 051

tion (LoRA) (Hu et al., 2022), and there is ongo- 052

ing debate about the optimal amount of data re- 053

quired (Zhou et al., 2024; Chen et al., 2023); how- 054

ever, there has yet to be a comprehensive, quantita- 055

tive comparison. Hence, a comprehensive exami- 056

nation of these issues on SFT is urgently needed. 057

In this study, we trained twelve diverse base 058

models on multiple datasets spanning different do- 059

mains, creating a large suite of SFT models that we 060

subsequently evaluated on a broad range of tasks 061

(Figure 1). Specifically, we address the following 062

Research Questions (RQs): 063

1. How do models, training data, and bench- 064

marks interact with one another? Do certain 065

training datasets consistently enhance bench- 066

mark performance across a variety of mod- 067

els, or does each model exhibit its own dis- 068

tinct preferences? Likewise, do relationships 069

among different datasets and benchmarks re- 070

main the same across models? 071

2. Which properties of the training data used for 072

SFT affect downstream performance? 073

3. Which layers in the model are most critical 074

for SFT—are there universal patterns across 075

different models? 076

4. How do various factors debated in SFT—such 077

as different training methods, sample sizes, 078

and cross-lingual transfer—impact perfor- 079

mance? 080
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Figure 1: Overview of this study. We conduct SFT on numerous combinations of base models and training data.
These models are evaluated on a variety of benchmark tasks to comprehensively examine the relationships among
the base models, training data, and benchmark tasks.

The main contributions of this work can be sum-081

marized as follows:082

Large-Scale, Integrated Evaluation By system-083

atically performing SFT on multiple base models084

and various training datasets, we uncover the com-085

plexity of relationships among models, data, and086

downstream tasks. While the relationships between087

training data and evaluation tasks follow broadly088

similar patterns across models, they also exhibit089

model-specific characteristics.090

Revealing a Simple “Perplexity Is Key” Law091

We find that training data with lower perplexity092

for the base model consistently leads to greater093

improvements in downstream performance. In con-094

trast, factors once considered crucial—such as con-095

tent similarity between training and evaluation data096

or tokenizer compatibility—do not exhibit as strong097

an effect as perplexity.098

Strong Correlation Between Mid-Layer Weight099

Changes and Performance We observe that100

changes in mid-layer weights correlate more101

strongly with downstream performance gains than102

changes in either the top or bottom layers. Indeed,103

intrinsic dimensionality analysis of embeddings104

revealed that the embedding space begins to di-105

verge substantially from the base model at mid-106

layer positions, suggesting these layers actively ex-107

pand the model’s representational subspace during108

SFT. This pattern appears consistent across multi-109

ple models, offering critical insights for efficient110

fine-tuning and model monitoring.111

Embedding the SFT Landscape Projecting the112

log-likelihood vectors of fine-tuned models into113

a common latent space lets us compare diverse114

training dynamics in one coordinate system. The115

resulting map shows that the global layout is de-116

termined by model family rather than training cor-117

pus, that checkpoints from successive epochs con- 118

verge toward a shared instruction-following region, 119

that enlarging the instruction set from 1k to 20k 120

nudges models only slightly outward from this cen- 121

tre, and that LoRA trajectories almost perfectly 122

overlap those of full-parameter tuning. 123

Resource Release for Future Research All fine- 124

tuned models produced in this study will be pub- 125

licly released. We expect this comprehensive set of 126

models serves to accelerate deeper investigations 127

of SFT and to foster rapid progress in the field. 128

2 Related Work 129

The role of training data characteristics in SFT 130

has been highlighted in many prior studies. For 131

instance, mixing code-generation data has been 132

suggested to enhance a model’s reasoning and log- 133

ical abilities (Dong et al., 2024). Similarly, incor- 134

porating instruction data that includes procedural 135

knowledge could improve mathematical reasoning 136

(Ruis et al., 2024). Furthermore, considering task 137

relevance when selecting datasets can lead to more 138

robust general performance (Huang et al., 2024; 139

Zhang et al., 2024). 140

While early work focused on how to fine- 141

tune—comparing full-parameter updates against 142

LoRA (Ivison et al., 2023; Zhuo et al., 2024; 143

Dettmers et al., 2024; Zhao et al., 2024b; Biderman 144

et al., 2024), or debating sample size (Zhou et al., 145

2024; Zhao et al., 2024a; Chen et al., 2023)—more 146

recent studies have shifted attention to the statistics 147

of the training data itself. For example, Jin and Ren 148

(2024) and Wu et al. (2025) independently show 149

that lower perplexity and moderate sequence length 150

are stronger predictors of SFT success than sheer 151

volume. 152

Overall, most studies focus on particular models 153

or tasks, and there remains a lack of comprehen- 154

sive, large-scale evaluations across multiple mod- 155
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els. This study aims to offer a broader perspec-156

tive by controlling for model, data, and fine-tuning157

methods on a larger scale, thus providing more158

integrated insights into SFT behavior.159

3 Methods160

This section describes the base models, SFT proce-161

dures, and evaluation benchmarks.162

3.1 Base Models163

We employed a total of 12 models with approx-164

imately 7B parameters each across English, Chi-165

nese, and Japanese for SFT experiments. Specif-166

ically, we selected English models: OLMo-167

7B(Groeneveld et al., 2024), Llama3-8B(Dubey168

et al., 2024), Mistral-7B(Jiang et al., 2023), and169

Gemma2-9B(Team et al., 2024); Chinese mod-170

els: Qwen2.5-7B(Yang et al., 2024), Chinese-171

Llama3-8B(Cui et al., 2023), Chinese-Mistral-172

7B(Hsu et al., 2024), and Yi1.5-9B(AI et al.,173

2025); and Japanese models: LLMjp-3-7B(LLM-174

jp et al., 2024), Llama3-Swallow-8B(Fujii et al.,175

2024), Swallow-Mistral-7B(Fujii et al., 2024), and176

Sarashina2-7B1. By comparing these diverse mod-177

els, we investigate not only cross-lingual differ-178

ences but also behaviors during continual pretrain-179

ing within model families such as the Llama fam-180

ily (Llama3, Chinese-Llama3, Llama3-Swallow)181

and the Mistral family (Mistral, Chinese-Mistral,182

Swallow-Mistral). To facilitate fair comparison183

at the peak effectiveness of instruction-tuning, all184

base models used in this experiment had not under-185

gone any subsequent post-training. More informa-186

tion on each model can be found in Appendix A.187

3.2 Training Datasets188

We utilized 10 distinct datasets categorized into 4189

major groups. Although our base models cover En-190

glish, Chinese, and Japanese, all training datasets191

used for SFT are exclusively in English. Specif-192

ically, we selected General Tasks: Alpaca(Taori193

et al., 2023), LIMA(Zhou et al., 2024), and Ultra-194

Chat(Ding et al., 2023); Coding Tasks: CodeAl-195

paca(Chaudhary, 2023) and Magicoder(Wei et al.,196

2024); Math Tasks: OpenMathInstruct(Toshniwal197

et al., 2024) and MathInstruct(Yue et al., 2023); and198

Classic NLP Tasks: FLAN(Wei et al.). The FLAN199

dataset(Wei et al.) further consists of 3 subcate-200

gories. FLAN Knowledge includes BoolQ(Clark201

et al., 2019), NaturalQuestions(Kwiatkowski et al.,202

1https://huggingface.co/sbintuitions/sarashina2-7b

2019b), and TriviaQA(Joshi et al., 2017). FLAN 203

Reasoning includes ARC-Easy & Challenge(Clark 204

et al., 2018), HellaSwag(Zellers et al., 2019), Wino- 205

Grande(Sakaguchi et al., 2019), and PIQA(Bisk 206

et al., 2020). FLAN Comprehension includes 207

QuAC(Choi et al., 2018) and SQuAD v2(Rajpurkar 208

et al., 2018). The categorization of FLAN follows 209

the criteria defined in Dubey et al. (2024); Contrib- 210

utors (2023). 211

To uniformly compare a wide variety of base 212

models, all datasets were preprocessed under con- 213

sistent conditions. Initially, samples exceeding the 214

maximum sequence length supported by all models’ 215

tokenizers were removed, as overly long samples 216

cannot be adequately learned. Subsequently, ei- 217

ther 1k or 20k samples were randomly extracted 218

from each dataset. Further details on the training 219

datasets are provided in Appendix B. 220

3.3 Training Settings 221

We trained a total of 1,070 models by varying sev- 222

eral conditions. First, all 12 models underwent both 223

full-parameter and LoRA training with a sample 224

size of 1k for each individual dataset. Additionally, 225

we conducted training using a combined dataset 226

(All Dataset) to assess the effect of mixing all data. 227

For further validation, we conducted additional 228

experiments using 3 primary models (OLMo, 229

Qwen, and LLM-jp), focusing on the impact of 230

dataset size by comparing training results using 1k 231

and 20k samples. In this specific experiment, the 232

learning rate schedule was switched from cosine 233

(used in regular training) to constant to isolate the 234

effect of dataset size. 235

Through preliminary experiments, we deter- 236

mined optimal hyperparameters for both full- 237

parameter fine-tuning and LoRA, ensuring that the 238

supervised fine-tuning process was conducted un- 239

der stable and well-tuned conditions. Details of 240

the preliminary experiments are provided in Ap- 241

pendix C, while training configurations, computa- 242

tional costs, and a few exceptional cases where 243

training did not complete successfully are de- 244

scribed in Appendix D. 245

3.4 Evaluation 246

We evaluated all models on downstream tasks us- 247

ing OpenCompass2 (Contributors, 2023), a large- 248

scale evaluation tool. We evaluated model perfor- 249

mance across 12 benchmark datasets spanning 5 250

2We used the GitHub repository from OpenCompass:
https://github.com/open-compass/opencompass
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Figure 2: a Average of the performance change for diverse benchmarks from the each baseline model after SFT on
each training dataset. Each column is min-max scaled to the [−1, 1] range. b The performance changes visualized
for each model individually. c Pairwise correlation matrix of performance changes across all SFT models, with
the corresponding hierarchical-clustering dendrogram superimposed. d The cumulative explained variance ratio
obtained by applying PCA to all concatenated results from b.

categories: covering Math (MATH (Hendrycks251

et al., 2021c), GSM8K (Cobbe et al., 2021)),252

Coding (HumanEval (Chen et al., 2021), MBPP253

(Austin et al., 2021)), Knowledge (BoolQ (Clark254

et al., 2019), NaturalQuestions (Kwiatkowski et al.,255

2019a), TruthfulQA (Lin et al., 2022)), Examina-256

tion (MMLU (Hendrycks et al., 2021b,a), MMLU-257

zh (Li et al., 2023a), MMLU-jp) and Instruction-258

following (MT-Bench (Zheng et al., 2023), Al-259

pacaEval v2.0 (Li et al., 2023b)). A detailed de-260

scription is provided in the Appendix E. As all261

models were trained in a zero-shot instruction-262

response format, we focus primarily on zero-shot263

inference results in our evaluation. Gemma2-9B264

and Swallow-Mistral-7B were excluded due to in-265

consistent evaluation conditions, and we report re-266

sults mainly for the remaining 10 models.267

4 Results268

4.1 RQ1. Relationship Among Models,269

Training Data, and Downstream Tasks270

First, we examine how various base models inter-271

act with different training datasets and how these272

relationships shape downstream performance. We273

aim to determine whether certain datasets provide274

uniform benefits across models or if each model ex- 275

hibits unique sensitivities. To this end, we analyze 276

evaluation results obtained by fine-tuning each of 277

the ten base language models with each of the ten 278

SFT training datasets, every dataset containing 1k 279

examples. 280

Figure 2a visualizes the relationship between 281

training datasets and downstream tasks when ag- 282

gregating results across all models. Some datasets 283

show clear improvements for multiple tasks, while 284

others offer minimal, or even negative gains. For in- 285

stance, Alpaca and UltraChat generally deliver con- 286

sistent performance boosts, whereas FLAN is detri- 287

mental to most tasks (except Natural Questions, 288

which aligns with its domain). In addition, Math- 289

Instruct and OpenMathInstruct particularly boost 290

MATH and GSM8K, whereas Magicoder benefits 291

coding benchmarks yet still improves a wider task 292

range than the math corpora. Notably, English-only 293

SFT already transfers to Japanese (MMLU-jp) and 294

Chinese (MMLU-zh) evaluation—see Appendix F 295

for a dedicated cross-lingual analysis. It is also 296

noteworthy that LIMA, a carefully curated dataset 297

for SFT, did not yield substantial performance gains 298

in our controlled setting compared to Alpaca and 299

UltraChat. 300
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Figure 3: a Pairwise correlations between evaluation tasks in terms of performance improvements across training
datasets. b Similar to a, but focusing on relationship between correlations between training datasets. c Model-to-
model similarity for a (top) and b (bottom), respectively. d Comparison of the lower-triangle elements of the two
similarity matrices in c.

Figure 2b plots these relationships separately301

for each model. Overall tendencies are similar,302

but there are also considerable differences across303

models—revealed only because we employed a304

unified experimental procedure. Some models ben-305

efit from almost all training data, whereas others306

demonstrate minimal gains.307

In Figure 2c, we show a correlation matrix of308

performance gains across different models. As309

anticipated, models belonging to the same family310

exhibit high correlations, suggesting that even with311

additional training, the impact of SFT remains sim-312

ilar within each family. Surprisingly, the language313

in which a model was initially trained does not ap-314

pear to substantially affect its overall similarity to315

others.316

Figure 2c also reveals that, in general, the per-317

formance structures of the models are quite similar.318

To examine this more thoroughly, we vertically319

concatenated the data × benchmark matrices for320

each model, applied PCA, and then computed the321

cumulative explained variance ratio (Figure 2d).322

As shown, about five principal components explain323

over 90% of the total variance, indicating a consid-324

erable degree of similarity in how different datasets325

influence SFT outcomes. Nonetheless, certain dif-326

ferences among models persist.327

Figure 3a, pairwise correlation performance im-328

provements across training datasets, highlights that329

the similarity or synergy across training datasets330

varies substantially by model: the same pair of 331

datasets could be complementary in one model 332

but neutral or even conflicting in another. Con- 333

versely, Figure 3b, pairwise correlation across eval- 334

uation tasks, shows a consistency across models, 335

suggesting that tasks requiring similar reasoning 336

skills (e.g., Math tasks) remain closely grouped. A 337

paired t-test on the lower-triangle distributions of 338

Figure 3c shows that the correlations across eval- 339

uation tasks significantly exceeds that of training 340

datasets (p < 0.01), confirming that the effects 341

of training datasets is more diverse than evalua- 342

tion tasks (Figure 3d). Overall, these findings un- 343

derscore that while some training datasets offer 344

consistent improvements, the degree of benefit of- 345

ten depends on the model. Furthermore, although 346

fine-tuning effects on evaluation tasks are similar 347

across models, those on training datasets are highly 348

model-specific. 349

4.2 RQ2. Which Properties of Training Data 350

Matter Most? 351

Next, we investigate which characteristics of train- 352

ing data most influence performance. Our focus 353

includes perplexity, average token length, and se- 354

mantic similarity to clarify which factors truly drive 355

effective SFT. 356

As shown in Figure 4a, there is a clear posi- 357

tive correlation in many tasks and models between 358

lower perplexity (w.r.t. the base model) and im- 359
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Figure 4: Analysis of training data properties that affect downstream performance. We compare perplexity (a), and
token length (b) with the average performance changes of benchmark tasks for the SFT models, highlighting that
lower perplexity is a strong predictor of higher performance.

proved downstream performance. This implies that360

data lying in a domain or language distribution al-361

ready “understood” by the model can be leveraged362

more effectively in SFT.363

Figure 4b reveals modest correlation between364

the mean token length of a dataset and downstream365

performance, suggesting that simply using shorter366

or longer texts does not strongly drive better results.367

A prior study has reported that longer texts could be368

important for improved performance (Zhao et al.,369

2024a), and our findings partially support a straight-370

forward link between text length and outcome qual-371

ity.372

Finally, we compare semantic embedding-based373

similarity between training and evaluation bench-374

mark against performance improvement. Surpris-375

ingly, direct semantic similarity is not as strong376

a predictor as perplexity. Although we observe377

domain-specific gains (e.g., math data helps on378

Math tasks, code data helps on coding tasks), a379

broader trend indicates that linguistic and struc-380

tural closeness (as reflected in perplexity) may be381

more decisive than topical resemblance alone. See382

Appendix G for the details.383

In sum, perplexity relative to the base model384

emerges as a strong predictor of downstream gains,385

surpassing factors like token length or broad se-386

mantic alignment.387

4.3 RQ3. Layer-wise weight changes, their 388

relationship to performance, and the effect 389

of SFT on representational dimensionality. 390

We then explore how model parameters shift during 391

fine-tuning by analyzing layer-wise weight updates 392

across multiple models. Our goal is to identify 393

which layers are most critical in translating SFT 394

into performance gains. 395

Figure 5a plots two curves: the blue line is the 396

Pearson correlation between weight-delta magni- 397

tude and overall accuracy gain, whereas the orange 398

line shows the raw weight-delta magnitude itself. 399

The orange line grows toward upper layers, yet 400

the blue line peaks in the middle, indicating that 401

the largest edits are not the most consequential 402

ones. Rather, we find that the middle layers exhibit 403

the strongest positive correlation with performance 404

gains. 405

Figure 5b compares the similarity of these layer- 406

wise change patterns across different models. Even 407

though models differ at the architectural level, 408

their mid-layer updates under SFT can follow sur- 409

prisingly similar trajectories. Still, some model- 410

specific nuances remain. 411

Figure 5c extends this idea across models: it 412

correlates, for different layer, the weight-change 413

vector of one model with the corresponding vector 414

of every other model. The strongest agreement 415

again lies in the mid-layers, suggesting that SFT 416
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Figure 5: Layer-wise weight changes and their correlations with performance improvements. a Blue line indicates
correlation coefficients between the amount of weight change from the base model and the overall improvement
in accuracy, plotted as a function of layer position (0 = input; 1 = output). Compared to early and late layers, the
mid-layers (0.6, indicated by red arrow) exhibit the strongest correlation. Orange line indicates the amount of weight
change from the base model. b Focusing on the mid-layer (0.6), examining the relationship between the amount of
weight change and accuracy change for each model reveals a robust correlation across all models. c Correlations
calculated across models between weight changes from the base model and those from models trained on specific
data. Again, the mid-layers show the strongest model-to-model correlation. d Intrinsic dimensionality (ID) of
training-data embeddings before (blue line) vs. after SFT (red line). The divergence emerges around layer-position
= 0.6 (dashed line), suggesting that mid-layer updates expand the representational subspace.

enforces a shared instruction-following mechanism417

across models.418

Figure 5d complements the weight-change anal-419

ysis by quantifying how SFT alters the geometry420

of the training corpus in embedding space. For ev-421

ery layer we computed the intrinsic dimensionality422

(ID) of the sentence-level embeddings produced423

before and after SFT (methodological details and424

additional results in Appendix H). The difference425

between the fine-tuned and pretrained ID curves is426

minimal in the lower half of the network, but from427

layer-position = 0.6 onward the dimensionality in-428

creases sharply and remains elevated through the429

output layers. The inflection point coincides with430

the correlation peaks in Figure 5a, implying that431

mid-layer updates do more than reduce loss—they432

actively expand the model’s representational sub-433

space.434

Our findings indicate that changes in the mid-435

layers show the strongest correlation with improved436

results, suggesting they play a pivotal role in cap-437

turing the benefits of SFT.438

4.4 RQ4. Other Factors439

Finally, we consider additional aspects of SFT, in-440

cluding LoRA versus full-parameter tuning, the441

effect of sample size, and cross-lingual trans-442

fer—each potentially influencing the final perfor-443

mance. 444

To disentangle the multiple factors in SFT, we 445

mapped the 757 fine-tuned models—covering 10 446

base architectures × 10 training datasets and span- 447

ning LoRA vs. full-parameter updates, 1–10 train- 448

ing epochs, and sample sizes of 1k or 20k—into a 449

common latent space using log-likelihood-vector 450

projection (Oyama et al., 2025). For every model 451

we computed a 1,950-dimensional vector of token- 452

level log-likelihoods by randomly sampling 150 453

questions from each of the 13 evaluation tasks. t- 454

SNE then embedded these vectors into two dimen- 455

sions, giving five complementary views in Fig. 6. 456

Model families dominate. When points are 457

coloured by model (Fig. 6a) the clusters group al- 458

most perfectly by architecture, whereas colouring 459

by training data produces only weak separation. 460

Thus the inductive biases of the base model out- 461

weigh the specific SFT corpus in determining the 462

final representation. 463

Epoch-wise trajectories converge. For the three 464

checkpointed models (Qwen, LLM-jp, OLMo) we 465

plot epochs 1–10 (Fig. 6c). Irrespective of dataset, 466

trajectories spiral toward a common sub-region, 467

suggesting that SFT gradually aligns the represen- 468

tations toward a shared “instruction-following” di- 469

rection. 470
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Figure 6: t-SNE visualization of log-likelihood vector. a Colour = model; b colour = training data; c epoch
trajectories for three models; d colour = sample size; e shape = tuning method (circle = full, triangle = LoRA).

Small sample size is often sufficient. Colour-471

ing by training-set size separates models trained472

on 20k samples from those trained on 1k samples.473

The 20k-sample–trained points occupy the outer474

rim of the manifold more often, whereas the 1k-475

sample–trained points cluster nearer the core. Thus476

a compact 1k instruction set already supplies suffi-477

cient signal for effective instruction-tuning, while478

scaling up to 20k samples can sometimes pull the479

representation away from the optimum. Indeed, our480

quantitative evaluations showed no consistent ac-481

curacy advantage for the 20k-sample models over482

their 1k-sample counterparts.483

LoRA vs. full-parameter fine-tuning. Shape-484

coding full-parameter models as circles and LoRA485

models as triangles reveals minimal separation;486

LoRA points are only slightly more peripheral.487

Quantitatively, full-parameter tuning still excels488

on reasoning-heavy maths tasks, but LoRA enjoys489

a small mean advantage on open-ended QA bench-490

marks.491

Cross-lingual transfer persists. We also exam-492

ined the effect of SFT effects on Japanese and Chi-493

nese MMLU variants (full results and plots are in494

Appendix F). While we only used English training495

datasets, performance gains on MMLU are strongly496

correlated on those of MMLU-jp and MMLU-zh.497

This supports the hypothesis that content overlap498

between benchmarks, rather than surface-level lan-499

guage similarity, governs cross-lingual transfer in500

SFT. See Appendix F for the details.501

5 Discussion and Conclusion502

We conducted a comprehensive set of SFT exper-503

iments involving multiple 7B-scale base models,504

diverse training datasets, and a wide array of down-505

stream tasks. Our analysis revealed that, while506

certain dataset–task synergies are observed consis-507

tently across models, their effects can vary greatly508

depending on the specific model in question. No-509

tably, perplexity emerged as a particularly robust 510

predictor of SFT success, outperforming both topic 511

similarity and average sequence length. Further- 512

more, mid-layer weight changes were found to 513

correlate most strongly with performance improve- 514

ments, indicating that critical adaptations often take 515

place in these layers. By embedding every model 516

checkpoint into a common latent space, we found 517

that (i) model architecture exerts a stronger influ- 518

ence than the SFT corpus, (ii) training epochs drive 519

diverse runs toward a shared instruction-compatible 520

region, (iii) large instruction sets tend to relocate 521

models toward the periphery—often reducing ac- 522

curacy relative to leaner sets—and (iv) LoRA tra- 523

jectories almost coincide with full-parameter ones, 524

diverging only slightly on the periphery; this mir- 525

rors the small but systematic trade-off we observed 526

between knowledge-heavy tasks (full-parameter ad- 527

vantaged) and open-ended QA (LoRA advantaged). 528

Contrary to the typical assumption that a dataset 529

closely resembling the target task is best, we find 530

data with a lower perplexity (where the model re- 531

quires minimal additional learning or unlearning) 532

generally yields more robust improvements. Ad- 533

ditionally, our observations of code data helping 534

math tasks suggest significant cross-domain trans- 535

fer beyond simple topic alignment. 536

Discovering the importance of mid-layer 537

changes could reshape fine-tuning strategies. Up- 538

dating only the mid-layers, or monitoring their 539

changes more closely, could provide more efficient 540

or interpretable SFT. Furthermore, observing com- 541

mon mid-layer change patterns across models in- 542

dicates a potentially shared mechanism for task- 543

related knowledge acquisition. 544

Limitations The present study focuses on around 545

7B-parameter models, leaving open the question 546

of whether similar patterns hold for larger mod- 547

els. We use about 10 popular training datasets for 548

SFT, possibly limiting generality for highly special- 549

ized tasks or broader multilingual corpora. While 550
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perplexity proved insightful, it can fluctuate based551

on tokenizer design and base training distributions,552

indicating a need for more nuanced measures.553

Ethical Considerations This work uses only554

publicly available and properly licensed datasets555

and base models. Their licenses permit research556

use and redistribution. All datasets and models557

were used in accordance with their intended re-558

search purposes, and our released models will main-559

tain this intended use.560

We did not collect any new data. While we did561

not manually inspect all samples, we acknowledge562

the possibility of residual personally identifiable or563

harmful content in the original datasets and rely on564

the original curators’ filtering processes.565

We will release over 1,000 fine-tuned models566

as part of this study. While we do not anticipate567

major risks, we acknowledge the potential for mis-568

use—such as generating harmful or misleading con-569

tent. To mitigate this, all released models will in-570

clude a responsible use clause and detailed model571

cards describing limitations. We encourage respon-572

sible use for academic research only.573

We used AI tools to assist in writing training and574

evaluation scripts, and to support basic analysis575

tasks such as summarizing experimental results.576
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A Description of Base Models1037

OLMo (Groeneveld et al., 2024) is developed1038

by Allen Institute for AI. An English-centric, 7B-1039

parameter decoder model pre-trained on a carefully1040

filtered mix of web pages, books, and code (total-1041

ing 2.5 trillion tokens). Flash-Attention 2 support1042

was added in later versions, enabling fast, memory-1043

efficient inference. Model-card results show com-1044

petitive GSM8K and MMLU scores, rivaling some1045

10B-class models.1046

Llama3 (Dubey et al., 2024) is developed by1047

Meta AI. An 8B English model trained on multi-1048

trillion-token mixed-domain data with a byte-level1049

BPE tokenizer and scaled RoPE. Safety alignment1050

combines RLHF and rejection sampling. Delivers1051

strong, well-rounded performance across reason-1052

ing, code, and chat benchmarks.1053

Mistral (Jiang et al., 2023) is developed by1054

Mistral AI. An English 7B model whose pre-1055

training corpus mixes web, academic text, and code.1056

Grouped-query and sliding-window attention en-1057

able very long-sequence processing while retaining1058

high speed. Matches or exceeds Llama-2-13B on1059

many English tasks.1060

Gemma2 (Team et al., 2024) is developed by 1061

Google DeepMind. An English 9B model trained 1062

on a large quality-filtered corpus and enhanced with 1063

internal architectural refinements such as improved 1064

normalization and position encoding, building on 1065

modern Transformer techniques. Public reports 1066

show it surpasses most open 7–13B baselines on 1067

language-understanding leaderboards. 1068

Qwen2.5 (Yang et al., 2024) is developed by Al- 1069

ibaba’s Qwen team. A Chinese–English bilingual 1070

7B model further pre-trained on high-quality pro- 1071

prietary Chinese data. RoPE extrapolation enables 1072

extremely long inputs. The model card provides 1073

agent-style prompting templates and strong results 1074

on tool use and code generation. 1075

Chinese-Llama3 (Cui et al., 2023) is developed 1076

by Harbin NLP (HFL). An 8B Chinese model ob- 1077

tained by continual pre-training of Llama-3 on 1078

an extensive Chinese corpus with vocabulary aug- 1079

mentation. Significantly boosts Chinese QA and 1080

CMMLU scores over the original Llama-3. 1081

Chinese-Mistral (Hsu et al., 2024) is developed 1082

by itpossible. A 7B Chinese variant of Mistral-v0.1, 1083

additionally trained on Chinese Wikipedia, news, 1084

and conversation data. Improves cross-lingual per- 1085

formance on Chinese benchmarks while preserving 1086

the original architecture. 1087

Yi1.5 (AI et al., 2025) is developed by 01.AI. A 1088

9B multilingual model (Chinese + English focus) 1089

based on the original Yi model trained on 3.1 tril- 1090

lion tokens, with an additional 500 billion tokens 1091

used for continual pretraining, including substan- 1092

tial code and low-resource-language data. Shows 1093

solid zero-shot transfer to many Asian and Euro- 1094

pean languages as well as code-related tasks. 1095

LLMjp-3 (LLM-jp et al., 2024) is developed by 1096

LLM-jp. A 7.2B Japanese-centric model built from 1097

scratch on a 2.1 trillion token multilingual corpus, 1098

predominantly composed of Japanese web, book, 1099

and dialogue texts, along with a smaller portion of 1100

English and other languages. Public experiments 1101

indicate it surpasses Llama-2-13B on Japanese QA 1102

and summarization. 1103

Llama3-Swallow (Fujii et al., 2024) is devel- 1104

oped by TokyoTech LLM Group. An 8B Japanese 1105

model produced by continual pre-training of Llama- 1106

3-8B on large Japanese corpora plus vocabulary 1107

extension. Reports notable gains for Japanese NER 1108

and academic-paper summarization. 1109

Swallow-Mistral (Fujii et al., 2024) is devel- 1110

oped by TokyoTech LLM Group. A 7B Japanese 1111

follow-up to Mistral-7B with memory-footprint op- 1112
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Language Model Name (Params) Repository (Hugging Face) Context Length

English

OLMo (7B) allenai/OLMo-7B-hf 2048
Llama3 (8B) meta-llama/Meta-Llama-3-8B 8192
Mistral (7B) mistralai/Mistral-7B-v0.1 32768
Gemma2 (9B) google/gemma-2-9b 8192

Chinese

Qwen2.5 (7B) Qwen/Qwen2.5-7B 131072
Chinese-Llama3 (8B) hfl/llama-3-chinese-8b 8192
Chinese-Mistral (7B) itpossible/Chinese-Mistral-7B-v0.1 32768
Yi1.5 (9B) 01-ai/Yi-1.5-9B 4096

Japanese

LLMjp-3 (7B) llm-jp/llm-jp-3-7.2b 4096
Llama3-Swallow (8B) tokyotech-llm/Llama-3-Swallow-8B-v0.1 8192
Swallow-Mistral (7B) tokyotech-llm/Swallow-MS-7b-v0.1 4096
Sarashina2 (7B) sbintuitions/sarashina2-7b 4096

Table 1: Overview of the 12 base models employed for SFT experiments. The table summarizes their parameter
sizes, primary training language, and maximum supported context lengths.

timizations. Excels at Japanese dialogue and tech-1113

nical writing according to model-card evaluations.1114

Sarashina-23 is developed by sbintuitions. A1115

7B Japanese Llama derivative further trained1116

on Japanese text and code. Distributed with1117

LoRA adapters, making domain-specific fine-1118

tuning straightforward.1119

B Description of Training Datasets1120

Alpaca (Taori et al., 2023) is a 52k-example En-1121

glish corpus obtained by filtering the original1122

Stanford Alpaca to remove hallucinating prompts,1123

merged instructions, empty outputs, and other de-1124

fects. The resulting instruction/input/output triples1125

serve as a cleaner general-purpose starting point1126

for instruction tuning.1127

LIMA (Zhou et al., 2024) is a compact set1128

of 1000 prompt–response pairs—750 mined from1129

Stack Exchange, wikiHow, and r/WritingPrompts1130

plus 250 author-written items—selected for diver-1131

sity and a consistent assistant style. It probes how1132

well a strong language model can be aligned with1133

minimal but high-quality supervision.1134

UltraChat (Ding et al., 2023) is a 774k multi-1135

turn English dialogue corpus synthesized by two1136

ChatGPT-Turbo agents. We use a reformatted ver-1137

sion of the original release 4. In our preprocessing1138

pipeline, we extract only the initial user prompt and1139

the first assistant reply as each training sample.1140

3https://huggingface.co/sbintuitions/sarashina2-7b
4https://huggingface.co/datasets/stingning/

ultrachat

CodeAlpaca 20k (Chaudhary, 2023) is a col- 1141

lection of 20k English programming instructions 1142

generated with the Self-Instruct pipeline using text- 1143

davinci-003. About 40% of the samples include an 1144

input field, and the schema mirrors Alpaca but fo- 1145

cuses exclusively on code generation and editing.5 1146

Magicoder (Wei et al., 2024) contains 111k 1147

licence-clean code-centric instructions obtained 1148

by de-contaminating the Evol-CodeAlpaca cor- 1149

pus. Every example is a single-turn instruc- 1150

tion→response pair, offering a larger companion 1151

to CodeAlpaca. 1152

OpenMathInstruct (Toshniwal et al., 2024) is 1153

a 1.8M mathematics corpus whose step-by-step 1154

solutions were generated with Mixtral-8×7B and a 1155

Python interpreter, then automatically validated. 1156

MathInstruct (Yue et al., 2023) aggregates 1157

262k math-reasoning problems from 13 sources 1158

and augments them with both chain-of-thought 1159

and program-of-thought rationales, supplying 1160

lightweight yet generalizable coverage for mathe- 1161

matical fine-tuning. 1162

FLAN Collection (Wei et al.) is the remix file 1163

flan2021_zsnoopt_submix_data.json. Specifically, 1164

it corresponds to the FLAN-2021 sub-mix and em- 1165

ploys the zero-shot, no-options template variant 1166

(i.e., prompts contain only the instruction without 1167

in-context examples or candidate options). We fol- 1168

low the taxonomy of Dubey et al. (2024); Contrib- 1169

utors (2023) and split the data into three thematic 1170

subsets. 1171

5https://github.com/sahil280114/codealpaca
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Category Dataset Repository (Hugging Face) Samples Lengths

General
Alpaca yahma/alpaca-cleaned 51,760 122.19
LIMA GAIR/lima 1,330 391.97
Ultrachat HuggingFaceH4/ultrachat_200k 773,913 397.45

Coding
CodeAlpaca sahil2801/CodeAlpaca-20k 20,022 44.36
Magicoder ise-uiuc/Magicoder-Evol-Instruct-110K 111,183 300.04

Math
OpenMathInstruct nvidia/OpenMathInstruct-1 6,078,712 140.43
MathInstruct TIGER-Lab/MathInstruct 262,039 125.36

Classic
NLP

FLAN Knowledge Open-Orca/FLAN 226,575 21.69
FLAN Reasoning Open-Orca/FLAN 92,770 41.74
FLAN Comprehension Open-Orca/FLAN 208,605 262.31

Table 2: Repository is the original source of the data used and Samples represents its total number of samples.
Lengths indicates the average number of words in each data at 1k sample pre-processing.

FLAN Knowledge uses BoolQ (bool_q:1.0.0),1172

NaturalQuestions (natural_questions_open:1.0.0),1173

and TriviaQA (trivia_qa/rc:1.1.0). Samples whose1174

output field is "none" are discarded.1175

FLAN Reasoning combines ARC-Easy1176

(ai2_arc/ARC-Easy:1.0.0), ARC-Challenge1177

(ai2_arc/ARC-Challenge:1.0.0), HellaSwag (hel-1178

laswag:1.1.0), WinoGrande (winogrande:1.1.0),1179

and PIQA (piqa:1.0.0).1180

FLAN Comprehension contains QuAC1181

(quac:1.0.0) and SQuAD v2.0 (squad/v2.0:3.0.0).1182

Samples with an output of ‘none‘ are omitted.1183

C Preliminary Experiments1184

In our main experiments, we conduct SFT using1185

various base models and diverse training datasets.1186

To ensure valid and reliable results across different1187

configurations, it is crucial to select appropriate1188

hyperparameters. Therefore, we conducted prelim-1189

inary experiments aimed at determining suitable1190

hyperparameters.1191

These preliminary experiments were carried out1192

under the following conditions. We employed1193

the Llama3-8B model and utilized six different1194

datasets, each comprising approximately 1,0001195

samples: Magicoder, LIMA, Code Alpaca, FLAN,1196

Openmath, and Alpaca.1197

We examined several hyperparameter settings:1198

learning rate = {2e-7, 1e-6, 2e-6, 1e-5, 2e-5, 1e-4},1199

batch size = {32, 64, 128, 256}, weight decay =1200

{0, 0.1}, training method = {LoRA, full-parameter1201

tuning}.1202

This combination of hyperparameters resulted in1203

96 unique experimental conditions. Each condition1204

was trained for 10 epochs, yielding 960 models per1205

dataset. Given that we utilized six datasets, the1206

total number of trained models reached 5,760. 1207

For evaluation purposes, we utilized two bench- 1208

marks: MMLU and MT-bench, ensuring compre- 1209

hensive performance assessment across diverse 1210

tasks. 1211

D Description of Training Settings 1212

This section summarizes the training configura- 1213

tions, computational cost, and other implementa- 1214

tion details used in our supervised fine-tuning ex- 1215

periments. 1216

Out of a total of 1,070 training runs, 1,059 mod- 1217

els were successfully trained. Training failed in 11 1218

cases, all related to out-of-memory (OOM) errors 1219

involving the Gemma model trained on the Magi- 1220

coder dataset. Specifically, one failure occurred 1221

in a single-dataset setting, while the remaining ten 1222

failures arose during the All Dataset setting, where 1223

checkpoints were saved at every epoch (resulting 1224

in ten distinct training jobs). 1225

We used separate hyperparameter settings 1226

for full-parameter fine-tuning and LoRA. Full- 1227

parameter fine-tuning was conducted with a learn- 1228

ing rate of 1.0 × 10−5, batch size of 32, weight 1229

decay of 0.0, and 10 training epochs. For LoRA, 1230

we used a learning rate of 2.0 × 10−6, batch size 1231

of 128, weight decay of 0.0, and the same number 1232

of epochs. These values were determined based on 1233

preliminary grid-search experiments. 1234

The computational time for fine-tuning on 1k 1235

samples varied depending on the model, batch size, 1236

and training method, but on average, each run took 1237

approximately 30 minutes. To accelerate training, 1238

we employed Flash Attention 2 (Dao, 2023) and 1239

DeepSpeed (Rasley et al., 2020) for all models. 1240

To investigate the impact of individual datasets, 1241
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we conducted a dataset ablation study using three1242

representative models: OLMo, Qwen, and LLM-jp.1243

In this setting, we trained models on nine datasets1244

at a time, excluding one dataset in each run (i.e.,1245

leave-one-out strategy). This allowed us to observe1246

how the absence of specific datasets affected down-1247

stream performance. The ablation experiments1248

were performed under the same conditions as reg-1249

ular 1k-sample training, using both full-parameter1250

and LoRA-based fine-tuning.1251

As noted in Section 3.2, all datasets were prepro-1252

cessed under consistent conditions. During train-1253

ing, we formatted all samples using a standardized1254

instruction-response template:1255

###Question: {instruction}1256

###Answer: {response}1257

E Description of the Evaluation Dataset1258

This appendix provides an overview of the datasets1259

used for evaluation. The test cases and evaluation1260

settings follow the format provided by OpenCom-1261

pass.1262

MATH (Hendrycks et al., 2021c) consists of1263

12,500 problems from high school math competi-1264

tions. Each problem in MATH has a full step-by-1265

step solution and models are tasked with generating1266

tokens to construct the final answer.1267

GSM8K (Cobbe et al., 2021) is a dataset of1268

8,500 high quality linguistically diverse grade1269

school math word problems created by human prob-1270

lem writers. Compared to MATH, the problems are1271

easier and include basic knowledge questions, such1272

as asking for the number of days in a week.1273

HumanEval (Chen et al., 2021) consists of 1641274

hand written programming problems. It assess lan-1275

guage acomprehension, reasoning, algorithms, and1276

simple mathematics.1277

MBPP (Austin et al., 2021) consists of 974 pro-1278

gramming tasks, designed to be solvable by entry-1279

lebel programmers. The problems range from basic1280

computations to those requiring external mathemat-1281

ical knowledge.1282

BoolQ (Clark et al., 2019) is a question an-1283

swering dataset for yes/no questions containing1284

15942 examples. The questions are real user1285

queries—unprompted and written without knowing1286

the answers—making them more inferential and1287

challenging than synthetic datasets.1288

NaturalQuestion (Kwiatkowski et al., 2019a)1289

consists of over 300,000 questions. This corpus1290

features questions posed by actual users and chal-1291

lenges QA systems to read and understand a full 1292

Wikipedia article, which might or might not include 1293

the answer. 1294

MMLU (Hendrycks et al., 2021b,a) consists of 1295

multiple-choice question-answer pairs divided into 1296

57 subjects spanning STEM fields, the humanities, 1297

social sciences, and beyond. The questions vary in 1298

complexity, from elementary to expert-level, and 1299

assess both factual knowledge and reasoning skills. 1300

MMLU-zh (Li et al., 2023a) contains 11,528 1301

multiple-choice questions across 67 diverse sub- 1302

jects, including STEM, humanities, social sciences, 1303

and China-specific topics (e.g., Chinese law, tradi- 1304

tional medicine, and ancient Chinese). The dataset 1305

is specifically constructed to reflect the linguistic 1306

and cultural nuances of Chinese, with many ques- 1307

tions that are not easily translatable from English 1308

benchmarks like MMLU. 1309

MMLU-jp We evaluated the models’ Japanese 1310

generation ability using the Japanese-translated ver- 1311

sion of the multilingual MMLU test set 6. While 1312

the content of the questions remains the same as the 1313

original MMLU, both the questions and answers 1314

are presented in Japanese. 1315

TruthfulQA (Lin et al., 2022) comprises 817 1316

questions that span 38 categories, including 1317

health, law, finance and politics. The questions 1318

are carefully crafted to trigger imitative false- 1319

hoods—answers that are commonly believed but 1320

factually incorrect. 1321

MTBench (Zheng et al., 2023) is a bench- 1322

mark designed to evaluate a model’s instruction- 1323

following capabilities in a multi-turn dialogue for- 1324

mat, consisting of 80 two-turn question sets. We 1325

conducted evaluations using the LLM-as-a-Judge 1326

framework, employing gpt-4o-2024-08-06 as the 1327

evaluator LLM. 1328

AlpacaEval v2 (Li et al., 2023b) AlpacaEval v2 1329

is an instruction-following benchmark consisting 1330

of 805 questions, created by integrating existing 1331

benchmarks and incorporating insights from real 1332

user interactions. We conducted pairwise evalua- 1333

tions by comparing the responses of our fine-tuned 1334

models against those of GPT-4-Turbo, and report 1335

the win rate as the evaluation metric. We used 1336

gpt-4o-2024-07-18 as the evaluator LLM. 1337

All models evaluated in this experiment used the 1338

same prompt across all benchmarks. Therefore, 1339

it should be noted that the scores on downstream 1340

tasks may differ from those reported in technical 1341

6https://huggingface.co/datasets/openai/MMMLU
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reports, as the pre-trained models used a prompt1342

template that differs from the one originally pro-1343

vided. Among the trained models, the following1344

models failed to produce results for certain tasks:1345

• Swallow-Mistral-7B: All 41 trained models1346

encountered out-of-memory errors across all1347

tasks.1348

• Mistral-7B: The 20 LoRA-tuned models en-1349

countered out-of-memory errors on few-shot1350

tasks.1351

• Gemma2-9B: For the models trained with all1352

data using LoRA (from epoch 1 to epoch 4),1353

responses that made evaluation with Alpaca1354

Eval v2 impossible (extremely long, repetitive1355

outputs) were generated. As a result, the win1356

rates were recorded as NaN.1357

F Additional Results: Cross-lingual1358

Transfer1359

We group models by their pre-training language1360

(English, Chinese, Japanese) and compute pair-1361

wise Pearson correlations between MMLU-family1362

scores across English, Chinese, and Japanese test1363

sets (Figure A.1). All language pairs show strong1364

positive correlations: substantial zero-shot transfer1365

even though every SFT run used only English data.1366

Evaluating SFT conducted in multiple languages1367

remains an open avenue for future work.1368

Figure A.1: Correlation coefficients of performance
gain across models, focusing on MMLU, MMLU-jp and
MMLU-zh, split by training languages for the models.

G Additional results: semantic similarity1369

between training dataset and1370

evaluation tasks1371

To calculate semantic similarity between train-1372

ing datasets and evaluation tasks, we computed1373

BERTScore F1 between every training-dataset and1374

evaluation-task pair using a pretrained BERT-base1375

model. Correlating these scores with the aver-1376

age SFT performance gains yielded only a small,1377

non-significant positive relationship (Pearson’s R =1378

0.112, P > 0.05). Hence, semantic closeness—as1379

captured by BERTScore—offers little predictive 1380

value for fine-tuning benefit. 1381

H Analyzing Hidden Representation Shift 1382

We analyze the impact of fine-tuning on the hidden 1383

representations of LLMs. Previous studies have 1384

shown that task-specific information is encoded 1385

in the intermediate layers, and predictions are ad- 1386

justed toward task-specific representations in the 1387

subsequent layers (Zhao et al., 2024c). We ana- 1388

lyzed the global and local structural changes in the 1389

representation space by performing clustering anal- 1390

ysis on the hidden representations of the training 1391

dataset. 1392

H.1 Methods 1393

LLMs and token representations analyzed. 1394

We analyzed the hidden representations of a total 1395

of 110 models. This includes 10 base models that 1396

were primarily used in our evaluation. In addition 1397

to the base models, we also analyze the fine-tuned 1398

models that were trained on 1k-example subsets 1399

from 10 training datasets. This represents the sim- 1400

plest training setup, and analyzing models trained 1401

under different settings remains a topic for future 1402

work. To examine the effects of fine-tuning on 1403

both in-distribution and out-of-distribution data, 1404

we used a collection of 1k-example subsets from 1405

the training datasets, totaling N = 9974 examples. 1406

Following prior work (Doimo et al., 2024), we 1407

extracted the embedding of the final token in the 1408

prompt of each training example—formatted as 1409

###Question: {instruction}—from the out- 1410

puts of all Transformer blocks. The final token 1411

is expected to encode contextual information ac- 1412

cumulated from the preceding input, and its em- 1413

bedding is likely to vary across fine-tuned models. 1414

Finally, for each model, we obtain an L-layer, d- 1415

dimensional embedding space for N examples. 1416

Representation quality measures. 1417

To quantitatively evaluate the properties of text 1418

embeddings, we apply the Advanced Density Peaks 1419

(ADP) algorithm (d’Errico et al., 2021), a density- 1420

based clustering method. The algorithm first esti- 1421

mates the intrinsic dimensionality (ID) using the 1422

Gride (Denti et al., 2022). ID reflects how many 1423

parameters are needed to describe the data mani- 1424

fold. Based on this estimated dimensionality, it de- 1425

tects local density peaks using neighborhood-based 1426

criteria, and retains only statistically significant 1427

peaks via a t-test to form s clusters. To evaluate 1428
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Category Dataset queries metric

Math
MATH 5000 Exact Match Accuracy
GSM8K 1319 Exact Match Accuracy

Coding
HumanEval 164 pass@1
MBPP 257 pass@1

Knowledge
BoolQ 3270 Exact Match Accuracy
NaturalQuestions 3610 Lenient Matching Accuracy
TruthfulQA 817 BLEU Accuracy

Examination
MMLU 14042 Exact Match Accuracy
MMLU-zh 11582 Exact Match Accuracy
MMLU-jp 14042 Exact Match Accuracy

Instruction-following
MT Bench 160 Total Score
Alpaca Eval v2 805 Win rate

Table 3: The list of downstream tasks used to evaluate the fine-tuned models is shown. All tasks are supported by
the OpenCompass library, and the evaluation metrics are consistent with those used in OpenCompass.

the properties of the estimated clusters, we use the1429

Adjusted Rand Index (ARI) (Hubert and Arabie,1430

1985; Steinley, 2004). ARI is computed by the1431

following formula.1432

ARI =

∑
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where ai represents the number of samples con-1434

tained in the cluster Ai (1 ≤ i ≤ s) and bj rep-1435

resents the number of samples belonging to the1436

dataset label Bj (1 ≤ j ≤ 10). ARI measures1437

how well the found clusters match the ground-truth1438

labels, adjusting for chance grouping. It counts1439

pairwise agreements between the clustering and1440

true labels. 1.0 denotes perfect recovery of true1441

classes by clusters, 0 indicates random alignment,1442

and negative values imply worse-than-random clus-1443

tering.1444

H.2 The global change in the hidden1445

representation space1446

We observe two complementary effects of SFT1447

on the model’s embedding space. First, the num-1448

ber of identifiable clusters decreases A.2b: rep-1449

resentations that were once scattered into many1450

small groups collapse into a smaller set of seman-1451

tically coherent modes, indicating that the model1452

has learned to emphasize only those coarse dis-1453

tinctions that are most relevant for the downstream1454

task. Second, the ID of each remaining cluster1455

increases A.2a: within each merged mode, embed-1456

dings spread out along additional directions, reflect-1457

ing the model’s acquisition of subtler, task-specific 1458

features. Together, these trends suggest a trade-off 1459

in which fine-tuning simplifies the global structure 1460

of the representation (fewer clusters) while enrich- 1461

ing its local expressiveness (higher ID), thereby 1462

balancing coarse category separation with finer- 1463

grained feature encoding. 1464

A.2c shows that ARI fluctuates markedly across 1465

layers in every model, highlighting its sensitivity 1466

to representational changes. Fine-tuned variants 1467

generally exhibit lower ARI than their pretrained 1468

counterparts, indicating that clustering consistency 1469

does not directly predict generative performance. 1470

Moreover, because ARI here is computed over the 1471

full set of training-set embeddings, its overall trend 1472

may obscure differences between in-distribution 1473

and out-of-distribution samples. To disentangle 1474

these effects, we next perform an analysis of em- 1475

bedding–dataset correspondence. 1476

H.3 The local change in the hidden 1477

representation space 1478

As we show in the Figure A.2b, the number of 1479

clusters tends to be smallest in the final layer. We 1480

interpret this as the model forming semantically 1481

meaningful groupings in the embedding space at 1482

the final layer. Therefore, we examine the break- 1483

down of hidden representations in the final layer of 1484

OLMo-7B. To evaluate the properties of the hidden 1485

representations for both in-distribution and out-of- 1486

distribution training datasets, we compute kNN 1487

consistency as defined by the following equation. 1488
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kNNconsistencyc :=
1

Nc

∑
i:yi=c

 1

k

∑
j∈Nk(i)

I(yj = yi)

1489

Let yi be the label of the i-th hidden representa-1490

tion in the training dataset, where i ∈ 1, 2, . . . , N .1491

For each embedding i, let Nk(i) denote the set1492

of its k-nearest neighbors in the hidden represen-1493

tation space. To understand how well the local1494

neighborhood of each data point matches its label,1495

we calculate the kNN consistency for each label c.1496

Specifically, for each data point whose label is c,1497

we compute the proportion of its k nearest neigh-1498

bors that have the same label. We then average1499

this value over all points with label c: A label con-1500

sistency of 1.0 means every point’s neighbors are1501

all the same class (perfect local purity), whereas1502

lower values signify that points are often neigh-1503

bored by different classes. In our experiments, we1504

set k = 300.1505

Figure A.3: Differences in kNN consistency from the
pretrained model for OLMo-7B. This shows how the
kNN consistency in the final layer changes for each
dataset label when OLMo-7B is fine-tuned on 1k ex-
amples from each training dataset. For example, when
OLMo-7B is fine-tuned on 1k examples from CodeAl-
paca, it becomes better at embedding sentences from
Magicoder more closely. On the other hand, for other
datasets, the pretrained model demonstrates better sepa-
rability.

Figure A.3 shows how kNN consistency of the1506

embedding representations changes due to fine-1507

tuning. Intuitively, the embeddings of datasets1508

that belong to the same category as the train-1509

ing dataset—i.e., in-distribution—tend to become1510

more tightly clustered, while embeddings of out-1511

of-distribution datasets become harder to distin-1512

guish. In practice, when fine-tuned on FLAN-1513

comprehension, FLAN-reasoning, or Magicoder,1514

we observed a decrease in kNN consistency for1515

datasets other than the one used for training. Simi-1516

larly, when fine-tuned on MathInstruct, kNN con-1517

sistency decreased for all datasets except MathIn- 1518

struct and OpenMathInstruct. This phenomenon 1519

is illustrated in Figure A.4 by projecting the em- 1520

bedding space into two dimensions using t-SNE. 1521

The pretrained model produces many small clus- 1522

ters, but it can still distinguish the labels of the 1523

training datasets. In contrast, the models fine-tuned 1524

on each training dataset show embeddings that are 1525

more tightly clustered together, making it more 1526

difficult to distinguish between the dataset labels. 1527

The mechanism of unlearning is likely caused by 1528

the model’s embedding representations becoming 1529

less distinguishable for out-of-distribution datasets. 1530

Therefore, it will be beneficial to train on low- 1531

perplexity datasets that do not deviate too far from 1532

the base model’s original distribution. 1533
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(a) Intrinsic Dimensionality across layers

(b) Number of clusters across layers

(c) Adjusted Rand Index across layers

Figure A.2: (a) Intrinsic dimensions (ID) per layer of the sentence embeddings from the training dataset. The
blue lines represent the ID of each pretrained model. The red lines indicate the average ID of the models fine-tuned
on a single training dataset for each pretrained model. Except for Yi1.5-9B, all models show an increase in ID due
to fine-tuning, with the difference becoming apparent from the middle layers onward.
(b) Number of clusters in the hidden representation space. In many models, the final layer has the fewest number
of clusters. Furthermore, fine-tuning reduces the number of clusters, showing a strong negative correlation with ID.
(c) Adjusted Rand Index (ARI) of the density based clustering. The values and trends vary significantly across
models and layers. This suggests that the local structural arrangement of the training dataset is highly sensitive to
the influence of the model and the dataset.
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Figure A.4: t-SNE visualization of OLMo-7B at last layer. As an overall trend, the hidden representations
of the trained (in-distribution) dataset become more tightly clustered, while the representations of the untrained
(out-of-distribution) datasets show reduced discriminability and their distributions become more mixed with those
of other datasets.
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