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Abstract

Formal theorem proving is challenging for humans as well as for machines. Thanks
to recent advances in LLM capabilities, we believe natural language can serve as a
universal interface for reasoning about formal proofs. In this paper, 1) we introduce
Pétanque, a new lightweight environment to interact with the Coq theorem prover;
2) we present two interactive proof protocols leveraging natural language as an
intermediate representation for designing proof steps; 3) we implement beam
search over these interaction protocols, using natural language to rerank proof
candidates; and 4) we use Pétanque to benchmark our search algorithms. Using
our method with GPT-4o we can successfully synthesize proofs for 58% of the first
100/260 lemmas from the newly published Busy Beaver proofs.

1 Introduction

The general knowledge and reasoning abilities of frontier large language models (LLMs) makes them
practical as a backbone for building agents able to interact with interactive theorem provers (ITP).
These agents should iteratively build proofs with help from proof engine feedback. While previous
work (e.g. Yang et al. [2023]) used a costly data collection procedure to finetune modestly sized
language models, we believe that reasoning in natural language before outputting tactics will lead to
better and more interpretable results. Recently, Thakur et al. [2024] showed promising preliminary
results by using GPT-4 as an agent proposing tactics inside a backtracking search and using rich
feedback from the proof environment.

In this work, we develop infrastructure to allow communication between a GPT-4o-based agent
and the Coq proof environment [The Coq Development Team, 2024]. Our key idea is to rely on
natural language as much as possible when generating proofs. Using natural language leverages the
strength of LLMs, and allows us to use chain-of-thought [Wei et al., 2022] by asking for an informal
mathematical proof before generating the formal proof, making it more intuitive and comprehensible
compared to purely automatic formal techniques. Additionally, partial proofs expressed in natural
language are easier for humans to understand, adapt, or reuse, allowing for greater flexibility and
collaboration between machine-generated suggestions and human mathematicians.

We present the following contributions: 1) Pétanque: A new fast and lightweight environment to
interact with the Coq theorem prover. 2) Two interactive proof protocols both leveraging natural
language reasoning: tactic-by-tactic proof construction, and hierarchical proof templating. 3) We
couple both protocols with standard search algorithms leveraging feedback from the ITP and using
natural language to rerank proof candidates. 4) We evaluate this agent on a new dataset of textbook
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forall n m : nat,  
n + m = m + n

To begin with, let's use 
induction on n. This 
approach will allow us to 
handle the problem by 
breaking it down into a base 
case and an inductive step.

/step intros n m. 
induction n. 

Next goals


m : nat 
⊢ 0 + m = m + 0 

n : nat 
m : nat 
IHn : n + m = m + n 
⊢ S n + m = m + S n

Figure 1: Tactic-by-tactic proof construction.

exercises and intermediate theorems from the recent Busy Beaver proof formalized in Coq of
BB(4) = 107, [ccz181078, 2024]. NLIR is open source (https://github.com/llm4coq/nlir).

2 Pétanque: a lightweight interactive environment for Coq

A common difficulty when interacting with interactive proof assistants in the context of machine
learning is inadequate tooling (see for example [Reichel et al.]). Following existing work [Gal-
lego Arias et al., 2016, Gallego Arias, 2019, Yang and Deng, 2019, Sanchez-Stern et al., 2020],
we have built a new environment for machine to machine interaction for the Coq proof assistant,
particularly tailored for interactive, high-throughput, low-latency learning applications. Pétanque
is based on Flèche [Gallego Arias, 2024], a new document manager for Coq. We extend Flèche by
enabling Pétanque to access the Coq proof engine directly without requiring edits in the associated
document. This makes our environment fast and lightweight. A Python interface provides easy access
to the API. See Appendix B for more information on Flèche and Pétanque.

3 Proof interaction protocols

In this section, we present two approaches leveraging LLMs’ ability to reason in natural language in
order to find a formal proof with the help of a proof assistant. Tactic-by-tactic proof construction
mimics the typical behavior of a standard Coq user: given the current goals, the agent generates
one or several tactics that updates the goals and repeats this process until the proof is complete. By
contrast, hierarchical proof templating tries to generate full proofs directly. Failed tactics are then
replaced with holes to obtain a proof template. The agent repeats the process of filling each hole
until the proof is complete. Our approach’s originality is that although both protocols’ inputs (goals)
and outputs (tactics) are Coq code, the agent internally uses natural language as an intermediate
representation to analyze the input and guide the code generation.

3.1 Tactic-by-tactic proof construction

An overview of the tactic-by-tactic proof construction agent is presented in Figure 1. Given a Coq
theorem, the agent first uses natural language to describe the goal and explain how to continue the
proof (chain-of-thought). The last step synthesizes the corresponding Coq tactics. For instance, in
Figure 1, the goal is to prove that addition over natural numbers is commutative. The agent decides to
try a proof by induction and correctly synthesizes a sequence of two tactics: intros n m. introduces
two variables n and m of type nat (natural numbers), and induction n. starts an induction over n.

The tactics are sent to the Pétanque environment, which parses and executes each tactic to update
the current goal. A textual representation of the new goal is then fed back to the agent to make
further progress in the proof. If the execution returns an error, the current goal does not change,
but we augment the prompt with the failed tactics and ask the LLM to try something else for the
next attempt. For instance, in Figure 1, both tactics succeed and generate two new subgoals: the
base case (for n=0, prove m + 0 = 0 + m) and the induction case (given the induction hypothesis
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Theorem Sn_le_Sm__n_le_m : forall n m, 
  S n <% S m -' n <% m. 

intros n m H. 
inversion H as [H0 | n' H0]. 
- { admit. } 
- { admit. }

intros n m H. 
inversion H as [H0 | n' H0]. 
- apply H0. 
- apply H0.

apply le_n. exact (le_S_n _ _ H). 

1. Introduce n and m. 
2. Introduce the hypothesis S n <= S m into the context. 
3. Use the inversion lemma on the hypothesis to simplify it. 
4. Conclude the proof by referring to the simplify hypothesis.

1. Recognize that m <= m is always true. 
2. Use the le_n constructor to finish the proof. 

Use hypothesis H to conclude n <= m. 

n, n', m  : nat 
H : S n <% S m 
H0 : S n <% m 
H1 : n' = m 
⊢ n <% m

n, m : nat 
H : S n <% S m 
H0 : n = m 
⊢ m <% m

Reason

Templatize

Formalize

~~~~~~~~~
~~~~~~~~~

intros n m H. 
inversion H as [H0 | n' H0]. 
- { apply le_n. } 
- { exact (le_S_n _ _ H). }

Final proof

Figure 2: Hierarchical proof templating.

IHn: n + m = m + n, prove (n + 1) + m = m + (n + 1) ). The textual representation of a goal
uses the the symbol ⊢ to separate hypotheses from the conclusion, and S n denotes n + 1.

Model Interface. In early experiments, we observed that conversation-style reasoning often diverges:
after a few rounds, the output makes very little sense, and the agent never recovers. Following [Yang
et al., 2024] – and similarly to [Thakur et al., 2024] – we use a synthetic interface to summarize at
each goal the global objective (initial theorem), the current goal (in the middle of a proof), and failed
attempts to solve the same goal.

3.2 Hierarchical proof templating

An example execution of the hierarchical proof templating agent is presented in Figure 2. The agent
pipeline is similar to the tactic-by-tactic method, but instead of focusing only on the next step, the
agent generates a complete proof in natural language, before translating the proof in Coq syntax. For
instance, in Figure 2, the agent uses the inversion tactics on the hypothesis H which generate two
subgoals with a simpler hypothesis H0, and then tries to solve each subgoals using this H0 hypothesis.

The Pétanque environment then repairs the proof, replacing failed tactics by holes which admit and
close the current subgoal, removing subsequent tactics until the focus moves to the next subgoal.
Pétanque then checks that the resulting template is correct, i.e., assuming a valid proof for each holes,
the proof is complete. A textual representation of each holes is then fed back to the agent which
repeat the process to fill the holes one by one. For instance, in Figure 2, apply H0 fails on both
subgoals. The agent then repeats the process for each holes, using focused fine-grain reasoning to
prove the corresponding subgoal. The proof is complete when there are no more holes.

4 Proof search
def beam_search(n_steps, n_actions, beam_size):
s = petanque.start(thm)
beam = [s] # Initial state
for step in range(n_steps):
candidates = []
for s in beam:
# Try multiple actions for each state
for a in agent.generate(s, n_actions):
sa = petanque.step(s, a)
if petanque.proof_finished(sa):
return sa.proof # Proof found!

else:
candidates = candidates + [sa]

# Rank and sort candidates
beam = agent.sort(candidates)[:beam_size]

return None # No proof found

We combine our interactive protocol with the clas-
sic beam search algorithm. Inspired by [Yao et al.,
2023], we use the LLM to rank and sort the pro-
posals at each step of the search. A simplified ver-
sion of the code is presented on the right. At each
step, agent.generate generates n_actions possi-
ble steps (tactics or proofs). Each step is then vali-
dated with petanque.step and the state of all the re-
sulting candidates is stored. Then agent.sort calls
the LLM to discuss, compare and finally rank and
sort the candidates for the next step.
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For the tactic-by-tactic agent, the state contains the current goal obtained by running all the previous
steps from the initial goal, i.e., the theorem statement. At each step, agent.generate generates
multiple possible tactics for the current goal. For each tactic proposed by the LLM, petanque.step
executes the tactic to compute the updated state. If the tactic is invalid, we log the failure and the
state is not modified.

For the template agent, the state contains a template, i.e. a proof with holes and a queue containing
pointers to these holes and the associated goals. At each step, agent.generate generates multiple
possible proofs for the first hole in the queue. For each proposed proof, petanque.step builds
the corresponding sub-template. The updated state is obtained by replacing the current hole by the
sub-template and adding the sub-templates holes to the end of the queue.

As a baseline, our naive search corresponds to a beam search with n_action=1 and beam_size=1 (in
which case, the sorting step is useless).

5 Evaluation

Logical Foundations exercises: We extracted the exercises of Logical Foundations [Pierce et al.,
2024], the first volume of the Software Foundation textbooks series that is widely used to introduce
Coq. We extracted 179 exercices. Given the popularity of this textbook the risk of data leak is
high. We filtered out 66 “easy” exercises that are solved with one shot prompting. This dataset thus
comprises 113 exercises.

BB(4) lemmas: To avoid data leak issues, we extracted the 260 lemmas from the recent proof of
BB(4) = 107 [ccz181078, 2024]. The repository was created in April 2024, long after the knowledge
cutoff date of the current version of GPT-4o (October 2023). To provide the necessary context for the
proof, for each lemma we augment the prompt with all the preceding definitions and lemmas.

Evaluation. The results are presented in the following table. We use Coq 8.19.2 and GPT-4o
version 2024-05-13 for all the experiments.

Logical Foundations BB(4)

tactics template template

naive beam naive beam naive beam

% success 30.1 46.0 (13.3) 25.6 (23.9) 38.9 (21.0) 38.0 (38.0) 58.0

For both agents, we set n_actions=4 and beam_size=3, with n_steps=30 for the tactics agent and
n_steps=10 for the template agent. While the tactics agent outperforms the template agent on the
Logical Foundation benchmark, we observe that the template agent is significantly cheaper and faster
than the tactics agent. By design the tactics agent requires much more interactions with the LLM to
reach a full proof step by step.

To limit the costs of our experiments, we only run the template agent on the first 100 Lemmas of the
BB(4) benchmark. For the template agent, the gray numbers indicate the proportion of proofs that
are correct at the first try (no holes). See Appendix A and Tables 1 and 2 for more details.

6 Related work and conclusion

LLMs and theorem provers Automatic theorem-proving is a longstanding challenge in computer
science [Newell et al., 1957]. Recent work has used neural models based on autoregressive language
model that generate a proof tactic by tactic. Most works use finetuned LLMs [Polu and Sutskever,
2020, Han et al., 2021, Wu et al., 2022, Yang et al., 2023, First et al., 2023], trained on (goal, tactic)
pairs obtained from intermediate steps of existing proofs. On the other hand, Lample et al. [2022] use
online training, progressively collecting more data. Closest to our work, Thakur et al. [2024] build a
tactic-by-tactic LLM agent based on GPT-4 and also use an interface to summarize past interactions.
They, however, do not use proof repair or beam search. Also close to our work, Wang et al. [2024] use
proof repair over hierarchical proofs in Isabelle, coupled with best-first search. Contrary to us, they
use fine-tuned models and no chain-of-thought. Finally, Lin et al. [2024] propose a framework for
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training language models to produce informal thoughts prior to each step of a proof, thereby boosting
the model’s theorem-proving capabilities.

Reasoning in LLMs This work is also related to recent investigations on the reasoning abilities
of LLMs [Plaat et al., 2024]. Chain-of-Thought (CoT) prompting [Wei et al., 2022] was shown
to improve LLM’s answers; subsequent work found that these reasoning abilities could be elicited
zero-shot [Kojima et al., 2022]. Further work interleaved CoT with decision-making [Yao et al.,
2022], added search and complex control flow to reasoning [Chen et al., 2022, Yao et al., 2023, Besta
et al., 2024], incorporated refinement and feedback [Madaan et al., 2024, Shinn et al., 2024], and
learned to generate novel reasoning traces that proved beneficial for further training [Zelikman et al.,
2022, 2024]. Like our work, many of these methods – especially the ones using search and refinement
– make use of LLM-based scoring or ranking functions [Zheng et al., 2023].

Conclusion In this work, we have presented a new agent for building proofs leveraging chain of
thought as an intermediate representation, and generating proofs by outputting step-by-step tactics or
hierarchical proof templates. We couple this with beam search and natural language reranking and
obtain good performance on a new evaluation set built with the help of our novel proof environment,
Pétanque. Future work could investigate how one could use reinforcement learning to obtain better
reasoning and performance with smaller models [OpenAI, 2024].
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supported by the Inria Défi LLM4Code and the project ReaLiSe, Émergence Ville de Paris 2021-2025.

References
Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan. A library

for self-adjusting computation. In Nick Benton and Xavier Leroy, editors, ML Workshop, 2005.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In AAAI, 2024.

ccz181078. https://github.com/ccz181078/Coq-BB5/tree/main, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. CoRR, abs/2303.04910, 2023.

Emilio Jesús Gallego Arias, Benoît Pin, and Pierre Jouvelot. jscoq: Towards hybrid theorem proving
interfaces. In Serge Autexier and Pedro Quaresma, editors, UITP, 2016.

Emilio Jesús Gallego Arias. SerAPI: Machine-friendly, data-centric serialization for Coq. preprint,
01 2019. URL https://github.com/ejgallego/coq-serapi/.

Emilio Jesús Gallego Arias. Flèche: Incremental validation for hybrid formal documents. under
revision, 2024.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. arXiv preprint arXiv:2102.06203, 2021.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. NeurIPS, 2022.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. NeurIPS, 2022.

5

https://github.com/ccz181078/Coq-BB5/tree/main
https://github.com/ejgallego/coq-serapi/


Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-star: Learning to interleave thinking
and proving. arXiv preprint arXiv:2407.10040, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. NeurIPS, 2024.

Allen Newell, John Clifford Shaw, and Herbert A Simon. Empirical explorations of the logic theory
machine: a case study in heuristic. In Western joint computer conference: Techniques for reliability,
pages 218–230, 1957.

OpenAI. Learning to Reason with LLMs. https://openai.com/o1/, 2024.

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
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A Detailed results

A.1 Logical Foundations

For the template agent, the gray numbers indicate the proportion of proofs that are correct at the first
try (no holes). We also report the average length of the generated proofs (number of tactics) and the
size of the smallest and the biggest proofs. Details are presented in Table 1.

tactics template

naive beam naive beam total

# success 34 52 (15) 29 (27) 44 113
% success 30.1 46.0 25.6 38.9 100.0

average proof length 10.6 9.4 16.0 12.4
(min, max) proof length (4, 31) (4, 53) (4, 55) (4, 58)

A.2 BB(4)

For each methods, we also report the original proof sizes (mean, min, and max) on the set of lemmas
that were successfully proved. Details are presented in Table 2.

template

naive beam total

# success (21) 38 (38) 58 100
% success 38.0 58.0 100.0

average proof length 13.7 15.4
original average proof length 7.4 7.9

(min, max) proof length (3, 38) (3, 54)
original (min, max) proof length (2, 34) (2, 34)

B From Flèche to Pétanque

In this section we will describe Pétanque, a new environment for lightweight interaction with formal
proof documents. Pétanque targets machine-learning applications such as reinforcement learning
and other agent-based use cases, providing zero-overhead, purely functional1access to Coq’s proof
engine, along with some utilities to implement custom proof search routines.

Flèche Pétanque is built on top of Flèche [Gallego Arias, 2024], a new document manager for Coq.
Flèche is both a formal document interpreter and a build system for Coq proof documents.

A schematic view of Flèche’s behavior when the document is edited is presented in Figure 3. Flèche
maintains an enriched representation of Coq proof documents, including the relevant Coq states
associated to the interactive proofs and their dependencies. When an edit occurs, Flèche only
invalidate the parts of the document that depend on that change, following standard incremental
computing practices [Acar et al., 2005].

At any point, users can query Flèche for data about the document — for example information about
the current proof obligations at a given point of the document — and Flèche will compute the
requested information on-demand, as fast as possible.

coq-lsp Flèche’s edit / query interface accommodates seamlessly the Language Server Protocol
(LSP) protocol, the standard way to provide programming language support in modern Integrated
Development Enviroments (IDEs). The LSP server coq-lsp2 built on top of Flèche thus provides
continuous real-time checking for Coq documents inside popular editors such as Emacs or VSCode.

1computations are treated as stateless functions, i.e., for equal inputs, we obtain equal outputs
2https://github.com/ejgallego/coq-lsp
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Theorem Sn_le_Sm__n_le_m : forall n m, 
  S n <% S m -' n <% m. 

intros n m H. 
inversion H as [H0 | n' H0].  
-   apply le_n.

Decorated document

Coq Interpreter

Flèche

next goal

next statestate code

edit

Editor / LSP

Editor / LSP

apply le_n.

Memoize states

Coq document
in progress

User interface

Figure 3: Flèche: a document manager for Coq. Flèche maintains a decorated document where
each atom (definitions and proof steps) are associated with the Coq state (green dots). When an
edit happens in the editor, Flèche retrieves the corresponding state, execute the code with the Coq
interpreter, stores the new state (blue dot) in the decorated document, and returns the next goal that
can be visualized in the editor. Communication with the editor relies on the LSP protocol.

class Pytanque:
def start(self, file: str, thm: str) -> State
def run_tac(self, state: State, tac: str) -> State
def goals(self, state: State) -> List[Goal]

Figure 4: A simplified view of the pytanque API

Pétanque Unfortunately the edit/query document model turns out to be too expensive for high-
throughput, proof-search applications: while Flèche invalidation on edits is very efficient, the
associated overhead starts to become a problem when the edit frequency is higher than a few times
per second. Moreover, using IDE protocols such as LSP means that agents need to exchange message
with the server multiple times per step, which again creates non-trivial overhead. To overcome the
previous problems, Pétanque provides one-shot direct access to Coq’s proof state and tactic engine.

A simplified view of the Pétanque API is presented in Figure 4. Using this API, agents can perform
speculative proof checking without altering the original document.

The start methods initialize a proof session where the initial Coq proof state correspond to the
theorem statement thm in the document file. Then, given a state, the run_tac method executes a
tactic tac and return the resulting state if successful. The goals method can be used to retrieve a
human readable version of the proof goals (e.g., as in Figures 1 and 2).
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Table 1: Detailed results for the Logical Foundations benchmark.

tactics template

naive beam naive beam

Basics:andb_true_elim2 12 9 10 10
Basics:lower_letter_lowers x 7 x 8
Basics:grade_lowered_once 11 6 10 6
Lists:eqblist_refl x x x x
Lists:count_member_nonzero x x x x
Lists:remove_does_not_increase_count x x x x
Lists:involution_injective x 8 7 7
Lists:option_elim_hd x x x x
Lists:eqb_id_refl x 6 14 14
Lists:update_eq 19 6 x 9
Lists:update_neq 13 6 11 7
Induction:add_comm x 10 x x
Induction:even_S 12 x x x
Induction:add_shuffle3 11 10 x x
Induction:mul_comm x 16 x x
Induction:plus_leb_compat_l x x x x
Induction:mult_plus_distr_r x x x x
Induction:mult_assoc x 11 x x
Induction:add_shuffle3' 9 10 x x
Induction:bin_to_nat_pres_incr x x x x
Induction:nat_bin_nat x x x x
Induction:bin_nat_bin x x x x
Imp:optimize_0plus_b_sound x x x x
Imp:pup_to_2_ceval x x x x
Imp:loop_never_stops x x x x
Imp:no_whiles_eqv x x x x
Imp:execute_app x x x x
Imp:s_compile_correct x x x x
Imp:break_ignore 4 4 4 4
Imp:while_continue 5 4 4 6
Imp:while_stops_on_break x 4 x x
Imp:seq_continue x x x x
Imp:seq_stops_on_break 4 5 x x
Imp:while_break_true 4 4 4 4
Imp:ceval_deterministic x x 30 9
IndProp:ev_double 9 7 11 11
IndProp:ev5_nonsense 7 7 x x
IndProp:ev'_ev x x x x
IndProp:ev_plus_plus x x x x
IndProp:total_relation_is_total x x x x
IndProp:empty_relation_is_empty 5 5 7 8
IndProp:O_le_n 4 4 10 10
IndProp:Sn_le_Sm__n_le_m 16 5 9 9
IndProp:lt_ge_cases x x x x
IndProp:le_plus_l x 6 11 11
IndProp:plus_le x x x x
IndProp:add_le_cases x x x x
IndProp:plus_le_compat_r x 14 x x
IndProp:le_plus_trans x 15 x x
IndProp:n_lt_m__n_le_m x 6 7 9
IndProp:plus_lt x x x x
IndProp:leb_complete x x x 23
IndProp:leb_correct x x x x
IndProp:leb_true_trans 12 11 x 11
IndProp:R_equiv_fR x x x x
IndProp:subseq_refl x x x x
IndProp:subseq_app 8 4 4 4

tactics template

naive beam naive beam

IndProp:subseq_trans 4 4 x 6
IndProp:reflect_iff 11 12 20 18
IndProp:eqbP_practice x x x x
IndProp:merge_filter 19 4 29 4
IndProp:pal_app_rev x x x x
IndProp:pal_rev 4 4 4 4
IndProp:palindrome_converse x x x x
IndProp:pigeonhole_principle x x x x
IndProp:regex_match_correct x x x x
Poly:rev_involutive 14 9 12 12
Poly:map_rev x x x x
Poly:uncurry_curry x x x x
Poly:curry_uncurry x x x x
ImpCEvalFun:ceval__ceval_step x x x x
Logic:leb_plus_exists x x x x
Logic:In_map_iff 31 28 x 46
Logic:In_app_iff x x 55 x
Logic:All_In x x x x
Logic:combine_odd_even_intro x x x x
Logic:combine_odd_even_elim_odd x x x x
Logic:combine_odd_even_elim_even x x x x
Logic:eqb_neq x 15 x x
Logic:eqb_list_true_iff x x x x
Logic:forallb_true_iff x x x x
Logic:tr_rev_correct x x x x
Logic:excluded_middle_irrefutable x 16 x 16
Rel:total_relation_not_partial_function x x x x
Rel:lt_trans' 18 6 x 4
Rel:lt_trans'' 18 9 x 12
Rel:le_S_n 7 5 x 9
Rel:le_not_symmetric x 7 x 7
Rel:le_antisymmetric 7 9 x x
Rel:le_step x x x x
Rel:rtc_rsc_coincide x x x 30
IndPrinciples:booltree_ind_type_correct x x x x
IndPrinciples:Toy_correct x x x x
IndPrinciples:reflect_involution x x x x
Maps:t_update_neq x 12 10 14
Maps:t_update_permute x x x x
Tactics:rev_exercise1 9 7 17 15
Tactics:eqb_true x x x x
Tactics:plus_n_n_injective x x 34 x
Tactics:combine_split x x 21 20
Tactics:bool_fn_applied_thrice 21 16 35 x
Tactics:eqb_sym x x x 17
Tactics:eqb_trans 10 x x x
Tactics:split_combine x x x x
Tactics:existsb_existsb' x x x x
ProofObjects:ev_8 7 7 7 7
ProofObjects:pe_implies_pi x 12 x 11
AltAuto:ev100 x 53 58 55
AltAuto:andb3_exchange x 4 x 4
AltAuto:andb_true_elim2 4 6 10 10
AltAuto:andb3_exchange' x 12 x 23
AltAuto:nor_comm' 12 10 x 10
AltAuto:nor_not' x 11 x 10
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Table 2: Detailed results for the BB(4) benchmark.

orig. naive beam

ffx_eq_x_inj 10 7 7
enc_v1_eq 6 x x
enc_pair_inj 12 x x
enc_list_inj 16 x x
andb_shortcut_spec 3 7 9
orb_shortcut_spec 3 9 7
set_ins_spec 33 x x
empty_set_WF 10 19 16
pop_back_len 8 x 20
pop_back__nth_error 15 x 54
list_eq__nth_error 34 37 44
pop_back'__push_back 6 x x
St_enc_inj 2 5 4
St_eqb_spec 3 3 4
Sigma_eqb_spec 3 x x
Sigma_enc_inj 2 x x
listSigma_inj 12 38 23
map_inj 9 29 29
listT_enc_inj 7 6 6
Dir_eqb_spec 3 11 3
St_list_spec 4 x 12
Sigma_list_spec 4 13 8
Dir_list_spec 4 13 13
forallb_St_spec 9 x 14
forallb_Sigma_spec 9 18 17
forallb_Dir_spec 9 x 13
Steps_trans 9 x x
Steps_unique 11 x 19
Steps_NonHalt 22 x x
HaltsAt_unique 16 x x
NonHalt_iff 27 x x
LE_step 10 x 14
LE_Steps 10 13 12
LE_NonHalts 8 x x
HaltTimeUpperBound_LE_NonHalt 7 x x
LE_HaltsAtES_1 11 x x
LE_HaltsAtES_2 14 x x
HaltTimeUpperBound_LE_Halt 15 x x
St_swap_swap 12 x x
Trans_swap_swap 7 8 8
option_Trans_swap_swap 7 10 10
TM_swap_swap 8 x 15
ExecState_swap_swap 7 6 6
step_swap 18 x 48
step_halt_swap 10 x 39
Steps_swap 27 x x
LE_swap_0 7 x 23
LE_swap 9 x x
InitES_swap 8 x 15
HaltsAt_swap_0 15 x 17

orig. naive beam

HaltsAt_swap 9 31 30
HaltTimeUpperBound_LE_swap 10 x x
HaltTimeUpperBound_LE_swap_InitES 5 x x
Trans_rev_rev 7 6 8
option_Trans_rev_rev 8 11 10
TM_rev_rev 7 8 11
Tape_rev_rev 7 12 9
ExecState_rev_rev 7 6 6
fext_inv 3 5 5
step_rev 44 x x
step_halt_rev 11 x x
Steps_rev 27 x x
LE_rev_0 7 19 19
LE_rev 9 x x
InitES_rev 3 8 6
HaltsAt_rev_0 15 20 18
HaltsAt_rev 9 x x
HaltTimeUpperBound_LE_rev 10 x x
HaltTimeUpperBound_LE_rev_InitES 5 x x
Trans_swap_id 10 x x
isUnusedState_spec 58 x x
step_UnusedState 11 13 17
Steps_UnusedState 15 x x
HaltTimeUpperBound_LE_HaltsAtES_UnusedState 68 x x
TM0_LE 7 x x
UnusedState_TM0 10 12 21
UnusedState_dec 4 x 12
HaltTimeUpperBound_LE_HaltAtES_MergeUnusedState 31 x x
St_to_nat_inj 4 5 5
St_suc_le 4 x 3
St_suc_eq 5 x 14
St_suc_neq 3 17 8
HaltTimeUpperBound_LE_HaltAtES_UnusedState_ptr 21 x x
HaltsAtES_Trans 9 x 25
UnusedState_upd 68 x x
UnusedState_ptr_upd 97 x x
isHaltTrans_0 3 21 18
CountHaltTrans_upd 7 x x
CountHaltTrans_0_NonHalt 21 x x
Trans_list_spec 6 x 8
St_leb_spec 13 x 10
TM_simplify_spec 6 9 7
TM_upd'_spec 5 9 8
nat_eqb_spec 3 11 11
TNF_Node_expand_spec 64 x x
TNF_Node_NonHalt 6 x 9
HaltDecider_cons_spec 7 16 39
SearchQueue_upd_spec 74 x x
SearchQueue_upd_bfs_spec 30 x x
SearchQueue_reset_spec 13 29 26
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