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Abstract

Federated Generalized Category Discovery (Fed-GCD) requires a global model
to classify seen classes and discover novel classes when data are siloed across
heterogeneous clients. Existing GCD work often makes unrealistic assumptions,
such as the need for prior knowledge of the number of novel classes or the assump-
tion of uniform class distribution. We present Federated Local Prior Alignment
(FedLPA), which eliminates these unrealistic assumptions by grounding learning
in client-local structure and aligning predictions to client-local priors. Each client
builds a similarity graph refined with reliable seen-class signals and discovers
client-specific concepts and prototypes via Infomap. Leveraging the discovered
concept structures, we introduce Local Prior Alignment (LPA): a self-distillation
loss that matches the batch-mean prediction to an empirical prior computed from
current concept assignments. The iterative process of local structure discovery
and dynamic prior adaptation enables robust generalized category discovery un-
der severe data heterogeneity. Our framework significantly outperforms existing
federated generalized category discovery approaches on fine-grained and standard
benchmarks, as demonstrated by extensive experimental results.

1 Introduction

Machine learning models increasingly need to operate in open-world settings where not all classes are
available at the time of training. Generalized Category Discovery (GCD) [22, 3] aims to categorize
unlabeled data that may include instances from both seen and novel classes, by leveraging knowledge
transferred from the labeled set, while simultaneously classifying examples from the seen classes.
However, existing studies on GCD have focused exclusively on centralized settings, assuming
universal access to the training data, which comprises two types of classes—seen and novel—with
annotations available for only a subset of the seen classes. In such setups, the number of seen classes
is known, and the number of novel classes is typically assumed to be given. Yet, this centralized
formulation overlooks a more practical and challenging scenario, where both data and computational
resources are distributed across multiple clients.

We address the Federated Generalized Category Discovery (Fed-GCD) problem, which extends
Generalized Category Discovery (GCD) to the federated learning (FL) setting. In this scenario,
each local client independently manages its own training data without sharing it with others due to
privacy constraints [15]. Although the core objective of Fed-GCD aligns with that of centralized
GCD, it relies on a model trained in a privacy-preserving federated learning framework, which results
in additional challenges for the following reasons. First, each client experiences more severe data
heterogeneity and class imbalance [9, 8, 1], as training examples are partitioned across individual
clients. Second, and more critically, the sets of classes may differ across clients. In other words,
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in contrast to the prevalent assumption in centralized GCD [3, 27, 23, 25, 18, 29], each client only
observes a partial class set from the whole label space and the total number of novel classes, even the
count within its own local data, is unknown.

These challenges make most centralized GCD methods ill-suited to Fed-GCD. They rely on assump-
tions that do not hold in the federated setting. First, most methods require a priori knowledge of the
total number of novel classes [3, 27, 23, 25, 18, 29] to configure their classifiers and loss functions.
Second, these methods often have a strong assumption that class distribution is uniform. For instance,
classifier-based methods like SimGCD [27] and its variants [25, 23] utilize entropy regularization
to encourage balanced predictions across all classes (seen and novel), while clustering-based meth-
ods [20, 16, 30] employ balanced-cluster constraints to ensure the formation of distinct novel class
clusters. Even recent federated methods inherit such assumptions; for example, FedoSSL [28]
assumes the total number of novel classes across all clients is known, and AGCL [19] operates under
a similar premise of uniform cluster distribution. These unrealistic assumptions directly conflict with
the inherent data heterogeneity and class imbalances prevalent across clients in Fed-GCD.

To overcome these limitations, we propose a novel federated learning framework that operates
without such unrealistic assumptions by discovering data structure at the client level. Instead of
assuming a priori knowledge of the global number of novel classes, our approach empowers each
client to construct its own local similarity graph from all its data, leveraging both ground-truth and
high-confidence pseudo-labels. By applying Infomap clustering to this graph, the framework reveals
client-specific class priors and concept prototypes, and an estimate of each client’s novel class count.

Leveraging the discovered concept structures, we also introduce a novel self-distillation strategy,
termed Local Prior Alignment (LPA), which enhances generalized category discovery on skewed
local data by regularizing the model to align its batch-wise predictions for unlabeled examples with
these discovered structures. This simple regularization effectively guides the model toward the true
structure of each client’s local data, enabling robust representation learning across heterogeneous
clients. The proposed approach demonstrates remarkable performance improvements in all datasets
and settings consistently, surpassing existing Fed-GCD baselines by significant margins.

Our main contributions are summarized as follows.

• We propose FedLPA, a client-level framework for federated generalized category discovery
that requires no prior knowledge of the number of novel classes and tackles non-i.i.d. data.

• We discover client-specific categories by constructing a similarity graph from high-
confidence seen-class labels and applying a graph-based clustering algorithm to obtain
a local class prior and prototypes.

• We introduce Local Prior Alignment (LPA), a self-distillation strategy with a batch-level
regularizer that aligns predictions with an empirical client prior, improving robustness under
severe data heterogeneity.

• FedLPA demonstrates its outstanding performance in terms of robustness to client hetero-
geneity on fine-grained and generic benchmarks under various settings.

In the rest of this paper, we first review related works in Section 2 and discuss our main algorithm in
Section 3. Section 4 presents our experimental results and Section 5 concludes this paper.

2 Related Works

2.1 Centralized generalized category discovery

The objective of Generalized Category Discovery (GCD), formulated by [22, 3], is to classify
samples from seen categories and, at the same time, discover novel classes by leveraging knowledge
from a labeled dataset. Unlike Novel Class Discovery (NCD) [7], which assumes unlabeled data
contains only novel classes, GCD presents a more realistic and challenging setting by considering
unlabeled data with both known and novel classes. Existing studies on GCD typically follow two
main paradigms: parametric classifier learning and non-parametric representation learning.

Parametric methods [3, 27, 23, 25, 26, 14] build a learnable classifier and optimize it with the
backbone using labelled data and pseudo-labelled data derived from model predictions. Specifically,
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they incorporate adaptive margin [3] or entropy regularization [27, 23, 25, 14] for balanced pseudo-
labeling, while mean teacher framework [23] or prompt-tuning [25] strategies for improved pseudo-
labels. Besides, non-parametric methods employ combined contrastive losses [22], multiple projection
heads [6], hierarchical [20] or concept-level contrastive loss [18], or Gaussian Mixture Models
(GMMs) [30] to improve the generalization ability of features to novel categories. However, these
approaches have focused on centralized settings, relying on assumptions that are ill-suited for the
realistic federated learning setting. First, they often rely on an assumption that the ground-truth
number of novel classes [3, 27, 23, 25, 20, 18] is given, or they require labeled validation data to
estimate the class counts [22, 18, 20, 6]. Second, they often make the stronger assumption that class
distribution is balanced. For instance, a mean entropy maximization (ME-MAX [2]) regularizer
commonly adopted in parametric methods [27, 16, 23, 25] achieves novel class discovery by forcing
uniform predictions over all classes (seen and novel). Some non-parametric approaches [20, 16, 30]
employ balanced-cluster constraints to ensure the formation of distinct novel class clusters. Such
assumptions about novel class counts and data uniformity are unrealistic in real-world distributed
settings where data is partitioned heterogeneously across multiple clients.

2.2 Federated generalized category discovery

To address the limitations of centralized approaches, there has been increasing interest in Federated
Generalized Category Discovery (Fed-GCD). Fed-GCD addresses the problem of GCD within the
decentralized paradigm of Federated Learning (FL) [15], where clients collaboratively train a global
model without sharing their raw data, thereby preserving privacy. The primary objective of Fed-GCD
is to enable this global model to discover novel categories and accurately classify known categories
present across all participating client datasets. This task is more challenging than centralized GCD
due to severe data heterogeneity, so each client only observes a partial class set from the whole label
space. An initial work, FedoSSL [28], addresses data heterogeneity in novel classes by introducing
locally unseen (novel in some clients’ unlabeled data) and globally unseen (novel in all clients’
unlabeled data) classes. However, this approach relies on unrealistic assumptions that the total
number of novel classes is known a priori and each client has i.i.d. and balanced seen class data.
Recently, AGCL [19] tackles a more challenging Fed-GCD setting where both seen and novel classes
exhibit highly skewed and non-i.i.d. distributions across clients, and employs GMM-based contrastive
learning for robust representation learning of both seen and novel classes. However, this approach
samples cluster instances uniformly based on the assumption that each cluster has an equal prior
probability. Additionally, this method necessitates the communication of local class representations
to the server, potentially introducing privacy leakage and increasing communication overhead. In
contrast, our framework addresses these Fed-GCD challenges by robustly handling severe data
heterogeneity, requiring no prior knowledge of the novel class count, no assumption of balanced
distributions, and no communication of privacy-sensitive local representations.

3 Proposed Algorithm: FedLPA

This section presents our approach for federated generalized category discovery, referred to as
FedLPA, which combines graph-based local category discovery and adaptive prior regularization.

3.1 Problem setup

We consider a federated learning (FL) setting with N clients C = {Cn}Nn=1. Each client Cn holds a

local dataset Dn = Dl
n ∪ Du

n, where Dl
n = {(xi, yi)}

|Dl
n|

i=1 contains labeled data with yi ∈ Y l
n, and

Du
n = {xi}

|Du
n|

i=1 contains unlabeled data whose true (unknown) labels reside in Yu
n . The global set

of known labels is Y l =
⋃N

n=1 Y l
n, while the true global label space is Yu =

⋃N
n=1 Yu

n . The global
set of known labels Y l is a subset of the true global label space Yu (i.e., Y l ⊆ Yu). The classes
in Yu \ Y l constitute the set of novel classes, which are, by definition, present in the aggregated
unlabeled data Du =

⋃
nDu

n. The objective of Fed-GCD is to collaboratively train a global model
f : X → Yu using {Dn}Nn=1, enabling accurate classification of all instances in Du into their true
classes within Yu. In Fed-GCD, client data distributions may be heterogeneous, meaning local label
sets Y l

n and Yu
n can vary across clients, and the cardinalities |Yu| and |Yu

n | are unknown. Due to
privacy constraints in FL, transferring raw training data between clients is strictly prohibited.
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Figure 1: Overview of FedLPA’s local training process. (a) Every R rounds, each client builds a
local similarity graph (via current global backbone ϕt) and refines it using (pseudo-)labels from
seen classes. (b) Each client applies graph-based clustering (Infomap) on the refined graph, and
obtains a marginal local category prior Ŷt

n and corresponding concept prototypesMt
n. (c) During

local training, for unlabeled data, a standard cross-entropy loss is applied with predictions pi and
soft-targets q′i, which are derived from similarities with the prototypesMt

n. Simultaneously, the
average of the batch predictions p̄Bu is aligned with a dynamic batch prior πn,Bu via Jensen-Shannon
Divergence (JSD). Additionally, unsupervised contrastive loss is applied to unlabeled data, while
labeled data utilizes standard cross-entropy for seen classes and supervised contrastive loss.

3.2 Overview

The main objective of FedLPA is robust generalized category discovery under severe data heterogene-
ity and class imbalance, without requiring knowledge of the number of novel classes or relying on
balanced-class assumptions common in prior methods. As illustrated in Figure 1, we achieve this
goal through three synergistic local stages: (1) Confidence-guided Local Category Discovery (CLCD)
to build a richly supervised local similarity graph, (2) graph-based clustering algorithm (Infomap)
to derive a local category prior and concept prototypes, and (3) Local Prior Alignment (LPA) to
adaptively align model predictions using these discovered local priors. These stages collaboratively
adapt to local data heterogeneity, fostering robust category discovery across heterogeneous clients.

FedLPA operates within a standard federated learning framework, FedAvg [15]. Specifically, a central
server initializes a global model parameterized by θ = {ϕ, ψ}, corresponding to a feature extractor
f(·;ϕ), and a classifier g(·;ψ) dedicated to seen classes Y l. In communication round t ∈ {1, . . . , T},
a central server sends a global model θt to the active client set Ct ⊆ C. Each client Cn ∈ Ct initializes
its parameters θtn,0 to θt, and performs M iterations for optimization using its local data. The server
collects the resulting local models θtn,M and updates the global model θt+1 for the next round of
training by simply averaging the local model parameters. This training process is repeated until the
global model θt converges.

3.3 Confidence-guided local category discovery

Initial similarity graph construction Each client n constructs an initial similarity graph Gn =
{In, En} to capture pairwise feature-based relationships among its local samples Dn. The nodes In
represent all local samples xi ∈ Dn. Edge weights eij ∈ En are defined by the cosine similarity
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between ℓ2-normalized features vi and vj , which are the ℓ2-normalized outputs from the global
backbone f(·;ϕt) for the corresponding samples xi and xj . This initial graph Gn provides a
foundational structure of pairwise relationships among the local samples.

Confidence-guided identification of known samples The initial graph, based solely on feature
similarity, can be noisy and may not accurately reflect true semantic relationships. To mitigate this
and establish a more reliable structure, each client refines the graph Gn using supervisory signals
from the known categories Y l by identifying high-confidence pseudo-labels for unlabeled samples
xi ∈ Du

n. This is achieved by leveraging the current global model θt = {ϕt, ψt} from the previous
round (specifically, θtn,0 before local updates) to predict logits h(x; θt) = g(f(x;ϕt);ψt) for seen
classes Y l. The confidence score s(xi) for each unlabeled sample xi is the maximum softmax
probability over these logits. If s(xi) exceeds a client-adaptive threshold ξn (the P -th percentile
of confidences from local labeled data Dl

n), xi is deemed a reliably identified known sample. This
sample is assigned a pseudo-label ŷi ∈ Y l corresponding to the class with the highest confidence,
forming a set:

D̂u,seen
n = {(xi, ŷi) | xi ∈ Du

n, s(xi) > ξn, and ŷi = argmax
k∈Yl

σ(h(xi; θ
t))k}, (1)

where σ(·) denotes the softmax function applied to the logits h(xi; θt) to obtain class probabilities. To
ensure the classifier provides meaningful confidences, especially in early training stages, we employ
initial warm-up training rounds. Further details on this warm-up procedure and the determination of
ξn are provided in the supplementary document.

Label-informed graph refinement With the full set of (pseudo-)labeled samples, each client now
updates the edge weights En of its local similarity graph Gn to reflect this supervisory information.
Let Dsup

n = Dl
n ∪ D̂u,seen

n be this set of samples with (pseudo-)labels ỹi ∈ Y l. We update the initial
edge weights eij ∈ En as follows:

e′ij ←


1, if xi, xj ∈ Dsup

n , ỹi = ỹj , and i ̸= j

0, if xi, xj ∈ Dsup
n , ỹi ̸= ỹj , and i ̸= j

eij , otherwise
(2)

We also take an edge-pruning step to enhance the graph’s robustness against noisy feature representa-
tions. This pruning step forms the final edge set E ′n by discarding the edges if their value does not
exceed a predefined threshold τf . The resulting refined graph is thus G′

n = {In, E ′n}, which provides
a cleaner and more reliable structure for the subsequent local category discovery.

3.4 Infomap clustering

Each client then discovers its local concept structure from the refined graph G′
n. To achieve this,

the client employs the Infomap algorithm [21], which partitions the graph into communities by
minimizing the description length of a random walk. This process yields two key outputs for the
client’s local data Dn: (1) a set of concept assignments {ci}, effectively grouping the data into
discovered concepts Ŷt

n, and (2) an estimate of the number of these concepts, Kn = |Ŷt
n|.

With these concept assignments, the client initializes a set of Kn local prototypes,Mt
n = {µt

n,k}
Kn

k=1.
Each prototype µt

n,k is the mean of the ℓ2-normalized feature vectors of all instances assigned to the
corresponding concept ck. These prototypes are pivotal, serving as anchors for the self-distillation
mechanism described in Section 3.5. To ensure the prototypes remain aligned with the evolving
feature space, this entire discovery and initialization process is repeated every R communication
rounds at the start of local training.

3.5 Local prior alignment (LPA) with self-distillation

Building upon the local category discovery, we introduce a novel self-distillation strategy incor-
porating a principled regularizer, termed Local Prior Alignment (LPA). During local training, the
unsupervised objective for client n on an unlabeled mini-batch Bu ⊂ B is formulated as:

Lu
LPA =

1

|Bu|
∑

xi∈Bu

ℓ(q′i, pi) + ε JSD(p̄Bu || πn,Bu). (3)
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The objective consists of a self-distillation loss, based on the cross-entropy function ℓ(·, ·), and the
proposed LPA regularizer, with their relative importance balanced by the hyperparameter ε.

The self-distillation component refines feature representations by enforcing predictive consistency
across augmented views of each unlabeled image. To achieve this, we generate two random aug-
mentations, xi and x′i. For the first view xi, the model computes a soft probability distribution pi
over the Kn local concepts. Specifically, pi is the softmax distribution (with temperature τs) of
cosine similarities between the feature vector vi = f(xi;ϕ

t
n,m) and the local prototypes in Mt

n.
Concurrently, a sharper pseudo-label distribution q′i (with lower temperature τt < τs) is generated for
the second view x′i, which serves as the soft target for pi.

The LPA regularizer aligns the model’s collective predictions with the underlying data structure
of each batch. It achieves this by minimizing the Jensen-Shannon Divergence (JSD) between two
distributions: the model’s average prediction and a batch-specific empirical prior. The empirical
prior, πn,Bu

, is calculated as the distribution of the pre-assigned concepts {cj} within the unlabeled
mini-batch Bu:

πn,Bu [k] =
1

|Bu|
∑

xj∈Bu

I(cj = c′k), k ∈ [Kn], (4)

where c′k is the k-th unique concept in the client’s estimated concept set Ŷt
n. The model’s average

prediction for the unlabeled batch, p̄Bu
, is then computed by averaging the soft predictions from both

augmented views:

p̄Bu =
1

|Bu|
∑

xi∈Bu

1

2
(pi + p′i), (5)

where p′i is the prediction for the second view x′i, also computed using temperature τs. By minimizing
the JSD between these two distributions, LPA adaptively steers the model toward the client’s true
local data structure, enhancing robustness against severe data skew.

3.6 Joint optimization

We also employ supervised [10] and self-supervised [4] contrastive losses for robust representation
learning as

Ll
rep =

1

|Bl|
∑
i∈Bl

1

|Ni|
∑
q∈Ni

− log
exp

(
v⊤i v

′
q/τc

)∑i̸=j
i exp

(
v⊤i v

′
j/τc

) , (6)

Lu
rep =

1

|B|
∑
i∈B

− log
exp(v⊤i v

′
i/τu)∑i̸=j

i exp(v⊤i v
′
j/τu)

. (7)

where Ni indexes all other images in the same batch that hold the same label as xi, while τc and
τu are temperature parameters. Additionally, we employ a standard cross-entropy loss Ll

CE on Bl

with the ground-truth labels to train the local classifier g(·;ψt
n,m) for seen classes. Thus, the overall

objective function for each client n is:

Ln = λ(Lu
LPA + Lu

rep) + (1− λ)(Ll
rep + Ll

CE), (8)

where λ is a hyperparameter balancing the loss terms. The detailed learning procedure of FedLPA is
described in Algorithm 1 in the supplementary document.

4 Experiment

4.1 Experimental setup

Dataset We evaluate our proposed method on six image classification benchmarks: three fine-
grained datasets, CUB-200 [24], Stanford-Cars [11], and Oxford-IIIT Pet [17], three generic object
recognition datasets, CIFAR-10 [12], CIFAR-100 [12], and ImageNet-100 [5]. For each dataset, we
designate half of the classes as known and the other half as novel. From the known classes, 50% of
instances form the labeled training subset, while the remaining instances, along with all instances
from novel classes, constitute the unlabeled training subset. To simulate non-i.i.d. data distributions,
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we sample label ratios from a Dirichlet distribution with a symmetric parameter α ∈ {0.2, 0.05},
following [8, 19]. This partitioning results in |C| = 5 subsets, each of which is considered a local
dataset stored individually on each client.

Baselines We compare our method, dubbed as FedLPA, with the state-of-the-art Fed-GCD methods,
which include GCL [19], and AGCL [19]. We also establish federated baselines by adapting prominent
centralized GCD methods, GCD [22], SimGCD [27], and GPC [30], and an unsupervised learning
method, PCL [13]. These are integrated with FedAvg [15], following the strategy in [19], and are
denoted as FedAvg + GCD, FedAvg + SimGCD, FedAvg + GPC, and FedAvg + PCL, respectively. For
FedAvg + SimGCD, the number of novel classes is assumed known a priori for classifier initialization.

Evaluation protocol We evaluate the model performance with clustering accuracy (ACC) on an
unlabeled test set held by the server, following a standard practice in [19]. This test set is partitioned
from a global evaluation set alongside a labeled validation set, mirroring the partitioning scheme of
the training data. Note that the baselines [19, 30, 22, 13] utilize the labeled validation data for either
category number estimation or semi-supervised clustering. To ensure a direct and fair comparison
with these baselines, we also report the performance of a variant named FedLPA+, which utilizes this
validation set by applying our CLCD algorithm to guide semi-supervised clustering.

Given predicted labels ŷi and ground-truth labels yi, ACC is defined as follows:

ACC = max
Π∈Sk

1

Nu

Nu∑
i=1

1{ŷi = Π(yi)}, (9)

where Sk is the set of all possible permutations of k cluster assignments, Nu is the total number of
unlabeled test samples, and Π(·) is the optimal mapping found using the Hungarian algorithm. We
report ACC for all unlabeled test samples ("All"), as well as separately for samples belonging to
"Old" classes (yi ∈ Y l) and "New" classes (yi ∈ Yu \ Y l).

Implementation details We use a ViT-B/16 pretrained with DINO as the backbone. We use the
output of the [CLS] token with a dimension of 768 as the feature for an image, and only fine-tune the
last block of the backbone, following [19, 22]. The model undergoes a warmup stage of 20 rounds,
followed by 50 rounds of Fed-GCD training. Both stages use SGD with a batch size of 128 and an
initial learning rate of 0.1. For Fed-GCD training, the learning rate is decayed via a cosine schedule.
Following [19], the number of local training epochs is set to 1 with full client participation. The
balancing factor λ is set to 0.35, the temperature values τs, τc, τu are set to 0.1, 0.07, 1.0, respectively.
Following [27, 22], τt starts at 0.07 and anneals to 0.04 over the first 30 rounds using a cosine
schedule. For FedLPA, we set the percentile P to 80, the LPA regularization weight ε to 0.5, and
the CLCD update frequency R as 1. We set τf to 0.6 and 0.4 for fine-grained datasets and standard
datasets, respectively. All experiments were conducted on a single NVIDIA RTX A6000 or A5000
GPU.

4.2 Results

We compare the proposed methods, FedLPA and FedLPA+, on six benchmarks: three fine-grained
datasets and three standard object recognition datasets, under two different data heterogeneity settings.
Table 1 and Table 2 show that both FedLPA and FedLPA+ consistently outperform all existing
Fed-GCD baselines across all datasets at every data heterogeneity level. FedLPA achieves these gains
without any server-side labeled validation data, which is a common prerequisite for baselines. This
indicates FedLPA’s robustness in realistic, resource-constrained federated settings, even when the
server-side labeled validation data is not available. For direct comparison, FedLPA+ leverages the
server-held validation data and applies the proposed CLCD on the combined validation and unlabeled
test sets, which further improves the performance in most cases. Among the baselines, FedAvg +
SimGCD often struggles – especially on generic datasets – likely due to its restrictive uniform-prior
assumption. Similarly, FedAvg + GPC performs worse than FedAvg + PCL in most cases because
it assumes balanced clusters. These observations suggest that heuristic priors assuming data or
cluster balance are ill-suited for the non-i.i.d. and imbalanced Fed-GCD settings, underscoring the
advantages of our adaptive, data-driven structure discovery mechanisms.
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Table 1: Results on fine-grained datasets with two different degrees of data heterogeneity. Bold
numbers indicate the best accuracies. Methods with a dagger † report results from [19]. The ’Server
val.’ column indicates whether server-side labeled validation data is used for evaluation.

CUB-200 Stanford-Cars Oxford-Pet
Method Server α = 0.2 α = 0.05 α = 0.2 α = 0.05 α = 0.2 α = 0.05

val. All Old New All Old New All Old New All Old New All Old New All Old New

FedAvg + GCD† [22] 46.3 54.8 40.1 43.3 52.8 38.9 32.4 49.8 28.3 30.4 46.1 26.5 76.2 77.8 75.2 72.1 76.4 71.5
FedAvg + SimGCD [27] 36.8 49.7 30.4 34.6 48.5 27.7 35.1 56.3 24.9 30.3 43.9 23.7 43.6 39.7 45.6 36.7 34.1 38.1
FedAvg + PCL† [13] 51.3 53.5 49.8 47.5 53.0 46.3 35.3 47.7 33.4 32.6 45.5 29.2 79.4 80.3 79.1 76.6 77.9 74.7
FedAvg + GPC† [30] 49.1 51.3 47.0 45.3 51.2 44.7 34.1 45.5 32.6 30.9 45.3 27.8 78.8 78.5 79.1 73.1 77.3 73.5
FedAvg + GCL† [19] 53.7 54.6 53.2 52.2 53.1 52.9 36.0 48.1 33.7 35.3 45.7 31.5 80.7 81.3 80.2 79.5 81.5 78.6
FedAvg + AGCL† [19] 55.2 52.5 56.7 53.1 52.9 54.2 38.2 50.8 36.0 36.4 44.9 32.8 82.7 83.9 82.3 81.4 82.0 80.7

FedLPA (ours) 62.3 63.3 61.8 61.2 63.1 60.1 52.1 67.6 44.6 51.8 64.9 45.4 84.6 85.3 84.2 83.3 86.6 81.5
FedLPA+ (ours) 63.5 63.6 63.4 62.6 64.3 61.8 57.7 70.1 51.7 54.2 69.4 46.8 86.7 90.7 84.7 85.0 86.9 84.0

Table 2: Results on standard object recognition datasets with two different degrees of data hetero-
geneity. Bold numbers indicate the best accuracies. Methods with a dagger † report results from [19].
The ’Server val.’ column indicates whether server-side labeled validation data is used for evaluation.

CIFAR-10 CIFAR-100 ImageNet-100
Methods Server α = 0.2 α = 0.05 α = 0.2 α = 0.05 α = 0.2 α = 0.05

val. All Old New All Old New All Old New All Old New All Old New All Old New

FedAvg + GCD† [22] 80.7 82.3 80.3 78.7 80.1 78.3 49.6 52.1 49.3 47.3 49.2 45.9 69.8 77.1 65.7 66.4 74.8 62.1
FedAvg + SimGCD [27] 53.6 53.5 53.6 52.9 66.2 46.3 43.1 57.0 36.2 33.6 40.1 30.4 54.8 77.1 43.5 43.4 62.2 33.9
FedAvg + PCL† [13] 81.6 82.7 80.9 80.0 80.7 79.4 53.2 54.1 51.7 50.4 51.6 49.0 72.4 79.5 66.0 70.1 77.0 63.3
FedAvg + GPC† [30] 81.3 81.7 80.5 80.1 80.4 78.4 52.8 53.5 51.4 50.0 51.3 48.9 72.1 78.2 65.7 69.8 76.8 63.1
FedAvg + GCL† [19] 83.2 84.9 82.8 82.2 82.4 81.9 54.1 55.7 54.0 52.1 53.2 51.9 74.1 81.8 67.3 72.5 79.8 65.3
FedAvg + AGCL† [19] 84.7 85.5 84.6 82.5 83.4 82.2 56.1 56.8 55.3 54.2 54.6 54.0 74.8 80.2 69.8 73.1 78.1 67.0

FedLPA (ours) 94.5 94.5 94.6 93.9 94.5 93.7 57.7 61.7 55.7 54.2 60.7 50.9 75.9 89.7 69.0 73.2 87.6 65.9
FedLPA+ (ours) 95.1 96.3 93.9 94.1 95.1 93.3 58.1 63.4 55.4 56.5 64.9 52.3 76.6 90.6 69.9 74.4 88.6 67.3

4.3 Analysis

Ablation study To validate the efficacy of individual components within our FedLPA framework,
we conduct an ablation study on Stanford-Cars under non-i.i.d. settings (α = 0.2 and α = 0.05),
and the results are presented in Table 3. The results show that each proposed element contributes
significantly to the final performance. Specifically, applying our Local Prior Alignment loss (Lu

LPA)
substantially enhances performance, even with a fixed target prior derived once from an initial graph
of local unlabeled data (row 1). Our proposed regularizer on adaptive prior, empirically computed
from each local batch, yields further significant gains (row 2). Notably, even without the confidence-
guided graph refinement, our framework, LPA loss with an adaptive prior (row 3 and row 4), already
demonstrates strong performance, outperforming all compared algorithms in Table 1. This highlights
the robustness of our core LPA mechanism. Furthermore, our proposed confidence-guided graph
refinement provides an additional performance gain (row 5).

Analysis of CLCD algorithm To validate the effectiveness of our proposed CLCD algorithm, we
ablate the clustering module by replacing it with semi-supervised K-Means (used in [22, 30]) and
semi-supervised FINCH (used in [19]) within the FedLPA framework, and the results are presented
in Figure 2. It is important to note that for the implementation of both semi-supervised K-Means
and FINCH, we assume that the knowledge of the true number of classes in both local data and the
global test data is given. We report two outcomes: (a) clustering accuracy on each client’s local
data immediately after warmup (Figure 2a); and (b) final clustering accuracy on the server test set
after 70 federated training rounds (Figure 2b). Our proposed method achieves superior clustering
performance on local training data compared to the other algorithms. Consequently, this leads to a
more significant improvement in the final test accuracy of FedLPA both on seen and novel classes,
underscoring the effectiveness of the proposed CLCD algorithm on the overall model performance.

Increased number of clients We validate our framework in more challenging scenarios with an
increased number of distributed clients (N = 10). All methods suffer from performance degradation,
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Table 3: Component analysis of the proposed methods in the non-i.i.d. settings on Stanford-Cars with
two different degrees of data heterogeneity (α = 0.2 and α = 0.05).

Lu
LPA Target prior Initial graph CLCD α = 0.2 α = 0.05

All Old New All Old New

- - - - 34.1 50.8 26.0 32.0 50.3 23.1
Fixed Du

n - 48.3 61.7 41.8 47.3 55.5 43.2
Adaptive Du

n - 51.4 66.1 44.3 50.5 61.6 45.1
Adaptive Dl

n ∪ Du
n - 54.4 67.9 47.2 52.3 66.4 45.4

Adaptive Dl
n ∪ Du

n 57.7 70.1 51.7 54.8 69.4 46.8
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(a) Clustering accuracy on local data after warm-up

All Old New40

45

50

55

60

65

70

75

80

AC
C 

(%
)

50.7

66

43.3

49.1

64.2

41.7

52.1

67.6

44.6

Semi-sup. K-Means
Semi-sup. FINCH
CLSD with Infomap

(b) Final clustering accuracy on server test data

Figure 2: Ablative results of CLCD algorithm in FedLPA under non-i.i.d. clients (α = 0.2) on
Stanford-Cars. We evaluate (a) clustering accuracy on individual client local training data right
after the warmup training rounds, and (b) final clustering accuracy on the server test set after 70
federated training rounds. For the final clustering accuracy, all methods are evaluated identically at
test time: we apply the same server-side Infomap clustering to the unlabeled test set with a fixed
pruning threshold (τf = 0.6), regardless of the clustering algorithm used during local training.

compared with the results in Table 4, due to the reduced local data per client, increased data disparity.
Despite these challenges, FedLPA consistently shows promising performance on all tested datasets.

Hyperparameters We investigate the impact of our hyperparameters on the performance of FedLPA
under a non-i.i.d. setting with α = 0.2, and the results are presented in Figure 3. Both the CLCD
identification percentile P (Figure 3a) and the Local Prior Alignment (LPA) regularization weight ε
(Figure 3b) demonstrate robust performance across a reasonable range of values, indicating FedLPA’s
stability. For the CLCD update frequency R (Figure 3c), while more frequent updates (R = 1) yield
better results by enabling rapid adaptation, FedLPA maintains competitive accuracy even with sparser
updates. This offers a valuable trade-off, allowing for reduced computational overhead with only
a marginal performance decrease, beneficial in resource-constrained federated scenarios. For the
number of warmup rounds (Figure 3d), while a marginal performance drop is observed with very few
initial rounds, FedLPA rapidly achieves competitive accuracy with a modest number of rounds (e.g.,
10-20). The performance generally exhibits an upward trend and stabilizes as the number of warmup
rounds increases (e.g., up to 50 rounds), indicating that sufficient warmup is beneficial.

5 Conclusion

We introduced Federated Local Prior Alignment (FedLPA), a novel framework for generalized cate-
gory discovery in heterogeneous federated environments. Unlike prior approaches often reliant on
unrealistic global knowledge or fixed class priors ill-suited for federated settings, FedLPA operates
entirely at the client level. It first constructs a client-specific similarity graph, enhanced by reliably
pseudo-labeled known-class samples, to capture local data structures without requiring global infor-
mation or pre-defined category counts. Building on this, our Local Prior Alignment (LPA) regularizer,
integrated within a self-distillation scheme, dynamically adapts to local data distributions by aligning
model predictions with an online empirical prior derived from these discovered structures. This
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Table 4: Results with increased number of clients (N = 10) on standard benchmarks in non-i.i.d.
setting (α = 0.05). Methods with a dagger † report results from [19]. The ’Server val.’ column
indicates whether server-side labeled validation data is used for evaluation.

Method Server CIFAR-10 CIFAR-100 ImageNet-100
val. All Old New All Old New All Old New

FedAvg + GCD† [22] 63.4 60.0 66.7 47.3 48.3 45.6 62.3 70.8 60.1
FedAvg + GCL† [19] 68.2 64.2 70.1 52.5 53.9 51.0 67.3 74.5 60.8
FedAvg + AGCL† [19] 68.1 63.8 70.3 52.2 53.6 52.4 67.5 74.8 61.1

FedLPA (ours) 92.3 94.5 91.2 53.6 54.5 53.1 71.7 85.6 64.7
FedLPA+ (ours) 93.7 96.2 92.3 55.9 59.7 54.0 72.1 86.8 64.7
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(d) The number of warmup rounds

Figure 3: Ablative results of FedLPA hyperparameters in non-i.i.d. clients (α = 0.2) on Stanford-
Cars. We examine the impact of: (a) the percentile P for known sample filtering in CLCD; (b) the
weight ε for the LPA regularizer in Eq (3); (c) communication rounds R between CLCD executions;
and (d) the number of rounds for federated warmup training.

synergy of local structure grounding and dynamic prior adaptation enables robust category discovery
under severe data heterogeneity and class imbalance, leading to substantial performance gains over
existing Fed-GCD methods on diverse benchmarks.

Limitations & Future Work While FedLPA’s per-round communication overhead is comparable to
that of FedAvg, exploring ways to further reduce communication rounds—for example via adaptive
client sampling or asynchronous updates—could be a promising direction for future work. Future
work includes evaluating the framework under client churn and adversarial settings. In addition to
these directions, we plan to extend the framework to multimodal data and streaming class discovery.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly claim that FedLPA enables generalized
category discovery in federated, non-IID settings; Sections 1, 4 and 5 provide the algorithm
and empirical evidence that substantiate this claim.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6 (“Limitations & Future Work”) articulates reliance on early-round
feature quality, communication-round cost, and the need to study client churn and adversarial
settings.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper contains no formal theorems or proofs; it contributes an algorithm
and empirical study.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5 details datasets, Dirichlet partitioning, model architecture, training
schedule, hyperparameters, and evaluation metrics, providing all information required to
reproduce the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets are public benchmarks. The authors will release anonymized
code and detailed instructions on GitHub upon acceptance so that anyone can reproduce the
reported results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Datasets, split ratios, Dirichlet α values, optimizer (SGD), learning-rate
schedule, temperature parameters, and other hyperparameters are provided in Section 5
(Experimental Setup).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For each experiment, we report the average accuracy over multiple independent
runs with different random seeds (3 runs). While we do not include error bars in plots or
tables due to space limitations, the averaging procedure reduces the impact of variance and
reflects stable results across runs.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 5 states that experiments used NVIDIA RTX A6000/A5000 GPUs,
batch 128, 50 communication rounds plus 20 warm-up rounds; this suffices to estimate
compute cost.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Only public datasets are used; no personal or sensitive data is processed, and
experiments follow standard ethical practices.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 6 highlights privacy benefits of FL and notes possible misuse risks in
adversarial client scenarios.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work does not release high-risk models or scraped datasets; only standard
public benchmarks are used.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets (e.g., CIFAR, CUB-200) and models (ViT-B/16 DINO) are cited
with original references and used under their respective open licenses.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new dataset or pretrained model is released; only algorithmic code will be
shared.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The study does not involve human participants or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: No human-subject research is included, so IRB approval is not required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No large-language model is used in the core methodology; any LLM-assisted
editing was purely for language polishing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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