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Abstract

While voice technologies increasingly serve aging populations, current systems
exhibit significant performance gaps due to inadequate training data capturing
elderly-specific vocal characteristics like presbyphonia and dialectal variations. The
limited data available on super-aged individuals in existing elderly speech datasets,
coupled with overly simple recording styles and annotation dimensions, exacerbates
this issue. To address the critical scarcity of speech data from individuals aged 75
and above, we introduce SeniorTalk, a carefully annotated Chinese spoken dialogue
dataset. This dataset contains 55.53 hours of speech from 101 natural conversations
involving 202 participants, ensuring a strategic balance across gender, region, and
age. Through detailed annotation across multiple dimensions, it can support a wide
range of speech tasks. We perform extensive experiments on speaker verification,
speaker diarization, speech recognition, and speech editing tasks, offering crucial
insights for the development of speech technologies targeting this age group. Code
is available at |https://github.com/flageval-baai/SeniorTalk and data at
https://huggingface.co/datasets/evan@617/seniortalk.

1 Introduction

The rapid global aging population presents both significant challenges and opportunities in the
development of technologies specifically designed for older adults, particularly those aged 75 and
over [ 2]. As the number of people in this ultra-high-age group continues to grow, it becomes
increasingly important to enhance the accessibility and inclusion of speech-based technologies for this
demographic [3}4]. However, many state-of-the-art speech systems struggle to perform effectively
within the elderly population, exhibiting biases on elderly vocal patterns. [S,/6]. For instance, existing
speech recognition systems often show poor performance with older users, influenced by factors such
as speech deterioration, hearing loss, health issues [7], and the diversity of speech patterns among
older adults [8, 9]. A key underlying reason for this challenge is the lack of datasets specifically
addressing the unique needs of ultra-high-age individuals [9], which hampers the development of
robust foundation models and the application of tailored solutions.

Although existing studies have made some efforts to collect geriatric speech data [10, |11}, significant
limitations remain. First, current speech corpora predominantly focus on younger adults or healthy
senior populations, with samples that consist mainly of scripted speech and exhibit standardized
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Table 1: Comparison of Chinese elderly speech datasets, including AISHELL-ASR0060 (marked in
the table as ASR0060), MECSD, and SeniorTalk, across annotation features.

D Mean Annotation Features Age Group Distribution (%)
ataset Age Style : - _
Region Transcript Timestamp Accent Sound 55-65 65-75 75-85
ASR0060  60.42 Reading North/South/Other v N/A X X 56.7 42.5 0.8
MECSD  67.27 Reading X v N/A X v 176 729 9.4
SeniorTalk  79.5  Conversation Provincial v v v v 0 0 100

accents. For example, both the AISHELL-ASR0060 and MECSD datasets [[12] adopt an unusually
low age threshold of 55 years for defining elderly participants. In particular, these data sets show
extremely low proportions of participants aged 75 to 85 years: only 0.8% for AISHELL-ASR0060 and
9.4% for MECSD, which means that the oldest population (75+ years) is severely underrepresented.
Similarly, the S-JINAS corpus of elderly Japanese speech reports a mean speaker age of 67.6 years
[L1]. These fall below the World Health Organization’s (WHO) geriatric classification designating
75+ years as the late elderly phase which is a period associated with progressive age-related decline
in physiological function [[13]].

Second, the current collection paradigms and annotation methods of existing datasets further limit
their practical applicability. A large portion of speech resources for the elderly primarily focuses on
reading style [12}114]], which do not reflect the everyday communication scenarios that elderly people
encounter in real life. Furthermore, many corpora are tailored for narrowly defined tasks such as
automatic speech recognition (ASR) or pathology detection [12]], thereby preventing comprehensive
characterization of age-related vocal variations. These datasets also lack key features such as speaker
diarization or dialect labels, which restrict their ability to support a wider array of use cases and
hinder their robustness in addressing the diverse challenges of speech processing.

To address these limitations, we introduce SeniorTalk, the only freely available open-source Mandarin
speech dataset consisting of spontaneous conversations among individuals aged 75 and older. As
shown in Table[] this dataset comprises natural conversational recordings from 202 native Chinese
speakers, representing a rich diversity of regional, age, and gender demographics, and captured in
authentic, real-world interaction settings. It effectively addresses the current gaps and limitations in
datasets focused on elderly populations, particularly the underrepresentation of super-aged seniors
and the lack of diversity in recording styles and annotation dimensions. Moreover, we conduct
extensive experiments across various speech tasks, providing a benchmark specifically for the elderly
population. By open-sourcing this corpus along with fine-grained metadata, we aim to bridge the
vocal age gap and promote the development of equitable voice technologies for aging societies.
SeniorTalk makes three key contributions to the field:

» We recruit 202 super-elderly speakers from 16 provinces in China, ensuring balance across
gender, age, and geography. This resulted in SeniorTalk, a dataset with 55.53 hours of data
from 101 conversations.

* We provide detailed, multi-dimensional annotations for the dataset, encompassing speaker
information, transcriptions, timestamps, and more. These annotations enable comprehensive
speech signal analysis and support a wide range of speech-related tasks for the elderly.

* We conduct a comprehensive series of experiments using the dataset, covering tasks such as
speaker verification, speaker diarization, speech recognition, and others. This establishes a
solid benchmark for evaluating models across various speech-related tasks.

2 Related Work

Several corpora have been developed to address the specific acoustic characteristics of elderly speech.
Early work in this area includes the Japanese Newspaper Article Sentences Read Speech Corpus
of the Aged (S-JNAS), a foundational resource for Japanese elderly speech research. Subsequent
research has broadened the scope of investigation, with efforts such as the Carolinas Conversations
Collection (CCC) [L8] focusing on multiethnic elderly speakers with chronic conditions, offering
valuable insights into how sociolinguistic factors and health status influence speech production. The
AD80 and ERES38 corpora [17] advance French elderly speech analysis through distress detection
benchmarks for ambient assisted living systems. Further corpus development has continued with



Table 2: Summary of related elderly speech datasets. Key characteristics include the age ranges of
speakers (Age), the number of speakers (# Spks.), publication year (Year), and availability status
(Avail.), where "P’ indicates partial availability.

Corpus Language Age Style #Spks. Dur.(hrs) Year Avail.
BraPoRus [[10] Brazilian 59-98 Monologue, 1,500 170 2024 N
Portuguese- interview,
Russian .
EARS [15] Japanese 70-99 Reading 123 13.4 2023 N
Improving S-JNAS Japanese 65-99 Reading 221 31.7 2020 Y
(1]
AISHELL-ASR0060 Mandarin 55+ Reading 503 793 2019 Y
MECSD [12] Mandarin ~ 55-85 Reading 85 110 2019 P
elderLUCID [16]] English 19-84 Reading 83 N 2017 N
Develop S-INAS [14] Japanese 60-98 Reading 100 9.2 2015 Y
ERES38 [17]] French 68-98 Interview 22 17 2013 N
ADSO [17] French 62-94 - 43 4.7 2013 N
CCC [18] English 65+  Interview 600+ 800+ 2011 Y
S-INAS Japanese 60-90 Reading 301 - 2007 Y
E-MIC Korean 65-85 conversation 100 3 - Y

the creation of specialized datasets, including a corpus of 100 elderly Japanese speakers designed
to enhance human-robot interaction in elder care [[14]. The elderLUCID project [[L6] examines the
complexities of speech communication in older adults, considering the interplay of hearing loss,
phonation, articulation, and cognitive factors.

More recently, researchers have focused on specific languages and conditions, as exemplified by
the Mandarin Speech Database for Early Dementia Detection (MECSD) [12] and the AISHELL-
ASR0060 databaseE] for elderly Mandarin speech. Improvements to existing corpora, such as S-JNAS,
have also been explored, including the creation of acoustic models specifically designed for "super-
elderly" speakers [11]]. The Elderly Multimodal Interpersonal Conversation (E-MIC)®|dataset expands
the scope of analysis by incorporating multimodal data, including video and audio, to study turn-
taking in elderly conversations. Further work, such as EARS [135]], has continued to refine acoustic
modeling techniques for super-elderly Japanese speakers, while the BraPoRus corpus [10] highlights
the importance of preserving heritage languages and the challenges of remote data collection during
the COVID-19 pandemic.

3 Dataset description

3.1 Dataset overview

SeniorTalk is designed specifically for the ultra-elderly population aged 75 and above, offering
a comprehensive collection of spoken dialogue data aimed at supporting various speech-related
tasks. The dataset includes a total of 101 recorded speech dialogues, representing a diverse range of
linguistic characteristics. It spans 55.53 hours of speech data, recorded from 202 participants, and
features 60,029 individual utterances. Additionally, the dataset is enriched with annotations across 8
distinct dimensions, ensuring its suitability for training and evaluating robust models across multiple
speech-processing tasks.

3.2 Statistics

Participants We recruit 202 participants aged between 75 and 85 years, ensuring a diverse represen-
tation across different segments of the ultra-elderly population, and obtain the necessary consent for
their participation. Specific authorization details are provided in Appendix[A.1] Figure[Ta]illustrates
the gender distribution across different age groups. The dataset includes 67 male and 135 female

2 https://www.aishelltech.com/General_Datasets
3 |https://aidrobot.github.io/emic-en/
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Figure 1: Data analysis: (a) Age-gender structure; (b) Duration distribution.

speakers, with a higher proportion of females. This gender imbalance stems from the relative ease
of recruiting female participants during the data collection process, likely due to the higher life
expectancy of women in the targeted age range. Geographically, as shown in Figure 2} 94 participants
are from northern China, while 108 are from southern China, covering regions such as Beijing,
Shanghai, and Sichuan. This regional diversity enhances dialect recognition models by exposing
them to a wide range of linguistic patterns.

Recording The dataset comprises sponta-
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topics of these dialogues are specifically cho-
sen to address relevant issues for older adults,
such as health, pets, retirement, and other related
matters. Each conversation typically covers be-
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of topics visualized in Appendix[A.2] Figure[Tb|
illustrates the distribution of session durations,
which range from 25 to 50 minutes, with the majority of sessions clustering around the 35-minute
mark.
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Figure 2: This histogram visualizes the region dis-
tribution of the given dataset, showing how the
values are spread across different region.

Annotation The dataset is annotated by a team of 14 trained annotators who undergo unified
training. During the training, they are instructed on a well-defined annotation workflow and strict
standards to ensure consistency and accuracy. Detailed guidelines on the annotation process and
standards are provided in Appendix [A-4]

Annotations are made across four main dimensions. At the speaker profile level, attributes such
as age, gender, and origin are annotated. These annotations are particularly useful for analyzing
elderly speech signals, helping to study age-related speech characteristics. The session level includes
annotations for temporal segmentation and overlapping speech, which are essential for segmenting
speech and identifying overlaps in multi-speaker scenarios. At the utterance level, transcriptions and
accent intensity are annotated. Transcriptions support ASR. Finally, at the token level, special sound
events like laughter are marked, providing insight into non-verbal communication.

4 Experiments

In this section, we assess our dataset across various tasks, including speaker verification, speaker
diarization, speech recognition, and speech editing.



Table 3: Results of fine-tuning baselines on the speaker verification task, where Dim indicates the
dimension of the extracted embeddings and Dev represents the EER on the validation set.

Model #Params Dim Dev (%) PLDA Cosine similarity
EER (%) minDCF EER (%) minDCF
x-vector 4.2M 512 12.04 17.53 0.9032 22.38 0.8964
ResNet-TDNN 15.5M 256 4.37 11.39 0.7259 13.15 0.8225
ECAPA-TDNN  20.8M 192 5.85 8.56 0.6263 5.66 0.6121

Table 4: Results of fine-tuning speaker embedding extraction models and pretrained model ResNet-
34-LM on the speaker diarization task.

Model # Params  Dim collar=0 collar=0.25
DER (%) Confusion (%) DER (%) Confusion (%)
ResNet-34-LM 15.5M 256 33.14 16.82 28.39 16.85
X-vector 4.2M 512 53.01 36.69 49.82 38.28
ResNet-TDNN 15.5M 256 43.44 27.13 39.58 28.03
ECAPA-TDNN 20.8M 192 27.84 11.52 22.85 11.31

4.1 Speaker Verification

This section introduces the Speaker Verification (SV) task, which is essential for verifying the identity
of speakers within the geriatric population to ensure their financial security. To facilitate this task, we
implement a data partitioning strategy, with further details provided in Appendix [B.1.1]

4.1.1 Maetrics

We adopt two scoring approaches: probabilistic linear discriminant analysis (PLDA) [19] and cosine
similarity, with evaluation based on two metrics: (1) Equal Error Rate (EER): We define a threshold
7 where the miss probability equals the false alarm probability. Specifically, if the similarity score
is above this threshold, the system accepts that the speakers are the same person; if it is below this
threshold, the system rejects the claim. This threshold is selected when the false acceptance rate
equals the false rejection rate. (2) Minimum Detection Cost (minDCF): A cost-sensitive metric for
evaluating speaker verification systems under application-specific conditions.

4.1.2 Baselines

We adapt three state-of-the-art speaker embedding systems pre-trained on VoxCeleb [20] through
domain-specific fine-tuning via SpeechBrain [21]]: x-vector architecture [22] | ECAPA-TDNN [23]E]
and ResNet-TDNN [24]]°| Detailed hyperparameters are listed in Appendix

4.1.3 Results and Analysis

Table [3|demonstrates two critical findings from our geriatric voice analysis: First, the strong fintuned
models’ performance relative to the pretrained model validates the suitability of our dataset for
aging voice biometric tasks. This suggests that age-related vocal degradation (e.g., pitch instability,
articulatory imprecision) introduces distinct challenges compared to pediatric voices, potentially
affecting gender differentiation and speaker discriminability. The pretrained model results without
fine-tuning are provided in Appendix |B.3.2|for comparison.

Second, despite achieving the best performance on the test set, the ECAPA-TDNN underperforms
the ResNet-TDNN on the development set, indicating potential overfitting risks for elderly speech
data. This emphasizes the need for data augmentation strategies, regularization techniques and
hyperparameter tuning when deploying deep speaker models in geriatric voice applications.

4 https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
5 https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
6 https://huggingface.co/speechbrain/spkrec-resnet-voxceleb
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4.2 Speaker Diarization

This section introduces the speaker diarization task, which entails partitioning audio recordings into
segments that correspond to individual speakers. This task is essential for assessing the performance
of various speaker models, as detailed in Section 4.2.3] The data split is the same as speaker
verification task.

4.2.1 Maetrics

We employ the Diarization Error Rate (DER) as the evaluation metric for the speaker diarization task.
The computation of DER is defined as follows:

FA+ MD + Conf

DER = T ,

ey

where F'A denotes the number of segments incorrectly identified as speech when no speaker is
present, M D represents the number of segments where speech is present but not detected. Con f
refers to the number of segments where detected speech is attributed to the wrong speaker, and T’
indicates the total number of speech segments in the reference transcript.

In Table [d] we explore two collar settings: 0 seconds and 0.25 seconds. The collar parameter defines
a time window around the detected speaker boundaries, allowing for a margin of error in segment
alignment. A collar value of 0 seconds requires exact matching of boundaries, while a value of 0.25
seconds introduces a quarter-second tolerance to accommodate minor discrepancies in detection.

4.2.2 Baselines

For the speaker diarization task, we use the PyAnnote toolkit [25| 26]{?] This speaker diarization
pipeline consists of three primary components: Voice Activity Detection (VAD), the speaker extractor,
and clustering methods (e.g., K-Nearest Neighbors).

* VAD: We employ the pyannote/segmentation-3.0 model an end-to-end neural architec-
ture for joint speech activity detection and speaker segmentation. Since false alarm and
missed detection rates remain consistent across experimental conditions due to fixed VAD
parameters, Table [4|exclusively reports confusion errors and DER metrics.

* Speaker extractor: For the speaker extractor module, we replace the default ResNet-34-
LM extractor from PyAnnote|’| with fine-tuned versions of x-vector, ECAPA-TDNN, and
ResNet-TDNN architectures, all adapted for speaker verification. This yields four distinct
experimental configurations, as detailed in Table ]

* Clustering method: For the clustering method, we employ the default Spectral Clustering,
as proposed by PyAnnote.

4.2.3 Results and Analysis

Our experimental analysis yields three principal conclusions regarding elderly speaker diarization:

First, after fine-tuning with the elderly dataset, the ECAPA-TDNN model outperforms the PyAnnote
default model ResNet-34-LLM by 5.3% DER improvement at O collar and 5.54% DER imporvement
at 0.25 collar. This superiority demonstrates the effectiveness of our dataset for the diarization of
elderly speakers.

Second, as shown in Table[d] ECAPA-TDNN achieves significantly superior performance over both
ResNet-TDNN and x-vector-based baselines on the speaker diarization task. Moreover, consistent
with these findings, the ECAPA-TDNN demonstrates consistently lower EER across both PLDA and
cosine similarity senarios on the speaker verification task as shown in table[3] These results highlight
the ECAPA-TDNN’s robustness, confirming its strong generalization ability not only in clean,
utterance-level speaker verification tasks but also in more challenging, real-world conversational
speaker diarization scenarios involving increased noise and overlapping speech.

7 https://github.com/pyannote/pyannote-audio
8 https://huggingface.co/pyannote/segmentation-3.0
o https://huggingface.co/pyannote/wespeaker-voxceleb-resnet34-LM
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Third, our experiments reveal notably high DER and confusion errors. Our analysis attributes this
phenomenon to two dataset-specific factors: (1) a pronounced gender imbalance (1:2 female-to-male
ratio) contrasting standard benchmarks’ balanced distributions, and (2) age-related vocal changes in
elderly speakers that reduce the saliency of secondary sexual voice characteristics. These combined
effects create systematic challenges for speaker identity separation, particularly in conversational
contexts where demographic diversity and physiological aging patterns naturally occur.

Table 5: Decoding performance (CER, %) of Transformer, Conformer, and E-Branchformer models
using Attention rescoring, with accent differentiation and region categorization.

Encoder # Params CER Accent Region
No  Light Moderate Heavy South North
Transformer 14.1M 48.99 22.58 49.05 51.07 80.95 485 50.24
Conformer 15.7M 34.61 2123 3421 37.62 59.52 3455 3474

E-Branchformer 16.9M 33.25 20.71 33.03 35.32 64.29 3297 33.94

4.3 Speech Recogition

Automatic speech recognition entails transcribing spoken language into text, and recognizing elderly
speech patterns is crucial in emergency response scenarios due to age-related vocal characteristics
that can affect system reliability. This section presents an empirical evaluation of the collected elderly
speech corpus, with data partitioning strategies detailed in Appendix [B.1.7].

4.3.1 Maetrics

The experimental results demonstrate the performance on the test dataset after training with the
train dataset, using Character Error Rate (CER) as the evaluation metric, which is computed by the

following equation:
S+D+1
CER = —— 2
N @
where S, D, and I respectively signify the quantities of substitutions, deletions, and insertions. denotes
the cumulative number of characters within the reference text. When evaluating character-level

transcription accuracy, a system featuring a lower CER is typically regarded as more proficient.

4.3.2 Baselines

We employ the open-source Wenet toolkit [27] as our training framework, selecting Transformer, Con-
former, and E-Branchformer as our baselines. All models are trained using a combined Connectionist
Temporal Classification (CTC) and Attention-based Encoder-Decoder (AED) approach. We fine-tune
the hyperparameters of these three models to ensure comparable parameter counts while achieving
optimal performance. Detailed hyperparameter configurations can be found in the Appendix [B.2.1]
and

The following models are considered in the context of training from scratch:

e Transformer: The standard Transformer architecture employs both CTC and AED objec-
tives, establishing a widely-adopted baseline for ASR.

* Conformer: The Conformer [28]] model integrates convolutions with self-attention for ASR,
sandwiched between two feed-forward layers.

* E-Branchformer: Proposed by Kwangyoun Kim et al. [29], E-Branchformer builds upon
the Branchformer [30], which attains performance levels comparable to Conformer. E-
Branchformer improves on this framework by implementing a novel merging strategy and
integrating additional point-wise modules.

In addition to the three models trained from scratch, we fine-tune two pre-trained models: Paraformer,
which employs the Wenet framework, and Whisper, whose hyperparameters and code base are
described in Appendix [B.2.2]

* Paraformer: Proposed by Gao et al. [31], Paraformer is a fast and accurate parallel
transformer model that leverages a continuous integrate-and-fire (CIF) [32]] predictor to



estimate the number of tokens and generate hidden representations. This pre-trained model
is trained on a non-public, industry-grade dataset comprising 60,000 hours of Chinese ASR
data.

* Whisper: Whisper [33]|""|is a Transformer-based multilingual ASR model developed by
OpenAl, trained on 680,000 hours of labeled speech data. We examine various versions of
Whisper, ranging from tiny to large-v2, with model sizes varying from 39M to 1.55B.

4.3.3 Results and Analysis

Models Trained from Scratch We analyze models trained from scratch across three aspects:
baseline performance, accent intensity impact, and regional variations.

Baseline Model Performance: Table E] compares three models, namely E-Branchformer, Conformer,
and Transformer, which are trained from scratch and utilize the attention rescoring decoding method.
The E-Branchformer achieves the lowest overall CER, outperforming Conformer by 1.36% and
Transformer by 15.74%. This performance advantage holds consistently across all tested conditions,
including varying accent intensities and geographical regions.

Accent Intensity Impact: As shown in Table[5] CER increases with accent intensity: Moderate Accent
yields higher CER than Light Accent, which in turn exceeds No Accent. This trend highlights the
growing recognition challenge as accents become more pronounced. The duration distribution of
utterances across different accent levels is presented in Appendix

Regional Variations: The E-Branchformer achieves a 0.97% lower CER in the South than in the North,
with the Conformer and Transformer showing improvements of 0.19% and 1.74%, respectively. These
differences indicate slightly higher recognition difficulty in the North, although overall performance
remains comparable. At the provincial level, substantial variations in CER are observed across
different provinces. For detailed analysis, please refer to the AppendixB.3.1]

Table 6: Character Error Rate (CER) (%) of the pretrained Paraformer-large model, along with
various sizes of Whisper models (tiny, base, small, medium, and large-v3) under both zero-shot and
fine-tuning settings.

Model # Params Zero-shot Fine-tuning
Paraformer-large 232M 14.91 14.41
Whisper-tiny 39M 92.20 58.80
Whisper-base 74M 64.02 38.17
Whisper-small 244M 55.83 28.69
Whisper-medium 76OM 60.47 25.77
Whisper-large-v3 1,550M 57.74 23.84

Finetuned Models Table [6] presents comparative CER results for two model families: 1) our
Wenet-finetuned Paraformer-large architecture [27], and 2) a series of Whisper models [33]] adapted
through whisper-flamingo ﬁne—tuningE] The analysis reveals two key findings:

First, although Whisper models show modest CER improvements with larger parameter counts
(except for small), all variants have CERs exceeding 50% in zero-shot senario. This performance
gap suggests potential domain mismatch between Whisper’s training data distribution and elderly
speech characteristics, possibly due to underrepresentation of senior voices in Whisper’s pretraining
corpus. Such mismatch may explain the frequently observed hallucination patterns in elderly speech
recognition results. Notably, our targeted fine-tuning reduces CERs substantially, improving cer of
Whisper-large-v3 from 57.74% to 23.84%, demonstrating both the challenge level of our elderly
speech dataset and its utility for domain adaptation.

Second, the Paraformer-large model achieves 14.91% CER in zero-shot evaluation and 14.41%
CER after fine-tuning , outperforming all Whisper variants by significant margins. This advantage
likely stems from Paraformer’s pretraining on 60,000 hours of proprietary Chinese speech data
encompassing diverse regional accents, age groups, and speaking styles. This demonstrates that
Paraformer has better generalization ability in the field of Chinese elderly speech recognition.

10 https://github.com/openai/whisper
"https://github.com/roudimit/whisper-flamingo
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Table 7: Objective Evaluation results of speech editing models trained from scratch.

Method MCD () STOI(1) PESQ()
CampNet 7.302 0.220 1.291
EditSpeech 6.225 0.514 1.363
AT 5.851 0.586 1.455
FluentSpeech 5.811 0.627 1.645

Table 8: Subjective Evaluation results of speech editing models trained from scratch.

Method Boundary-MOS MOS

CampNet 1.25+0.33 1.17 £ 0.27
EditSpeech 242 +£0.98 1.82 £0.91
A3T 3.00+0.89 2.04+0.74

FluentSpeech 472 +0.44 4.53 +0.57

4.4 Speech Editing

Speech editing is a generative task that modifies corresponding speech based on text alterations,
and editing speech from elderly individuals is particularly useful for editing interviews with seniors.
To facilitate this task, we implement a new data split, as detailed in Appendix [B.1.3] However,
utilizing this data for generative tasks poses risks related to elder fraud, particularly in the context of
telemarketing scams targeting senior individuals.

4.4.1 Baselines and Metrics

We employ the Speech Editing Toolkit []ZI framework to implement our models, which include
CampNet[34], EditSpeech[33]], A3T[36] , and FluentSpeech[3/]. The detailed hyperparams are
described in Appendix [B.2.4]

For objective evaluation metrics, we utilize Mel-Cepstral Distortion (MCD) [38]], Short-Time Objec-
tive Intelligibility (STOI) [39]], and Perceptual Evaluation of Speech Quality (PESQ) [40l], which are
commonly used objective metrics for assessing speech generation quality.

For subjective evaluation metrics, we conducted comprehensive human perceptual evaluation to
assess speech editing quality. We randomly selected 50 audio samples and recruited three evaluators
to rate each sample on a 1-5 scale using two metrics:

* MOS (Mean Opinion Score): Evaluates naturalness of edited speech segments

* Boundary-MOS: Our specialized metric measuring transition smoothness at editing bound-
aries

4.4.2 Performance Analysis

The results presented in Table[7)and [8]indicate that FluentSpeech achieved the best performance, with
all objective metrics and subjective metrics falling within acceptable ranges. In relevant research
[37,136, 134} 141], these experimental values are widely recognized as acceptable. This suggests that
our dataset is suitable for generative tasks.

5 Limitations and Ethical Considerations

While SeniorTalk provides important data for elderly speech processing, it has notable limitations.
The dataset includes 202 participants from 16 provinces but displays biases in gender, regional, and
accent distributions. Additionally, the participant age range does not fully cover the super-elderly
population (85+ years), and the overall dataset size remains relatively modest, which may restrict
generalizability across diverse vocal characteristics. From an ethical perspective, rigorous safeguards

12 https://github.com/Zain-Jiang/Speech-Editing-Toolkit
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were implemented: informed consent was obtained, recordings were conducted in controlled envi-
ronments, and all personally identifiable information was anonymized. Participants received fair
compensation in line with local economic conditions. To mitigate risks associated with misuse
such as malicious voice synthesis, data access is limited to verified academic researchers under a
non-commercial CC BY-NC-SA 4.0 license.

6 Conclusion

In this paper, we present SeniorTalk, a Mandarin dataset featuring spontaneous conversations among
individuals aged 75 and older. With 55.53 hours of data from 202 speakers across 16 provinces in
China, this dataset offers valuable resources for developing voice technologies for aging populations.
By providing detailed annotations and conducting extensive experiments across key speech tasks, we
establish SeniorTalk as a benchmark for evaluating models for elderly speakers, aiming to bridge the
vocal age gap and promote the development of more inclusive voice technologies.
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A Supplementary Dataset Information

Table 9: Accent Intensity Annotation Guidelines

Level Annotation Criteria

Phonetics: Fully standard pronunciation with clear articulation
No Accent (0) Comprehensibility: Effortlessly understood by non-native listeners
Regional Features: No detectable regional phonological characteristics

Phonetics: Occasional non-standard vowels/consonants (<20% utterances)
Light Accent (1) Comprehensibility: Minor listening effort required for full understanding
Regional Features: Subtle but identifiable regional speech patterns

Phonetics: Frequent non-standard prosody/lexical stress (20-50% utterances)
Moderate Accent (2)  Comprehensibility: Requires focused attention, occasional repetition needed
Regional Features: Strong regional phonological markers affecting intelligibility

Phonetics: Pervasive non-standard articulation (>50% utterances)
Heavy Accent (3) Comprehensibility: Frequent breakdowns requiring contextual guessing
Regional Features: Severely divergent from standard phonological norms

A.1 Authorization

This study employs time-series biometric data collected under a formal ethical authorization frame-
work developed in collaboration with a third-party Al data service provider specializing in biometric
acquisition. The framework ensures methodological transparency and regulatory alignment through
the following mechanisms:

Legally Binding Consent Protocols Participants provide informed consent for the collection of
vocal and physiological time-series data, explicitly authorizing its use in Al research and derivative
model development.

Rights Management All datasets and derived models remain the exclusive intellectual property of
the anonymized provider. Participants retain conditional rights to access, modify, or request data
deletion, contingent on technical feasibility (deletion requests that invalidate associated research
outputs may require proportional compensation).

Cross-Jurisdictional Compliance Third-party data sharing requires explicit opt-in consent, with
passive approval mechanisms activated only after a 72-hour objection period following notification.

Biometric Corpus Specifications The dataset includes anonymized temporal features such as age,
gender, regional dialect markers, and sequential vocal patterns (e.g., pitch dynamics, spectral entropy
trajectories).

A.2 Topic

This section presents the frequency statistics of all topics in the dataset, as illustrated in Figure[3] In
total, there are 13 major categories, encompassing 58 distinct topic labels. The distribution of these
13 categories is depicted in the figure. These topics primarily reflect the everyday concerns of elderly
individuals, with particular emphasis on areas such as Leisure, Health, and Retirement Life, which
appear most frequently. These topics align closely with the key interests and priorities of older adults.
Understanding and focusing on these subjects is crucial, as it can greatly benefit the performance of
ASR systems, especially when catering to elderly users in relevant contexts.

A.3 Dataset Accent Distribution Analysis
This section presents the distribution characteristics of accent severity levels within our dataset. The
accent annotation criteria follow the standardized framework detailed in table[9l As illustrated in
Table[12] the distribution exhibits distinct patterns across different severity levels:
* Light accent samples constitute the largest temporal proportion (110,419s) and account for
42,790 samples.
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Table 10: Annotation Levels and Their Associated Tasks for Dataset Analysis

Annotation Level Annotation Dimension Associated Tasks Representative Instances
Demographic Age 75

Speaker Metadata Geographic Origin  Elderly Speech Analysis Jiangsu, Henan
(Province)
ID Card Gender Female/Male

Session Temporal Segmentation Speaker Diarization [48.475 - 73.582] spk_001
Overlapping Speech Speech Separation trans1(trans2)[+]

Utterance Raw Transcription Speech Recognition [Mandarin utterance]
Accent Intensity (0-3) Ordinal Classification Neutral (0) / Strong (3)

Token Special Markers Paralinguistic Analysis ~ [MUSIC], [NOISE], [LAUGHTER]

* Moderate accent demonstrates the second-largest distribution with 17,782s duration and
8,226 samples.

e Samples with no accent (5,951s/8,056) and heavy accent (370s/142) show minor representa-
tion.

The analysis reveals a pronounced concentration of data in the light accent category, which comprises
over half of the total samples, followed by moderate, no, and heavy accents.

A.4 Annotation

This section presents information facilitating annotation, covering details about annotators, the
annotation process, and the content being annotated.

A.4.1 Annotator

As shown in Table[TT} We have a total of 14 annotators. Eleven of them are between 23 and 30 years
old, and three are between 30 and 50 years old. All annotators hold undergraduate degrees. Moreover,
they are proficient in their local dialects, which facilitates the transcription of accented speech.
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Figure 3: This distribution of topics.
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A.4.2 Annotation workflow

The annotation process utilizes a proprietary cloud-based platform developed by a third-party data
service provider. Annotators access tasks through this platform, which facilitates manual segmentation
of conversational data into discrete utterances followed by automated speech recognition to generate
preliminary transcripts. These baseline outputs undergo human revision alongside annotation of
linguistic features including accent intensity levels (see Table ) and paralinguistic markers such
as [NOISE] or [MUSIC]. A multi-tier quality assurance protocol is implemented through the same
platform, where dedicated reviewers systematically validate annotation consistency and accuracy
prior to dataset finalization.

A.4.3 Annotation Information

Table [10] presents our four-tier annotation framework comprising speaker, session, utterance, and
token levels, with each layer supporting distinct speech processing tasks through systematically
designed metadata.

The speaker-level annotations capture demographic attributes (geographic origin, gender, age) to
enable geriatric voice analysis.

At the session level, comprehensive temporal annotations of turn-taking boundaries and overlap
detection facilitate speaker diarization and speech separation benchmarking.

Utterance-level transcriptions incorporate accent intensity labels and orthographic normalization,
jointly supporting automatic speech recognition and ordinal classification of vocal aging patterns.

The token tier extends this granularity with paralinguistic markers, including [MUSIC], [NOISE],
[LAUGHTER], and [SONANT], enabling quantitative analysis of non-lexical vocal characteristics
critical for elderly communication studies.

A.5 Licenses for assets

This work adheres to strict licensing compliance for all third-party assets. Below are the licensing
terms for codebases and datasets utilized in our speech dataset creation paper:

* WeNet: The WeNet framework [27] for end-to-end speech recognition is licensed under
Apache 2.0, permitting modification and commercial use with attribution.

* Whisper Flamingo: The Whisper Flamingo framework [33]] for Whisper adaptation oper-
ates under BSD 3-Clause License, requiring copyright retention in derivative works.

* SpeechBrain: SpeechBrain toolkit [21] utilizes Apache 2.0.

Table 11: Annotator Information

ID Region Age Gender Education
1 Henan 36 Male Bachelor
2 Hebei 23  Female Bachelor
3 Hebei 24  Female Bachelor
4 Hebei 24  Female Bachelor
5 Hebei 30 Female Bachelor
6 Fujian 27 Male Bachelor
7 Fujian 23 Male Bachelor
8 Fujian 23 Female Bachelor
9 Fujian 38 Female Bachelor

10  Chuzhou 22 Male Bachelor
11 Chuzhou 27 Male Bachelor
12 Chuzhou 23 Female Bachelor
13 Yunnan 27 Male Bachelor
14 Hunan 47 Male Bachelor
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Table 12: Accent distribution

Accent Total Duration (seconds) Number of Samples
No 5,951 8,056

Light 110,419 42,7790
Moderate 17,782 8,226
Heavy 370 142

* PyAnnote: PyAnnote toolkit[25] 26] utilizes MIT License which allows users to freely use,
modify, and distribute the software, provided that the copyright notice and permission notice
are retained.

* Speech-Editing-Toolkit: The Speech-Editing-Toolkit [37] includes no explicit software
license but enforces strict usage prohibitions through appended declaration:

“Any synthesis of recognizable voices (e.g., politicians, celebrities) without explicit consent
violates ethical standards and copyright laws. Violators assume full legal liability.”

* VoxCeleb Dataset: Training data for speaker modeling is governed by CC BY 4.0 [20],
mandating proper attribution for academic/commercial redistribution.

For reproducibility and open science, we release all components of our SeniorTalk under the following
licenses:

* SeniorTalk Dataset: Our conversational speech dataset is released under CC BY-NC-SA
4.0, restricting commercial applications while requiring share-alike terms for derivatives.

* Codebase: Core infrastructure follows Apache License 2.0. Embedded third-party code
retains original licensing.

B Supplementary Experiments

This section mainly presents supplementary experimental details, including the dataset partitioning
for each task and the hyperparameters. The fine-tuning and zero-shot tests of the Whisper model
are performed using an NVIDIA A800, while all other experiments are carried out with an NVIDIA
GeForce RTX 3090.

B.1 Data Split

Table 13: Summary of dataset splits, including the number of speakers (# Spk.) and utterances (#
Utt.), total duration (Dur.), and average utterance length (Avg.) for speech recognition task.

Split  #Spk. #Utt. Dur (hrs) Avg. (s)

Train 162 47,269 29.95 2.28
Dev 20 6,891 4.09 2.14
Test 20 5,869 3.77 231
Sum 202 60,029 37.81 2.27

Table 14: Summary of dataset splits, including the speakers range (# Spk.), utterances (# Utt.), total
duration (Dur.), and average utterance length (Avg.) for speaker verification and speaker dirazation
tasks.

Split # Spk. #Utt. Dur. (hrs) Avg. (s)

Train  0-182 48,591 30.47 2.26
Dev 0-182 5,398 3.40 2.27
Test  182-202 6,040 3.95 2.35
Sum 0-202 60,029 37.82 2.27
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B.1.1 Speaker Verification and Diarization

For the speaker verification experiments, we first segment the original dialogue dataset into sentence-
level units. Given that the dataset includes precise timestamps for each sentence and specific audio
markers for events such as overlapping speech and noise, we extract clean audio segments devoid of
these special sound events and speaker overlaps. From the 101 dialogues in the dataset, we randomly
select 10 dialogues, using the corresponding segmented audio at the sentence level as our test dataset.
The remaining audio is split, with 10% randomly allocated for the validation set and 90% designated
for the training set. The detailed information of the datasplit is shown in table[T4] After the datasplit,
we create 20,000 carefully balanced verification pairs (50% genuine vs. 50% impostor pairs) from
the test set. This trial composition ensures uniform coverage of both intra-speaker (spk;, spk;) and
inter-speaker pairs (spk;, spk;). The detailed datasplit information is shown in table{14] For speaker
diarization, the dataset split is identical to that of the speaker verification task, except that we use
dialogues instead of sentences.

Table 15: Summary of dataset splits, including the number of speakers (# Spk.) and utterances (#
Utt.), total duration (Dur.), and average utterance length (Avg.) for speech recognition task.

Split  #Spk. #Utt. Dur. (hrs) Avg. (s)

Train 162 47,269 29.95 2.28
Dev 20 6,891 4.09 2.14
Test 20 5,869 3.77 2.31
Sum 202 60,029 37.81 2.27

B.1.2 Speech Recognition

For the elderly dataset, we initially segment the dialogue-based data into clean sentence-level data
following the annotations. This process is similar to the data split in the speaker verification task
described in Appendix Subsequently, we partition the data by speaker and randomly divide it
into three subsets: the training set, the development set (dev), and the test set, with a ratio of 8:1:1.
The detailed data split information is presented in Table[15]

B.1.3 Speech Editing

After converting the conversation into sentences using the method described in the speaker verification
data split in Appendix [B.1.1] we filter the sentences. Only those with more than four characters are
included for training and testing. We then divide the data into a training-to-testing ratio of 9:1.

B.2 Hyperparams
B.2.1 ASR Model Training from Scratch

The hyperparameters used for training ASR models from scratch are presented in Table We ex-
perimented with three different encoder architectures: Transformer, Conformer, and E-Branchformer.
For all models, we used an accumulation gradient of 4 and a batch size of 4. The initial learning rate
was set to le-3 for Transformer and Conformer models, while it was 5e-4 for the E-Branchformer
model. A warmup period of 5,000 steps was used for all models. The models were trained for a
maximum of 100 epochs (Transformer) and 60 epochs (Conformer and E-Branchformer).

Table 16: Summary of dataset splits, including the utterances (# Utt.), total duration (Dur.), and
average utterance length (Avg.) for speech editing tasks.

Split  #Utt.  Dur. (hrs) Avg. (s)

Train 44,954 32.42 2.60
Test 4,994 3.68 2.65
Sum 49,948 36.10 2.60
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Table 17: Hyperparameters for training ASR models from scratch.

Encoder Accum Grad Batchsize LR  Warmup Epochs
Transformer 4 4 le-3 5,000 100
Conformer 4 4 le-3 5,000 60
E-Branchformer 4 4 Se-4 5,000 60

Table 18: Hyperparameters for fine-tuning pre-trained ASR models.

Model Accum Grad Batchsize Learningrate Warmup Training steps
Paraformer-large 4 28 Se-4 5,000 101,579
Whisper-large 1 8 Se-6 1,000 90,000
Whisper-medium 1 3 6.25e-6 1,000 225,000
Whisper-small 1 4 1.25e-5 1,000 225,000

B.2.2 ASR Model Fine-tuning

Table [T8] outlines the hyperparameters used for fine-tuning pre-trained ASR models. Our experiments
covered Paraformer-large and multiple Whisper variants (large/medium/small). The batch size varied
depending on the model, ranging from 3 to 28. The learning rates were carefully chosen for each
model, spanning from 5e-6 to Se-4. A warmup period of 1,000 steps was used across all fine-tuned
models. The total training steps also varied significantly depending on the model, reflecting the
different sizes and pre-training strategies. All the hyperparameters of whisper models are the default
setting of whisper-flamingo.

B.2.3 Speaker Verification Model Training

Training details for our speaker verification models, including ECAPA-TDNN, ResNet-TDNN and
x-vector architectures, are summarized in Table [T9] All models used a batch size of 128. For
ECAPA-TDNN and ResNet-TDNN, a cyclic learning rate schedule was employed with an initial
learning rate of 5e-3 and a base learning rate of 1e-8. The x-vector model utilized a linear learning
rate schedule with an initial learning rate of 5e-3 and a base learning rate of 1e-4. All models were
trained for 20 epochs.

B.2.4 Speech Editing Model Training

For training our second set of Speech Editing models(CampNet, EditSpeech, A3T, and FluentSpeech),
we utilized the hyperparameters summarized in Table [20] The number of trainable parameters for
each model is also provided. All models, except FluentSpeech, used a batch size of 16. FluentSpeech
used a batch size of 30. The initial learning rate was set to 2e-4 for all models. A warmup period of
8,000 steps was used, and all models were trained for 200,000 steps.

B.3 Extra Experiment Analysis
B.3.1 Detailed results of Wenet models on ASR task

This section primarily presents the detailed CER of the models trained with Wenet in the speech
recognition experiments. Specifically, the specific recognition results of these models for sentences
from different provinces are shown in Table[22]and Table[21] In Table[22] we can observe that the

Table 19: Hyperparameters for training speaker verification models.

Model Batch size LR Schedule InitLR Base LR Epochs
ECAPA-TDNN 128 Cyclic Se-3 le-8 20
ResNet-TDNN 128 Cyclic 5e-3 le-8 20
x-vector 128 Linear S5e-3 le-4 20
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Table 20: Hyperparameters for training speaker editing models.

Model Params Batchsize LR  Warmup Training steps
CampNet 21.22M 16 2e-4 8,000 200,000
EditSpeech 48.15M 16 2e-4 8,000 200,000
A3T 14.86M 16 2e-4 8,000 200,000
FluentSpeech  23.86M 30 2e-4 8,000 200,000

Table 21: Model Performance in Southern Provinces

Model | Shanghai ~Guangxi Sichuan Anhui Zhejiang Jiangsu Hunan
Paraformer-fintuned 13.68 4.88 9.62 16.11 12.42 16.57 14.60
Paraformer 13.26 6.24 10.07 17.91 12.30 16.61 13.18
Brachformer 27.37 10.82 2594  36.58 29.83 36.68 3994
Conformer 29.11 11.91 27.11 38.01 30.17 39.44  40.65
Tranformer 42.27 26.91 41.78 523 46.53 51.82 5490

Table 22: Model Performance in Northern Provinces

Model | Beijing Heilongjiang Liaoning Hebei Henan
Paraformer-fintuned 7.38 5.85 27.08 7.71 20.93
Paraformer 6.80 5.38 23.85 9.41 24.19
Brachformer 23.65 21.21 55.31 19.63  40.85
Conformer 25.15 20.27 56.88 20.44  41.59
Tranformer 43.01 39.61 67.58 36.61 56.03

CERs of Beijing, Hebei, and Heilongjiang are relatively low, while the recognition difficulty for
Liaoning and Henan increases. Similarly, in Table 2] Guangxi has the lowest recognition difficulty
among all provinces. Moreover, the order of recognition difficulty, that is, the ranking of CERs,
among other provinces is roughly the same. This indicates that when we break down the regions to
the provincial level, the recognition difficulty varies across different provinces.

We have conducted further analysis on age effects. Table[24]and ?? are our experimental results for
the Paraformer model before and after fine-tuning. Our analysis indicates that the difficulty of speech
recognition increases significantly with speaker age, which underscores the necessity of our dataset
in addressing this challenge.

B.3.2 Results of baselines on the speaker verification task

This section evaluates three speaker verification models trained exclusively on the VoxCeleb dataset
without SeniorTalk-based fine-tuning, as summarized in Table[23] After applying our proposed fine-
tuning strategy using the SeniorTalk dataset, the models exhibit significant performance improvements
on elderly speaker verification tasks, highlighting the critical role of domain-specific adaptation for
aging voice biometrics.

C Ethics Statement

This study strictly adhered to rigorous ethical protocols to safeguard elderly participants’ rights. Audio
recordings were conducted in quiet indoor environments at senior care facilities. To accommodate
potential cognitive decline among participants, multiple conversation topics were provided during
dyadic interactions, with recording devices positioned equidistant between paired participants.

Prior to each session, informed consent was obtained after explaining the research objectives and data
collection parameters, including voice characteristics, conversational content, age documentation,
and accent analysis. Participants were compensated monetarily, with amounts ranging from 330 to
400 RMB. This compensation was calibrated according to local purchasing power, thereby ensuring
equitable remuneration tailored to the specific geographical locations of the participants. All personal
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Table 23: Paraformer Model Performance across age

model age S D I N wer(%) num_utterances num_speakers
Paraformer 75 1020 217 195 14452 991 1278 5
76 2008 405 451 21247 13.48 2072 7
78 1233 263 176 8546 19.56 1010 3
80 769 102 65 5430 17.24 602 2
81 918 153 153 6331 19.33 621 2
82 489 51 91 2761 22.85 286 1

Table 24: Paraformer-finetuned Model Performance

model age S D 1 N wer(%) num_utterances num_speakers
Paraformer-finetuned 75 906 268 231 14452 9.72 1278 5
76 1994 520 496 21247 14.17 2072 7
78 986 288 223 8546 17.52 1010 3
80 734 107 85 5430 17.05 602 2
81 749 167 170 6331 17.15 621 2
82 407 42 91 2761 19.56 286 1

Table 25: Results of baselines on the speaker verification task

Model PLDA EER(%) Cosine EER(%)
X-vector 18.13 30.81
ResNet-TDNN 15.81 17.50
ECAPA-TDNN 11.40 20.88

identifiers (e.g., national ID numbers, full names) were systematically de-identified by replacing them
with unique speaker identifiers, despite initial age verification requiring temporary ID inspection.

The dataset carries inherent risks requiring stringent governance. Potential malicious exploitation for
voice synthesis could potentially exacerbate elderly-targeted telecommunications fraud through voice
spoofing. Accordingly, access is strictly restricted to vetted academic researchers through institutional

credential verification, with legally binding agreements prohibiting commercial use or redistribution.

Key ethical safeguards implemented include: 1) Explicit participant consent through verbal and
written confirmation, 2) Comprehensive privacy preservation via anonymization protocols, 3) Fair
compensation aligned with regional economic standards, 4) Institutional Review Board approval for
all data collection procedures, 5) Multi-layered access controls preventing unauthorized usage.

This framework ensures compliance with international research ethics standards while balancing
scientific utility with participant protection in vulnerable populations.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We summarise limitations in Section 3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification:
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short

proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We publicly release the source code on GitHub (https://github.com/
flageval-baai/SeniorTalk). In Section 4] we comprehensively introduce the models
employed in our study along with the associated repositories. Subsequently, in Appendix[B.2]
we delve into a detailed discussion of the hyperparameter settings utilized in our experiments.
Moreover, Appendix [B.I]is dedicated to an exploration of the dataset partitioning strategies
adopted for our experimental evaluations.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In abstract, we release the code and data link. In Section [} we introduce the
baseline models along with the associated repositories. Subsequently, in Appendix [B.2] we
delve into a detailed discussion of the hyperparameter settings utilized in our experiments.
Moreover, Appendix is dedicated to an exploration of the dataset partitioning strategies
adopted for our experimental evaluations.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: in Appendix [B.2]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported in our study due to the substantial computational
expense involved, particularly given the large number of experimental spacecraft we have uti-
lized. Incorporating error bars would necessitate considerable additional time and resources,
which are not feasible within the scope of our current research constraints.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Supplementary Experiments[B] we conduct a detailed exploration of the
experimental setup, including the hardware configuration of the machines utilized and the
specific training steps.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: In Section[5] we provide a concise overview of the topic, while a comprehensive
discussion is presented in Appendix

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: in Appendix [C]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss the safeguards in Appendix [Cland all the data and code are released
under the CC BY-NC-SA 4.0 license.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: in appendix [A.5]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Compliance documentation for voice data collection ethics (including partic-
ipant consent protocols) and licensing specifications are detailed in Appendix [A] Imple-
mentation specifics, including hyperparameter configurations and training procedures, are
provided in Supplementary Materials (Appendix [B).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: in appendix [A]and appendix
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
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Justification: While formal IRB approval was not obtained for this study, all data collection
strictly followed ethical research practices including explicit participant consent, voice data
anonymization, and compliance with international privacy regulations (GDPR/CCPA). We
implemented robust safeguards against potential risks while adhering to the NeurIPS Code
of Ethics throughout the research process.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use the LLM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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