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ABSTRACT

Test-time adaptation (TTA) aims to address distribution shifts between source and
target data by relying solely on target data during testing. In open-world scenarios,
models often encounter noisy samples, i.e., samples outside the in-distribution (ID)
label space. Leveraging the zero-shot capability of pre-trained vision-language
models (VLMs), this paper introduces Zero-Shot Noisy TTA (ZS-NTTA), focusing
on adapting the model to target data with noisy samples during test-time in a
zero-shot manner. In the preliminary study, we reveal that existing TTA methods
suffer from a severe performance decline under ZS-NTTA, often lagging behind
even the frozen model. We conduct comprehensive experiments to analyze this
phenomenon, revealing that the negative impact of unfiltered noisy data outweighs
the benefits of clean data during model updating. In addition, as these methods
adopt the adapting classifier to implement ID classification and noise detection
sub-tasks, the ability of the model in both sub-tasks is largely hampered. Based
on this analysis, we propose a novel framework that decouples the classifier and
detector, focusing on developing an individual detector while keeping the classifier
(including the backbone) frozen. Technically, we introduce the Adaptive Noise
Detector (AdaND), which utilizes the frozen model’s outputs as pseudo-labels to
train a noise detector for detecting noisy samples effectively. To address clean data
streams, we further inject Gaussian noise during adaptation, preventing the detector
from misclassifying clean samples as noisy. Beyond the ZS-NTTA, AdaND can
also improve the zero-shot out-of-distribution (ZS-OOD) detection ability of VLMs.
Extensive experiments show that our method outperforms in both ZS-NTTA and
ZS-OOD detection. On ImageNet, AdaND achieves a notable improvement of
8.32% in harmonic mean accuracy (AccH) for ZS-NTTA and 9.40% in FPR95 for
ZS-OOD detection, compared to state-of-the-art methods. Importantly, AdaND is
computationally efficient and comparable to the model-frozen method.

1 INTRODUCTION

Machine learning models suffer performance degradation when the target distribution differs from
the source distribution. To mitigate this issue, test-time adaptation (TTA) (Wang et al., 2021; Niu
et al., 2023; Wang et al., 2022; Gao et al., 2023a; Liang et al., 2023) has been introduced, aiming to
enhance models’ generalization to the target distribution in test-time. However, TTA assumes the
labels of testing samples are within the in-distribution (ID) label space, which is not practical in an
open-world setting (Yang et al., 2022; 2021) where models often encounter noisy samples1.

This paper introduces the Zero-Shot Noisy TTA (ZS-NTTA) setting, which leverages off-the-shelf
pre-trained vision-language models (VLMs) (Radford et al., 2021) to adapt target data containing
noisy samples during test-time in a zero-shot way. Different from Zero-Shot Out-Of-Distribution
(ZS-OOD) Detection (Ming et al., 2022; Esmaeilpour et al., 2022; Wang et al., 2023), ZS-NTTA
requires detecting noisy samples online and emphasizes classification accuracy more. Recently,
several works (Li et al., 2023; Gong et al., 2023) have explored the challenge of noisy samples in
TTA, which require task-specific models that are pre-trained with specific source datasets. However,
Li et al. (2023) requires prototypes of the training data, which are unavailable in VLMs. On

1Noisy samples refer to data that lie outside the ID label space, whereas clean samples stay within it.
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Figure 1: Comparison between TTA, noisy TTA, zero-shot OOD detection, and the proposed zero-
shot noisy TTA. Only zero-shot noisy TTA focuses on both clean/noisy classification accuracy and
performs in a task-agnostic / zero-shot manner. ZS-NTTA requires online detection of noisy samples.

the other hand, Gong et al. (2023) focuses solely on the classification of clean data, neglecting
the recognition of noisy samples. The comparison of different settings is illustrated in Figure 1.
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Figure 2: Performance ranking distri-
bution of five TTA methods across 44
ID-OOD dataset pairs. The ranks of dif-
ferent methods on one ID-OOD pair are
ranked according to accuracy AccH. A
rank closer to 1 denotes better perfor-
mance, and a larger bottom area reflects
superior overall performance. We also
evaluate these methods using absolute
accuracy in Figure 7 in Appendix H.

In this paper, we first build the ZS-NTTA benchmarks
by leveraging CLIP as the VLM and evaluate the perfor-
mance of existing TTA methods. We equip each method
with the advanced OOD detection technique (Ming et al.,
2022) and an adaptive threshold to filter out noisy sam-
ples. Figure 2 shows the performance rankings of existing
methods in ZS-NTTA across 44 ID-OOD dataset pairs.
We find the zero-shot CLIP (ZS-CLIP), which is frozen
during adaptation, shows promising performance, partic-
ularly in distinguishing between clean and noisy samples.
Despite filtering out noisy samples before updating the
model, most TTA methods still underperform ZS-CLIP.

We design three model adaptation pipelines to understand
the above phenomenon and analyze the impact of noisy
and clean samples on gradients during adaptation. Our
findings reveal that noisy samples commonly lead to much
larger gradients, often by an order of magnitude, compared
to clean samples. Therefore, for methods (Wang et al.,
2021) that continuously optimize the parameters during
the adaptation, the model is prone to overfitting to noisy samples. Furthermore, even for methods (Shu
et al., 2022) that reset parameters at each step, their ability to distinguish between clean and noisy
samples will be diminished after each updating step with noisy data. This underscores the detrimental
effect of unfiltered noisy samples on model adaptation, outweighing the benefits of clean samples.
Moreover, since these TTA methods implement ID classification and noise detection sub-tasks with
the adapting classifier, the ability of models to handle both sub-tasks will be significantly reduced.
Thus, we raise a question:

How to effectively detect noisy samples to mitigate their negative impacts in test-time adaptation?

To this end, we propose a novel framework inspired by the above observation, which decouples the
classifier and detector with a focus on developing an individual detector while keeping the classifier
(including the backbone) frozen. This framework offers two key benefits: 1) better distinguishing
between noisy and clean samples, and 2) preventing detrimental effects caused by the classifier
adapting to noisy samples. Technically, we propose Adaptive Noise Detector, termed AdaND. Given
that ZS-CLIP can effectively distinguish the most clean and noisy samples, we utilize data filtered
by ZS-CLIP to train a detector while keeping the rest of the model frozen during the testing phase.
When encountering clean data streams, the detector tends to misclassify numerous clean samples as

2
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noisy ones. To handle such a situation, we propose intentionally introducing Gaussian noise during
adaption, leading to an effective detector that is robust to both clean and noisy scenarios.

AdaND offers several advantages: 1) Zero-shot: By leveraging off-the-shelf VLMs, AdaND can
accommodate various ID datasets and scale effectively to ImageNet and its variants; 2) Noise-agnostic:
AdaND can handle a range of noise scenarios, including various types of noisy samples and different
noise ratios (including scenario with exactly clean data); 3) High-performance: AdaND exhibits
superior performance in ZS-NTTA. In addition, AdaND can extend to ZS-OOD detection task and
produce state-of-the-art performance; 4) Low computational overhead: The computational cost of
AdaND is comparable to that of frozen CLIP. Our contributions can be summarized as follows:

• We propose a more practical setting, i.e., Zero-Shot Noisy TTA (ZS-NTTA), and build benchmarks
for evaluation. Based on the built benchmarks, we analyze why adapted methods suffer from
performance decline and underperform the model-frozen method in ZS-NTTA. (Sec. 2 & Sec. 3).

• We propose AdaND, a simple and effective method that can cover both noisy and clean data streams
in ZS-NTTA, offering computational efficiency comparable to model-frozen method. (Sec. 4).

• Our method demonstrates superior performance in both ZS-NTTA and ZS-OOD detection tasks.
Notably, in ImageNet, AdaND achieves a 8.32% improvement in AccH compared to existing TTA
methods and a 9.40% improvement in FPR95 over current OOD detection methods (Sec. 5).

2 ZERO-SHOT NOISY TTA

Definition of In-Distribution in VLMs. Following zero-shot OOD detection (Ming et al., 2022;
Esmaeilpour et al., 2022; Jiang et al., 2024), in our setting, the in-distribution (ID) classes are defined
based on the classification task of interest rather than the classes used in pre-training. Accordingly,
noisy samples are defined as data outside the ID label space.

Problem Formulation. We define the test set D = {X ,Yid ∪ Ynoisy}, where X indicates the input
space, Yid represents the ID label space, and Ynoisy denotes the noisy label space. We are given input
samples {xi} ∈ X , the ID class names Yid = {y1, y2, ..., yK} with K classes, and pre-trained VLMs.
Owing to being trained on vast amounts of data, VLMs have learned robust feature representations,
thereby enabling classification in a zero-shot manner. Due to noisy samples in the test data stream, we
first detect whether an input sample is noisy. If the sample is identified as clean, it is classified using
the VLM. It is directly categorized without further classification if recognized as a noisy sample.

Why Investigating ZS-NTTA is Meaningful and Practical? One cannot ignore the noisy samples
in real-world TTA deployment since the real world is open and full of unknown samples. We have
demonstrated that the noisy sample is a significant obstacle to existing TTA methods in Sec. 3.2.
While ZS-OOD detection (Ming et al., 2022; Jiang et al., 2024; Esmaeilpour et al., 2022) considers
noisy samples, it primarily focuses on the model’s detection capability rather than improving the
classification capability for ID data. More critically, the ID classification in existing ZS-OOD
detection methods is typically evaluated in a closed-world setting, assuming a clean data stream. In
contrast, ZS-NTTA requires detecting noisy samples online, placing greater emphasis on classification
accuracy in open-world settings. We also discuss and compare existing test-time OOD detection
work (Fan et al., 2024; Gao et al., 2023b) in Appendix A. What’s more, leveraging VLMs, ZS-NTTA
can be performed in a zero-shot manner, making it more practical than noisy TTA.

Evaluation Protocol. We use three metrics to evaluate the performance in ZS-NTTA: AccS, AccN,
and AccH. AccS measures classification accuracy on clean samples2, AccN measures detection
accuracy on noisy samples, and AccH is the harmonic mean of AccS and AccN, providing a balanced
measure of both accuracies. The specific formulations of these metrics are as follows:

AccS =

∑
xi,yi∈D 1(yi = ŷi) · 1(yi ∈ Yid)∑

xi,yi∈D 1(yi ∈ Yid)
, AccN =

∑
xi,yi∈D 1(ŷi ∈ Ynosiy) · 1(yi ∈ Ynosiy)∑

xi,yi∈D 1(yi ∈ Ynosiy)
, AccH = 2 ·

AccS · AccN

AccS + AccN
.

(1)

Simple Baseline. We introduce a simple yet effective baseline named ZS-CLIP, employing the
MCM (Ming et al., 2022) score as our score function to evaluate the confidence of the model’s output

2Note that, if a clean sample is recognized as a noisy sample, it is wrongly classified.
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for detecting noisy samples. Following zero-shot OOD detection (Ming et al., 2022), we construct
the classifier using ID class names and perform classification based on the cosine similarity between
the input image feature I(xi) and text features {T (tk)}Kk=1. We define the cosine similarity between
the image and text features as follows: sk(xi) =

I(xi)·T (tk)
∥I(xi)∥·∥T (tk)∥ . Here, I denotes the image encoder,

and T signifies the text encoder. xi represents the input sample, and tk is the text prompt “this
is a photo of a ⟨yk⟩” corresponding to the ID class name yk. We can detect the input sample
through the noise detector G(·):

Gλ(xi) =

{
Clean S(xi) ≥ λ

Noise S(xi) < λ
, where S(xi) = max

k

esk(xi)/τ∑K
j=1 e

sj(xi)/τ
, (2)

λ is the threshold, S(·) denotes the MCM score, and τ is the temperature. If the sample is detected as
clean, we then use the text-based classifier to classify it.

Adaptive Threshold. Various ID datasets can be encountered in ZS-NTTA, making a fixed thresh-
old λ suboptimal. Therefore, an adaptive threshold is a better choice. According to OWTTT (Li et al.,
2023), the distribution of OOD scores follows a bimodal distribution. Based on this observation, (Li
et al., 2023) proposes minimizing intra-class variance to determine the adaptive threshold:

min
λ

1

Nid

∑
i

[S(xi)−
1

Nid

∑
j

1(S(xj) > λ)S(xj)]
2+

1

Nood

∑
i

[S(xi)−
1

Nood

∑
j

1(S(xj) ≤ λ)S(xj)]
2,

(3)
where Nid =

∑Nq
i 1(S(xi) > λ), Nood =

∑Nq
i 1(S(xi) ≤ λ) and Nq is the length of a queue at

test-time to update the score distribution. However, the score in OWTTT relies on source prototypes,
which are unavailable in pre-trained VLMs. Here, we propose using the MCM score as an alternative.
Furthermore, we conduct experiments with various fixed thresholds ranging from 0.1 to 0.9 to
validate the reliability of our adaptive threshold, as detailed in Appendix C. The averaged results
across different ID datasets indicate that the adaptive threshold outperforms fixed threshold.

3 A COMPREHENSIVE ANALYSIS OF ZERO-SHOT NOISY TTA

In this section, we introduce our ZS-NTTA benchmark and provide a comprehensive analysis of the
performance of current TTA methods for this task.

3.1 ZERO-SHOT NOISY TTA BENCHMARK

Benchmark Datasets. To prevent overlap in label spaces of noisy and clean samples, we use
established ID-OOD dataset3 pairs from standard OOD detection benchmarks. The ID datasets
include CIFAR-10/100 (Krizhevsky et al., 2009), CUB-200-2011 (Wah et al., 2011), STANFORD-
CARS (Krause et al., 2013), Food-101 (Bossard et al., 2014), Oxford-IIIT Pet (Parkhi et al., 2012),
ImageNet (Deng et al., 2009), ImageNet-V2 (Recht et al., 2019), ImageNet-A (Hendrycks et al.,
2021b), ImageNet-R (Hendrycks et al., 2021a), and ImageNet-Sketch (Wang et al., 2019). The OOD
datasets encompass SVHN (Netzer et al., 2011), LSUN (Yu et al., 2015), iNaturalist (Van Horn et al.,
2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2017), and Texture (Cimpoi et al., 2014). The
specific ID-OOD pairs are detailed in Table 8 in Appendix D.1.

Evaluated Methods. We evaluate ZS-CLIP (Radford et al., 2021), Tent (Wang et al., 2021),
SoTTA (Gong et al., 2023), and TPT (Shu et al., 2022) in our benchmarks. ZS-CLIP keeps all
parameters frozen and utilizes Eq. (2) to determine whether an input sample xi belongs to the clean
or noisy set. Samples identified as clean, denoted as x′

i, are then subjected to further classification.
The other methods also utilize Eq. (2) to filter samples, subsequently using x′

i to update the model.
Specifically, Tent updates the normalization layers within the image encoder by entropy minimization.
SoTTA stores x′

i to a memory bank and selects the highest confidence samples to update the model
every 64 steps using entropy-sharpness minimization. TPT applies data augmentation to x′

i and
updates the text prompt through entropy minimization.

3ID datasets and clean datasets are interchangeable, as are OOD datasets and noisy datasets.
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Table 1: Failure case study of existing TTA methods with CIFAR-10 as the ID dataset. Green
indicates an improvement over ZS-CLIP in average AccH, while red indicates the opposite.

Method SVHN LSUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

ZS-CLIP 83.55 98.39 90.36 83.11 97.82 89.87 82.18 91.82 86.73 81.73 76.26 78.90 82.64 91.07 86.47
Tent (GT) 90.77 96.99 93.78 90.40 93.55 91.95 90.07 90.22 90.14 89.87 74.50 81.47 90.28 88.81 89.34(+2.87%)
Tent (Normal) 87.18 52.90 65.85 89.03 73.96 80.80 89.78 88.48 89.13 88.78 65.44 75.34 88.69 70.19 77.78(-8.69%)
Tent (All-update) 81.74 43.13 56.47 80.17 55.59 65.65 89.28 84.64 86.90 87.86 56.27 68.60 84.76 59.91 69.41(-17.06%)
SoTTA (GT) 90.45 97.47 93.83 90.03 94.88 92.39 89.68 91.39 90.53 89.30 75.96 82.09 89.87 89.92 89.71(+3.25%)
SoTTA (Normal) 90.21 81.71 85.75 90.13 91.06 90.59 89.56 90.96 90.25 89.04 74.17 80.93 89.73 84.47 86.88(+0.42%)
SoTTA (All-update) 89.69 73.13 80.57 89.88 90.76 90.32 89.47 90.54 90.00 89.05 74.50 81.13 89.52 82.23 85.50(-0.96%)
TPT (GT) 85.86 98.46 91.73 85.86 98.00 91.53 85.19 92.30 88.60 84.88 77.33 80.93 85.45 91.52 88.20(+1.73%)
TPT (Normal) 81.76 98.85 89.50 81.53 97.93 88.98 80.43 92.11 85.87 79.88 77.18 78.51 80.90 91.52 85.72(-0.75%)
TPT (All-update) 85.18 96.98 90.70 84.84 91.15 87.88 83.92 75.36 79.41 83.59 54.11 65.69 84.38 79.40 80.92(-5.55%)
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Figure 3: Failure case analysis of Tent (Wang et al., 2021) in ZS-NTTA. (a) and (b) show the score
distributions of ZS-CLIP and Tent, respectively, revealing that Tent makes it difficult to distinguish
between clean and noisy samples. The horizontal axis is the value of OOD score. (c) illustrates the
score difference between Tent and ZS-CLIP, indicating that the confidence of noisy samples tends to
increase in Tent. ID dataset: CIFAR-10; OOD dataset: SVHN.

3.2 FAILURE CASE STUDY

In this subsection, we analyze the failure case illustrated in Figure 2, i.e., ZS-CLIP outperforms
most tuning-based methods on most ID datasets, highlighting three key observations. We begin
by introducing three designed model adaptation pipelines to illustrate the impact of noisy samples
on model adaptation (Observation 3.1). Subsequently, we visualize the score difference between
ZS-CLIP and tuning-based methods to understand the failure case (Observation 3.2). Finally, we
delve into the underlying reasons for the significant negative impact of noisy samples on model
adaptation by conducting analyses of the model’s gradients (Observation 3.3).

Observation 3.1. Noisy samples have a significant negative impact on model adaptation during TTA.

To investigate the impact of noisy samples in TTA, we construct three pipelines for each fine-
tuning approach: Ground Truth (GT), Normal, and All-update pipelines. The GT pipeline
updates the model parameters using only the ground truth clean data, which is unavailable in practice.
The Normal pipeline updates the parameters using the data filtered by Eq. (2), which may include
some noisy data, and this is the pipeline adopted in our main results (Sec. 5). The All-update
pipeline updates the model parameters using all the available data, i.e., it includes all the noisy data.

Table 1 presents the performance of the three pipelines using CIFAR-10 as the ID dataset. The
performance hierarchy observed for most methods is GT > ZS-CLIP > Normal > All-update.
This indicates that for the Normal pipeline, the negative impact of the unfiltered noisy data on model
adaptation outweighs the benefits of the clean data, resulting in performance inferior to that of ZS-
CLIP. SoTTA is on par with ZS-CLIP within the Normal pipeline due to its refined sample selection
for model adaptation. SoTTA employs a memory bank to store high-confidence samples, utilizing
only those with the highest confidence samples for updating the model. This strategy effectively
filters out the majority of noisy samples, aligning with our assertion that noisy samples significantly
and negatively impact model adaptation. Nonetheless, the improvement of SoTTA over ZS-CLIP
remains marginal. For failure cases involving more ID datasets, please refer to Appendix H.1.

Observation 3.2. Throughout the model adaptation process in Tent, the scores of noisy samples
gradually increase, ultimately rendering the MCM score incapable of distinguishing noisy samples.
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Figure 4: The impact of clean and noisy samples on the gradients. Note that the gradients of noisy
samples are substantially larger in the first and second stages. The model effectively filters out noisy
samples in the first stage but gradually struggles to distinguish between clean and noisy samples. ID
dataset: CIFAR-10; OOD dataset: SVHN; Batch size: 64. Please see Figure 9 for an enlarged view.

We show the score distributions for ZS-CLIP and Tent under the Normal pipeline in Figures 3a
and 3b to better understand the impact of unfiltered noisy samples on model adaptation. Additionally,
Figure 3c depicts the score differences for the same input sample between Tent and ZS-CLIP. ZS-
CLIP effectively separates ID and OOD score distributions. In contrast, the increase in scores for
most noisy samples in Tent makes the distinction between clean and noisy samples difficult. For the
analysis of TPT, please refer to Appendix H.2.

Observation 3.3. MCM score with the adaptive threshold can detect most noisy samples during the
early stages of TTA in Tent, though some inaccuracies may remain. However, these few inaccuracies
during the early TTA stages can gradually lead the model to overfit to noisy samples.

We analyze the model’s gradients in Tent under the Normal pipeline to understand why noisy
samples negatively impact model adaptation. Figure 4 shows how clean and noisy samples affect the
gradients of the final layer normalization in the image encoder during TTA. As for clean samples, the
model’s gradients gradually decrease and remain relatively stable. The impact of noisy samples on
the model’s gradients can be roughly divided into three stages.

• First Stage: The model effectively filters out noisy samples, with only a minimal number being
erroneously classified as clean samples.

• Second Stage: The model’s performance progressively declines as the impact of noisy samples
becomes more apparent. The reliability of the MCM score weakens, and the model increasingly
struggles to identify noisy samples. Moreover, the gradient magnitude of the noisy samples remains
significant during this stage.

• Final Stage: The model overfits to the noisy samples, resulting in a decrease in the model’s gradient
magnitude. At this stage, it almost loses the ability to distinguish between clean and noisy samples.

Note that TPT resets the model at each step, meaning noisy samples’ influence on the model’s updates
does not be accumulated. As a result, the impact of noisy samples on TPT is relatively smaller
compared to Tent. Nonetheless, learning with noisy samples, with model reset at each step, still
results in TPT performing worse than ZS-CLIP.

To this end, we naturally consider whether decoupling the classifier and detector might be a superior
strategy for the ZS-NTTA task. On one hand, focusing on developing a robust detector can more
effectively distinguish noisy samples. On the other hand, keeping the classifier frozen can prevent it
from the adverse effects of adapting to noisy samples.

4 METHOD

This section demonstrates how to develop the framework that decouples the classifier and detector
to better cope with the ZS-NTTA task based on the analysis presented in Sec. 3.2. The proposed
framework focuses on training an adaptive noise detector to distinguish noisy samples while keeping
the classifier frozen. Specifically, our method consists of two modules: (1) an Adaptive Noise
Detector (AdaND), and (2) intentionally injecting Gaussian noise to cover the clean data stream case.
The overall framework is illustrated in Figure 5.
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Figure 5: Overview of the proposed framework. We use the detection results from ZS-CLIP as
pseudo-labels to train the Adaptive Noise Detector (AdaND). In the early stage, we directly use the
ZS-CLIP to distinguish clean-noise samples, while in the later stage, we use the AdaND instead. The
predicted clean samples are then classified based on the text-based classifier. To further handle the
clean data stream case, we intentionally inject Gaussian noise as additional noisy samples to avoid
wrongly assigning too many clean samples as noisy ones.

4.1 ADAPTIVE NOISE DETECTOR

We use the image feature I(x) extracted from the frozen model as the training data during TTA.
Given that ZS-CLIP can effectively distinguish most ID and noisy samples, we use the detection
results from ZS-CLIP as pseudo-labels in test-time throughout the process. In addition, we employ a
single linear layer as the noise detector, leveraging the standard cross-entropy loss for training, i.e.,
L = −

∑C
i=1 y

pse
i log(ŷi), ŷi = ezi/

∑C
j=1 ezj . Here, ypse

i is the pseudo-label generated by ZS-CLIP,
zj denotes the logit of the noise detector for class i, and C = 2. Our computational overhead is low
since only the noise detector is updated during training.

After each training step, the test sample will be evaluated again for clean-noise detection and
classification using its image feature. Since the noise detector may not adapt sufficiently in the early
steps of the data stream, we divide the clean-noise detection process into two stages. In the first stage,
e.g., for the initial N optimization steps, we use the output from ZS-CLIP as the detection result. In
the second stage, we switch to using the output from the noise detector as the detection result. We
also use the adaptive threshold in Eq. (3) as the detection threshold rather than directly set λ = 0.5.

To handle scenarios involving a single input sample, i.e., the batch size is 1, we introduce a queue
with a capacity of L to store the outputs from the noise detector. We update the noise detector with the
queue’s data every L samples, and empty the queue after each update. Note that each sample yields
an immediate test result upon input and does not require the accumulation of L samples. What’s
more, our queue only stores the input features, outputs, and pseudo-labels, ensuring privacy while
maintaining minimal and negligible computational and storage overheads.

4.2 GAUSSIAN NOISE INJECTING

How to handle the clean data stream without data stream prior? Although the noise detector
effectively differentiates between noisy and clean samples within a noisy data stream, it encounters
challenges when the test data lacks noisy samples. In such cases, the detector tends to misclassify
many clean samples as noisy, leading to a significant drop in performance. To address this, we
intentionally inject noise as additional noisy samples to cover the clean data stream case. In this
way, all manually injected noise will be included in the adaptive threshold calculation, preventing the
misclassification of clean samples as noisy. During testing, we exclusively consider samples from the
original data stream, excluding manually injected noise samples.

How to choose the appropriate noise before inference? The injected noise must 1) lie outside the
ID label space and 2) be easily accessible without incurring extra costs for auxiliary data collection.
The choice of injected noise is flexible; for simplicity and effectiveness, we choose Gaussian noise.
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Table 2: Zero-shot noisy TTA results for CUB-200-2011, STANFORD-CARS, Food-101, and
Oxford-IIIT Pet as the ID datasets. The bold indicates the best performance on each dataset.

ID Method iNaturalist SUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

CUB-200-2011

ZS-CLIP 38.13 88.06 53.22 38.10 87.86 53.15 37.56 79.11 50.94 38.00 87.81 53.04 37.95 85.71 52.59
Tent 37.02 46.95 41.40 38.61 55.55 45.56 34.98 41.77 38.07 40.41 74.83 52.48 37.75 54.78 44.38
SoTTA 41.67 84.37 55.79 42.08 86.83 56.69 41.44 77.58 54.02 42.04 86.52 56.59 41.81 83.82 55.77
TPT 37.41 89.57 52.78 37.49 89.67 52.87 36.88 81.67 50.81 37.44 89.45 52.79 37.30 87.59 52.31
AdaND (Ours) 52.34 96.40 67.84 52.41 93.91 67.27 51.82 81.24 63.28 51.82 91.51 66.17 52.10 90.77 66.14

STANFORD-CARS

ZS-CLIP 50.18 96.62 66.05 53.48 98.81 69.40 53.59 99.05 69.55 53.36 98.05 69.11 52.65 98.13 68.53
Tent 44.12 52.33 47.88 54.27 94.51 68.95 54.60 97.37 69.97 54.33 96.65 69.56 51.83 85.22 64.09
SoTTA 51.51 92.84 66.26 54.81 97.57 70.19 55.06 98.50 70.64 54.75 96.96 69.98 54.03 96.47 69.27
TPT 49.24 96.97 65.31 52.40 98.83 68.49 52.75 99.27 68.89 52.42 98.39 68.40 51.70 98.36 67.77
AdaND (Ours) 62.80 99.79 77.09 62.73 99.82 77.04 62.91 99.75 77.16 62.76 99.29 76.91 62.80 99.66 77.05

Food-101

ZS-CLIP 80.60 94.76 87.11 80.75 96.08 87.75 80.51 93.12 86.36 80.62 94.62 87.06 80.62 94.65 87.07
Tent 75.83 25.09 37.70 82.86 85.10 83.97 82.54 87.03 84.73 82.26 80.13 81.18 80.87 69.34 71.90
SoTTA 81.84 84.09 82.95 82.49 93.34 87.58 82.05 90.10 85.89 82.44 91.62 86.79 82.20 89.79 85.80
TPT 79.70 94.93 86.65 79.92 96.19 87.30 79.70 93.86 86.20 79.76 95.14 86.77 79.77 95.03 86.73
AdaND (Ours) 86.50 99.87 92.71 86.40 99.64 92.55 86.44 96.51 91.20 86.42 99.40 92.46 86.44 98.85 92.23

Oxford-IIIT Pet

ZS-CLIP 78.58 88.30 83.16 79.75 87.30 83.35 80.20 91.16 85.33 79.59 84.17 81.82 79.53 87.73 83.41
Tent 80.07 78.09 79.07 81.19 68.30 74.19 81.48 74.72 77.95 80.64 62.51 70.43 80.84 70.91 75.41
SoTTA 80.07 83.54 81.77 81.78 83.83 82.79 82.09 87.52 84.72 81.49 81.25 81.37 81.36 84.03 82.66
TPT 77.56 89.71 83.19 78.87 89.82 83.99 79.17 92.26 85.22 78.62 87.32 82.74 78.56 89.78 83.78
AdaND (Ours) 85.81 98.78 91.84 85.82 98.19 91.59 85.86 98.68 91.82 85.88 96.58 90.92 85.84 98.06 91.54

During testing, we insert a Gaussian noise sample for every M input sample in the data stream,
regardless of whether the stream is clean or noisy. Note that we don’t have prior knowledge
about whether the data stream is clean or noisy. The detailed algorithm for AdaND is provided in
Algorithm 1 in Appendix D.2.

5 EXPERIMENTS

5.1 SETUPS

Compared Methods and Evaluation Metrics. We compare our method with existing TTA methods
mentioned in Sec. 3.1 on the ZS-NTTA task using 11 ID datasets from Sec. 3.1, evaluating with AccS,
AccN, and AccH. Additionally, we compare with leading OOD detection methods on the ZS-OOD
task, including Energy(Liu et al., 2020), MaxLogit (Hendrycks et al., 2019a), MCM (Ming et al.,
2022), CLIPN (Wang et al., 2023), and NegLabel (Jiang et al., 2024), using AUROC and FPR95 as
metrics. Please see Appendix D.2 for the implementation details of compared methods.

AdaND Setups. In our main results, we maintain consistent hyper-parameters across all datasets.
Specifically, we use CLIP (Radford et al., 2021) as our VLM, with ViT-B/16 (Dosovitskiy et al.,
2020) as the image encoder and masked self-attention Transformer (Vaswani et al., 2017) as the
text encoder, both keeping frozen. We employ a single linear layer as our noise detector, which
remains learnable throughout the TTA process. We optimize with Adam (Kingma & Ba, 2014), using
a learning rate of 0.0005 and no weight decay. Gaussian noise is injected every 8 samples (M = 8).
The noise detector’s queue length (L) is set to 128, and the adaptive threshold’s queue length (Nq)
follows OWTTT (Li et al., 2023) with a value of 512. We use N = 10 for the first stage. As for the
ZS-OOD detection task, we use MCM (Ming et al., 2022) score from the output logit of the noise
detector as our score function. Unless otherwise specified, we set the batch size (bs) to 1 for AdaND.

5.2 MAIN RESULTS

Zero-Shot Noisy TTA Task. Table 2 and Table 3 present a detailed comparison of ZS-NTTA task
results across various ID datasets. On ImageNet, AdaND enhances the average performance by
8.32% in terms of AccH. Although we filter the data using the MCM score and adaptive threshold, a
considerable portion of noisy data remains unfiltered. Consequently, when Tent leverages the filtered
data to update the model’s normalization layers, it inadvertently causes a substantial performance
decline. SoTTA improves data selection by focusing on the highest confidence samples, slightly
outperforming ZS-CLIP on some datasets, but the gains are limited. Despite TPT resetting the model
before each sample input, the unfiltered noisy data causes TPT to perform worse than ZS-CLIP
on most ID datasets. Since our method decouples the classifier and detector, which focuses on
developing the noise detector and keeping the classifier frozen, our AdaND can better identify noisy
samples and prevent unfiltered ones from affecting the classifier. Due to space constraints, the results
for CIFAR-10/100 are provided in Table 10 in Appendix E. In summary, our AdaND demonstrates
superior performance over the compared methods, achieving the best results across all datasets.
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Table 3: Zero-shot noisy TTA results for ImageNet and its variants as the ID datasets. The bold
indicates the best performance on each dataset.

ID Method iNaturalist SUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

ImageNet

ZS-CLIP 54.01 86.53 66.51 53.43 83.96 65.30 52.71 78.52 63.08 53.35 80.50 64.17 53.38 82.38 64.77
Tent 48.56 35.74 41.18 55.44 75.54 63.95 54.94 70.93 61.92 55.76 73.98 63.59 53.67 64.05 57.66
SoTTA 53.15 62.68 57.52 53.16 68.76 59.96 53.64 68.05 59.99 53.60 69.16 60.39 53.39 67.16 59.47
TPT 52.58 88.93 66.09 51.91 86.09 64.77 51.11 80.01 62.38 51.80 82.89 63.76 51.85 84.48 64.25
AdaND (Ours) 63.26 96.87 76.54 61.34 89.44 72.77 62.45 83.54 71.47 61.92 84.82 71.58 62.24 88.67 73.09

ImageNet-K

ZS-CLIP 34.17 83.46 48.49 33.46 81.20 47.39 32.61 75.57 45.56 33.40 77.10 46.61 33.41 79.33 47.01
Tent 30.46 26.86 28.55 36.57 71.82 48.46 36.37 66.63 47.06 36.87 70.32 48.38 35.07 58.91 43.11
SoTTA 36.18 61.70 45.61 36.28 67.19 47.12 35.91 65.31 46.34 36.57 67.09 47.34 36.23 65.32 46.60
TPT 32.16 86.52 46.89 31.55 83.86 45.85 30.74 77.39 44.00 31.56 80.05 45.27 31.50 81.95 45.50
AdaND (Ours) 40.97 93.54 56.98 40.25 85.06 54.64 38.31 74.43 50.58 39.60 79.57 52.88 39.78 83.15 53.77

ImageNet-A

ZS-CLIP 34.73 80.69 48.56 34.20 78.83 47.70 33.97 76.60 47.07 33.96 75.11 46.77 34.22 77.81 47.53
Tent 34.99 77.19 48.15 34.83 77.05 47.97 34.36 75.19 47.17 34.60 73.83 47.12 34.70 75.81 47.60
SoTTA 36.85 76.83 49.81 36.47 77.08 49.51 35.60 75.37 48.36 36.07 73.87 48.47 36.25 75.79 49.04
TPT 34.12 81.17 48.04 33.20 80.23 46.97 33.12 79.92 46.83 33.05 77.00 46.25 33.37 79.58 47.02
AdaND (Ours) 43.59 91.19 58.98 41.96 80.93 55.27 45.04 79.97 57.62 42.85 72.13 53.76 43.36 81.06 56.41

ImageNet-V2

ZS-CLIP 48.01 85.72 61.55 47.37 83.23 60.38 46.81 77.54 58.38 47.39 79.41 59.36 47.39 81.47 59.92
Tent 47.94 76.98 59.08 48.28 80.50 60.36 47.56 74.47 58.05 48.34 77.37 59.50 48.03 77.33 59.25
SoTTA 48.24 78.59 59.78 47.80 78.67 59.47 47.27 74.82 57.94 48.26 76.05 59.05 47.89 77.03 59.06
TPT 46.63 88.37 61.05 46.12 85.58 59.94 45.21 79.14 57.55 46.02 81.95 58.94 46.00 83.76 59.37
AdaND (Ours) 56.32 97.06 71.28 54.78 86.64 67.12 57.28 80.61 66.97 55.81 79.24 65.49 56.05 85.89 67.72

ImageNet-R

ZS-CLIP 61.99 94.39 74.83 61.82 88.95 72.94 60.91 77.05 68.04 61.68 84.86 71.44 61.60 86.31 71.81
Tent 65.22 91.45 76.14 65.06 85.61 73.93 63.33 69.99 66.49 64.93 82.38 72.62 64.64 82.36 72.30
SoTTA 66.78 86.98 75.55 66.71 83.99 74.36 65.92 72.69 69.14 66.60 80.53 72.91 66.50 81.05 72.99
TPT 60.95 94.80 74.20 60.85 89.98 72.60 59.98 77.79 67.73 60.67 85.79 71.08 60.61 87.09 71.40
AdaND (Ours) 72.21 99.59 83.72 71.02 95.94 81.62 70.44 81.43 75.54 70.85 92.14 80.10 71.13 92.28 80.25

Table 4: Runtime and GPU memory with varying batch sizes (bs) on ImageNet for a single sample.

Resource ZS-CLIP (bs = 1) SoTTA (bs = 1) TPT (bs = 1) Ours (bs = 1) ZS-CLIP (bs = 128) Tent (bs = 128) Ours (bs = 128)

Time (s)↓ 0.1125 0.1193 0.3219 0.1272 0.0015 0.0037 0.0017
Memory (GiB)↓ 3.80 9.13 21.23 3.83 4.54 14.99 4.57

Table 4 shows the time and computational resources required to test a single sample on the ImageNet.
All comparisons were conducted on the same 80G A800 GPU. We tested 6, 400 samples and then
averaged the results to ensure result stability. Since our method freezes the VLM and uses only a single
linear layer for the noise detector, our time consumption is nearly equivalent to ZS-CLIP. Tent’s result
is reported with bs = 128, as performance drops significantly at bs = 1 (See Table 13). TPT consumes
the most time and memory due to its 64-fold data augmentation and gradient backpropagation through
the entire text encoder. Our method proves to be more resource-efficient than Tent, SoTTA, and TPT.

Zero-Shot OOD Detection Task. The results for ZS-OOD detection are presented in Table 5,
using ImageNet as the ID dataset. Our approach demonstrates competitive performance compared to
state-of-the-art OOD detection methods, with significant improvements of 1.37% in AUROC and
9.40% in FPR95. Notably, CLIPN requires an additional dataset to train a text encoder, and NegLabel
needs to mine extra semantic information from a large-scale corpus database. In contrast, our method
requires no additional external data, making it simpler and more efficient. The results indicate that
learning an adaptive noise detector is a simple yet effective strategy for ZS-OOD detection task.

5.3 ABLATION STUDIES

The Effectiveness of Noise Detector and Injected Noise. We evaluate the effectiveness of the
noise detector and Gaussian noise modules under both clean and noisy data streams using ImageNet
as the ID dataset, as shown in Table 6. Without Gaussian noise, the noise detector alone is ineffective
for clean data streams. When the noise detector is not present, the performance in noisy data
streams decreases significantly. Our full method is both effective under clean and noisy data streams,
demonstrating the soundness of our design. Results for other ID datasets are in Table 14.

Intentionally Injected Noise in AdaND. We conduct ablation studies on intentionally injected
noise from two aspects: noise types (Gaussian, Uniform, Salt-and-pepper, Poisson) and injection
frequency (every 2, 4, or 8 test samples). As shown in Table 15, all noise types effectively manage
both clean and noisy data streams, demonstrating that our method is robust to the choice of injected
noise. Table 16 shows the results for noise injection frequency using Gaussian noise. Our experiments
show that injecting Gaussian noise every 2, 4, or 8 samples yields excellent performance. Considering
efficiency and performance, we choose to inject Gaussian noise every 8 samples.
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Table 5: Zero-shot OOD detection results for ImageNet as the ID dataset. The bold indicates the best.

Method iNaturalist SUN Texture Places Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
Max-Logit 89.31 61.66 87.43 64.39 71.68 86.61 85.95 63.67 83.59 69.08
Energy 85.09 81.08 84.24 79.02 65.56 93.65 83.38 75.08 79.57 82.21
MCM 94.61 30.91 92.57 37.59 86.11 57.77 89.77 44.69 90.77 42.74
CLIPN 95.27 23.94 93.93 26.17 90.93 40.83 92.28 33.45 93.10 31.10
NegLabel 99.49 1.91 95.49 20.53 90.22 43.56 91.64 35.59 94.21 25.40
AdaND (Ours) 98.91 4.19 95.86 17.08 93.01 21.76 94.55 20.95 95.58 16.00

Table 6: Ablation studies for each module in the method using ImageNet as the ID dataset. Results in
noisy data stream are averaged over four OOD datasets: iNaturalist, SUN, Texture, and Places. ‘×’
indicates the exclusion of a module and ‘✓’ indicates inclusion of a module.

Noise Detector Gaussian Noise Clean Data Stream Noisy Data Stream

AccS AccN AccH AccS AccN AccH

× × 47.68 - - 53.38 82.38 64.77
× ✓ 50.07 - - 53.95 81.65 64.95
✓ × 37.54 - - 60.64 91.73 73.00
✓ ✓ 63.96 - - 62.24 88.67 73.09

Simulating Real-world Adaptation. We simulate real-world adaptation by mixing ID and OOD
datasets from two perspectives. The first involves varying noise ratios (0%, 25%, 50%, 75%) to mimic
real-world conditions. The second considers the order of ID and OOD samples, which we simulate
using different random seeds. Table 17 presents the results for data streams with varying noise
ratios. Since we cannot assume prior knowledge of whether a data stream is clean or contains noisy
samples, all methods retain an adaptive OOD detection threshold module. As a result, comparative
methods exhibit significant performance degradation on clean data streams. In contrast, our method,
which deliberately injects Gaussian noise, effectively addresses clean data streams. Moreover, as the
proportion of noise in the data stream increases, most comparative methods show a marked decline
in performance, whereas our method continues to deliver strong results across different noise ratios.
The experimental results for different random seeds are provided in Table 18 and Table 19. Due
to computational constraints, we only conduct experiments using CIFAR-10 and CIFAR-100 as ID
datasets, with random seeds ranging from 0 to 4. The results demonstrate that our method consistently
achieves superior performance, regardless of the input order of the data streams.

Hyper-parameters Selection in AdaND. We conducted ablation experiments in AdaND with
varying queue capacities L (32, 64, 128, 256, 512). As shown in Table 20, our method demonstrates
insensitivity to the choice of L, and we selected L = 128 for the main experiments Table 21
presents the ablation studies on the queue length Nq, which is used to update the score distribution
for determining the adaptive threshold. Similar to L, AdaND is also robust to changes in Nq,
and following OWTTT, we set Nq = 512. The results for different values of N are shown in
Table 22. We found that N = 10 optimization steps are sufficient to initialize the noise detector. In
summary, AdaND exhibits low sensitivity to hyper-parameter selection, allowing us to use consistent
hyper-parameter settings across all datasets, which yields the best results compared to other methods.

We explore the performance of using different backbones in Table 23. Our AdaND is significantly
better than the other methods when using different backbones. We also discuss using pseudo-labels
generated by the noise detector as pseudo-labels in Appendix F.4. Using noise detector outputs as
pseudo-labels can improve performance on some datasets but cause intolerable drops in others.

6 CONCLUSION

In this paper, we introduce the Zero-Shot Noisy TTA (ZS-NTTA) setting and construct benchmarks
for evaluating this task. We investigate why existing TTA methods fail in this setting by designing
three model adaptation pipelines, visualizing the score difference, and analyzing the gradients to
understand the impact of noisy samples on model adaptation. Based on these analyses, we propose
AdaND, which decouples the classifier and detector, focusing on developing an adaptive detector
while keeping the classifier frozen. Our AdaND can handle both noisy and clean data streams by
intentionally injecting Gaussian noise, preventing the noise detector from misclassifying excessive
ID samples as noise during adaptation. Empirically, our method achieves state-of-the-art results in
both ZS-NTTA and ZS-OOD detection tasks. Moreover, our approach is computationally efficient.
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ETHICS STATEMENT

This work does not involve potential malicious or unintended uses, fairness considerations, privacy
considerations, security considerations, crowdsourcing, or research with human subjects.

REPRODUCIBILITY STATEMENT

We provide details to reproduce our results in Section 2, Section 5.1, and Section D. We also provide
pseudo-code in Algorithm 1 and will release the code upon acceptance. Our ZS-NTTA benchmark is
built on publicly available datasets, all of which can be downloaded from the papers we have cited.
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A A FURTHER DISCUSSION ON ZS-NTTA SETTING

We have elaborated on the distinctions between ZS-NTTA and ZS-OOD detection in Section 2, which
primarily lie in task objectives and evaluation settings. These differences also apply to the comparison
between ZS-NTTA and test-time OOD detection, as the latter essentially shares the same objective as
classical OOD detection. We further summarize the task definition differences between ZS-NTTA
and Fan et al. (2024); Gao et al. (2023b) in Table 7. In this section, we also discuss and compare
existing test-time OOD detection works (Fan et al., 2024; Gao et al., 2023b) regarding methodology.
RTL (Fan et al., 2024) used linear regression to make a more precise OOD prediction. In other words,
RTL leverages the TTA method to enhance OOD detection while fundamentally remaining an OOD
detection task. Different from RTL, we focus on the TTA setting itself, where test samples may
contain noise, resulting in severe performance degradation of existing TTA methods. ATTA (Gao
et al., 2023b) primarily addresses dense OOD detection in semantic segmentation; however, ATTA
cannot be extended to the ZS-NTTA setting since it relies on measuring the distributional distance
between test and training features in the normalization layers of the segmentation network. In the
context of pretrained VLMs like CLIP, we don’t have access to the training data, making ATTA’s
approach inapplicable to our setting.

Table 7: Comparison between ZS-NTTA and test-time OOD detection setting (Fan et al., 2024; Gao
et al., 2023b).

Fan et al. (2024) Gao et al. (2023b) ZS-NTTA

Focus on ID classification × × ✓
Focus on OOD detection ✓ ✓ ✓
Evaluate ID classification Clean data stream Clean data stream Noisy data stream
Metrics AUROC, FPR95 AUROC, FPR95 Harmonic mean accuracy (AccH)
Domain shift × ✓ ✓
Online evaluation × × ✓
Zero-shot × × ✓

B RELATED WORK

Test-time Adaptation. Test-time adaptation (TTA) (Wang et al., 2021; Liang et al., 2023; Niu
et al., 2022; Fleuret et al., 2021; Boudiaf et al., 2022; Prabhudesai et al., 2023; Lee et al., 2024;
Gui et al., 2024) aims to bolster a model’s generalization to the target distribution. Given the
unavailability of source distribution data in the test phase, various TTA methods have been proposed.
Some methods (Wang et al., 2021; Niu et al., 2022; Fleuret et al., 2021) leverage self-supervised
strategies like entropy minimization, while others employ techniques such as batchnorm statistics
adaptation (Schneider et al., 2020; Nado et al., 2020) to improve performance on the target distribution.
Some works (Shu et al., 2022; Feng et al., 2023; Karmanov et al., 2024; Samadh et al., 2023; Ma
et al., 2023; Zhao et al., 2024; Yoon et al., 2024) tackle the TTA problem with VLMs. TPT (Shu
et al., 2022) and DiffTPT (Feng et al., 2023) learn adaptive text prompts with a single test sample
employing entropy minimization. TDA (Karmanov et al., 2024) uses a training-free dynamic adapter
to enable efficient TTA in vision-language models. However, they did not consider how to handle the
presence of noisy samples in the data stream. In this work, we consider the possibility of noisy data
streams during the TTA process and cover the clean data stream case.

Noisy Test-time Adaptation. Recent works have considered noisy scenarios during the TTA
process, and their emphasis has been solely on task-specific models utilizing visual data exclusively.
Specifically, SoTTA (Gong et al., 2023) proposed using high-confidence samples to update the model,
but they did not consider detecting noisy samples and only focused on the classification accuracy
of ID samples. OWTTT (Li et al., 2023) developed an adaptive threshold strategy for noisy TTA,
but OWTTT relies on source domain prototype clustering, which is unavailable for VLMs like CLIP.
Lee et al. (2023) proposed utilizing the confidence difference between the original and adaptation
models, but Lee et al. (2023) considered the long-term adaptation scenario, and this strategy may
not effectively filter out the desired samples in the short-term adaptation scenario. Differing from
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these works, we introduce the zero-shot noisy TTA setting, which is more practical by leveraging the
zero-shot capability of pre-trained VLMs.

OOD Detection. Different from the TTA setting, OOD detection (Hendrycks & Gimpel, 2017;
Yang et al., 2022; 2021; Fang et al., 2022; Du et al., 2022; Huang & Li, 2021; Hendrycks et al., 2022;
2019b; Sehwag et al., 2021) focuses on data with different label spaces. The goal is to detect OOD
samples that are outside the label space of the training set. Most OOD detection methods (Hendrycks
& Gimpel, 2017; Hendrycks et al., 2019a; Liu et al., 2020; Ming et al., 2022; Jiang et al., 2024;
Esmaeilpour et al., 2022) design a score function based on the confidence of the model’s output,
implementing detection in a post-hoc manner. While SAL (Du et al., 2024) also leverages unlabeled
test data to train robust OOD classifiers, our work differs in its focus and contribution. We primarily
address the ZS-NTTA task, where our core contribution lies in proposing a conceptual framework that
decouples the detector from the classifier. This decoupling prevents classifier degradation during noisy
sample adaptation, with pseudo-label-based detector training serving merely as one implementation
detail of our approach. Recent work (Ming et al., 2022; Jiang et al., 2024; Wang et al., 2023) explores
zero-shot OOD detection by leveraging pre-trained VLMs. MCM (Ming et al., 2022) constructs
the classifier using ID class names and uses the maximum predicted softmax value between image
and text features as the OOD score. CLIPN (Wang et al., 2023) and NegLabel (Jiang et al., 2024)
enhance detection performance by mining negative information. Unlike the zero-shot OOD detection
setting, ZS-NTTA requires noisy samples to be detected online. What’s more, existing OOD detection
methods focus more on detecting OOD samples and do not consider how to improve the classification
accuracy of ID samples.

Pre-trained Vision-Language Models. Pre-trained vision-language models such as CLIP (Radford
et al., 2021), ALIGN (Jia et al., 2021), and GroupViT (Xu et al., 2022) typically comprise an image
encoder and a text encoder. They are trained on hundred-million-level image-text pair data using
self-supervised contrastive learning (Chen et al., 2020). In the testing phase, VLMs encode input
images and texts into embedding vectors and then carry out classification by comparing the similarity
between image and text features. VLMs demonstrate excellent generalization capabilities due to the
broad coverage of the training data distribution and the robust feature representations learned through
contrastive learning. They have also been effectively applied to downstream tasks like image retrieval
and image classification in a zero-shot manner.

C ADAPTIVE THRESHOLD VS. FIXED THRESHOLD

To verify the reliability of the adaptive threshold used in our experiments, we compared the perfor-
mance of the adaptive threshold with fixed thresholds across various ID datasets, where the fixed
threshold ranges from 0.1 to 0.9. Due to time and computational resource limitations, we conduct
experiments on the following ID datasets: CIFAR-10, CIFAR-100, CUB-200-2011, STANFORD-
CARS, Food-101, and Oxford-IIIT Pet. All ID datasets are tested on their respective four OOD
datasets and the specific ID-OOD dataset correspondences can be found in Table D.1. The average
metrics are shown in Fig. 6. It is clear that in terms of AccH, the adaptive threshold consistently
surpassed all fixed thresholds in ZS-CLIP, SoTTA, and our AdaND. The average performance of Tent
and TPT using adaptive thresholds is comparable to that of the optimal fixed thresholds. We suppose
this is because the classifiers of Tent and TPT experience performance degradation due to noisy
samples. Since adaptive thresholds do not require hyperparameter tuning for different ID datasets, we
employ the adaptive threshold strategy across all methods.

D EXPERIMENTAL DETAILS

D.1 DATASET DETAILS

The division between ID and OOD datasets in the ZS-NTTA benchmarks are shown in Table 8. Note
that the label spaces of the ID and OOD datasets do not overlap. We also report the ratio of class
numbers between noisy and clean datasets in Table 9. To avoid label space overlap between ID
and OOD datasets, the iNaturalist, SUN, and Places datasets used in our experiments are subsets
constructed by Huang & Li (2021).
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Figure 6: Results about Adaptive threshold(dashed line) and fixed threshold(solid line) range from
0.1 to 0.9. Best viewed with zoom-in.

Table 8: ID/OOD Dataset Division. ✓ indicates an ID-OOD pair, while × indicates it is not.

ID iNaturalist SUN Texture Places SVHN LSUN

CIFAR-10 × × ✓ ✓ ✓ ✓
CIFAR-100 × × ✓ ✓ ✓ ✓
CUB-200-2011 ✓ ✓ ✓ ✓ × ×
STANFORD-CARS ✓ ✓ ✓ ✓ × ×
Food-101 ✓ ✓ ✓ ✓ × ×
Oxford-IIIT Pet ✓ ✓ ✓ ✓ × ×
ImageNet ✓ ✓ ✓ ✓ × ×
ImageNet-K ✓ ✓ ✓ ✓ × ×
ImageNet-A ✓ ✓ ✓ ✓ × ×
ImageNet-V2 ✓ ✓ ✓ ✓ × ×
ImageNet-R ✓ ✓ ✓ ✓ × ×

D.2 IMPLEMENTATION DETAILS

For the ZS-NTTA task, we integrated the advanced OOD detection method, i.e., MCM (Ming et al.,
2022), into each comparative approach to filter out noisy samples. For the Tent and TPT methods,
all hyperparameter settings are kept consistent with their original papers. And we use the layer
normalization in Tent when the image encoder is ViT-B/16 or ViT-L/14. For the SoTTA method,
considering the generalization across ID datasets and based on the performance of different thresholds
in the memory bank, we set the confidence level of the memory bank to 0.5. For the ZS-OOD
detection task, we directly used the results reported in MCM, CLIPN, and NegLabel. Max-Logit and
Energy are implemented by ourselves based on CLIP backbone. Additionally, to clearly illustrate our
method, we present AdaND in Algorithm 1.
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Algorithm 1 AdaND for ZS-NTTA and ZS-OOD detection tasks.

Require: test data stream {xi}Ti=1, ID class names Yid, text encoder T , image encoder I, noise
detector f , queue Q with capacity L, K = len(Yid), temperature τ = 0.01, M = 8.

1: for test-time i ∈ {1, · · · , T} do
2: Calculate cosine similarity scores:
3: {sk(xi)← I(xi)·T (tk)

∥I(xi)∥·∥T (tk)∥}
K
i=1, tk ∈ Yid

4: Calculate OOD score:
5: S(xi)← maxk

esk(xi)/τ∑K
j=1 esj(xi)/τ

6: Calculate λZS-CLIP by Eq. 3
7: if S(xi) > λZS-CLIP then
8: ypse

i = 1 ▷ Pseudo-label: clean sample.
9: else

10: ypse
i = −1 ▷ Pseudo-label: noisy sample.

11: logit = f(I(xi))
12: Update queue Q:
13: Q← Q ∪ {I(xi), logit, ypse

i }
14: if len(Q) = L then
15: Train noise detector f :
16: Calculate loss L using standard CE loss, input data: Q
17: Update f using L
18: Q← ∅ ▷ Empty queue Q.
19: if i mod M = 0 then ▷ Gaussian noise injection.
20: g ∼ N (0, 1)
21: Add noise sample to queue Q:
22: logitgi = f(I(g))
23: Q← Q ∪ {I(g), logitg,−1}
24: if len(Q) = L then
25: Train noise detector f :
26: Calculate loss L using standard CE loss, input data: Q
27: Update f using L
28: Q← ∅
29: Generate output:
30: if i < N then ▷ Stage 1: use ZS-CLIP.
31: output← argmaxk

esk(xi)/τ∑K
j=1 esj(xi)/τ

if S(xi) > λZS-CLIP else −1
32: else ▷ Stage 2: use noise detector.
33: S(xi)← maxk

ezk∑2
j=1 ezj

34: Calculate λAdaND by Eq. 3
35: output← argmaxk

esk(xi)/τ∑K
j=1 esj(xi)/τ

if S(xi) > λAdaND else −1
return output
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Table 9: Number of classes in ID and OOD datasets. Each row shows an ID-OOD dataset pair with
their respective number of classes.

ID iNaturalist SUN Texture Places SVHN LSUN

CIFAR-10 × × 10:47 10:50 10:10 10:10
CIFAR-100 × × 100:47 100:50 100:10 100:1
CUB-200-2011 200:110 200:50 200:47 200:50 × ×
STANFORD-CARS 196:110 196:50 196:47 196:50 × ×
Food-101 101:110 101:50 101:47 101:50 × ×
Oxford-IIIT Pet 37:110 37:50 37:47 37:50 × ×
ImageNet 1000:110 1000:50 1000:47 1000:50 × ×
ImageNet-K 1000:110 1000:50 1000:47 1000:50 × ×
ImageNet-A 200:110 200:50 200:47 200:50 × ×
ImageNet-V2 1000:110 1000:50 1000:47 1000:50 × ×
ImageNet-R 200:110 200:50 200:47 200:50 × ×

Table 10: Zero-shot noisy TTA results for CIFAR-10/100 as the ID dataset. The bold indicates the
best performance on each dataset.

ID Method SVHN LSUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

CIFAR-10

ZS-CLIP 83.55 98.39 90.36 83.11 97.82 89.87 82.18 91.82 86.73 81.73 76.26 78.90 82.64 91.07 86.47
Tent 87.18 52.90 65.85 89.03 73.96 80.80 89.78 88.48 89.13 88.78 65.44 75.34 88.69 70.19 77.78
SoTTA 90.21 81.71 85.75 90.13 91.06 90.59 89.56 90.96 90.25 89.04 74.17 80.93 89.73 84.47 86.88
TPT 81.76 98.85 89.50 81.53 97.93 88.98 80.43 92.11 85.87 79.88 77.18 78.51 80.90 91.52 85.72
AdaND (Ours) 89.46 99.90 94.39 88.56 99.66 93.78 89.60 98.54 93.86 89.65 93.04 91.31 89.32 97.79 93.34

CIFAR-100

ZS-CLIP 48.52 97.58 64.81 49.29 94.97 64.90 46.76 81.58 59.45 45.36 64.52 53.27 47.48 84.66 60.61
Tent 55.39 42.41 48.04 60.06 83.37 69.82 59.31 79.13 67.80 57.52 62.24 59.79 58.07 66.79 61.36
SoTTA 60.56 89.24 72.15 60.28 88.89 71.84 58.79 81.56 68.33 57.01 65.73 61.06 59.16 81.36 68.34
TPT 46.09 97.87 62.67 46.90 95.36 62.88 43.87 83.10 57.42 42.48 66.86 51.95 44.84 85.80 58.73
AdaND (Ours) 64.44 99.78 78.31 62.42 99.15 76.61 65.17 84.84 73.72 63.50 44.21 52.13 63.88 81.99 70.19

D.3 ENVIRONMENT

The experiments presented in this paper are conducted utilizing PyTorch 1.13 (Paszke et al., 2019)
and Python 3.10.8 within an Ubuntu 22.04 LTS environment, running on NVIDIA A100 80GB PCIe
GPUs and AMD EPYC 7H12 CPU.

E ADDITIONAL RESULTS

We report the main results of CIFAR-10 and CIFAR-100 in Table 10 due to the space limitation
in the main text. Compared to other methods, our AdaND achieves the best performance in these
two datasets. When using layer normalization, Tent supports bs = 1. We conducted experiments
with Tent (bs = 1) in Table 13 and found that it performs well on clean data streams. However, its
performance degrades significantly when dealing with noisy data streams.

We conduct additional experiments on more complex datasets, with results shown in Table 11. The
results demonstrate that our method can outperform all the baseline methods. What’s more, our
method achieves the best ID classification accuracy AccS among all approaches. Note that ZS-NTTA
is inherently more challenging than traditional OOD detection, as it requires simultaneous classifica-
tion and detection capabilities under the noisy data stream. Specifically, ZS-NTTA requires online,
real-time classification and detection results: for each input sample, the model must immediately
determine whether it is ID/OOD, and if ID, perform classification. In contrast, existing OOD detection
methods typically report ID classification accuracy under the assumption of a clean data stream.

We also compare our approach to recent training-free TTA work, TDA (Karmanov et al., 2024), in
Table 12. Our experimental results demonstrate that TDA’s performance is inferior to ours. This
indicates the necessity of training a noise detector to detect noisy samples in the ZS-NTTA setting.
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Table 11: Zero-shot noisy TTA results on more complex datasets. The ID dataset is ImageNet, and
the OOD dataset is NINCO (Bitterwolf et al., 2023).

Method AccS AccN AccH

ZS-CLIP 51.44 71.90 59.97
Tent 54.14 65.84 59.42
SoTTA 52.87 60.50 56.43
Ours (With Gaussian noise) 60.10 55.70 57.82
Ours (Without Gaussian noise) 50.25 77.99 61.12

Table 12: Performance comparison with TDA using ImageNet as ID dataset. Results are averaged
across four OOD datasets: iNaturalist, SUN, Texture, and Places.

Method AccS AccN AccH

ZS-CLIP 53.38 82.38 64.77
TDA 53.47 82.37 64.84
Ours (With Gaussian noise) 62.24 88.67 73.09
Ours (Without Gaussian noise) 60.64 91.73 73.00

Table 13: Performance of Tent with Layer Normalization (bs = 1) on Clean and Noisy Data Streams

ID Method Clean Data Stream Noisy Data Stream

AccS AccN AccH AccS AccN AccH

CIFAR-10
ZS-CLIP 77.96 - - 82.64 91.07 86.47
Tent (bs=1) 91.84 - - 89.83 7.46 13.66
Tent (bs=64) 84.39 - - 88.69 70.19 77.78

CIFAR-100
ZS-CLIP 44.69 - - 47.48 84.66 60.61
Tent (bs=1) 63.66 - - 37.86 20.64 19.82
Tent (bs=64) 41.90 - - 58.07 66.79 61.36

F FULL RESULTS OF ABLATION STUDIES

F.1 ABLATION STUDIES ON THE MODULES OF ADAND

Table 14 presents the ablation study results on each module in our method across different ID datasets.
Experiments show that the noise detector is effective across different ID datasets, and after injecting
Gaussian noise, the noise detector can also handle the clean stream case well. Additionally, injecting
Gaussian noise does not result in a performance drop for our method on noisy data streams.

F.2 ABLATION STUDIES ON THE INTENTIONALLY INJECTED NOISE

Table 15 presents the results for Gaussian, Uniform, Salt-and-pepper, and Poisson noise as the injected
noise types. The results demonstrate that all noise types effectively manage both clean and noisy data
streams, suggesting that our method is robust to different choices of injected noise. Table 16 presents
the ablation results for varying frequencies of Gaussian noise injection. Our experiments indicate
that injecting Gaussian noise every 2, 4, or 8 samples consistently produces strong performance.

F.3 ABLATION STUDIES ON SIMULATING REAL-WORLD ADAPTATION

Table 17 shows the results for the zero-shot noisy TTA task across data streams with varying noise
ratios. All competing methods show significant performance degradation on clean data streams while
our AdaND effectively handles clean data streams. What’s more, our method consistently achieves
strong results across different noise levels. The results of different orders are shown in Table 18 and
Table 19. Experiments demonstrate that our method consistently achieves top performance, regardless
of the data stream’s input order.
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Table 14: Ablation studies for each module in the method. For CIFAR-10/100, results are averaged
across four OOD datasets: SVHN, LSUN, Texture, and Places. For other ID datasets, averaging
includes four OOD datasets: iNaturalist, SUN, Texture, and Places. ‘×’ indicates the exclusion of a
module and ‘✓’ indicates inclusion of a module.

ID Noise Detector Gaussian Noise Clean Data Stream Noisy Data Stream

AccS AccN AccH AccS AccN AccH

CIFAR-10

× × 77.96 - - 82.64 91.07 86.47
× ✓ 82.07 - - 83.19 90.39 86.40
✓ × 67.89 - - 89.14 98.37 93.51
✓ ✓ 89.16 - - 89.32 97.79 93.34

CIFAR-100

× × 44.69 - - 47.48 84.66 60.61
× ✓ 43.40 - - 46.07 85.84 59.77
✓ × 35.21 - - 61.65 90.42 73.23
✓ ✓ 62.52 - - 63.88 81.99 70.19

CUB-200-2011

× × 33.08 - - 37.95 85.71 52.59
× ✓ 36.74 - - 40.34 82.82 54.22
✓ × 30.01 - - 50.42 93.49 65.51
✓ ✓ 49.47 - - 52.10 90.77 66.14

STANFORD-CARS

× × 39.02 - - 52.65 98.13 68.53
× ✓ 44.08 - - 53.69 97.81 69.32
✓ × 34.80 - - 62.59 99.67 76.89
✓ ✓ 58.53 - - 62.80 99.66 77.05

Food-101

× × 72.93 - - 80.62 94.65 87.07
× ✓ 77.61 - - 80.79 94.56 87.13
✓ × 56.75 - - 86.46 99.00 92.30
✓ ✓ 86.21 - - 86.44 98.85 92.23

Oxford-IIIT Pet

× × 70.17 - - 79.53 87.73 83.41
× ✓ 78.41 - - 80.47 86.39 83.31
✓ × 62.95 - - 85.54 98.27 91.47
✓ ✓ 84.91 - - 85.84 98.06 91.54

ImageNet

× × 47.68 - - 53.38 82.38 64.77
× ✓ 50.07 - - 53.95 81.65 64.95
✓ × 37.54 - - 60.64 91.73 73.00
✓ ✓ 63.96 - - 62.24 88.67 73.09

ImageNet-K

× × 30.48 - - 33.41 79.33 47.01
× ✓ 31.43 - - 33.72 78.67 47.20
✓ × 26.03 - - 37.70 88.27 52.82
✓ ✓ 36.54 - - 39.78 83.15 53.77

ImageNet-A

× × 31.47 - - 34.22 77.81 47.53
× ✓ 34.03 - - 36.32 74.85 48.90
✓ × 26.13 - - 39.39 90.47 54.87
✓ ✓ 45.20 - - 43.36 81.06 56.41

ImageNet-V2

× × 43.12 - - 47.39 81.47 59.92
× ✓ 44.93 - - 48.03 80.88 60.25
✓ × 32.17 - - 54.43 91.31 68.18
✓ ✓ 58.42 - - 56.05 85.89 67.72

ImageNet-R

× × 57.34 - - 61.60 86.31 71.81
× ✓ 60.70 - - 62.93 84.95 72.19
✓ × 47.20 - - 70.25 94.52 80.57
✓ ✓ 71.54 - - 71.13 92.28 80.25

F.4 ABLATION STUDIES ON HYPER-PARAMETERS SELECTION

Ablation studies on varying queue capacities L, queue lengths Nq, and optimization steps N are
presented in Table 20, Table 21, and Table 22, respectively. The results demonstrate that AdaND is
robust to changes in these hyper-parameters. For the main experiments, we set L = 128, Nq = 512,
and found that N = 10 optimization steps are sufficient to initialize the noise detector. Overall,
AdaND shows low sensitivity to hyper-parameter choices, achieving optimal performance across
all datasets. Table 23 explores the performance with different backbones. Our AdaND consistently
outperforms other methods across all backbone configurations.

Intuitively, once the noise detector outperforms ZS-CLIP in detection results, it would be more
accurate to use its outputs as pseudo-labels. We conducted experiments with various noise ratios
and ID datasets in Table 24. Although using the outputs of the noise detector as pseudo-labels
can result in better performance on some datasets, it can also lead to severe performance drops in
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Table 15: Ablation studies for the different injected noise in the method. For CIFAR-10/100, results
are averaged across four OOD datasets under the noisy data stream: SVHN, LSUN, Texture, and
Places. For other ID datasets, averaging includes four OOD datasets under the noisy data stream:
iNaturalist, SUN, Texture, and Places.

ID Noise Type Clean Data Stream Noisy Data Stream

AccS AccN AccH AccS AccN AccH

CIFAR-10

Gaussian 89.14 - - 89.32 97.79 93.34
Uniform 89.07 - - 89.25 97.80 93.31
Salt-and-pepper 89.08 - - 89.23 97.91 93.35
Poisson 89.07 - - 89.28 97.90 93.37

CIFAR-100

Gaussian 62.70 - - 63.88 81.99 70.19
Uniform 62.79 - - 64.48 82.92 71.25
Salt-and-pepper 63.43 - - 64.24 80.70 69.25
Poisson 62.80 - - 63.98 80.94 69.38

CUB-200-2011

Gaussian 49.53 - - 52.10 90.77 66.14
Uniform 49.53 - - 52.09 90.95 66.19
Salt-and-pepper 48.83 - - 51.85 91.41 66.13
Poisson 48.91 - - 52.01 90.98 66.13

STANFORD-CARS

Gaussian 58.61 - - 62.80 99.66 77.05
Uniform 58.83 - - 62.83 99.67 77.07
Salt-and-pepper 57.76 - - 62.70 99.65 76.97
Poisson 58.44 - - 62.79 99.67 77.04

Food-101

Gaussian 86.23 - - 86.44 98.85 92.23
Uniform 86.26 - - 86.46 98.86 92.24
Salt-and-pepper 86.25 - - 86.45 98.89 92.25
Poisson 86.21 - - 86.43 98.88 92.23

Oxford-IIIT Pet

Gaussian 84.95 - - 85.84 98.06 91.54
Uniform 84.68 - - 85.81 98.15 91.57
Salt-and-pepper 84.88 - - 85.82 98.12 91.55
Poisson 84.56 - - 85.78 98.21 91.57

ImageNet

Gaussian 63.99 - - 62.24 88.67 73.09
Uniform 64.63 - - 62.58 88.11 73.13
Salt-and-pepper 64.34 - - 62.42 88.21 73.05
Poisson 64.20 - - 62.30 88.41 73.03

ImageNet-K

Gaussian 36.43 - - 39.78 83.15 53.77
Uniform 37.28 - - 40.19 82.29 53.95
Salt-and-pepper 37.28 - - 40.20 82.34 53.97
Poisson 36.92 - - 40.10 82.48 53.92

ImageNet-A

Gaussian 45.31 - - 43.36 81.06 56.41
Uniform 45.28 - - 43.38 81.09 56.43
Salt-and-pepper 44.24 - - 42.75 82.47 56.24
Poisson 44.39 - - 42.90 82.25 56.31

ImageNet-V2

Gaussian 58.39 - - 56.05 85.89 67.72
Uniform 58.57 - - 56.36 85.29 67.75
Salt-and-pepper 58.44 - - 55.99 85.51 67.56
Poisson 58.20 - - 55.89 85.68 67.53

ImageNet-R

Gaussian 71.52 - - 71.13 92.28 80.25
Uniform 71.54 - - 71.14 92.32 80.27
Salt-and-pepper 71.08 - - 70.98 92.52 80.25
Poisson 71.19 - - 71.07 92.35 80.23

certain cases, which is intolerable. For example, using ImageNet as the ID dataset with a 50% noise
ratio, the performance drops from 73.09% to 41.34% when using the outputs of the noise detector
as pseudo-labels. We suppose this discrepancy arises from cumulative errors when using the noise
detector’s results as pseudo-labels. To better handle varying ID datasets and noise ratios, we use
ZS-CLIP’s result as pseudo-labels, which is more robust.

G LIMITATION

In our ablation study (Table 24), we discussed why we use the outputs of the frozen model as
pseudo-labels. However, in practice, using the outputs of the noise detector as pseudo-labels can
perform better than the frozen model on most ID datasets. Due to cumulative errors in the noise
model’s outputs, performance can significantly drop on a few ID datasets. Therefore, we chose the
frozen model’s outputs for a more balanced performance. In future work, we aim to explore how to
use the noise detector’s outputs as pseudo-labels while ensuring they work well on all datasets, thus
achieving stronger performance in the ZS-NTTA task.
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Table 16: Ablation studies for the ratio of Gaussian noise in the method. ‘-’ indicates that no Gaussian
noise is inserted, while ‘8’ means that 1 Gaussian noise sample is inserted for every 8 test samples.
For CIFAR-10/100, results are averaged across four OOD datasets under the noisy data stream:
SVHN, LSUN, Texture, and Places. For other ID datasets, averaging includes four OOD datasets
under the noisy data stream: iNaturalist, SUN, Texture, and Places.

ID Ratio Clean Data Stream Noisy Data Stream

AccS AccN AccH AccS AccN AccH

CIFAR-10
2 89.49 - - 89.67 90.70 90.02
4 89.32 - - 89.41 96.28 92.67
8 89.14 - - 89.32 97.79 93.34

CIFAR-100
2 65.79 - - 66.02 67.83 61.75
4 65.68 - - 64.90 74.64 65.18
8 62.70 - - 63.88 81.99 70.19

CUB-200-2011
2 54.03 - - 54.29 74.27 62.30
4 52.94 - - 53.72 85.17 65.68
8 49.53 - - 52.10 90.77 66.14

STANFORD-CARS
2 62.84 - - 63.20 98.88 77.11
4 62.19 - - 63.08 99.56 77.23
8 58.61 - - 62.80 99.66 77.05

Food-101
2 86.46 - - 86.57 97.71 91.80
4 86.34 - - 86.55 98.60 92.17
8 86.23 - - 86.44 98.85 92.23

Oxford-IIIT Pet
2 85.71 - - 86.00 94.01 89.80
4 85.30 - - 85.94 97.52 91.36
8 84.95 - - 85.84 98.06 91.54

ImageNet
2 65.80 - - 63.91 81.72 71.58
4 65.43 - - 63.14 86.00 72.73
8 63.99 - - 62.24 88.67 73.09

ImageNet-K
2 43.06 - - 42.41 72.62 53.34
4 40.98 - - 41.16 78.76 53.97
8 36.43 - - 39.78 83.15 53.77

ImageNet-A
2 46.24 - - 47.07 36.45 40.29
4 46.05 - - 45.72 62.37 52.20
8 45.31 - - 43.36 81.06 56.41

ImageNet-V2
2 59.29 - - 58.85 65.84 61.56
4 58.77 - - 57.52 77.51 65.68
8 58.39 - - 56.05 85.89 67.72

ImageNet-R
2 73.28 - - 72.41 85.17 77.86
4 72.94 - - 71.83 89.61 79.55
8 71.52 - - 71.13 92.28 80.25

Moreover, we utilize the detection results from ZS-CLIP as pseudo labels because CLIP’s zero-shot
OOD detection capabilities have been thoroughly investigated (Ming et al., 2022; Wang et al., 2023;
Jiang et al., 2024; Esmaeilpour et al., 2022) and have demonstrated exceptional accuracy across
diverse ID/OOD datasets. However, our method may also falter in scenarios where zero-shot CLIP’s
detection accuracy is significantly low. Under such circumstances, all existing zero-shot OOD
detection methods would also fail. To address this, We may leverage the target data to fine-tune the
model, potentially achieving better classification and detection accuracy.

H FULL RESULTS OF FAILURE CASE

Besides evaluating different TTA methods using the rank distribution in Figure 2, we also evaluate
them using the absolute accuracy in Figure 7. Most TTA methods perform worse than ZS-CLIP under
the ZS-NTTA setting, and our method still performs best.

H.1 THREE MODEL ADAPTATION PIPELINES

Table 25 and Table 26 presents the performance of the three model adaptation pipelines using different
datasets as the ID. For comprehensive evaluation, we also include AUROC and FPR95 metrics for
different datasets in Table 27 and Table 28. Higher AUROC and lower FPR95 scores indicate superior
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Table 17: Ablation studies for different noise ratios in the data stream. For CIFAR-10/100, results
are averaged across four OOD datasets: SVHN, LSUN, Texture, and Places. For other ID datasets,
averaging includes four OOD datasets: iNaturalist, SUN, Texture, and Places. Note that 0% indicates
the clean data stream. The bold indicates the best performance on each noise ratio.

ID Method 0% 25% 50% 75%

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

CIFAR-10

ZS-CLIP 77.96 - - 81.83 91.82 86.39 82.64 91.07 86.47 83.29 90.27 86.42
Tent 84.39 - - 88.62 89.07 88.66 88.69 70.19 77.78 80.99 30.33 42.93
SoTTA 83.82 - - 88.29 90.58 89.26 89.73 84.47 86.88 90.14 64.30 73.56
TPT 76.37 - - 80.02 92.22 85.56 80.90 91.52 85.72 81.53 90.83 85.72
AdaND (Ours) 89.16 - - 89.29 95.85 92.43 89.32 97.79 93.34 89.10 95.75 92.21

CIFAR-100

ZS-CLIP 44.69 - - 46.35 85.17 59.77 47.48 84.66 60.61 48.82 83.65 61.43
Tent 53.54 - - 56.77 82.97 67.19 58.07 66.79 61.36 53.17 41.63 45.14
SoTTA 52.62 - - 56.25 85.24 67.57 59.16 81.36 68.34 62.07 72.69 66.86
TPT 41.90 - - 43.72 86.30 57.84 44.84 85.80 58.73 46.01 85.10 59.57
AdaND (Ours) 62.52 - - 63.24 75.14 65.29 63.88 81.99 70.19 64.28 82.21 70.83

CUB-200-2011

ZS-CLIP 33.08 - - 35.65 87.96 50.72 37.95 85.71 52.59 40.86 82.05 54.54
Tent 36.69 - - 39.14 82.75 53.08 37.75 54.78 44.38 31.45 21.34 25.21
SoTTA 36.16 - - 39.07 87.43 53.99 41.81 83.82 55.77 45.13 76.30 56.69
TPT 32.07 - - 34.93 89.49 50.24 37.30 87.59 52.31 39.84 84.66 54.18
AdaND (Ours) 49.47 - - 51.00 86.08 63.98 52.10 90.77 66.14 53.39 83.99 65.17

STANFORD-CARS

ZS-CLIP 39.02 - - 47.44 98.84 64.10 52.65 98.13 68.53 54.82 97.44 70.16
Tent 40.95 - - 49.33 97.88 65.60 51.83 85.22 64.09 33.88 29.26 30.72
SoTTA 40.60 - - 49.44 98.55 65.84 54.03 96.47 69.27 54.66 87.40 67.25
TPT 38.38 - - 46.19 99.02 62.98 51.70 98.36 67.77 54.06 97.79 69.63
AdaND (Ours) 58.53 - - 62.41 99.03 76.57 62.80 99.66 77.05 63.10 99.75 77.30

Food-101

ZS-CLIP 72.93 - - 79.34 95.59 86.71 80.62 94.65 87.07 81.50 93.96 87.28
Tent 76.20 - - 81.47 85.00 82.68 80.87 69.34 71.90 63.38 30.37 39.10
SoTTA 75.02 - - 81.14 93.70 86.96 82.20 89.79 85.80 82.33 79.18 80.61
TPT 71.92 - - 78.49 95.79 86.28 79.77 95.03 86.73 80.64 94.33 86.95
AdaND (Ours) 86.21 - - 86.36 98.31 91.95 86.44 98.85 92.23 86.51 98.53 92.12

Oxford-IIIT Pet

ZS-CLIP 70.17 - - 77.99 89.34 83.27 79.53 87.73 83.41 80.96 85.69 83.24
Tent 73.36 - - 79.90 86.64 83.10 80.84 70.91 75.41 74.81 32.87 45.64
SoTTA 72.58 - - 79.61 87.38 83.30 81.36 84.03 82.66 82.84 78.21 80.44
TPT 69.44 - - 76.98 90.96 83.38 78.56 89.78 83.78 79.95 87.75 83.66
AdaND (Ours) 84.91 - - 85.39 96.94 90.80 85.84 98.06 91.54 85.89 97.59 91.36

ImageNet

ZS-CLIP 47.68 - - 51.00 84.72 63.66 53.38 82.38 64.77 55.64 79.64 65.50
Tent 49.86 - - 53.18 78.58 63.43 53.67 64.05 57.66 49.74 45.93 45.89
SoTTA 49.82 - - 52.36 74.92 61.63 53.39 67.16 59.47 52.53 57.03 54.68
TPT 46.12 - - 49.48 86.38 62.91 51.85 84.48 64.25 54.04 82.24 65.21
AdaND (Ours) 63.96 - - 62.53 86.82 72.62 62.24 88.67 73.09 61.53 85.52 71.52

ImageNet-K

ZS-CLIP 30.48 - - 31.92 81.26 45.83 33.41 79.33 47.01 34.76 77.17 47.93
Tent 33.66 - - 35.40 71.84 47.37 35.07 58.91 43.11 31.60 41.60 34.34
SoTTA 34.20 - - 35.70 72.08 47.74 36.23 65.32 46.60 35.44 56.08 43.43
TPT 28.78 - - 30.15 83.59 44.30 31.50 81.95 45.50 32.73 80.22 46.49
AdaND (Ours) 36.54 - - 38.40 85.81 52.98 39.78 83.15 53.77 40.02 78.07 52.91

ImageNet-A

ZS-CLIP 31.47 - - 32.94 79.21 46.52 34.22 77.81 47.53 35.67 75.87 48.52
Tent 32.09 - - 33.55 78.14 46.94 34.70 75.81 47.60 35.38 70.22 47.05
SoTTA 33.43 - - 34.72 78.06 48.06 36.25 75.79 49.04 38.23 71.33 49.77
TPT 30.45 - - 32.05 80.92 45.91 33.37 79.58 47.02 34.87 78.02 48.20
AdaND (Ours) 45.20 - - 42.84 70.45 52.86 43.36 81.06 56.41 44.06 73.46 55.00

ImageNet-V2

ZS-CLIP 43.12 - - 45.60 83.36 58.93 47.39 81.47 59.92 49.25 78.94 60.64
Tent 43.46 - - 46.11 81.95 58.99 48.03 77.33 59.25 48.25 65.09 55.11
SoTTA 43.87 - - 46.38 80.75 58.91 47.89 77.03 59.06 49.01 70.30 57.75
TPT 41.53 - - 44.04 85.38 58.09 46.00 83.76 59.37 47.83 81.68 60.33
AdaND (Ours) 58.42 - - 56.37 76.77 64.70 56.05 85.89 67.72 56.34 83.12 67.04

ImageNet-R

ZS-CLIP 57.34 - - 59.92 87.67 71.11 61.60 86.31 71.81 63.14 84.79 72.30
Tent 60.14 - - 62.96 86.16 72.68 64.64 82.36 72.30 60.97 65.95 63.07
SoTTA 61.62 - - 64.81 85.56 73.67 66.50 81.05 72.99 68.14 70.13 69.07
TPT 56.20 - - 59.01 88.41 70.71 60.61 87.09 71.40 62.09 85.84 71.98
AdaND (Ours) 71.54 - - 71.23 91.61 80.05 71.13 92.28 80.25 70.95 88.95 78.79

performance. Note that AUROC and FPR95 cannot be calculated at test-time and can only be
determined after evaluating all samples. The above results show that for most datasets, the model
performance degrades as the number of noisy samples used for model updates increases.
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Table 18: Zero-shot noisy TTA results for CIFAR-10/100 as the ID datasets with different random
seeds. The results are the mean ± standard deviation with five random seeds. The bold indicates the
best performance on each dataset.

ID Method SVHN LSUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

CIFAR-10

ZS-CLIP 83.53 98.35 90.33 83.10 97.83 89.87 82.20 91.83 86.75 81.73 76.46 79.00 82.64 91.11 86.49
± 0.02 ± 0.04 ± 0.02 ± 0.03 ± 0.01 ± 0.02 ± 0.04 ± 0.01 ± 0.02 ± 0.02 ± 0.12 ± 0.06 ± 0.03 ± 0.05 ± 0.03

Tent 87.31 54.02 66.70 88.54 70.43 78.43 89.66 88.67 89.16 88.65 64.85 74.90 88.54 69.49 77.30
± 0.30 ± 3.13 ± 2.50 ± 0.33 ± 2.71 ± 1.80 ± 0.07 ± 0.13 ± 0.05 ± 0.10 ± 0.58 ± 0.40 ± 0.20 ± 1.64 ± 1.19

SoTTA 89.96 80.08 84.72 90.14 91.26 90.69 89.51 90.94 90.22 89.22 74.07 80.94 89.71 84.09 86.64
± 0.14 ± 2.06 ± 1.19 ± 0.11 ± 0.72 ± 0.38 ± 0.12 ± 0.11 ± 0.07 ± 0.17 ± 0.18 ± 0.13 ± 0.14 ± 0.77 ± 0.44

TPT 81.79 98.89 89.53 81.38 97.96 88.90 80.46 92.10 85.89 79.90 77.39 78.62 80.88 91.58 85.74
± 0.09 ± 0.04 ± 0.04 ± 0.09 ± 0.02 ± 0.05 ± 0.05 ± 0.04 ± 0.03 ± 0.03 ± 0.12 ± 0.06 ± 0.06 ± 0.06 ± 0.05

ZS-NTTA (Ours) 89.36 99.87 94.32 88.30 99.66 93.64 89.55 98.68 93.89 89.63 93.43 91.49 89.21 97.91 93.33
± 0.16 ± 0.04 ± 0.10 ± 0.54 ± 0.03 ± 0.30 ± 0.19 ± 0.23 ± 0.15 ± 0.08 ± 0.56 ± 0.25 ± 0.24 ± 0.21 ± 0.20

CIFAR-100

ZS-CLIP 48.50 97.59 64.80 49.17 95.05 64.81 46.78 81.63 59.48 45.37 64.44 53.25 47.46 84.68 60.59
± 0.07 ± 0.04 ± 0.07 ± 0.08 ± 0.06 ± 0.06 ± 0.05 ± 0.03 ± 0.04 ± 0.06 ± 0.13 ± 0.06 ± 0.07 ± 0.06 ± 0.06

Tent 54.72 41.45 47.17 59.80 83.27 69.61 59.07 79.42 67.74 57.36 62.08 59.63 57.74 66.55 61.04
± 0.42 ± 0.89 ± 0.71 ± 0.31 ± 0.24 ± 0.27 ± 0.22 ± 0.22 ± 0.09 ± 0.10 ± 0.26 ± 0.12 ± 0.26 ± 0.40 ± 0.30

SoTTA 60.30 89.43 72.03 59.91 89.24 71.69 58.63 81.70 68.27 56.92 65.76 61.02 58.94 81.53 68.25
± 0.16 ± 0.44 ± 0.18 ± 0.21 ± 0.30 ± 0.16 ± 0.17 ± 0.18 ± 0.09 ± 0.13 ± 0.07 ± 0.06 ± 0.17 ± 0.25 ± 0.12

TPT 45.97 97.88 62.56 46.69 95.41 62.70 43.92 83.30 57.51 42.47 66.71 51.90 44.76 85.83 58.67
± 0.07 ± 0.03 ± 0.06 ± 0.15 ± 0.06 ± 0.13 ± 0.13 ± 0.16 ± 0.11 ± 0.12 ± 0.13 ± 0.12 ± 0.12 ± 0.09 ± 0.10

ZS-NTTA (Ours) 63.71 99.74 77.75 61.59 99.12 75.97 63.82 85.43 73.05 62.21 49.12 54.82 62.83 83.35 70.40
± 0.74 ± 0.06 ± 0.55 ± 1.01 ± 0.18 ± 0.81 ± 1.21 ± 1.52 ± 1.11 ± 1.16 ± 2.89 ± 1.49 ± 1.03 ± 1.17 ± 0.99

Table 19: Zero-shot noisy TTA results for CIFAR-10/100 as the ID datasets with different random
seeds in terms of AUROC and FPR95. The results are the mean ± standard deviation with five
random seeds. The bold indicates the best performance on each dataset.

ID Method SVHN LSUN Texture Places Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

CIFAR-10

ZS-CLIP 98.45 6.75 97.75 10.64 94.75 28.08 87.47 50.18 94.60 23.91
± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00

Tent 75.11 48.89 87.08 34.46 96.87 16.01 87.64 46.19 86.68 36.39
± 2.21 ± 3.14 ± 1.79 ± 2.54 ± 0.02 ± 0.13 ± 0.10 ± 0.38 ± 1.03 ± 1.55

SoTTA 95.27 22.67 97.72 11.47 97.32 13.05 91.57 33.88 95.47 20.27
± 0.66 ± 2.38 ± 0.16 ± 0.73 ± 0.03 ± 0.18 ± 0.09 ± 0.15 ± 0.23 ± 0.86

TPT 98.48 6.80 97.62 10.73 94.19 28.21 85.33 50.19 93.91 23.98
± 0.00 ± 0.02 ± 0.01 ± 0.04 ± 0.01 ± 0.05 ± 0.03 ± 0.02 ± 0.01 ± 0.03

ZS-NTTA (Ours) 99.95 0.13 99.82 0.41 99.70 0.58 98.80 2.38 99.57 0.87
± 0.01 ± 0.04 ± 0.02 ± 0.07 ± 0.04 ± 0.08 ± 0.02 ± 0.08 ± 0.02 ± 0.07

CIFAR-100

ZS-CLIP 85.11 86.42 85.88 72.58 71.09 95.35 58.47 98.97 75.14 88.33
± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00

Tent 45.44 81.05 84.67 62.67 80.38 73.38 68.94 91.61 69.86 77.18
± 0.82 ± 0.59 ± 0.33 ± 0.76 ± 0.08 ± 0.47 ± 0.06 ± 0.18 ± 0.32 ± 0.50

SoTTA 88.78 51.05 87.99 55.39 81.47 70.58 70.59 89.96 82.20 66.74
± 0.24 ± 0.54 ± 0.13 ± 0.79 ± 0.08 ± 0.32 ± 0.11 ± 0.37 ± 0.14 ± 0.51

TPT 84.81 86.46 85.39 72.59 69.65 95.35 55.61 98.97 73.86 88.34
± 0.01 ± 0.06 ± 0.01 ± 0.01 ± 0.02 ± 0.00 ± 0.04 ± 0.00 ± 0.02 ± 0.02

ZS-NTTA (Ours) 99.06 3.76 98.23 5.95 93.11 21.45 77.72 67.59 92.03 24.69
± 0.13 ± 0.95 ± 0.22 ± 1.32 ± 0.63 ± 2.37 ± 0.75 ± 1.69 ± 0.43 ± 1.58
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Figure 7: Average absolute accuracy for all methods across 44 ID-OOD dataset pairs.
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Table 20: Ablation studies on the queue capacity L for noise detector updates in the method with
CIFAR-10/100 as the ID datasets.

ID L
SVHN LSUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

CIFAR-10

32 88.92 99.95 94.11 87.98 99.77 93.50 89.09 97.86 93.27 88.95 87.98 88.46 88.73 96.39 92.33
64 89.37 99.96 94.37 88.21 99.68 93.59 89.57 98.39 93.77 89.49 90.16 89.82 89.16 97.05 92.89
128 89.46 99.90 94.39 88.56 99.66 93.78 89.60 98.54 93.86 89.65 93.04 91.31 89.32 97.79 93.34
256 89.03 99.75 94.09 88.01 99.08 93.22 89.21 97.69 93.26 89.16 93.68 91.36 88.85 97.55 92.98
512 88.36 99.49 93.60 87.14 98.34 92.40 88.29 95.91 91.94 88.21 90.78 89.48 88.00 96.13 91.86

CIFAR-100

32 61.31 99.91 75.99 59.80 99.68 74.75 60.52 86.47 71.20 57.14 57.55 57.34 59.69 85.90 69.82
64 63.94 99.80 77.94 61.56 99.48 76.06 63.63 85.98 73.14 60.06 50.86 55.08 62.30 84.03 70.55
128 64.44 99.78 78.31 62.42 99.15 76.61 65.17 84.84 73.72 63.50 44.21 52.13 63.88 81.99 70.19
256 63.64 99.38 77.59 61.10 97.82 75.22 64.17 83.45 72.55 63.65 41.41 50.18 63.14 80.51 68.89
512 61.01 98.88 75.46 56.26 95.18 70.72 61.38 77.75 68.60 60.44 43.56 50.63 59.77 78.84 66.35

Table 21: Ablation studies on the queue capacity Nq for queue length to store the output score in the
method with CIFAR-10/100 as the ID datasets.

ID Nq
SVHN LSUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

CIFAR-10

64 88.16 99.90 93.66 87.35 99.60 93.07 88.70 98.81 93.48 89.10 94.59 91.76 88.33 98.22 92.99
128 89.41 99.90 94.36 88.61 99.63 93.80 89.63 98.52 93.86 89.65 93.09 91.34 89.32 97.78 93.34
256 89.46 99.90 94.39 88.53 99.65 93.76 89.62 98.52 93.86 89.65 93.08 91.33 89.31 97.79 93.33
512 89.46 99.90 94.39 88.56 99.66 93.78 89.60 98.54 93.86 89.65 93.04 91.31 89.32 97.79 93.34
1024 89.43 99.91 94.38 88.51 99.65 93.75 89.62 98.57 93.88 89.64 93.01 91.29 89.30 97.78 93.33

CIFAR-100

64 64.19 99.65 78.08 62.64 98.73 76.65 64.61 84.64 73.28 62.10 46.96 53.48 63.38 82.49 70.37
128 64.92 99.72 78.64 62.86 98.90 76.87 65.28 84.35 73.60 63.51 46.15 53.46 64.14 82.28 70.64
256 64.68 99.76 78.48 62.65 98.97 76.73 65.33 84.55 73.71 63.58 44.45 52.32 64.06 81.93 70.31
512 64.44 99.78 78.31 62.42 99.15 76.61 65.17 84.84 73.72 63.50 44.21 52.13 63.88 81.99 70.19
1024 64.22 99.77 78.14 62.04 99.21 76.34 65.10 85.13 73.78 63.33 46.30 53.49 63.67 82.60 70.44

Table 22: Ablation studies for the different initialization steps in the method with CIFAR-10/100 as
the ID datasets.

ID Step SVHN LSUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

CIFAR-10

0 88.49 98.64 93.29 86.79 97.99 92.05 89.27 97.48 93.19 89.51 92.45 90.96 88.52 96.64 92.37
10 89.46 99.90 94.39 88.56 99.66 93.78 89.60 98.54 93.86 89.65 93.04 91.31 89.32 97.79 93.34
20 89.13 99.76 94.15 88.35 99.66 93.66 89.20 98.28 93.52 89.20 92.18 90.67 88.97 97.47 93.00
30 88.81 99.68 93.93 88.03 99.53 93.43 88.80 97.91 93.13 88.75 91.23 89.97 88.60 97.09 92.62
40 88.48 99.56 93.69 87.70 99.42 93.19 88.37 97.44 92.68 88.34 89.85 89.09 88.22 96.57 92.16
50 88.21 99.45 93.49 87.49 99.20 92.98 88.01 96.97 92.27 87.98 88.33 88.15 87.92 95.99 91.72

CIFAR-100

0 63.39 98.72 77.21 60.72 98.15 75.03 64.42 83.91 72.88 62.12 43.74 51.33 62.66 81.13 69.11
10 64.44 99.78 78.31 62.42 99.15 76.61 65.17 84.84 73.72 63.50 44.21 52.13 63.88 81.99 70.19
20 63.75 99.61 77.74 62.76 99.00 76.82 64.14 85.99 73.47 62.68 45.20 52.52 63.33 82.45 70.14
30 62.51 99.52 76.79 61.89 98.97 76.16 62.80 86.48 72.76 61.25 47.26 53.35 62.11 83.06 69.77
40 61.30 99.41 75.84 60.77 98.72 75.23 61.42 86.51 71.84 59.79 48.74 53.70 60.82 83.34 69.15
50 60.37 99.29 75.09 59.90 98.46 74.49 60.25 86.08 70.89 58.47 51.19 54.59 59.75 83.75 68.76

Table 23: Ablation studies on VLM’s architecture with CIFAR-10 as the ID datasets.

Backbone Method SVHN LSUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

RN50

ZS-CLIP 51.73 99.84 68.15 49.90 97.47 66.01 50.09 93.91 65.33 47.75 71.13 57.14 49.87 90.59 64.16
Tent 16.81 47.90 24.89 20.31 63.46 30.77 29.19 54.21 37.95 24.82 33.72 28.59 22.78 49.82 30.55
SoTTA 19.12 64.20 29.46 22.07 84.22 34.97 29.62 83.94 43.79 26.22 61.15 36.70 24.26 73.38 36.23
TPT 51.02 99.87 67.54 48.90 97.52 65.14 49.01 94.13 64.46 46.20 72.34 56.39 48.78 90.97 63.38
AdaND (Ours) 67.05 99.69 80.18 63.29 98.39 77.03 68.95 96.85 80.55 68.66 84.88 75.91 66.99 94.95 78.42

ViT-L/14

ZS-CLIP 90.71 96.46 93.50 90.85 95.70 93.21 90.55 91.77 91.16 89.91 75.72 82.21 90.50 89.91 90.02
Tent 90.54 36.08 51.60 93.52 80.30 86.41 93.94 90.35 92.11 93.42 68.95 79.34 92.86 68.92 77.37
SoTTA 93.90 70.96 80.83 94.14 91.80 92.96 94.02 90.28 92.11 93.74 71.44 81.08 93.95 81.12 86.74
TPT 89.98 96.55 93.15 90.14 95.98 92.97 89.78 91.99 90.87 89.23 76.13 82.16 89.78 90.16 89.79
AdaND (Ours) 94.77 99.65 97.15 94.50 99.67 97.02 94.87 98.65 96.72 94.86 89.95 92.34 94.75 96.98 95.81
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Table 24: Ablation studies for pseudo-labels generated by the noise detector under various noise
ratios. Red indicates a performance drop when using the outputs of the noise detector as pseudo-labels
in terms of AccH. For CIFAR-10/100, results are averaged across four OOD datasets: SVHN, LSUN,
Texture, and Places. For other ID datasets, averaging includes four OOD datasets: iNaturalist, SUN,
Texture, and Places. Note that 0% indicates the clean data stream.

ID Pseudo-label 0% 25% 50% 75%

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

CIFAR-10 Noise Detector 89.16 - - 89.42 75.47 74.31 89.53 98.94 94.00 89.34 99.24 94.03
Frozen Model 89.16 - - 89.29 95.85 92.43 89.32 97.79 93.34 89.10 95.75 92.21

CIFAR-100 Noise Detector 64.82 - - 65.20 72.57 65.80 66.33 96.08 78.44 66.53 75.22 61.74
Frozen Model 62.52 - - 63.24 75.14 65.29 63.88 81.99 70.19 64.28 82.21 70.83

CUB-200-2011 Noise Detector 52.47 - - 53.72 88.55 66.84 53.94 95.85 69.03 54.67 97.93 70.17
Frozen Model 49.47 - - 51.00 86.08 63.98 52.10 90.77 66.14 53.39 83.99 65.17

STANFORD-CARS Noise Detector 62.07 - - 62.82 99.27 76.94 63.11 99.66 77.28 63.37 99.75 77.51
Frozen Model 58.53 - - 62.41 99.03 76.57 62.80 99.66 77.05 63.10 99.75 77.30

Food-101 Noise Detector 86.23 - - 86.38 98.00 91.82 86.45 99.17 92.37 86.49 99.58 92.57
Frozen Model 86.21 - - 86.36 98.31 91.95 86.44 98.85 92.23 86.51 98.53 92.12

Oxford-IIIT Pet Noise Detector 84.95 - - 85.42 96.84 90.77 85.85 98.18 91.60 85.91 98.81 91.91
Frozen Model 84.91 - - 85.39 96.94 90.80 85.84 98.06 91.54 85.89 97.59 91.36

ImageNet Noise Detector 66.23 - - 66.15 26.11 23.30 65.57 48.47 41.34 65.21 47.62 40.08
Frozen Model 63.96 - - 62.53 86.82 72.62 62.24 88.67 73.09 61.53 85.52 71.52

ImageNet-K Noise Detector 45.42 - - 45.72 30.26 24.83 45.61 98.24 62.30 45.55 99.13 62.42
Frozen Model 36.54 - - 38.40 85.81 52.98 39.78 83.15 53.77 40.02 78.07 52.91

ImageNet-A Noise Detector 45.52 - - 45.06 20.25 26.84 45.49 57.15 45.39 45.25 53.84 39.55
Frozen Model 45.20 - - 42.84 70.45 52.86 43.36 81.06 56.41 44.06 73.46 55.00

ImageNet-V2 Noise Detector 58.59 - - 58.67 19.27 27.53 57.98 50.21 45.42 57.31 51.58 44.22
Frozen Model 58.42 - - 56.37 76.77 64.70 56.05 85.89 67.72 56.34 83.12 67.04

ImageNet-R Noise Detector 73.43 - - 73.55 28.53 27.97 72.97 97.75 83.56 72.56 98.50 83.57
Frozen Model 71.54 - - 71.23 91.61 80.05 71.13 92.28 80.25 70.95 88.95 78.79

Table 25: Failure case study of existing TTA methods with CIFAR-100 as ID dataset. Green indicates
an improvement over ZS-CLIP in average AccH, while red indicates the opposite.

Method SVHN LSUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

ZS-CLIP 48.52 97.58 64.81 49.29 94.97 64.90 46.76 81.58 59.45 45.36 64.52 53.27 47.48 84.66 60.61
Tent (GT) 62.11 92.92 74.45 61.28 89.73 72.83 60.24 80.42 68.88 58.55 65.11 61.66 60.55 82.05 69.45(+8.85%)
Tent (Normal) 55.39 42.41 48.04 60.06 83.37 69.82 59.31 79.13 67.80 57.52 62.24 59.79 58.07 66.79 61.36(+0.75%)
Tent (All-update) 52.41 29.85 38.04 54.74 59.92 57.21 58.91 75.83 66.31 57.98 61.08 59.49 56.01 56.67 55.26(-5.35%)
SoTTA (GT) 61.28 94.23 74.26 60.64 91.56 72.96 59.37 81.91 68.84 57.49 66.47 61.65 59.70 83.54 69.43(+8.82%)
SoTTA (Normal) 60.56 89.24 72.15 60.28 88.89 71.84 58.79 81.56 68.33 57.01 65.73 61.06 59.16 81.36 68.34(+7.74%)
SoTTA (All-update) 60.77 89.61 72.42 60.23 88.37 71.64 58.93 81.48 68.39 57.17 65.93 61.24 59.28 81.35 68.42(+7.81%)
TPT (GT) 54.07 98.11 69.72 54.77 95.52 69.62 52.32 82.86 64.14 51.20 67.43 58.20 53.09 85.98 65.42(+4.81%)
TPT (Normal) 46.09 97.87 62.67 46.90 95.36 62.88 43.87 83.10 57.42 42.48 66.86 51.95 44.84 85.80 58.73(-1.88%)
TPT (All-update) 52.35 84.64 64.69 53.84 87.67 66.71 51.01 62.39 56.13 49.87 39.74 44.23 51.77 68.61 57.94(-2.67%)

H.2 SCORE DIFFERENCE

The score distributions for TPT under the Normal pipeline is shown in Figures 8. Since TPT resets
the model after updating each sample, the impact of unfiltered noisy samples is limited to the current
step and does not accumulate. Despite this, the score of some noisy samples may increase, while the
score of some ID samples may decrease, leading to a decline in performance.

H.3 GRADIENT ANALYSIS

Figure 9 shows the the impact of clean and noisy samples on the gradients in Tent. To present a clear
view, Figure 9 only displays the portion of the gradient magnitudes less than 0.0010.
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Table 26: Failure case study of existing TTA methods. Green indicates an improvement over ZS-CLIP
in average AccH, while red indicates the opposite.

ID Method iNaturalist SUN Texture Places Avg

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

CUB-200-2011

ZS-CLIP 38.13 88.06 53.22 38.10 87.86 53.15 37.56 79.11 50.94 38.00 87.81 53.04 37.95 85.71 52.59
Tent (GT) 42.98 84.67 57.02 43.46 87.74 58.13 43.19 80.96 56.33 43.27 87.02 57.80 43.23 85.10 57.32(+4.73%)
Tent (Normal) 37.02 46.95 41.40 38.61 55.55 45.56 34.98 41.77 38.07 40.41 74.83 52.48 37.75 54.78 44.38(-8.21%)
Tent (All-update) 32.90 28.23 30.39 34.95 46.81 40.02 34.11 43.92 38.40 36.27 57.90 44.60 34.56 44.22 38.35(-14.23%)
SoTTA (GT) 42.16 86.33 56.65 42.63 88.67 57.58 42.45 82.75 56.11 42.48 88.48 57.40 42.43 86.56 56.93(+4.35%)
SoTTA (Normal) 41.67 84.37 55.79 42.08 86.83 56.69 41.44 77.58 54.02 42.04 86.52 56.59 41.81 83.82 55.77(+3.19%)
SoTTA (All-update) 41.69 84.24 55.78 41.98 86.77 56.58 41.30 77.12 53.79 41.86 86.49 56.42 41.71 83.66 55.64(+3.05%)
TPT (GT) 48.38 90.78 63.12 48.48 91.00 63.26 48.29 82.99 61.05 48.53 90.42 63.16 48.42 88.80 62.65(+10.06%)
TPT (Normal) 37.41 89.57 52.78 37.49 89.67 52.87 36.88 81.67 50.81 37.44 89.45 52.79 37.30 87.59 52.31(-0.27%)
TPT (All-update) 46.67 65.10 54.37 46.34 64.86 54.06 46.69 58.51 51.94 46.62 64.55 54.14 46.58 63.25 53.63(+1.04%)

STANFORD-CARS

ZS-CLIP 50.25 96.59 66.11 53.28 98.81 69.23 53.49 99.09 69.48 53.22 98.08 69.00 52.56 98.14 68.45
Tent (GT) 52.14 95.00 67.33 55.22 98.21 70.69 55.42 98.25 70.87 55.16 97.48 70.45 54.48 97.23 69.83(+1.38%)
Tent (Normal) 44.12 52.33 47.88 54.27 94.51 68.95 54.60 97.37 69.97 54.33 96.65 69.56 51.83 85.22 64.09(-4.36%)
Tent (All-update) 41.25 40.75 41.00 42.71 54.01 47.70 39.10 33.10 35.85 44.96 66.23 53.56 42.01 48.52 44.53(-23.93%)
SoTTA (GT) 52.20 95.86 67.59 55.05 98.39 70.60 55.19 98.64 70.78 55.02 97.74 70.41 54.37 97.66 69.84(+1.39%)
SoTTA (Normal) 51.51 92.84 66.26 54.81 97.57 70.19 55.06 98.50 70.64 54.75 96.96 69.98 54.03 96.47 69.27(+0.81%)
SoTTA (All-update) 51.32 92.79 66.09 54.75 97.66 70.16 55.08 98.50 70.65 54.70 96.78 69.90 53.96 96.43 69.20(+0.75%)
TPT (GT) 58.16 97.52 72.86 60.08 99.00 74.78 59.81 99.26 74.64 59.81 98.50 74.43 59.47 98.57 74.18(+5.72%)
TPT (Normal) 49.24 96.97 65.31 52.40 98.83 68.49 52.75 99.27 68.89 52.42 98.39 68.40 51.70 98.36 67.77(-0.68%)
TPT (All-update) 55.90 81.32 66.26 58.08 89.74 70.52 59.00 95.38 72.90 58.13 90.14 70.68 57.78 89.14 70.09(+1.64%)

Food-101

ZS-CLIP 80.63 94.79 87.14 80.72 95.98 87.69 80.50 93.10 86.34 80.65 94.59 87.07 80.62 94.62 87.06
Tent (GT) 83.30 91.89 87.38 83.41 93.33 88.09 83.22 90.78 86.84 83.33 91.95 87.43 83.31 91.99 87.44(+0.38%)
Tent (Normal) 75.83 25.09 37.70 82.86 85.10 83.97 82.54 87.03 84.73 82.26 80.13 81.18 80.87 69.34 71.90(-15.16%)
Tent (All-update) 74.39 21.10 32.88 71.45 55.31 62.35 71.60 56.89 63.40 74.72 52.35 61.57 73.04 46.41 55.05(-32.01%)
SoTTA (GT) 82.49 93.22 87.53 82.63 94.93 88.35 82.42 91.52 86.73 82.59 93.40 87.66 82.53 93.27 87.57(+0.51%)
SoTTA (Normal) 81.84 84.09 82.95 82.49 93.34 87.58 82.05 90.10 85.89 82.44 91.62 86.79 82.20 89.79 85.80(-1.26%)
SoTTA (All-update) 81.59 82.76 82.17 82.47 92.98 87.41 81.99 89.35 85.51 82.34 91.25 86.57 82.10 89.09 85.41(-1.64%)
TPT (GT) 84.36 95.11 89.41 84.42 96.24 89.94 84.32 93.55 88.70 84.43 95.02 89.41 84.38 94.98 89.37(+2.31%)
TPT (Normal) 79.70 94.93 86.65 79.92 96.19 87.30 79.70 93.86 86.20 79.76 95.14 86.77 79.77 95.03 86.73(-0.33%)
TPT (All-update) 83.60 71.41 77.03 83.79 80.42 82.07 83.84 81.36 82.58 83.95 78.85 81.32 83.80 78.01 80.75(-6.31%)

Oxford-IIIT Pet

ZS-CLIP 78.58 88.31 83.16 79.77 87.26 83.35 80.12 91.17 85.29 79.56 84.30 81.86 79.51 87.76 83.42
Tent (GT) 81.15 86.49 83.73 82.16 86.05 84.06 82.38 89.99 86.02 82.01 83.45 82.72 81.92 86.49 84.13(+0.72%)
Tent (Normal) 80.07 78.09 79.07 81.19 68.30 74.19 81.48 74.72 77.95 80.64 62.51 70.43 80.84 70.91 75.41(-8.01%)
Tent (All-update) 77.58 70.76 74.01 79.32 62.61 69.98 78.60 61.46 68.98 79.02 54.96 64.83 78.63 62.45 69.45(-13.97%)
SoTTA (GT) 80.72 86.37 83.45 82.09 86.37 84.18 82.51 90.42 86.28 81.79 83.47 82.62 81.78 86.66 84.13(+0.72%)
SoTTA (Normal) 80.07 83.54 81.77 81.78 83.83 82.79 82.09 87.52 84.72 81.49 81.25 81.37 81.36 84.03 82.66(-0.75%)
SoTTA (All-update) 79.96 83.52 81.70 81.55 83.63 82.58 81.97 87.64 84.71 81.37 81.28 81.32 81.21 84.02 82.58(-0.84%)
TPT (GT) 83.39 89.99 86.56 83.96 88.41 86.13 83.82 92.31 87.86 83.83 85.41 84.61 83.75 89.03 86.29(+2.88%)
TPT (Normal) 77.56 89.71 83.19 78.87 89.82 83.99 79.17 92.26 85.22 78.62 87.32 82.74 78.56 89.78 83.78(+0.37%)
TPT (All-update) 82.77 58.09 68.27 83.43 62.39 71.39 83.26 70.69 76.46 83.13 59.06 69.06 83.15 62.56 71.30(-12.12%)

ImageNet

ZS-CLIP 54.01 86.46 66.49 53.32 83.87 65.19 52.66 78.69 63.10 53.25 80.40 64.07 53.31 82.35 64.71
Tent (GT) 56.15 79.49 65.81 55.93 78.31 65.25 55.34 72.69 62.84 55.81 75.31 64.11 55.81 76.45 64.50(-0.21%)
Tent (Normal) 48.56 35.74 41.18 55.44 75.54 63.95 54.94 70.93 61.92 55.76 73.98 63.59 53.67 64.05 57.66(-7.05%)
Tent (All-update) 48.08 31.28 37.90 53.25 72.27 61.32 54.25 68.27 60.46 54.27 72.20 61.96 52.46 61.00 55.41(-9.30%)
SoTTA (GT) 55.51 75.20 63.87 55.32 75.54 63.87 54.91 73.13 62.72 55.25 73.63 63.13 55.25 74.38 63.40(-1.32%)
SoTTA (Normal) 53.15 62.68 57.52 53.16 68.76 59.96 53.64 68.05 59.99 53.60 69.16 60.39 53.39 67.16 59.47(-5.25%)
SoTTA (All-update) 53.06 61.97 57.17 52.89 67.70 59.39 53.59 66.80 59.47 53.00 68.06 59.59 53.14 66.13 58.91(-5.81%)
TPT (GT) 61.95 88.28 72.81 61.81 85.44 71.73 61.26 80.43 69.55 61.54 82.33 70.43 61.64 84.12 71.13(+6.42%)
TPT (Normal) 52.58 88.93 66.09 51.91 86.09 64.77 51.11 80.01 62.38 51.80 82.89 63.76 51.85 84.48 64.25(-0.46%)
TPT (All-update) 60.85 61.41 61.13 60.97 62.85 61.90 60.33 57.91 59.10 60.70 61.99 61.34 60.71 61.04 60.87(-3.85%)

ImageNet-K

ZS-CLIP 34.14 83.35 48.44 33.32 81.16 47.24 32.66 75.53 45.60 33.37 77.12 46.58 33.37 79.29 46.97
Tent (GT) 37.40 75.98 50.13 37.14 75.43 49.77 36.39 68.41 47.51 37.07 72.19 48.99 37.00 73.00 49.10(+2.13%)
Tent (Normal) 30.46 26.86 28.55 36.57 71.82 48.46 36.37 66.63 47.06 36.87 70.32 48.38 35.07 58.91 43.11(-3.85%)
Tent (All-update) 31.15 28.84 29.95 35.38 69.67 46.93 35.94 65.09 46.31 36.00 69.07 47.33 34.62 58.17 42.63(-4.34%)
SoTTA (GT) 37.69 72.29 49.55 37.60 75.21 50.14 36.93 70.68 48.51 37.51 71.81 49.28 37.43 72.50 49.37(+2.40%)
SoTTA (Normal) 36.18 61.70 45.61 36.28 67.19 47.12 35.91 65.31 46.34 36.57 67.09 47.34 36.23 65.32 46.60(-0.36%)
SoTTA (All-update) 35.49 59.76 44.53 36.29 66.56 46.97 35.96 63.72 45.97 36.38 66.50 47.03 36.03 64.13 46.12(-0.84%)
TPT (GT) 39.52 86.67 54.29 39.34 83.88 53.56 38.95 78.30 52.02 39.21 80.42 52.72 39.26 82.32 53.15(+6.18%)
TPT (Normal) 32.16 86.52 46.89 31.55 83.86 45.85 30.74 77.39 44.00 31.56 80.05 45.27 31.50 81.95 45.50(-1.46%)
TPT (All-update) 38.25 59.33 46.51 38.45 60.41 46.99 37.96 54.98 44.91 38.33 59.67 46.68 38.25 58.60 46.27(-0.69%)

ImageNet-A

ZS-CLIP 34.73 80.69 48.56 34.20 78.83 47.70 33.97 76.60 47.07 33.96 75.11 46.77 34.22 77.81 47.53
Tent (GT) 35.51 79.29 49.05 34.99 77.60 48.23 34.75 75.80 47.65 34.73 74.24 47.32 34.99 76.73 48.06(+0.55%)
Tent (Normal) 34.99 77.19 48.15 34.83 77.05 47.97 34.36 75.19 47.17 34.60 73.83 47.12 34.70 75.81 47.60(+0.09%)
Tent (All-update) 34.85 77.48 48.08 34.07 76.71 47.18 33.72 74.89 46.50 34.11 73.75 46.65 34.19 75.71 47.10(-0.41%)
SoTTA (GT) 37.09 78.79 50.44 36.73 77.72 49.88 36.25 76.52 49.19 36.37 74.36 48.85 36.61 76.85 49.59(+2.06%)
SoTTA (Normal) 36.85 76.83 49.81 36.47 77.08 49.51 35.60 75.37 48.36 36.07 73.87 48.47 36.25 75.79 49.04(+1.51%)
SoTTA (All-update) 36.87 76.93 49.85 36.55 77.00 49.57 35.80 75.08 48.48 36.37 73.79 48.72 36.40 75.70 49.16(+1.63%)
TPT (GT) 45.37 82.39 58.52 44.60 80.80 57.47 44.67 79.19 57.12 44.45 77.51 56.50 44.77 79.97 57.40(+9.88%)
TPT (Normal) 34.12 81.17 48.04 33.20 80.23 46.97 33.12 79.92 46.83 33.05 77.00 46.25 33.37 79.58 47.02(-0.50%)
TPT (All-update) 43.31 56.05 48.86 43.05 53.93 47.88 43.68 58.71 50.09 42.99 52.81 47.40 43.26 55.38 48.56(+1.03%)

ImageNet-V2

ZS-CLIP 48.05 85.77 61.59 47.43 83.33 60.45 46.72 77.70 58.35 47.45 79.44 59.41 47.41 81.56 59.95
Tent (GT) 48.89 82.71 61.45 48.16 80.94 60.39 47.54 75.31 58.29 48.14 77.72 59.45 48.18 79.17 59.89(-0.06%)
Tent (Normal) 47.94 76.98 59.08 48.28 80.50 60.36 47.56 74.47 58.05 48.34 77.37 59.50 48.03 77.33 59.25(-0.70%)
Tent (All-update) 47.51 73.10 57.59 47.52 79.52 59.49 47.47 73.93 57.82 47.87 76.55 58.90 47.59 75.78 58.45(-1.50%)
SoTTA (GT) 48.80 82.74 61.39 48.23 80.61 60.35 47.63 76.11 58.59 48.22 77.03 59.31 48.22 79.12 59.91(-0.04%)
SoTTA (Normal) 48.24 78.59 59.78 47.80 78.67 59.47 47.27 74.82 57.94 48.26 76.05 59.05 47.89 77.03 59.06(-0.89%)
SoTTA (All-update) 48.06 78.74 59.69 47.71 78.64 59.39 47.49 74.42 57.98 48.10 75.97 58.90 47.84 76.94 58.99(-0.96%)
TPT (GT) 55.52 87.89 68.05 55.37 85.12 67.10 54.95 79.99 65.15 55.44 81.84 66.10 55.32 83.71 66.60(+6.65%)
TPT (Normal) 46.63 88.37 61.05 46.12 85.58 59.94 45.21 79.14 57.55 46.02 81.95 58.94 46.00 83.76 59.37(-0.58%)
TPT (All-update) 54.50 60.62 57.40 54.65 62.15 58.16 54.00 56.35 55.15 54.46 61.48 57.76 54.40 60.15 57.12(-2.83%)

ImageNet-R

ZS-CLIP 61.96 94.43 74.82 61.77 88.98 72.92 60.92 77.08 68.05 61.69 84.81 71.43 61.59 86.33 71.81
Tent (GT) 65.48 92.13 76.55 65.32 86.94 74.60 64.63 75.81 69.77 65.17 82.68 72.89 65.15 84.39 73.45(+1.65%)
Tent (Normal) 65.22 91.45 76.14 65.06 85.61 73.93 63.33 69.99 66.49 64.93 82.38 72.62 64.64 82.36 72.30(+0.49%)
Tent (All-update) 64.66 90.75 75.52 63.73 84.00 72.47 62.22 67.19 64.61 64.30 81.49 71.88 63.73 80.86 71.12(-0.69%)
SoTTA (GT) 67.58 91.75 77.83 67.66 86.68 76.00 66.98 76.52 71.43 67.45 82.49 74.22 67.42 84.36 74.87(+3.06%)
SoTTA (Normal) 66.78 86.98 75.55 66.71 83.99 74.36 65.92 72.69 69.14 66.60 80.53 72.91 66.50 81.05 72.99(+1.19%)
SoTTA (All-update) 66.63 85.68 74.96 66.90 83.64 74.34 65.92 71.65 68.67 66.63 80.06 72.73 66.52 80.26 72.68(+0.87%)
TPT (GT) 70.39 95.01 80.87 70.24 89.87 78.85 69.81 77.91 73.64 70.24 85.76 77.23 70.17 87.14 77.65(+5.84%)
TPT (Normal) 60.95 94.80 74.20 60.85 89.98 72.60 59.98 77.79 67.73 60.67 85.79 71.08 60.61 87.09 71.40(-0.40%)
TPT (All-update) 69.10 72.12 70.58 69.14 66.38 67.73 68.64 56.45 61.95 68.85 63.42 66.02 68.93 64.59 66.57(-5.24%)
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Table 27: Failure case study of existing TTA methods with CIFAR-10/100 as ID datasets. Green
indicates an improvement over ZS-CLIP in average AccH, while red indicates the opposite.

ID Method SVHN LSUN Texture Places Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

CIFAR-10

ZS-CLIP 98.45 6.75 97.75 10.64 94.75 28.08 87.47 50.18 94.60 23.91
Tent (GT) 99.17 3.55 98.37 8.28 97.36 12.99 92.25 31.91 96.79(+2.18%) 14.18(-9.73%)
Tent (Normal) 74.35 50.27 89.47 31.18 96.85 15.95 87.75 45.57 87.10(-7.50%) 35.74(+11.83%)
Tent (All-update) 62.78 65.12 73.23 54.20 95.80 22.24 82.53 56.35 78.59(-16.02%) 49.48(+25.56%)
SoTTA (GT) 99.24 3.13 98.51 7.24 97.44 11.89 92.17 31.41 96.84(+2.24%) 13.42(-10.50%)
SoTTA (Normal) 95.77 20.74 97.57 11.68 97.27 13.02 91.43 33.91 95.51(+0.91%) 19.84(-4.08%)
SoTTA (All-update) 93.29 30.24 97.46 12.79 97.21 13.76 91.47 33.75 94.86(+0.25%) 22.63(-1.28%)
TPT (GT) 99.28 3.07 98.93 4.61 96.94 14.88 91.21 35.75 96.59(+1.98%) 14.58(-9.34%)
TPT (Normal) 98.48 6.76 97.61 10.67 94.19 28.26 85.37 50.18 93.91(-0.69%) 23.97(+0.05%)
TPT (All-update) 98.28 7.50 96.15 23.66 91.20 50.48 81.46 69.41 91.77(-2.83%) 37.76(+13.85%)

CIFAR-100

ZS-CLIP 85.11 86.42 85.88 72.58 71.09 95.35 58.47 98.97 75.14 88.33
Tent (GT) 92.11 40.90 89.09 52.30 82.14 67.79 72.01 87.97 83.84(+8.70%) 62.24(-26.09%)
Tent (Normal) 46.39 79.90 84.91 62.45 80.28 73.90 68.92 91.80 70.12(-5.01%) 77.01(-11.32%)
Tent (All-update) 37.15 94.38 63.31 80.78 77.80 79.30 68.91 91.43 61.79(-13.35%) 86.47(-1.86%)
SoTTA (GT) 92.29 41.42 89.60 51.31 81.96 69.89 71.43 89.36 83.82(+8.68%) 63.00(-25.33%)
SoTTA (Normal) 88.72 51.10 87.95 54.48 81.45 70.58 70.60 90.18 82.18(+7.04%) 66.59(-21.74%)
SoTTA (All-update) 88.99 49.96 87.76 55.49 81.40 71.23 70.66 89.85 82.20(+7.06%) 66.63(-21.70%)
TPT (GT) 88.66 76.97 89.25 63.17 76.87 90.57 66.27 97.82 80.26(+5.12%) 82.13(-6.20%)
TPT (Normal) 84.80 86.43 85.37 72.58 69.62 95.34 55.59 98.97 73.84(-1.29%) 88.33(0.00%)
TPT (All-update) 75.97 94.94 82.55 81.02 62.82 95.60 48.79 98.87 67.53(-7.61%) 92.61(+4.28%)
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Figure 8: Failure case analysis of TPT (Shu et al., 2022) in ZS-NTTA. (a) and (b) show the score
distributions of ZS-CLIP and TPT, respectively. ID dataset: CIFAR-10; OOD dataset: SVHN.
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Table 28: Failure case study of existing TTA methods. Green indicates an improvement over ZS-CLIP
in average AccH, while red indicates the opposite.

ID Method SVHN LSUN Texture Places Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

CUB-200-2011

ZS-CLIP 80.79 59.31 80.18 61.71 72.79 69.44 79.84 62.83 78.40 63.32
Tent (GT) 81.24 59.61 84.05 55.01 79.18 61.47 83.31 56.86 81.94(+3.54%) 58.24(-5.09%)
Tent (Normal) 46.85 82.59 55.06 80.18 40.14 91.71 69.92 75.90 52.99(-25.41%) 82.59(+19.27%)
Tent (All-update) 29.60 91.45 46.45 86.77 41.22 93.95 54.73 85.76 43.00(-35.40%) 89.48(+26.16%)
SoTTA (GT) 81.80 58.61 84.00 55.12 79.76 59.37 83.41 56.69 82.24(+3.84%) 57.45(-5.88%)
SoTTA (Normal) 79.75 62.44 81.98 58.85 74.79 68.23 81.37 61.23 79.47(+1.07%) 62.69(-0.64%)
SoTTA (All-update) 79.54 62.84 81.89 59.22 74.44 69.00 81.31 61.23 79.30(+0.89%) 63.07(-0.25%)
TPT (GT) 90.36 41.25 90.37 43.41 85.78 53.15 90.03 43.84 89.13(+10.73%) 45.41(-17.91%)
TPT (Normal) 80.52 59.54 80.19 61.41 73.62 68.26 79.97 62.60 78.57(+0.17%) 62.95(-0.37%)
TPT (All-update) 72.08 75.99 71.29 79.66 68.31 79.48 71.40 79.71 70.77(-7.63%) 78.71(+15.39%)

STANFORD-CARS

ZS-CLIP 94.15 27.03 98.18 8.26 98.29 8.64 97.71 9.79 97.08 13.43
Tent (GT) 93.95 27.11 98.06 8.62 98.10 8.91 97.67 9.82 96.95(-0.14%) 13.62(+0.19%)
Tent (Normal) 55.00 65.81 95.13 17.17 97.10 13.56 96.75 13.39 86.00(-11.09%) 27.48(+14.05%)
Tent (All-update) 43.67 77.60 58.11 63.76 39.69 77.72 68.48 58.33 52.49(-44.59%) 69.35(+55.92%)
SoTTA (GT) 94.47 26.05 98.10 8.43 98.28 8.70 97.75 9.80 97.15(+0.07%) 13.25(-0.18%)
SoTTA (Normal) 91.62 34.06 97.31 11.47 98.09 9.24 97.37 11.08 96.10(-0.98%) 16.46(+3.03%)
SoTTA (All-update) 91.40 33.99 97.45 10.56 97.93 9.90 97.24 11.59 96.01(-1.08%) 16.51(+3.08%)
TPT (GT) 97.41 13.87 99.17 3.78 99.25 4.01 98.99 4.52 98.70(+1.62%) 6.54(-6.89%)
TPT (Normal) 93.99 26.57 97.92 8.48 98.29 8.84 97.66 9.52 96.97(-0.12%) 13.35(-0.08%)
TPT (All-update) 87.21 45.63 93.42 22.78 97.10 12.61 93.80 21.41 92.88(-4.20%) 25.61(+12.18%)

Food-101

ZS-CLIP 97.71 11.36 98.10 10.16 96.52 13.09 97.60 13.05 97.48 11.91
Tent (GT) 97.57 13.26 98.04 11.55 96.44 14.66 97.59 13.90 97.41(-0.07%) 13.34(+1.43%)
Tent (Normal) 39.44 80.04 95.00 21.35 95.08 20.90 91.77 27.63 80.32(-17.16%) 37.48(+25.57%)
Tent (All-update) 35.67 85.78 67.60 56.23 72.00 56.92 69.85 58.67 61.28(-36.20%) 64.40(+52.49%)
SoTTA (GT) 97.78 12.00 98.22 10.28 96.57 14.13 97.74 12.94 97.58(+0.10%) 12.34(+0.42%)
SoTTA (Normal) 94.51 24.94 97.81 12.34 95.97 16.73 97.31 15.01 96.40(-1.08%) 17.26(+5.34%)
SoTTA (All-update) 93.96 27.45 97.71 13.12 95.78 17.53 97.17 15.76 96.16(-1.33%) 18.46(+6.55%)
TPT (GT) 98.68 7.07 98.91 5.65 97.77 8.43 98.65 7.22 98.50(+1.02%) 7.09(-4.82%)
TPT (Normal) 97.18 11.73 97.84 10.42 96.49 13.24 97.33 13.07 97.21(-0.27%) 12.12(+0.20%)
TPT (All-update) 93.04 38.70 95.20 28.53 94.64 26.53 94.88 29.09 94.44(-3.04%) 30.71(+18.80%)

Oxford-IIIT Pet

ZS-CLIP 94.16 30.78 94.46 21.68 96.44 16.79 93.48 26.51 94.64 23.94
Tent (GT) 94.80 28.92 94.91 21.39 96.69 16.87 94.07 26.07 95.12(+0.48%) 23.31(-0.63%)
Tent (Normal) 90.22 42.32 85.35 42.35 89.68 37.86 81.56 50.01 86.70(-7.93%) 43.13(+19.19%)
Tent (All-update) 86.45 55.78 80.66 50.18 80.20 55.53 75.25 58.32 80.64(-14.00%) 54.95(+31.01%)
SoTTA (GT) 94.44 29.92 94.78 20.98 96.71 16.27 93.85 25.80 94.94(+0.31%) 23.24(-0.70%)
SoTTA (Normal) 93.13 35.13 93.64 24.75 95.79 19.91 92.52 29.94 93.77(-0.87%) 27.43(+3.49%)
SoTTA (All-update) 92.91 36.18 93.56 25.16 95.71 20.33 92.51 30.18 93.67(-0.96%) 27.96(+4.02%)
TPT (GT) 97.80 13.57 97.60 12.25 98.59 8.25 97.19 16.12 97.80(+3.16%) 12.55(-11.39%)
TPT (Normal) 93.54 30.85 94.57 21.05 96.23 16.26 93.36 24.59 94.43(-0.21%) 23.19(-0.75%)
TPT (All-update) 89.66 53.33 90.17 43.58 93.48 34.00 88.89 47.78 90.55(-4.09%) 44.67(+20.73%)

ImageNet

ZS-CLIP 86.64 50.48 83.89 58.14 79.53 64.25 81.86 60.39 82.98 58.31
Tent (GT) 83.71 58.57 82.26 59.91 77.43 67.63 80.57 62.80 80.99(-1.99%) 62.23(+3.91%)
Tent (Normal) 44.17 85.40 80.35 63.64 75.98 69.87 79.70 64.76 70.05(-12.93%) 70.92(+12.60%)
Tent (All-update) 40.42 88.23 76.97 71.66 73.99 74.25 77.68 69.64 67.27(-15.72%) 75.94(+17.63%)
SoTTA (GT) 81.37 62.61 80.75 63.16 78.29 66.61 79.70 64.89 80.03(-2.95%) 64.32(+6.00%)
SoTTA (Normal) 71.13 77.69 75.14 71.50 73.72 73.10 75.81 71.74 73.95(-9.03%) 73.51(+15.19%)
SoTTA (All-update) 70.64 78.51 74.42 72.73 73.32 73.59 75.12 72.88 73.38(-9.61%) 74.43(+16.11%)
TPT (GT) 92.46 37.37 90.62 43.32 87.41 51.49 89.38 46.77 89.97(+6.99%) 44.74(-13.58%)
TPT (Normal) 85.80 49.83 83.83 57.09 79.05 64.33 81.89 59.53 82.64(-0.34%) 57.70(-0.62%)
TPT (All-update) 77.46 67.63 79.04 67.53 75.26 74.62 78.47 68.83 77.56(-5.42%) 69.65(+11.34%)

ImageNet-K

ZS-CLIP 75.13 78.60 71.38 83.15 66.30 85.24 69.02 82.68 70.46 82.42
Tent (GT) 74.04 77.74 73.11 77.83 66.63 83.49 70.89 78.90 71.17(+0.71%) 79.49(-2.93%)
Tent (Normal) 28.86 93.52 69.55 81.79 64.34 86.03 68.69 82.37 57.86(-12.60%) 85.93(+3.51%)
Tent (All-update) 31.41 93.29 66.33 86.45 62.78 87.26 66.81 85.18 56.83(-13.62%) 88.05(+5.63%)
SoTTA (GT) 72.08 77.26 73.44 76.55 68.62 81.10 71.41 77.44 71.39(+0.93%) 78.09(-4.33%)
SoTTA (Normal) 61.84 85.96 65.98 84.10 63.25 85.66 66.28 84.24 64.34(-6.12%) 84.99(+2.57%)
SoTTA (All-update) 60.37 86.86 65.73 84.49 62.59 86.17 65.93 84.55 63.66(-6.80%) 85.52(+3.10%)
TPT (GT) 83.51 69.23 80.76 74.80 76.34 79.50 78.80 76.23 79.85(+9.40%) 74.94(-7.48%)
TPT (Normal) 74.55 78.10 71.52 82.15 65.70 85.08 69.18 82.05 70.24(-0.22%) 81.84(-0.57%)
TPT (All-update) 63.59 86.87 65.12 85.90 60.34 90.42 64.26 87.02 63.33(-7.13%) 87.55(+5.13%)

ImageNet-A

ZS-CLIP 76.23 68.27 72.73 76.64 70.65 78.17 70.04 78.07 72.41 75.29
Tent (GT) 75.68 69.65 72.53 77.04 70.41 78.79 70.08 78.47 72.17(-0.24%) 75.99(+0.70%)
Tent (Normal) 73.67 72.67 71.90 77.77 69.71 79.51 69.53 79.07 71.20(-1.21%) 77.25(+1.97%)
Tent (All-update) 73.75 72.64 71.38 79.05 69.10 80.17 69.22 79.60 70.86(-1.55%) 77.87(+2.58%)
SoTTA (GT) 76.00 69.33 73.66 75.27 72.01 76.83 71.11 76.89 73.20(+0.78%) 74.58(-0.71%)
SoTTA (Normal) 74.29 71.40 73.00 75.65 70.84 78.63 70.41 77.28 72.14(-0.28%) 75.74(+0.45%)
SoTTA (All-update) 74.29 71.84 73.00 75.48 70.73 78.73 70.42 77.60 72.11(-0.30%) 75.91(+0.62%)
TPT (GT) 84.33 58.37 81.88 67.53 80.45 68.52 79.71 71.19 81.59(+9.18%) 66.40(-8.88%)
TPT (Normal) 74.46 68.41 71.32 76.63 70.66 77.85 69.01 78.23 71.36(-1.05%) 75.28(-0.01%)
TPT (All-update) 64.16 87.03 63.25 86.79 66.39 83.79 61.68 89.65 63.87(-8.54%) 86.81(+11.53%)

ImageNet-V2

ZS-CLIP 83.54 60.57 80.49 67.14 75.84 72.67 78.36 69.03 79.56 67.35
Tent (GT) 82.25 62.78 79.93 67.93 75.18 73.55 77.94 69.41 78.83(-0.73%) 68.42(+1.06%)
Tent (Normal) 77.74 68.87 79.65 67.76 74.68 73.93 77.75 69.90 77.45(-2.10%) 70.12(+2.76%)
Tent (All-update) 75.04 72.01 78.67 71.31 74.11 75.03 77.09 71.47 76.23(-3.33%) 72.45(+5.10%)
SoTTA (GT) 82.30 63.32 79.58 68.54 75.83 73.04 77.80 70.07 78.88(-0.68%) 68.74(+1.39%)
SoTTA (Normal) 78.71 69.58 78.31 70.26 74.67 74.84 76.99 72.12 77.17(-2.39%) 71.70(+4.35%)
SoTTA (All-update) 78.72 69.89 78.15 70.67 74.62 75.14 76.96 72.11 77.11(-2.45%) 71.95(+4.60%)
TPT (GT) 89.97 48.36 87.98 54.92 84.31 61.75 86.48 57.28 87.19(+7.63%) 55.58(-11.77%)
TPT (Normal) 82.67 60.16 80.43 66.19 75.24 72.61 78.39 68.48 79.18(-0.38%) 66.86(-0.49%)
TPT (All-update) 73.47 75.07 75.18 74.93 70.93 81.09 74.53 75.83 73.53(-6.03%) 76.73(+9.38%)

ImageNet-R

ZS-CLIP 90.99 49.03 87.88 56.24 79.39 70.05 85.26 58.80 85.88 58.53
Tent (GT) 91.08 48.73 88.46 54.89 80.91 68.98 85.94 57.86 86.60(+0.72%) 57.62(-0.91%)
Tent (Normal) 90.45 51.24 87.60 57.99 77.01 73.38 85.41 59.69 85.12(-0.76%) 60.58(+2.05%)
Tent (All-update) 89.59 55.75 85.96 61.95 74.76 76.14 84.51 62.67 83.70(-2.17%) 64.13(+5.60%)
SoTTA (GT) 91.36 47.40 89.30 50.67 82.60 63.73 86.63 54.50 87.47(+1.59%) 54.07(-4.46%)
SoTTA (Normal) 88.40 57.05 87.46 55.56 79.79 69.31 85.09 58.76 85.19(-0.69%) 60.17(+1.64%)
SoTTA (All-update) 87.64 59.58 87.37 56.37 79.50 69.86 84.93 59.50 84.86(-1.02%) 61.33(+2.80%)
TPT (GT) 95.13 28.09 93.09 37.64 86.96 53.23 91.08 40.58 91.56(+5.69%) 39.89(-18.64%)
TPT (Normal) 90.58 49.41 87.30 56.40 78.51 69.69 84.51 59.32 85.22(-0.66%) 58.70(+0.17%)
TPT (All-update) 84.12 71.49 82.01 72.54 75.36 78.05 79.35 75.21 80.21(-5.67%) 74.32(+15.79%)
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(a) Clean samplesgradient
0.0000-0.0005-0.0010 0.0005 0.0010

step
0

100

200

300

stage 1

stage 2

stage 3

Total
samples

Classified 
as clean

Avg 
gradient

3259

3181

3165

2991

2973

2697

2.1e-4

1.5e-4

1.4e-4

0

100

200

300

stage 1

stage 2

stage 3

step

gradient
0.0000-0.0005-0.0010 0.0005 0.0010

Total
samples

Classified 
as clean

Avg 
gradient

3141

3219

3235

136

1130

3060

7.8e-3

1.1e-3

1.0e-4

(b) Noisy samples

Figure 9: The impact of clean and noisy samples on the gradients. Note that the gradient magnitudes
of clean and noisy samples are not on the same scale; for clarity, the figure does not show gradients
with magnitudes greater than 0.0010. The gradients of noisy samples are substantially larger in the
first and second stages. The model effectively filters out noisy samples in the first stage but gradually
struggles to distinguish between clean and noisy samples. ID set: CIFAR-10; OOD set: SVHN.
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