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ABSTRACT

The current electroencephalogram (EEG) based deep learning models are typi-
cally designed for specific datasets and applications in brain-computer interac-
tion (BCI), limiting the scale of the models and thus diminishing their percep-
tual capabilities and generalizability. Recently, Large Language Models (LLMs)
have achieved unprecedented success in text processing, prompting us to explore
the capabilities of Large EEG Models (LEMs). We hope that LEMs can break
through the limitations of different task types of EEG datasets, and obtain uni-
versal perceptual capabilities of EEG signals through unsupervised pre-training.
Then the models can be fine-tuned for different downstream tasks. However, com-
pared to text data, the volume of EEG datasets is generally small and the for-
mat varies widely. For example, there can be mismatched numbers of electrodes,
unequal length data samples, varied task designs, and low signal-to-noise ratio.
To overcome these challenges, we propose a unified foundation model for EEG
called Large Brain Model (LaBraM). LaBraM enables cross-dataset learning by
segmenting the EEG signals into EEG channel patches. Vector-quantized neu-
ral spectrum prediction is used to train a semantically rich neural tokenizer that
encodes continuous raw EEG channel patches into compact neural codes. We
then pre-train neural Transformers by predicting the original neural codes for the
masked EEG channel patches. The LaBraMs were pre-trained on about 2,500
hours of various types of EEG signals from around 20 datasets and validated on
multiple different types of downstream tasks. Experiments on abnormal detection,
event type classification, emotion recognition, and gait prediction show that our
LaBraM outperforms all compared SOTA methods in their respective fields. Our
code is available at https://github.com/935963004/LaBraM.

1 INTRODUCTION

Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical
activity of the brain. It is typically non-invasive, with the EEG electrodes placed along the scalp
using the international 10–20 system. EEG signals can be formulated as a matrix of real numbers
X ∈ RC×T , where C is the number of EEG electrodes (channels) that may vary depending on
the acquisition equipment used, and T represents the total number of samples, which is related to
the collection time and sampling rate. As highly objective physiological signals, EEG has demon-
strated remarkable potential in seizure epilepsy classification (Boonyakitanont et al., 2020), acute
stress detection (Sharma et al., 2022), sleep stage classification (Aboalayon et al., 2016), motor im-
agery recognition (Amin et al., 2019), abnormal identification (Roy et al., 2019), emotion analysis
(Suhaimi et al., 2020), and auditory attention detection (Biesmans et al., 2016).

Numerous deep learning models have been proposed to address the aforementioned tasks in their
respective fields. Some works apply convolutional neural networks (CNN) across and within raw
EEG channels to encode spatial and temporal features (Lawhern et al., 2018), while others prepro-
cess the data using short-time Fourier transform (STFT) and employ Graph Neural Network (GNN)
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on the resulting spectrograms to obtain semantic features of brain area links (Song et al., 2018).
Researchers also segment the signal and use a CNN segment encoder with a downstream sequence
model such as recurrent neural networks (RNN) to capture temporal dynamics (Xu et al., 2020).
These models primarily focus on EEG samples that adhere to specific task formats, mainly because
the equipment used to collect EEG differs between datasets, which introduces mismatched channels
and variable lengths. Meanwhile, EEG data collection is quite expensive, which makes it challeng-
ing to build large EEG datasets specifically designed for a particular task. To prevent overfitting,
the parameters of these models need to be regulated, which in turn hampers the model’s ability to
learn EEG expressions and limits its generalizability. Consequently, we discovered that current EEG
models are typically proprietary and lack the capacity to perform cross-task learning.

Recently, we have been impressed by the capabilities of LLMs (Ouyang et al., 2022; Wei et al.,
2022). Specifically, Transformer-based models have demonstrated promising results in natural lan-
guage processing tasks, which highlights the potential of self-supervised pre-training as a means
for harnessing large-scale data. These masked language modeling tasks involve randomly mask-
ing some proportion of tokens within a text and then recovering the masked tokens based on the
Transformer encoding results of the corrupted text. Motivated by these methods, we propose to ap-
ply reconstruction ideas to pre-train neural Transformers. However, it is a daunting task to directly
apply LLM-style pre-training to EEG data. The challenges are summarized as follows:

1) Lack of sufficient EEG data. The acquisition of EEG data is significantly challenging compared
to natural language and image data. Moreover, the annotation of EEG data usually requires a lot of
effort on the part of experts in the corresponding field, thus leading to the fact that only small labeled
datasets exist for specific tasks in BCI, where EEG signals are often collected from a small number
of participants, typically less than tens of hours in duration. As a result, there is currently no single
EEG dataset that is large enough to support the training of LEMs. It remains problems Q1: how to
utilize large-scale unlabeled EEG data? and Q2: how much data is needed to train LEMs?.

2) Diverse configurations of EEG collection. Despite the availability of the international 10-20
system to ensure standardization in EEG testing, users may choose to collect data using EEG caps
with different electrode numbers or patch electrodes based on their practical application needs. Thus,
how to handle the diverse formats of EEG data in order to match the input units of neural Trans-
formers remains a significant research endeavor.

3) Lack of effective EEG representation learning paradigm. Low signal-to-noise ratio (SNR)
and different types of noise are the greatest challenges. Additionally, balancing temporal and spatial
characteristics is crucial for effective EEG representation learning. Despite the availability of various
deep learning-based EEG representation learning paradigms, such as CNN, RNN, and GNN, for raw
EEG data, many researchers still prefer to design artificial EEG features due to these challenges.

In this paper, our objective is to devise a versatile large EEG model that can efficiently handle diverse
EEG datasets with varying channels and lengths. By utilizing unsupervised training on a substantial
amount of EEG data, we envision the model to possess universal EEG data comprehension capa-
bilities, enabling it to quickly adapt to various EEG downstream tasks. We collected over 2,500
hours of diverse EEG data across various tasks and formats from about 20 datasets. These datasets
were primarily obtained from publicly available EEG datasets, as well as our own collected EEG
data. Raw EEG signals were first segmented into EEG channel patches to deal with the issues of
variant electrodes and time length. Vector-quantized neural spectrum prediction is used to train a
semantically rich neural tokenizer to generate neural vocabulary. Specifically, the tokenizer was
trained by predicting the Fourier spectrum of the original signal. During pre-training, part of EEG
patches are masked while the objective of the neural Transformer is to predict masked tokens from
visible patches. We pre-trained three models with varying parameter sizes, ranging from 5.8M to
369M, which are the largest models in BCI ever, and fine-tuned them on four distinct types of down-
stream tasks encompassing both classification and regression. The contributions of this work are
summarized as follows:

• Large-scale EEG pre-training. We collected and pre-trained a large-scale neural Transformer
model on more than 2,500 hours of diverse EEG data. As far as we know, this is the first time
such extensive and varied datasets have been utilized for EEG pre-training.

• Being compatible with various EEG configurations. LaBraMs are unified models that are able
to handle EEG signals with various channels and time lengths with the assistance of the flexible

2



Published as a conference paper at ICLR 2024

patch

time

ch
an

ne
l

CP5

TP7

T8

C6

C
onv

G
roup N

orm

G
E

L
U

Temporal Encoder

Temporal
Embedding

Spatial
Embedding

Transformer Encoder

Q
K

V

L
N

L
N

A
ttention

Feed Forw
ard

A
dd &

 N
orm

A
dd &

 N
orm

Output 
Embedding Input EEG Signals

Figure 1: The overall architecture of LaBraM, i.e., neural Transformer. All input EEG signals
will first be segmented into EEG patches through a fixed-length time window, and then a temporal
encoder will be applied to each patch to extract temporal features. Afterward, temporal and spatial
embeddings are added to the patch features to carry temporal and spatial information. At last, the
sequence of embeddings is passed into the Transformer encoder by patch-wise attention to obtain
the final output.

spatial and temporal embeddings. Hence, one pre-trained LaBraM can adapt to any downstream
dataset with different configurations.

• Effective EEG representation learning. The utilization of the neural Transformer allows the
model to effectively capture both temporal and spatial features of EEG signals with varying chan-
nels and lengths, making it suitable for a wide range of downstream tasks in EEG analysis. We
further define a neural codebook that offers a compact, versatile, and meaningful representation
of EEG signals. We resolve Q1 by leveraging this codebook to pre-train LaBraM by masked EEG
modeling. The empirical performance demonstrates the effectiveness of our proposed method and
paves the way for further development in aligning this codebook with natural language.

• Comprehensive experiments on downstream datasets. We evaluate our LaBraMs on four rep-
resentative downstream tasks in BCI, where they surpass all SOTA methods by a large margin.
Additionally, we conduct experiments to answer Q2 by scaling the pre-training data size and
conclude the amount of pre-training data required for models of different sizes in Section 3.6.

2 METHOD

In this section, we detail the whole framework of LaBraM. We first formulate the multi-channel
EEG signals as X ∈ RC×T , where C is the number of EEG electrodes (channels) and T is the total
timestamps. The electrode set of X is formulated as CX = {ci1 , ci2 , ..., ciC}, where CX ⊆ C =
{c1, c2, ..., c|C|} and C is the universal set of channels in the international 10-20 system.

2.1 MODEL ARCHITECTURE

We introduce the neural Transformer, a general architecture for decoding EEG signals that can deal
with any input EEG signals with arbitrary number of channels and time length, as illustrated in
Figure 1. The key operation for achieving this is segmenting the EEG signals into patches, inspired
by patch embeddings in images (Dosovitskiy et al., 2021). Assume that the timestamp for each
sample is t and the stride is s. X can be segmented into ⌊T−t

s ⌋ + 1 samples, and each sample
x ∈ RC×t. We use a w-length window without overlap to segment each EEG channel into patches,
obtaining x = {xcij ,k ∈ Rw|j = 1, 2, ..., C, k = 1, 2, ..., ⌊ tw ⌋}. The total number of the patches x
is |x| = C⌊ tw ⌋.

Temporal Encoder. As EEG is of high resolution in the temporal domain, it is vital to extract tem-
poral features before patch-wise interaction by self-attention. We employ a temporal encoder which
consists of several temporal convolution blocks to encode each EEG patch into a patch embedding.
The temporal convolution block is composed of a 1-D convolution layer, a group normalization layer
(Wu & He, 2018), and a GELU activation function (Hendrycks & Gimpel, 2016). We denote the
output patch embeddings from the temporal encoder as

e = {ecij ,k ∈ Rd|j = 1, 2, ..., C, k = 1, 2, ..., ⌊ t

w
⌋}, (1)
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Figure 2: Overview of neural tokenizer training and LaBraM pre-training. Up: We train a neural
tokenizer to discretize EEG signals into discrete neural tokens by reconstructing the Fourier spec-
trum. Down: During pre-training, part of EEG patches are masked while the objective is to predict
masked tokens from visible patches.

where d is the dimension of the embeddings.

Temporal & Spatial Embedding. In order to enable the model to be aware of the tempo-
ral and spatial information of patch embeddings, we initialize a temporal embedding list TE =
{te1, te2, ..., tetmax} and a spatial embedding list SE = {se1, se2, ..., se|C|}, both of which are d-
dimension and are set learnable during training. Note that tmax is the hyperparameter determining
the maximum number of time patches and ⌊ tw ⌋ ≤ tmax. Meanwhile, for each channel ci, we can
find its corresponding spatial embedding sei in the spatial embedding list SE. Thus, given one ar-
bitrary output embedding ecij ,k in Equation 1 from the temporal encoder, we add the corresponding
temporal and spatial embeddings to it:

{ecij ,k + tek + seij |j = 1, 2, ..., C, k = 1, 2, ..., ⌊ t

w
⌋}, (2)

where temporal and spatial embeddings act as absolute position encoding.

Transformer Encoder. Finally, the sequence of embeddings will be directly fed into the Trans-
former encoder (Vaswani et al., 2017). To make the training of Transformer more stable and effi-
cient, we incorporate some modifications (Dehghani et al., 2023). First, we add layer normalization
to the queries and keys before the dot-product attention mechanism, which avoids over-large values
in attention logits:

Attention(Q,K, V ) = softmax(
LN(Q)LN(K)T√

dhead
)V, (3)

where dhead is the dimension of one head in the multi-head attention and LN denotes the layerNorm
(Ba et al., 2016). Next, we omit the bias term in QKV computations, which accelerates the training
without performance degradation. For downstream tasks, we use average pooling on the output
embeddings followed by task-specific prediction heads.
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2.2 NEURAL TOKENIZER TRAINING

Prior to pre-training LaBraM through masking and prediction, we need to tokenize the EEG into
discrete tokens. We propose the vector-quantized neural spectrum prediction, which is trained by
predicting the Fourier spectrum, as shown in Figure 2. The key components are the neural tok-
enizer which encodes EEG samples into patch representations and the neural decoder which de-
codes the Fourier spectrum from neural embeddings. The idea is basically inspired by VQ-VAE
(Van Den Oord et al., 2017) which encodes images into discrete latent representations.

Neural Tokenizer. We define a neural codebook V = {vi|i = 1, ...,K} ∈ RK×D, where K is the
number of the discrete neural embeddings and D is the dimensionality of each embedding. Given
an EEG signal sample x, the neural tokenizer whose backbone is just described in Section 2.1 first
encode it to patch representations p = {pi|i = 1, ..., N}, where N = C⌊ tw ⌋. After that, we utilize
a quantizer to quantize all the patch representations into the neural codebook embeddings. The
codebook looks up the nearest neighbor of each patch pi in the neural codebook V . This procedure
can be formulated as

zi = argmin
j

∥ℓ2(pi)− ℓ2(vi)∥2, (4)

where ℓ2 represents ℓ2 normalization and zi is the quantized vector after the quantizer. This is
equivalent to finding the closest neural embedding by cosine similarity and such ℓ2 normalization
improves the codebook utilization (Peng et al., 2022).

Fourier Spectrum Prediction. Unlike images that are of high signal-to-noise ratio, EEG signals
are of low signal-to-noise ratio and have characteristics of apparent stochasticity, nonstationarity,
and nonlinearity nature, which make it hard to reconstruct the original signals well (Moss et al.,
2004). In our previous experiments, the loss fails to converge while directly reconstructing raw EEG
signals. Instead, the frequency and phase distribution from the Fourier spectrum of EEG signals
reveals the underlying neurophysiological activities of the brain (Wu et al., 2022). Therefore, we
propose to reconstruct the amplitude and phase from discrete neural tokens for training the neural
tokenizer and neural decoder. For an EEG patch xc,k = [x[1], x[2], ..., x[w]] of channel c and time
k in a sample x, we apply the Discrete Fourier Transform (DFT) as follows

x̃mc,k =

N∑
n=1

x[n] exp(−2πj

N
mn), (5)

where m ∈ [1, N ] and j is the imaginary unit. We rewrite Equation 5 using Euler’s formula as

x̃mc,k =

N∑
n=1

x[n] cos(
2π

N
mn)− jx[n] sin(

2π

N
mn). (6)

Note that x̃mc,k indicates the spectrum of the sequence at frequency ωm = 2πm
N . Consequently, the

amplitude and phase can be calculated as

Am =
√
Re(x̃mc,k)

2 + Im(x̃mc,k)
2, (7)

ϕm = arctan(
Im(x̃mc,k)

Re(x̃mc,k)
), (8)

where Re and Im stand for the real and imaginary parts of a complex number. It is worthwhile to
mention that we adopt z-score normalization to normalize Am and ϕm within a sample for stable
convergence.

After being tokenized by the quantizer, the normalized discrete neural embeddings {ℓ2(vzi)|i =
1, ..., N} are passed into the neural decoder that comprises several Transformer blocks. The output
representations are aggregated by average pooling followed by two specific prediction heads to
regress the spectrum amplitude oA and phase oϕ, respectively. The mean squared error (MSE) loss
is utilized to guide the prediction. Ultimately, the total loss for training the vector-quantized neural
spectrum prediction is defined as

LT =
∑
x∈D

N∑
i=1

∥oAi −Ai∥22+∥oϕi −ϕi∥22+∥sg(ℓ2(pi))−ℓ2(vzi)∥22+∥ℓ2(pi)−sg(ℓ2(vzi))∥22, (9)
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where D is all EEG data and sg represents the stop-gradient operation that is defined as an identity
at the forward pass and has zero gradients. To make the codebook update more stable, we employ
the exponential moving average strategy (Van Den Oord et al., 2017).

2.3 PRE-TRAINING LABRAM

Masked EEG Modeling. To enforce LaBraM learning generic representations with tremendous
EEG data, we propose masked EEG modeling. The whole procedure is presented in Figure 2. As
formulated in Section 2.1, given an EEG sample x, the temporal encoder first transforms it to patch
embeddings e = {ei|i = 1, ..., N}. We randomly generate a mask M = {mi|i = 1, ..., N}
where mi ∈ {0, 1} with r proportion of m is 1. After that, we replace the masked patches of x
with the learnable mask token eM ∈ Rd. The corrupted EEG patches can be denoted as eM =
{ei : mi = 0|i = 1, ..., N} ∪ {eM : mi = 1|i = 1, .., N}, which will be added by temporal and
spatial embeddings, and then fed into Transformer encoder. We denote the output hidden vectors as
h = {hi|i = 1, ..., N}, which are used to predict the corresponding neural tokens through a linear
classifier:

p(v′|eM) = softmax(Linear(h)). (10)
Our objective training loss is

LM = −
∑
x∈D

∑
mi=1

log p(vi|eM). (11)

Symmetric Masking. We further propose a symmetric masking strategy to improve training effi-
ciency. We calculate the inverse of the generated mask M, obtaining M̃ = {∼ mi|i = 1, ..., N}.
Similarly, we use the new mask M̃ to perform the masked EEG modeling, obtaining the masked
EEG prediction loss LsymM . The motivation is from two aspects: 1) Since we introduce the neural
tokenizer, there will be an extra computation overhead, i.e., one forward pass for each EEG sam-
ple. Thus, the symmetric masking reuses the same discrete representations, thus improving training
efficiency. 2) The symmetric masking provides more masking perspectives in one batch, increas-
ing the data divergency. This simple strategy boosts downstream performance as demonstrated in
Appendix I.

Finally, the overall training objective for pre-training LaBraM is

L = LM + LsymM . (12)

3 EXPERIMENTS

3.1 EVALUATION DATASETS

We systematically evaluate our LaBraM on the following downstream datasets:

• TUAB (abnormal detection) (Obeid & Picone, 2016): A corpus of EEGs which are 23-channel
and sampled at 256 Hz. All data have been annotated as normal or abnormal. There are total
409,455 10-second samples that we use for binary classification to predict normal/abnormal.

• TUEV (event type classification) (Obeid & Picone, 2016): This corpus is a subset of TUEG that
contains annotations of EEG segments as one of six classes: (1) spike and sharp wave (SPSW),
(2) generalized periodic epileptiform discharges (GPED), (3) periodic lateralized epileptiform dis-
charges (PLED), (4) eye movement (EYEM), (5) artifact (ARTF) and (6) background (BCKG).
The EEG signals contain 23 channels at 256 Hz and are segmented into 112,491 5-second sam-
ples.

More experimental results on other BCI tasks can be found in Appendix F.

3.2 EXPERIMENT SETUP

Model Variants. We devise three different configurations of LaBraM: LaBraM-Base, LaBraM-
Large, and LaBraM-Huge. The number of parameters is 5.8M for LaBraM-Base, 46M for LaBraM-
Large, and 369M for LaBraM-Huge, respectively, which is increased by enlarging the depth of
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the Transformer encoder and hidden sizes. More details of the architecture settings are listed in
Appendix C. Unless otherwise specified, the results are from LaBraM-Base in this paper.

The time window w of a patch is set to 200 (1 second). To ensure stable computing resource usage,
the number of patches (sequence length) is limited to 256. That means, for example, the time length
of EEG with 64 (32) channels is set to 4 (8) seconds. As for the window stride (data stride), it is set
to 4 seconds in order to cover all training data as well as boost the training speed.

Pre-training & Fine-tuning. For pre-training LaBraM and the vector-quantized neural spectrum
prediction, we collect a total time of over 2,500 hours from public datasets and our self-collected
data as described in Appendix D. Note that the four downstream datasets are excluded from the pre-
training datasets. For the data splitting of TUAB and TUEV, we strictly follow the same strategy
as BIOT (Yang et al., 2023a) to compare all methods fairly. Specifically, as the training and test
separation is provided by the datasets, we divide the training patients into training and validation
groups by 80% and 20%, respectively. We employ binary cross-entropy (BCE) loss for TUAB
(binary classification) and cross-entropy loss for TUEV (multi-class classification), respectively.
Our experiments are conducted on eight A800 GPUs by Python 3.11.4 and PyTorch 2.0.1 + CUDA
11.8. The best models are trained based on the training set, selected from the validation set, and
finally evaluated on the test set. We report the average and standard deviation values on five different
random seeds to obtain comparable results. (see Appendix C for more detailed hyperparameters)

Preprocessing. We only employ very little of the necessary preprocessing. We first filter the EEG
signals between 0.1 Hz and 75 Hz to remove low-frequency noise. Then, a notch filter of 50 Hz is
applied to avoid power-line interference. Finally, all EEG signals are resampled to 200 Hz. As the
range of EEG value is typically between -0.1 mV to 0.1 mV, we normalize it by setting the unit to
0.1 mV to guarantee the value mainly between -1 to 1.

Baselines & Metrics. The baselines are from Yang et al. (2023a), where we choose the best results
to compare with. We use the following metrics for comparison: 1) Balanced Accuracy: the average
of recall on each class, which is utilized for both binary and multi-class classification. 2) AUC-PR:
area under the precision-recall curve for binary classification. 3) AUROC: area under the receiver
operating characteristic curve, which is used for binary classification as well. 4) Cohen’s Kappa: a
measure of agreement between categorical variables X and Y , which is calculated from the observed
and expected frequencies on the diagonal of a square contingency table. It is used for multi-class
classification. 5) Weighted F1: A harmonic mean of the precision and recall, where the relative
contribution of precision and recall to the F1 score are equal. We use it to evaluate multi-class
classification. We set AUROC as the monitor score for binary classification and Cohen’s Kappa as
the monitor score for multi-class classification.

3.3 PRE-TRAINING VISUALIZATION
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Figure 3: The pre-training loss curve and masked EEG modeling accuracy curve.

Figure 3 compares the convergence curves of the total pre-training loss and masked EEG modeling
accuracy between the base, large, and huge models. We observe that a larger model with more
parameters can converge to a smaller loss and higher accuracy. Notably, the loss of the huge model
seems to have an obvious downward trend while the accuracy tends to increase if we train it longer.
This observation suggests scaling up the model size has the potential to obtain better performance.
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3.4 COMPARISON WITH STATE-OF-THE-ART

Table 1 and Table 2 present the results of state-of-the-art baselines as well as LaBraM from TUAB
and TUEV. The results demonstrate that our LaBraM-Base model outperformed all baselines on var-
ious evaluation metrics for both tasks. Particularly in the more challenging multi-class classification
task of TUEV, our model achieved a significant improvement in performance. In our own model, we
observed that as the number of model parameters increased, the LaBraM-Huge model performed
the best, followed by the LaBraM-Large model and then the LaBraM-Base model. We attribute
this good performance to the increase in pre-training data volume and model parameters. We be-
lieve that with sufficient data volume, large-scale EEG models can learn more generalizable EEG
patterns, leading to improved performance on a wide range of downstream tasks in EEG analysis.

Table 1: The results of different methods on TUAB.
Methods Model Size Balanced Accuracy AUC-PR AUROC
SPaRCNet (Jing et al., 2023) 0.79M 0.7896±0.0018 0.8414±0.0018 0.8676±0.0012
ContraWR (Yang et al., 2023b) 1.6M 0.7746±0.0041 0.8421±0.0104 0.8456±0.0074
CNN-Transformer (Peh et al., 2022) 3.2M 0.7777±0.0022 0.8433±0.0039 0.8461±0.0013
FFCL (Li et al., 2022) 2.4M 0.7848±0.0038 0.8448±0.0065 0.8569±0.0051
ST-Transformer (Song et al., 2021) 3.5M 0.7966±0.0023 0.8521±0.0026 0.8707±0.0019
BIOT (Yang et al., 2023a) 3.2M 0.7959±0.0057 0.8792±0.0023 0.8815±0.0043

LaBraM-Base 5.8M 0.8140±0.0019 0.8965±0.0016 0.9022±0.0009
LaBraM-Large 46M 0.8226±0.0015 0.9130±0.0005 0.9127±0.0005
LaBraM-Huge 369M 0.8258±0.0011 0.9204±0.0011 0.9162±0.0016

Table 2: The results of different methods on TUEV.
Methods Model Size Balanced Accuracy Cohen’s Kappa Weighted F1
SPaRCNet (Jing et al., 2023) 0.79M 0.4161±0.0262 0.4233±0.0181 0.7024±0.0104
ContraWR (Yang et al., 2023b) 1.6M 0.4384±0.0349 0.3912±0.0237 0.6893±0.0136
CNN-Transformer (Peh et al., 2022) 3.2M 0.4087±0.0161 0.3815±0.0134 0.6854±0.0293
FFCL (Li et al., 2022) 2.4M 0.3979±0.0104 0.3732±0.0188 0.6783±0.0120
ST-Transformer (Song et al., 2021) 3.5M 0.3984±0.0228 0.3765±0.0306 0.6823±0.0190
BIOT (Yang et al., 2023a) 3.2M 0.5281±0.0225 0.5273±0.0249 0.7492±0.0082

LaBraM-Base 5.8M 0.6409±0.0065 0.6637±0.0093 0.8312±0.0052
LaBraM-Large 46M 0.6581±0.0156 0.6622±0.0136 0.8315±0.0040
LaBraM-Huge 369M 0.6616±0.0170 0.6745±0.0195 0.8329±0.0086

3.5 PRE-TRAINING WITH/WITHOUT DOWNSTREAM DATASETS

During the pre-training process, we hope that the model can learn general EEG representations that
are not specific to any particular task. Although no label data is used during the pre-training process,
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Figure 4: A comparison of the model’s performance on the TUAB and TUEV datasets when incor-
porating themselves into the pre-training process or not.
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to eliminate the influence of the pretraining data on downstream tasks, we compared the results
with or without incorporating the downstream task dataset into the pre-training process or not. It is
noted that the recordings of TUAB and TUEV are disjoint from recordings of pre-training datasets.
As Figure 4 illustrates, the performance of the model on the downstream task was not significantly
affected by whether or not to incorporate the downstream task datasets into the model’s pre-training
process. This demonstrates that our model has the capability to learn universal EEG representations,
and provides guidance for the collection of more EEG data in the future. In other words, we do not
need to expend a significant amount of effort on labeling EEG data during the pre-training process.

3.6 SCALING DATA SIZE

Although we have collected approximately 2,500 hours of EEG data, it is still relatively small com-
pared to the sample size in natural language processing and image processing. We answer Q2 about
the demand for data size to train LaBraMs with different sizes by scaling the pre-training data size.
As illustrated in Figure 5, the performance of the Base model with 500 hours of training exceeds that
of the 2500-hour model on TUAB, while approaching over 90% of the 2500-hour performance on
TUEV. For the Large model, performance generally improves with increased data volume, though
the growth rate slows after 1000 hours. In contrast, the Huge model exhibits a noticeable upward
trend in performance as data size continues to expand. Therefore, we believe that with further expan-
sion of the dataset, our model can achieve better performance. The question of how much EEG data
is required for pre-training a large EEG model is undoubtedly an important issue worth exploring
in this field. Nevertheless, 2,500 hours is not the answer to this question at least. Our observation
basically follows the scaling law (Kaplan et al., 2020), from which we deduce that the Huge model
would continue to perform better with the data size on the order of at least ten thousand hours.
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Figure 5: A comparison of the performance of the Base model, Large model, and Huge model on
the TUAB and TUEV datasets as the pre-training data increases.

4 CONCLUSION

This paper proposes a Large Brain Model (LaBraM) that learns universal embeddings through unsu-
pervised pre-training on over 2,500 hours of diverse EEG data. The LaBraM is capable of handling
diverse EEG datasets due to the segmentation of raw EEG signals into channel patches and the use
of vector-quantized neural spectrum prediction to generate a rich semantic tokenizer during pre-
training. Additionally, the neural Transformer architecture enables effective representation learning
of both temporal and spatial features of EEG signals, making it suitable for a wide range of down-
stream tasks in EEG analysis. The LaBraM was validated on multiple downstream tasks, including
abnormal detection, event type classification, emotion recognition, and gait prediction. Our exper-
iments show that the LaBraM outperforms all SOTA methods in their respective fields. In the end,
we hope our work our can have implications for future developments in EEG-based deep learning
models with improved perceptual capabilities and generalizability.
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A RELATED WORK

Self-supervised Pre-training. In recent years, self-supervised pre-training has made significant
progress in natural language processing and computer vision. BERT (Devlin et al., 2018) innova-
tively proposed the idea of masking part of the input sentences and then reconstructing them. The
GPT series (Radford et al., 2018; 2019; Brown et al., 2020) proposed to pre-train large language
models by a large corpus of data in an autoregressive way. Both studies improved the fine-tuning
performance significantly in various downstream tasks. In computer vision, iGPT (Chen et al., 2020)
firstly brought the idea from GPT to pre-train a vision model. BEiT (Bao et al., 2022) pioneerly
trained a vision tokenizer and leveraged BERT-like pre-training for training a vision Transformer.
MAE (He et al., 2022) and SimMIM (Xie et al., 2022) practiced masked image modeling by simply
reconstructing the raw pixels and achieved appreciable improvement.

Learning with Heterogeneous Datasets. MMM introduced a pre-training framework built on the
unified topology and obtained topology-agnostic representations (Yi et al., 2023). Han et al. (2023)
combined graph neural networks and transfer learning for non-invasive motor imagery EEG decod-
ing with heterogeneous electrode configurations. Gu et al. (2023) developed two networks to learn
from the shared and the complete channels across datasets, achieving coherent performance boosts.
Liu et al. (2024) proposed a hierarchical personalized Federated Learning EEG decoding framework,
enabling datasets with disparate data formats to collaborate in the model training process.

Self-supervised Learning in BCI. Although self-supervised pre-training has achieved great suc-
cess, its potential in BCI is far from being explored. BENDR (Kostas et al., 2021) adapted Wav2vec
2.0 (Baevski et al., 2020), which uses contrastive learning to learn compressed representations of
raw EEG signals. Banville et al. investigated temporal context prediction as well as contrastive
predictive coding on two clinically relevant problems (Banville et al., 2021). ContraWR (Yang
et al., 2023b), Contrast with the World Representation, used global statistics to distinguish signals
associated with different sleep stages. BrainBERT (Wang et al., 2023) masks random parts of the
stereo-electroencephalographic (SEEG) spectrogram and produce original embeddings with 43.6
hours of data. However, all existing studies either concentrate on specific BCI tasks or only employ
small-size datasets and models, leaving room for exploring large-scale EEG data to train large EEG
models through self-supervision.

B LABRAM PRE-TRAINING ANALYSIS

The pre-training of LaBraM can be interpreted as the training of a variational autoencoder (Kingma
& Welling, 2014; Bao et al., 2022). We denote the original EEG sample as x, the corrupted EEG
by masking as xM, and its Fourier spectrum (amplitude and phase) as x̃. The focus is on the
evidence lower bound (ELBO) of the log-likelihood p(x̃|xM), which involves recovering the Fourier
spectrum of the original image from the masked perspective:∑
(xi,xM

i ,x̃i)∈D

log p(x̃i|xM
i ) ≥

∑
(xi,xM

i ,x̃i)∈D

(Ezi∼qϕ(z|xi)(log pψ(x̃i|zi)−DKL(qϕ(z|xi), pθ(z|xM
i )),

(13)
where qϕ(z|x) represents the neural tokenizer that encodes the EEG sample into discrete neural to-
kens, pψ(x̃|z) denotes the neural decoder predicting the Fourier spectrum from given neural tokens,
and pθ(z|xM) is the LaBraM pre-training for masked EEG modeling, where the LaBraM encoder
reconstructs neural tokens from the corrupted EEG input.

The whole framework is optimized through a two-stage procedure as (Van Den Oord et al., 2017).
For the first stage, we train the neural tokenizer as a discrete variational autoencoder by minimizing
the reconstruction loss −Ezi∼qϕ(z|xi)(log pψ(x̃i|zi) with a uniform prior. For the second stage, we
set qϕ as well as pψ fixed and learn the prior pθ by minimizing the loss DKL. For simplicity, qϕ(z|xi)
is defined as a one-point distribution with the most likely neural tokens ẑi = argmaxz qϕ(z|xi).
Consequently, we can rewrite Equation 13 as∑

(xi,xM
i ,x̃i)∈D

(Ezi∼qϕ(z|xi)(log pψ(x̃i|zi) + log pθ(ẑi|xM
i )), (14)

where the first term is the objective for vector-quantized neural spectrum prediction and the second
term is the objective for LaBraM pre-training.
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C HYPERPARAMETER SETTINGS

Table 3: Hyperparameters for vector-quantized neural spectrum prediction training.
Hyperparameters Values

Temporal Encoder

Iput channels {1,8,8}
Output channels {8,8,8}

Kernel size {15,3,3}
Stride {8,1,1}

Padding {7,1,1}
Transformer encoder layers 12
Transformer decoder layers 3

Hidden size 200
MLP size 800

Attention head number 10
Codebook size 8192×64

Batch size 1024
Peak learning rate 5e-5

Minimal learning rate 1e-5
Learning rate scheduler Cosine

Optimizer AdamW
Adam β (0.9,0.99)

Weight decay 1e-4
Total epochs 100

Warmup epochs 10
Data stride 200

Table 4: Hyperparameters for masked EEG pre-training.
Hyperparameters LaBraM-Base LaBraM-Large LaBraM-Huge

Temporal Encoder

Iput channels {1,8,8} {1,16,16} {1,32,32}
Output channels {8,8,8} {16,16,16} {32,32,32}

Kernel size {15,3,3}
Stride {8,1,1}

Padding {7,1,1}
Transformer encoder layers 12 24 48

Hidden size 200 400 800
MLP size 800 1600 3200

Attention head number 10 16 16

Batch size 512
Peak learning rate 5e-4

Minimal learning rate 1e-5
Learning rate scheduler Cosine

Optimizer AdamW
Adam β (0.9,0.98)

Weight decay 0.05
Total epochs 50

Warmup epochs 5
Data stride 800

Gradient clipping 3
Layer scale init 0.1 1e-5 1e-6
EMA weight 0.996
Mask ratio 0.5
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Table 5: Hyperparameters for downstream fine-tuning.
Hyperparameters Values

Batch size 512
Peak learning rate 5e-4

Minimal learning rate 1e-6
Learning rate scheduler Cosine

Optimizer AdamW
Adam β (0.9,0.999)

Weight decay 0.05
Total epochs 50 (B) 30 (L/H)

Warmup epochs 5 (B) 3 (L/H)
Drop path 0.1 (B/L) 0.2 (H)

Layer-wise learning rate decay 0.65 (B) 0.8 (L/H)
Label smoothing (multi-class classification) 0.1

D PRE-TRAINING DATASET DESCRIPTION

We describe the datasets we use for training LaBraM here.

Training datasets (for both vector-quantized neural spectrum prediction training and LaBraM pre-
training, the total time is 2534.78 hours):

• BCI Competition IV-1 (Blankertz et al., 2007): A motor imagery dataset containing 59 EEG
channels at 1000Hz sampling rate for 2 classes of left hand, right hand, foot (+ idle state) for 7
subjects. The recording was made using BrainAmp MR plus amplifiers and an Ag/AgCl electrode
cap. (total time: 8.21 hours)

• Emobrain (Savran et al., 2006): A multimodal emotion dataset where EEG (64 channels, 1024
Hz) and fNIRS, are recorded by the Biosemi Active 2 acquisition system, including 16 subjects.
The emotions were elicited through a selected subset of IAPS dataset. (total time: 4.94 hours)

• Grasp and Lift EEG Challenge (Luciw et al., 2014): A dataset containing EEG recordings (32
channels, 500 Hz) of 12 subjects performing grasp-and-lift (GAL) trials. The EEG cap was used
in conjunction with a BrainAmp EEG signal amplifier. (total time: 11.72 hours)

• Inria BCI Challenge (Margaux et al., 2012): A P300-based spelling dataset including 26 sub-
jects with EEG records (56 channels, 600 Hz) by Ag/AgCl EEG sensors (VSM-CTF compatible
system). (total time: 29.98 hours)

• EEG Motor Movement/Imagery Dataset (Schalk et al., 2004): A motor imagery dataset consist-
ing of 109 volunteers performing 2 baseline tasks (eye-open and eye-closed), motor movement,
and motor imagery (both fists or both feet) with EEG records (64 channels, 160 Hz) using the
BCI2000 system. (total time: 47.3 hours)

• Raw EEG Data (Trujillo, 2020): A dataset where EEG (64 channels, 256 Hz) was recorded
during the reported Information-Integration categorization task and the reported multidimensional
Rule-Based categorization task. (total time: 34.35 hours)

• Resting State EEG Data (Trujillo et al., 2017): A dataset comprising 22 subjects for a resting
task of 8 mins with 4 mins of eyes closed and 4 mins of eyes open with 64 EEG channels at 256 Hz
using active Ag/AgCl electrodes either mounted in a BioSemi electrode cap or via freestanding
electrodes. (total time: 3.04 hours)

• SEED Series (Zheng & Lu, 2015; Zheng et al., 2018; Liu et al., 2022): The emotional datasets
including SEED (15 subjects), SEED-IV (15 subjects), SEED-GER (8 subjects), and SEED-FRA
(8 subjects). All EEG signals (62 channels, 1000 Hz) were recorded with the ESI NeuroScan
System in response to videos. (total time: 166.75 hours)

• Siena Scalp EEG Database (Detti et al., 2020): A database consisting of EEG recordings (31
channels, 512 Hz) of 14 patients employing EB Neuro and Natus Quantum LTM amplifiers, and
reusable silver/gold cup electrodes. (total time: 30.47 hours)
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• SPIS Resting State Dataset (Torkamani-Azar et al., 2020): A dataset including 10 subjects,
2.5 minutes recording in each state (eyes-closed and eyes-open) prior to a 105-minute session of
Sustained Attention to Response Task with fixed-sequence and varying ISIs. Monopolar EEG
activity (64 channels, 2048 Hz) was collected via 64 Ag/AgCl active electrodes. (total time: 0.83
hour)

• Target Versus Non-Target (Korczowski et al., 2019): A dataset including 50 subjects play-
ing Brain Invaders, a visual P300 Brain-Computer Interface using oddball paradigm with ada-
pative Riemannian Geometry (no-calibration). EEG signals (32 channels, 512 Hz) were ac-
quired by means of a research-grade amplifier (g.USBamp, g.tec, Schiedlberg, Austria) and the
g.GAMMAcap. (total time: 16 hours)

• TUAR (Buckwalter et al., 2021): This subset of TUEG contains annotations of 5 different artifacts
with EEG recorded (23 channels, 256 Hz). (total time: 92.22 hours)

• TUEP (Veloso et al., 2017): This is a subset of TUEG that contains 100 subjects with epilepsy
and 100 subjects without epilepsy with EEG recorded (19-23 channels, 256 Hz), as determined
by a certified neurologist. (total time: 591.22 hours)

• TUSZ (Shah et al., 2018): This corpus has EEG signals that have been manually annotated data
for seizure events (start time, stop, channel, and seizure type) with EEG recorded (19-23 channels,
256 Hz). (total time: 1138.53 hours)

• TUSL (von Weltin et al., 2017): This is another subset of TUEG that contains annotations of
slowing events (23 channels, 256 Hz). This corpus has been used to study common error modali-
ties in automated seizure detection. (total time: 20.59 hours)

• Self-collected EEG Data (Jiang et al., 2023; 2021; Luo et al., 2022; Li et al., 2021; Tao & Lu,
2020): We further collect EEG data from more than 140 subjects by ourselves (62 channels, 1000
Hz) with the ESI NeuroScan System. (total time: 342.23 hours)

E VISUALIZATION OF VECTOR-QUANTIZED NEURAL SPECTRUM
PREDICTION
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Figure 6: The reconstruction loss curve of amplitude and
phase.

We further visualize how the amplitude
and phase in the Fourier domain are re-
constructed. As depicted in Figure 7,
although some details are missing, the
overall trend of the amplitude is recon-
structed well. In contrast, the recon-
struction of the phase is not as good
as the amplitude. Nevertheless, it can
be seen from Figure 6 that there is still
a stable decrease in the reconstruction
loss during training, which indicates the
discrete codebook does learn high-level
information from the Fourier domain.

Original EEG signals Original Amplitude Reconstructed Amplitude Original Phase Reconstructed Phase

Figure 7: Visualization of reconstructed Fourier spectrum. Note that we only visualize half of the
results since DFT is conjugate symmetric.
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F MORE EXPERIMENTS ON
OTHER BCI TASKS

We conduct two additional BCI tasks on the following datasets:

• SEED-V (emotion recognition) (Liu et al., 2021): An emotion EEG dataset containing five emo-
tion categories (happy, sad, neutral, disgust, and fear). The experiment collected EEG data (62
channels, 1000 Hz) from 20 subjects, including 10 males and 10 females. Each subject partici-
pated in the experiments three times and each session included fifteen video clips corresponding
to the five emotions, where each video clip lasted for several minutes. The EEG signals are
segmented into 148,080 1-second samples.

• MoBI (gait prediction) (He et al., 2018): A mobile brain-body imaging dataset acquired during
treadmill walking in a BCI task, which is a lower limb motor imagery dataset. Six goniometers
were employed to record bilateral joint angles on the legs (hip, knee, and ankle). The objective
is to regress the angles for 12 targets (left leg and right leg). The data were collected from 8
healthy subjects, each of whom had three identical trials. The EEG signals (60 channels, 100 Hz)
were recorded by the ActiCap system. Setting the stride to 50 ms, the dataset involves 575,830
2-second samples.

For SEED-V, as there are fifteen trials for one session, we separate the fifteen trials into three parts
with an equal number of trials, i.e., 5:5:5. We merge each part from all sessions of subjects and
derive the training, validation, and test set. As SEED-V is overall balanced, we consider accuracy
instead of balanced accuracy as a metric to compare performance. Note that some implementation
details are a bit different from default settings on this dataset due to different characteristics (peak
learning rate: 5e-4 (L) 5e-3 (H); total epochs: 50 (L/H), warmup epochs: 4 (L) 5 (H)).

For MoBI, each trial consisted of a 15-minute treadmill walking session (training session), followed
by a 5-minute treadmill walking session (test session) with a closed-loop BCI. To validate the model,
we split the training session into two parts: the first 10 minutes of EEG and its corresponding
joint data were used as training data, while the last 5 minutes of data were used as validation data.
Meanwhile, we combined all the training data, validation data, and testing data of the eight subjects
to form corresponding larger training datasets, validation datasets, and testing datasets. Since most
angles are typically lower than 90◦, the target angles are divided by 90 for normalization. We report
the average value of 12 targets for each metric.

As the task of MoBI is regression, we choose the following metrics to evaluate the performance
of different methods: 1) Pearson’s correlation: Pearson’s correlation coefficient which is used to
quantify the models’ regression effect. It measures the linear correlation between two variables
X and Y. 2) R2 score: R2 (coefficient of determination) regression score function, which measures
how well a statistical model predicts an outcome. 3) RMSE: Root Mean Square Error is the standard
deviation of the residuals (prediction errors). R2 score is utilized as the monitor to select the best
model. MSE loss is the objective to optimize the models.

The experimental results are presented in Figure 6. On SEED-V, LaBraMs outperform all baseline
methods on all metrics. The phenomenon that the performance increases when the model gets
larger is also observed. For MoBI, our Base model archives competitive results compared to the
best baseline method. Whereas, the Large and Huge models obtain better performance among all
methods.

Table 6: The results of different methods on SEED-V and MoBI.
SEED-V MoBI

Accuracy Cohen’s Kappa Weighted F1 Pearson’s Correlation R2 Score RMSE↓
SPaRCNet 0.2887±0.0047 0.1032±0.0083 0.2904±0.0064 0.4561±0.0161 0.1467±0.0064 0.1344±0.0006
ContraWR 0.3603±0.0098 0.1988±0.0114 0.3590±0.0091 0.3357±0.0164 0.0743±0.0093 0.1401±0.0008
CNN-Transformer 0.3665±0.0058 0.2034±0.0060 0.3638±0.0065 0.3224±0.0109 0.0628±0.0089 0.1411±0.0007
FFCL 0.3686±0.0059 0.2094±0.0078 0.3679±0.0062 0.3158±0.0235 0.0712±0.0124 0.1396±0.0014
ST-Transformer 0.2772±0.0047 0.0783±0.0071 0.2625±0.0061 0.5442±0.0012 0.2911±0.0014 0.1222±0.0001
BIOT 0.3802±0.0094 0.2247±0.0100 0.3809±0.0114 0.2757±0.0173 0.0597±0.0069 0.1401±0.0006

LaBraM-Base 0.4095±0.0062 0.2613±0.0075 0.4120±0.0057 0.5383±0.0102 0.2876±0.0032 0.1225±0.0003
LaBraM-Large 0.4096±0.0075 0.2639±0.0090 0.4127±0.0079 0.5603±0.0020 0.3093±0.0032 0.1197±0.0003
LaBraM-Huge 0.4102±0.0037 0.2646±0.0046 0.4136±0.0047 0.5632±0.0023 0.3145±0.0032 0.1196±0.0003
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G EFFECTIVENESS OF VECTOR-QUANTIZED NEURAL SPECTRUM
PREDICTION

To verify the effectiveness of vector-quantized neural spectrum prediction, we elaborate on three
types of experimental settings as illustrated in Table 7. The comparison between LaBraM and Set-
ting 1 demonstrates that the codebook is effective for masked EEG modeling. LaBraM obtains the
best performance on TUEV and the lowest standard deviations on TUAB. There is an interesting
observation that masked EEG modeling with the assistance of training an auxiliary neural tokenizer
(LaBraM and Setting 1) performs greatly better on TUEV while the naive masked EEG modeling
(Setting 2 and Setting 3) performs slightly better on TUAB. One explanation for this phenomenon is
that learning semantic representations from the neural tokenizer and codebook significantly benefits
high-level downstream tasks like TUEV which classifies different types of events. Whereas, TUAB
is a low-level downstream task where the clinically normal/abnormal EEG segments can be easily
distinguished visually. Hence, simply reconstructing origin signals or their Fourier spectrum is able
to perform well on these low-level tasks but fails to obtain satisfying performance on high-level
tasks.

Table 7: Ablations to validate the effectiveness of vector-quantized neural spectrum prediction.
TUAB TUEV

Balanced Accuracy AUC-PR AUROC Balanced Accuracy Cohen’s Kappa Weighted F1

LaBraM 0.8140±0.0019 0.8965±0.0016 0.9022±0.0009 0.6409±0.0065 0.6637±0.0093 0.8312±0.0052

Setting 1 0.8058±0.0044 0.8949±0.0037 0.8964±0.0012 0.6162±0.0174 0.6376±0.0168 0.8170±0.0058
Setting 2 0.8261±0.0030 0.9150±0.0016 0.9067±0.0024 0.5630±0.0313 0.5910±0.0156 0.7979±0.0082
Setting 3 0.8166±0.0073 0.9062±0.0029 0.9053±0.0026 0.5730±0.0133 0.5643±0.0089 0.7819±0.0040

Setting 1: We directly predict output embeddings of the neural tokenizer by maximizing cosine similarity
instead of predicting the discrete neural tokens from the codebook.
Setting 2: We discard the neural tokenizer and directly reconstruct raw EEG patches by minimizing MSE
loss.
Setting 3: We discard the neural tokenizer and reconstruct the Fourier spectrum (amplitude and phase) of
raw EEG patches by minimizing MSE loss.

H ABLATION ON MASK RATIO

In this experiment, we conduct different settings of the mask ratio to explore its impact. It is noted
that we introduce the symmetric masking strategy, so we only need to validate half of the mask
ratios. As the mask ratio is set to r, the symmetric masking will mask 1 − r proportion of EEG
patches. The ablation results are provided in Table 8, where experiments are conducted on TUAB
and TUEV. It can be induced that the best mask ratio is 0.4 (0.6) for TUAB and 0.5 (0.5) for TUEV.
Moreover, 0.5 (0.5) is the second-best mask ratio for TUAB while the remaining mask ratios are
incredibly close. The performance for mask ratios except 0.5 (0.5) is also similar to each other.
Notably, the mask ratio of 0.5 (0.5) achieves smaller standard deviations on both TUAB and TUEV.
Therefore, we conclude that 0.5 (0.5) is a relatively good mask ratio for the masked EEG modeling
of LaBraM pre-training.

Table 8: Performance of different mask ratios.
Mask Ratio TUAB TUEV

Balanced Accuracy AUC-PR AUROC Balanced Accuracy Cohen’s Kappa Weighted F1

0.5 (0.5) 0.8140±0.0019 0.8965±0.0016 0.9022±0.0009 0.6409±0.0065 0.6637±0.0093 0.8312±0.0052
0.4 (0.6) 0.8145±0.0039 0.9083±0.0030 0.9049±0.0038 0.6174±0.0127 0.6123±0.0094 0.8067±0.0059
0.3 (0.7) 0.7994±0.0037 0.8950±0.0006 0.8974±0.0008 0.6112±0.0216 0.6089±0.0158 0.8068±0.0086
0.2 (0.8) 0.8039±0.0054 0.8990±0.0050 0.9018±0.0023 0.6054±0.0268 0.6050±0.0152 0.8024±0.0089
0.1 (0.9) 0.8022±0.0041 0.8968±0.0010 0.8992±0.0007 0.6033±0.0264 0.6181±0.0178 0.8134±0.0094
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I ABLATION ON SYMMETRIC MASKING

We conduct an ablation study to verify the contribution of the symmetric masking strategy. Table 9
reports the results on TUAB and TUEV. It is obvious that the performance of most metrics de-
creases by a remarkable margin on both datasets, especially TUEV. Specifically, without symmetric
masking, the performance of the base model increases a little bit on TUAB. Nevertheless, the perfor-
mance decreases in most other scenarios. This is because the data is sufficient for the base model, so
the symmetric masking strategy which acts like data augmentation contributes a little to the model
training. For larger models like LaBraM-Huge, the symmetric masking improves the downstream
performance as it requires more data. This observation indicates that symmetric masking can not
only boost the downstream performance but also improve stability and robustness.

Table 9: Ablation study of symmetric masking (SM).
TUAB TUEV

Balanced Accuracy AUC-PR AUROC Balanced Accuracy Cohen’s Kappa Weighted F1

LaBraM-Base 0.8140±0.0019 0.8965±0.0016 0.9022±0.0009 0.6409±0.0065 0.6637±0.0093 0.8312±0.0052
w/o SM 0.8155±0.0041 0.9077±0.0069 0.9065±0.0034 0.6284±0.0175 0.6279±0.0260 0.8152±0.0105

LaBraM-Large 0.8226±0.0015 0.9130±0.0005 0.9127±0.0005 0.6581±0.0156 0.6622±0.0136 0.8315±0.0040
w/o SM 0.8198±0.0042 0.9140±0.0007 0.9106±0.0012 0.6548±0.0246 0.6601±0.0122 0.8319±0.0034
LaBraM-Huge 0.8258±0.0011 0.9204±0.0011 0.9162±0.0016 0.6616±0.0170 0.6745±0.0195 0.8329±0.0086
w/o SM 0.8247±0.0010 0.9188±0.0005 0.9149±0.0004 0.6261±0.0178 0.6391±0.0179 0.8152±0.0085

J LABRAM WITHOUT PRE-TRAINING

In this experiment, we directly train LaBraM on the downstream datasets from scratch without
pre-training to validate the effectiveness of the masked EEG modeling pre-training. The steep per-
formance drop demonstrates the usefulness of pre-training, as illustrated in Figure 8.
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Figure 8: Comparison with model without pre-training.

K PARTIAL FINE-TUNING

In Table 10, we report the results about fine-tuning part of LaBraM. We elaborate on several settings:
fine-tuning all 12 Transformer blocks, fine-tuning the last 8 Transformer blocks, fine-tuning the last
4 Transformer blocks, and linear probing. It is noteworthy that for linear probing, we set the weight
decay to 0. One can see that on TUAB, the results of full fine-tuning, fine-tuning 12 Transformer
blocks, and fine-tuning 8 Transformer blocks are quite similar. When only fine-tuning 4 Transformer
blocks and linear probing, there is a slight degradation in performance. On TUEV, yet, fine-tuning 8
Transformer blocks achieves the best performance on all three metrics. Notably, the results of linear
probing are much worse than other settings, which still have room for improvement.
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Table 10: Results of fine-tuning part of LaBraM.

Fine-tuning Part TUAB TUEV
Balanced Accuracy AUC-PR AUROC Balanced Accuracy Cohen’s Kappa Weighted F1

All 0.8140±0.0019 0.8965±0.0016 0.9022±0.0009 0.6409±0.0065 0.6637±0.0093 0.8312±0.0052
Transformer (12) 0.8141±0.0022 0.8963±0.0014 0.9022±0.0009 0.6541±0.0250 0.6782±0.0189 0.8386±0.0090
Transformer (8) 0.8134±0.0022 0.8960±0.0019 0.9020±0.0009 0.6611±0.0152 0.6820±0.0089 0.8406±0.0036
Transformer (4) 0.8074±0.0032 0.8930±0.0065 0.8967±0.0018 0.6188±0.0118 0.6560±0.0233 0.8256±0.0114
Linear Probe 0.7954±0.0059 0.8864±0.0030 0.8835±0.0028 0.3461±0.0225 0.3968±0.0329 0.6974±0.0161

L ABLATION ON SPATIAL EMBEDDINGS

The spatial embeddings have helped us address the challenge of heterogeneity in electrode config-
urations. However, it is important to verify the effectiveness of this approach. During pre-training,
we observed that the loss could not converge without spatial embeddings. This was expected, as
the model needs spatial embeddings to identify the masked patch to reconstruct. During fine-tuning
on downstream datasets, we discard the spatial embeddings and notice a significant drop in perfor-
mance, as shown in Table 11. This clearly demonstrates the importance of spatial embeddings in
capturing spatial information.

Table 11: Ablation study of spatial embeddings (SE).
TUAB TUEV

Balanced Accuracy AUC-PR AUROC Balanced Accuracy Cohen’s Kappa Weighted F1

LaBraM 0.8140±0.0019 0.8965±0.0016 0.9022±0.0009 0.6409±0.0065 0.6637±0.0093 0.8312±0.0052
w/o SE 0.8004±0.0037 0.8922±0.0023 0.8888±0.0018 0.5949±0.0423 0.6069±0.0248 0.8040±0.0111

M DISCUSSION

Limitations. First of all, although we have collected the largest EEG dataset ever of over 2,500 hours
and trained the largest model with 369M parameters ever for BCI, it still has a large margin from
today’s large vision models and large language models. Our work is only the first step to explore the
feasibility of training a large EEG model for learning generic representations. It is delighted to find
that training a large EEG model with tremendous EEG data does work and obtain appreciable per-
formance gain compared to existing methods developed for specific BCI tasks. Secondly, LaBraM
needs to be fully fine-tuned to adapt to downstream tasks, which might be computation-costly and
memory-costly. Finally, LaBraM is trained with unimodal EEG data. It is worthwhile to investigate
training large EEG models with other modalities.

Outlook. In view of the above limitations, our paradigm paves the way for further research, en-
compassing the following aspects: 1) Collecting more EEG data from a variety of BCI tasks, and
training a larger EEG model to see whether emergent abilities exist in the EEG model similar to
large language models; 2) Leveraging the parameter efficient learning methods, such as adapters,
prompt tuning, and LoRA, to reduce the fine-tuning overhead and save space for disks; 3) Incorpo-
rating other modalities like image, language, speech, and other physiological signals into large EEG
models training to build new paradigms, or aligning EEG representations with other modalities in
semantic space, which can be a meaningful and challenging direction for future work.
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