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Abstract

Material node graphs are programs that generate the 2D channels of procedural
materials, including geometry such as roughness and displacement maps, and
reflectance such as albedo and conductivity maps. They are essential in computer
graphics for representing the appearance of virtual 3D objects parametrically and
at arbitrary resolution. In particular, their directed acyclic graph structures and
intermediate states provide an intuitive understanding and workflow for interactive
appearance modeling. Creating such graphs is a challenging task and typically
requires professional training. While recent neural program synthesis approaches
attempt to simplify this process, they solely represent graphs as textual programs,
failing to capture the inherently visual-spatial nature of node graphs that makes them
accessible to humans. To address this gap, we present MultiMat, a multimodal
program synthesis framework that leverages large multimodal models to process
both visual and textual graph representations for improved generation of procedural
material graphs. We train our models on a new dataset of production-quality
procedural materials and combine them with a constrained tree search inference
algorithm that ensures syntactic validity while efficiently navigating the program
space. Our experimental results show that our multimodal program synthesis
method is more efficient in both unconditional and conditional graph synthesis
with higher visual quality and fidelity than text-only baselines, establishing new
state-of-the-art performance.

1 Introduction

Procedural materials have become increasingly important in modern 3D content creation, offering
artists greater control and flexibility in designing surface appearances for digital assets. Unlike
traditional image-based textures, which are constrained by fixed resolutions and limited editability, pro-
cedural material modeling tools like Adobe Substance Designer (Adobe, 2025c) or Blender (Blender,
2025) leverage node-based graphs to generate textures programmatically. This enables resolution-
independent execution, high-level parametric control, and non-destructive editing workflows that
have proven valuable in industries such as game development, film production, and VR/AR appli-
cations (Ebert et al., 2003). More specifically, a procedural material is defined as a directed graph
where nodes represent texture generators (e.g., noise functions, patterns) or filtering operations (e.g.,
blurs, color adjustments), and edges encode the flow of data between these operations, ultimately
producing the texture maps required by physically-based rendering (PBR) models (Pharr et al., 2016)
(cf. Figure 1). However, the complexity of crafting these procedural material graphs presents a
substantial barrier to entry, creating a pressing need for automated and semi-automated approaches to
support material artists at all levels of proficiency.

With recent advances in neural program synthesis (Huynh & Lin, 2025), procedural material synthesis
has become increasingly feasible. MatFormer pioneered this direction with a multi-stage transformer-
based model for unconditional generation with Adobe Substance Designer (Guerrero et al., 2022).
Building on this foundation, Hu et al. (2023) extended the approach to support conditional synthesis,
enabling applications such as inverse rendering (Patow & Pueyo, 2003), i.e., generating procedural
materials that match the appearance of captured or rendered images. More recently, VLMaterial
demonstrated that large language models (Zhao et al., 2025) can effectively perform end-to-end
procedural material synthesis (Li et al., 2025a). However, these approaches share a fundamental
limitation: they generate node graphs as text-only programs without access to visual feedback during
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Figure 1: Procedural materials offer powerful control over the appearance of 3D objects through a
few high-level parameters. Here, a production-grade example (left) with the images obtained using
two distinct parameter sets A and B (right).

synthesis. This contrasts sharply with how human artists work, who create procedural materials
by manipulating node graphs through an arguably more intuitive visual interface, as illustrated in
Figure 1 (left). Without visual feedback, models must rely solely on textual representations to reason
about complex spatial relationships and visual outcomes, a task that becomes increasingly difficult
as material complexity grows. To address this limitation, we propose a novel multimodal program
synthesis paradigm based on large multimodal models (Yin et al., 2024) that incorporates visual
feedback throughout the generation process, more closely mirroring human creative workflows. We
demonstrate that this approach, to which we refer as MultiMat, outperforms previous state-of-the-art
methods (cf. §6). Our key contributions are as follows:

1. We introduce MultiMat, a novel procedural material synthesis approach that incorporates
visualizations of intermediate graphs, including node states, into its context. This multimodal
feedback loop improves material quality substantially compared to text-only baselines.

2. Investigating intermediate states enables real-time validation of each generated node. This
allows us to develop a tree search algorithm that backtracks upon encountering invalid states,
enabling more efficient inference than prior methods, which often produce invalid graphs.

3. We implement a transpiler that converts between Adobe Substance Designer formats and
a compact representation suitable for language modeling while supporting the complete
feature set. This enables training on larger datasets and the generation of more complex
materials than previous approaches, which examined only limited subsets of Designer’s
capabilities.

2 Related Work

Large Language Models for Program Synthesis Our work builds upon recent advances in neural
program synthesis (Parisotto et al., 2017; Devlin et al., 2017; Ellis et al., 2021). Traditional program
synthesizers require formal specifications and employ search or logical derivation to produce programs
that provably satisfy these specifications (Alur et al., 2013). Recently, large language models have
demonstrated impressive capabilities in this domain (Huynh & Lin, 2025; Li et al., 2025b; Lozhkov
et al., 2024; Li et al., 2023b; Rozière et al., 2023; Fried et al., 2023; Li et al., 2022; Chen et al.,
2021). However, current research predominantly targets high-resource programming languages
such as Python, Java, and JavaScript (Zan et al., 2023; Huynh & Lin, 2025). In contrast, our work
synthesizes graphics programs, which pose unique challenges due to domain-specific requirements
and considerable data scarcity, establishing it as a distinct research area.

Graphics Program Synthesis Deep learning approaches have shown strong performance in
synthesizing graphics programs that compile to visual outputs (Ellis et al., 2018; 2019; Ganin et al.,
2018). This progress has been accelerated by the emergence of large multimodal models, particularly
vision-language models that bridge visual and textual domains (Alayrac et al., 2022; Liu et al., 2023;
Belouadi et al., 2024b; Kulits et al., 2024; Li & Ellis, 2024; Kapur et al., 2025). The field encompasses
both controlled experimental settings using domain-specific languages (Ellis et al., 2018; Tian et al.,
2019; Sharma et al., 2018; Cámara et al., 2023; Kulits et al., 2024; Kapur et al., 2025) and practical
applications. Notable examples include systems for generating scientific figures using TikZ (Belouadi
et al., 2024a;b; 2025; Laurençon et al., 2024; Laurençon et al., 2024; Tong et al., 2024; Zhang et al.,
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Figure 2: Architecture overview of MultiMat during inference. The system constructs a multimodal
program tree T by iteratively generating node definitions. At each step 𝑡, the system derives a graph𝐺𝑡

of valid nodes along with corresponding intermediate outputs 𝐼𝑡 by traversing T , which may contain
both valid and invalid nodes, to generate the next node 𝑣𝑡+1. When transpilation and execution succeed,
the system advances with updated graph 𝐺𝑡+1 and outputs 𝐼𝑡+1. If errors occur, it reverts to a previous
state (𝐺≤𝑡 , 𝐼≤𝑡 ). The generation process initiates from either an input image or unconditionally using
a beginning-of-sequence token (<bos>). Following optional parameter optimization (cf. §6.2), the
final procedural material can be applied to any target geometry for rendering.

2025) and automating data visualization (Mackinlay, 1986; Roth et al., 1994; Luo et al., 2021; Wu
et al., 2024; Voigt et al., 2024). However, these approaches generate code designed for text-based
editing and therefore do not face the unique circumstances of node graphs in procedural material
synthesis that our work addresses.

Procedural Material Synthesis Procedural material modeling is one of the most challenging
domains in graphics program synthesis. The combination of lengthy, complex material programs and
severe data scarcity creates unique obstacles for learning-based approaches (Li et al., 2025a; 2024).
Existing methods primarily focus on inverse procedural material modeling by synthesizing graphs that
reproduce a given target appearance (Hu et al., 2023) or unconditional generation to create diverse,
novel materials without specific targets (Guerrero et al., 2022). A related line of work optimizes
parameters of existing material graphs to match image targets by transpiling them into differentiable
programs (Shi et al., 2020; Hu et al., 2022; Li et al., 2023a). As discussed in §1, previous generative
approaches are limited to text-only representations, a limitation we address in this work.

3 Background on Procedural Materials

As indicated in §1, procedural materials are directed acyclic graphs 𝐺, executed by a material engine
to produce raster images representing the physical properties of materials. These so-called material
maps define surface characteristics e.g., albedo, roughness or normal (tangent space orientation), that
enable photorealistic rendering when applied to 3D objects, with their appearance controlled through
a small set of high-level parameters (cf. Figure 1). The internal structure of a material graph 𝐺

comprises nodes {𝑣1, 𝑣2, . . . , 𝑣𝑁 } connected by edges that define the flow of image data. Each node 𝑣𝑖
functions as either a generator that creates new image content or a filter that transforms existing images
from upstream nodes. Common node operations include noise generation, blending, and mathematical
transformations, which collectively produce intermediate image outputs 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑁 }. The
behavior of each node is governed by parameters that may be discrete or continuous scalars or vectors,
providing fine-grained control over the final material appearance.

Professional material authoring tools such as Blender and Adobe Substance Designer enable artists
to construct and modify procedural material graphs through visual interfaces (cf. Figure 1). Users
can interactively add or remove nodes and edges while adjusting node parameters to achieve desired
visual effects. Among these tools, Adobe Substance Designer stands out for its particularly expressive
node graph system, which MultiMat specifically targets. It offers advanced capabilities for creating
complex material appearances through features like function graphs and pixel processors. Function
graphs allow parameters to be controlled through custom operations on input values, while pixel
processors enable users to define specialized computational graphs that operate on individual pixels
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Figure 3: Visualization of the two conditioning approaches used by MultiMat for generating node
definition 𝑣𝑡+1. In the graph-conditioned approach (1), MultiMat processes the graph 𝐺𝑡 as a visual
representation similar to human perception. In the mixed-conditioned approach (2), MultiMat
receives 𝐺𝑡 as a multimodal program where <img> tokens are replaced with their corresponding
vision encoder representations from 𝐼𝑡 .

using sequences of atomic mathematical operations. These sophisticated capabilities make automated
procedural material synthesis a particularly challenging problem in this domain.

4 The MultiMat Model & Architecture

Figure 2 illustrates our complete model pipeline. At its core, MultiMat is a vision-language model,
trained for synthesizing procedural material graphs. It accepts images as input for inverse procedural
material synthesis and supports unconditional generation. Unlike previous approaches, MultiMat
generates nodes topologically, ensuring each node precedes all nodes it connects to. This enables an
iterative generation process detailed below that can provide continuous visual feedback to the model,
verify the validity of intermediate outputs, and recover from errors automatically in certain cases.

4.1 Multimodal Program Synthesis

Given a partially generated material graph 𝐺𝑡 = {𝑣1, 𝑣2, . . . , 𝑣𝑡 } with nodes 𝑣𝑖 at generation step
𝑡, the topological ordering of nodes allows to visualize intermediate node states, similar to visual
editing environments that target humans. This enables an iterative generation loop where MultiMat
generates one node definition—including node parameters and connections to previous nodes—at a
time that is processed accordingly before the generation continues. After generating node 𝑣𝑡+1 in
an intermediate text format (cf. §5), we combine it with the existing node definitions {𝑣1, . . . , 𝑣𝑡 }
and feed them to a transpiler, which compiles the intermediate representations back to a format
the material engine understands. We then use the material engine to visualize the state of node 𝑣𝑡 .
Upon successful transpilation and execution, 𝑣𝑡+1 is appended to the graph 𝐺𝑡+1. This updated state,
including the visualized intermediate outputs 𝐼𝑡 , is fed back to the model to generate the subsequent
node 𝑣𝑡+2 (cf. Figure 2). If execution or transpilation fails, we discard the current 𝑣𝑡 and resample, or
backtrack further in case of repeated errors (cf. §4.2). We explore two complementary approaches for
representing 𝐺𝑡 and 𝐼𝑡 as multimodal programs to the model, as visualized in Figure 3:

Mixed Conditioning Starting with a textual representation of 𝐺𝑡 (cf. §5), we enhance each node 𝑣𝑖
with an additional field containing its visualized intermediate state. This creates a multimodal
program where the model processes textual tokens interleaved with image patch embeddings
(cf. Figure 3). To manage the increased context size from image embeddings, we omit
node parameters (which are implicitly encoded in the visualizations) but explicitly include
node output type information (e.g., grayscale or color) that the model cannot infer from the
visualization alone.

Graph Conditioning This approach more closely mirrors human visual experience by conditioning
MultiMat solely on a visualization of the entire graph 𝐺𝑡 with embedded intermediate
visual outputs 𝐼𝑡 , as shown in Figure 3. The model generates subsequent node 𝑣𝑡+1 using only
this complete visual context, without explicit access to underlying textual node definitions.
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Figure 4: Visualization of our inference algorithm as a tree search. Tree nodes represent generated
node definitions, and edges represent possible continuations. The algorithm proceeds as follows:
generation continues until an invalid state (✗) is encountered (1), triggering backtracking to the
previous node; from this point, if a valid node (✓) is generated, normal generation resumes (2a), but
if invalid outputs persist (2b), the algorithm backtracks further until a valid path is found (3).

4.2 Incremental Tree Search

Another advantage of topological node ordering is the ability to validate node definitions incrementally
during generation. By invoking our transpiler and material engine at each step, we can detect
syntactic and semantic errors immediately rather than waiting until the entire graph is complete.
When an erroneous node definition is encountered, we execute an adaptive backtracking strategy:
first discarding and resampling the problematic node, and if errors persist, inferring deeper structural
issues by reversing further back in the generation sequence. Specifically, we discard the 2(𝑖−1)

most recently generated nodes, where 𝑖 represents the current backtracking iteration. This approach
effectively transforms our generation process into an incremental tree search on a tree T of valid and
invalid nodes (cf. Figure 4), systematically exploring the solution space to discover valid programs.
This incremental validation approach identifies invalid outputs much faster than previous approaches,
which require sampling complete programs before validation can commence.

4.3 Automatic Error Repair

Through systematic analysis of failure cases, we identified recurring error patterns that could be
repaired automatically: (1) removal of extraneous parameters that are specified for node types that do
not support them, and (2) automatic insertion of conversion nodes to resolve type mismatches between
connected nodes. For instance, when a color output is erroneously connected to a grayscale input, we
automatically insert an appropriate grayscale conversion node. Conversely, when a grayscale output
feeds into a color input, we insert a gradient map node to perform type conversion. These repair
mechanisms increase the proportion of valid generations without requiring additional sampling steps.

5 Dataset

Models Size Max Nodes Feature Set Program

MatFormer 2 820 ≤ 4001 Subset Designer
Mat. (Cond) 4 667 ≤ 801 Subset Designer
VLMaterial 3 663 30 Limited Blender
MultiMat 6 878 128 Complete Designer
1 Upper bound in complex filtering pipeline, actual could be less.

Table 1: Comparison of training data of MatFormer (Guerrero et al.,
2022), conditional MatFormer (Hu et al., 2023), VLMaterial (Li
et al., 2025a), and MultiMat (ours). We procure the largest dataset
with the most comprehensive set of features.

To support the training and
evaluation of MultiMat, we
collect procedural materials
from Adobe’s Substance 3D
Assets Repository (Adobe,
2025a). Unlike previous
work that either focuses on
basic graphs utilizing only
a subset of Substance De-
signer features (e.g., lack-
ing complex nodes such as
pixel processors or func-
tion graphs; Guerrero et al.,
2022; Hu et al., 2023) or targets other tools with more limited capabilities (Li et al., 2025a), our
approach supports the complete feature set. This comprehensive coverage enables us to collect
over 6 000 unique materials, substantially more than existing datasets. Table 1 summarizes key
characteristics of our dataset compared to prior work.
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Human-Readable Graph Representation Substance Designer’s native file format (SBS) has not
been designed for human readability, containing verbose XML structures, embedded binary data,
legacy metadata, and other implementation details, which makes direct language modeling impractical.
To address this, we develop a bidirectional transpiler that converts between SBS and a compact,
human-readable YAML-based representation with topological node order, which we call CompactSBS.
Unlike previous approaches that support only partial feature sets (Guerrero et al., 2022; Hu et al.,
2023), our transpiler preserves the complete functionality of Substance graphs with programs that are,
on average, over 80% shorter. Models operate exclusively in CompactSBS, with outputs transpiled
back to SBS for execution. We provide representative examples in Figure 3 and complete program
listings in Appendix A.

Graph Preprocessing Our preprocessing pipeline standardizes graphs for the PBR workflow,
focusing on five essential texture maps: base color, normal, roughness, metallic, and height. We trace
backwards from these outputs to identify all contributing nodes, pruning unconnected components
and other output maps. Graphs containing embedded bitmap graphics and SVGs are excluded
to keep graphs fully procedural. We further filter out graphs exceeding 128 nodes and flatten
hierarchical structures by inlining nested subgraphs and custom author dependencies into the main
graph. Non-atomic nodes from the standard Substance Designer library remain as external references.

6 Experiments

We build MultiMat models upon the QWen2.5VL (7B) foundation model (Bai et al., 2025). We train
and evaluate separate models for unconditional generation (cf. §6.1) and inverse procedural material
synthesis (cf. §6.2). Across all model variants, we maintain a consistent maximum sequence length
of 8 192 tokens. The training setup consists of 5 epochs using a learning rate of 5e−5 and a batch size
of 128. To ensure diversity in our generated outputs, we set the inference sampling parameters to a
temperature of 0.8 and a top-p value of 0.95. We provide examples in Figure 5 and Appendix A.

6.1 Evaluation of Unconditional Generation

For unconditional generation, the mixed conditioning variant, MultiMat (Mixed), embeds node
previews at 140 × 140 resolution, resulting in 25 patch embeddings per image. For the graph
conditioning variant, MultiMat (Graph), graph visualizations can utilize up to 6 144 tokens, with
larger images downscaled to accommodate this limit. We generate 100 outputs per model for
evaluation.

Baselines For text-only procedural material synthesis, VLMaterial represents the current state-of-
the-art approach. However, its Blender-specific training makes direct comparison with our method
difficult. We therefore create VLMaterial (SBS) by retraining a VLMaterial-style model on
our dataset for fair comparison. Since VLMaterial (SBS) does not receive any images in the
unconditional setting, we base it on the larger and more powerful text-only model QWen3 (8B; Yang
et al., 2025a), giving it a slight advantage over our models. While graphics program synthesis
research typically also benchmarks against proprietary large language models such as GPT-4o (OpenAI
et al., 2024) or Claude 4 (Anthropic, 2025), which have demonstrated competitive performance in
related domains (Belouadi et al., 2024a;b; 2025; Rodriguez et al., 2025), these models’ unfamiliarity
with CompactSBS and inability to produce valid SBS output preclude their inclusion as baselines.

Metrics Our multimodal task permits diverse evaluation schemes for automatic evaluation. To
evaluate the visual quality of generated materials, we compute the Kernel Inception Distance (KID;
Bińkowski et al., 2018), which compares the distribution of generated material maps with material
maps from our dataset. To detect degenerate low KID scores due to memorization of training data (a
legitimate concern given our relatively small dataset), we also calculate ROUGE-L scores (Lin, 2004)
between the CompactSBS representation of our generated materials and the training set (with masked
parameters). This metric computes the longest common subsequence and serves as an effective
memorization indicator (Hans et al., 2024). Notably, we specifically require consecutive subsequences
due to CompactSBS’s limited syntactic diversity, which could otherwise produce misleading matches.
To measure efficiency, we introduce the Node Error Ratio (NER), defined as the average ratio between
discarded nodes and the total number of generated nodes.
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Models DSim↑ CLIP↑ Style↓ KID↓ ROUGE-L↓ NER↓

VLMaterial (SBS) 31.344 65.678 3.211 14.976 1.621 16.933
MultiMat (Mixed) 34.922 66.737 3.199 3.675 2.194 12.388
MultiMat (Graph) 36.609 67.907 3.178 2.801 2.037 17.046
VLMaterial+ (SBS) 31.348 65.867 3.126 27.862
MultiMat+ (Mixed) 40.258 69.687 3.093 17.792
MultiMat+ (Graph) 40.367 70.114 3.046 14.886

Table 3: System-level scores × 100 for conditional (inverse) generation, without (top) and with
(bottom) parameter optimization. Bold and underlined values indicate the best and second-best scores
for each metric column, respectively. Arrows indicate metric directionality. ROUGE-L and NER
scores remain unchanged by parameter optimization and are shown only once. MultiMat (Graph)
and MultiMat+ (Graph) achieve the best overall performance.

Models KID↓ ROUGE-L↓ NER↓

VLMaterial (SBS) 14.155 3.641 14.846
MultiMat (Mixed) 6.752 2.195 8.923
MultiMat (Graph) 2.365 1.915 15.024

Table 2: System-level scores × 100 for unconditional gen-
eration. Bold and underlined values indicate the best and
second-best scores for each metric column, respectively.
Arrows indicate metric directionality. MultiMat (Graph)
achieves the best overall performance.

Results Table 2 presents the system-
level metric scores for our evaluation.
MultiMat (Graph) leads in visual
quality with the lowest KID score,
outperforming MultiMat (Mixed) by
over 4pp (percentage points) and VL-
Material (SBS) by more than 11pp.
This considerable gap in performance
suggests that the better the visual repre-
sentations are aligned with human cre-
ative workflows, the better the results—
an intuitive but important finding. All
models exhibit minimal memorization, with ROUGE-L scores showing that no more than 4% of
any generated sequence matches a contiguous segment from the training data. Nonetheless, both
MultiMat variants demonstrate approximately 1.5pp lower copying rates compared to VLMaterial
(SBS), suggesting slightly better generalization. Regarding efficiency, MultiMat (Mixed) excels with
the lowest NER, achieving a 6pp improvement over the other models. Both MultiMat (Graph) and
VLMaterial (SBS) show comparable NER scores around 15%. For MultiMat (Graph), these errors
are primarily due to OCR-like errors in reading node names and function types embedded as text in
graph images. In contrast, we attribute the errors in VLMaterial (SBS) to fundamental difficulties
in understanding graph structures. Despite these limitations, the error rates remain within acceptable
bounds for practical applications, and MultiMat (Graph) emerges as the best overall model.

6.2 Evaluation of Conditional Generation

As in prior work (Hu et al., 2023; Li et al., 2025a), we train inverse MultiMat variants that learn
to generate procedural materials from rendered images. These models follow the same training
procedure as their unconditional counterparts, with one key modification: each training example
is preceded by a 512 × 512 rendering of itself, which adds 324 additional image patches to the
model context. During inference, the model takes an image as input and generates a corresponding
procedural material. We reserve 100 examples from our data as held-out test data for evaluation.

Baselines Analogously to §6.1, we adapt VLMaterial for inverse rendering with SBS and use
it as a baseline. Since an image input is now required for VLMaterial (SBS), we also base it on
QWen2.5VL (7B) instead of QWen3 (8B) and train it using the same method as MultiMat.

Parameter Optimization To further refine generated materials, we apply gradient-based opti-
mization using differentiable rendering. This approach has proven effective for optimal parameter
estimation (Shi et al., 2020; Hu et al., 2022; Li et al., 2023a; Hu et al., 2023). We employ DiffMat (Shi
et al., 2020; Li et al., 2023a), a widely adopted differentiable renderer for Designer materials, to
optimize the generated graphs against the input images. Models using this refinement step are denoted
as MultiMat+ and VLMaterial,+ respectively.
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Metrics In addition to the metrics from §6.1, we evaluate reconstruction quality by rendering the
generated materials and comparing them to the input images using perceptual similarity metrics.
Specifically, we measure cosine similarity between CLIP image embeddings (Radford et al., 2021;
Hessel et al., 2021), compute Style Loss loss (Style; Gatys et al., 2016) as the L1 distance between
Gram matrices of VGG features, and calculate DreamSim (DSim; Fu et al., 2023), a learned perceptual
similarity metric designed to align with human judgments.

Results Table 3 presents the system-level metric scores for conditional evaluation. The perceptual
similarity metrics consistently demonstrate that MultiMat (Graph) achieves the highest fidelity to
input images, with MultiMat (Mixed) performing second-best and VLMaterial (SBS) ranking
last. For example, DreamSim scores are 36.609, 34.922, and 31.344, respectively, a ranking that
mirrors our unconditional evaluation results. Parameter optimization yields substantial improvements
in perceptual similarity, with MultiMat+ (Graph) and MultiMat+ (Mixed) showing average gains
of 6% and 8%, respectively. In contrast, VLMaterial+ (SBS) exhibits minimal improvement
(only 1%), suggesting its outputs deviate too far from the input for parameter optimization to be
effective. Interestingly, while parameter optimization improves perceptual similarity, KID scores
increase. This could occur because optimization aligns outputs more closely with the test set, which
represents only a subset of the training distribution, potentially increasing distance from the full
distribution. Nevertheless, both MultiMat and MultiMat+ variants outperform VLMaterial
(SBS) and VLMaterial+ (SBS) on KID by over 10pp, respectively. The remaining metrics reinforce
trends from unconditional evaluation. ROUGE-L scores do not exceed 2% (indicating minimal
memorization), and MultiMat (Mixed) produces the fewest errors. Overall, MultiMat (Graph) and
its optimized variant, MultiMat+ (Graph), deliver the strongest performance across metrics.

7 Analysis & Discussion

Our results show that model performance steadily improves as the degree of visualization of graphs
increases, with MultiMat (Graph) achieving the best results overall. This finding aligns with how
humans interact with procedural materials—through visual node graph interfaces—and validates
established UX design principles in this domain. The qualitative examples in Figure 5 further illustrate
this trend, with VLMaterial+ (SBS) struggling to generate faithful outputs, indicating that purely
text-based approaches are not ideal for expressive node graph systems like Designer. This limitation
persists even with more powerful base models, as our unconditional generation experiments confirm.
Beyond architectural improvements, our tree search algorithm enables more efficient graph generation;
without it, models may have to resort to sampling complete outputs for validation (the inference
approach used by previous methods), which is expensive. For instance, disabling tree search causes
NER of VLMaterial (SBS) to deteriorate further from 14.846 to 33.953, highlighting how our
search strategy can improve inference without further training.

8 Conclusion

We present MultiMat, a multimodal program synthesis framework and model suite that generates
procedural materials by incorporating visual feedback throughout the generation process. Our
key insight is that procedural material graphs are inherently visual-spatial programs, and treating
them as such leads to substantial improvements over text-only approaches. By conditioning on
visual intermediate states—either interleaved with text (mixed conditioning) or as complete graph
visualizations (graph conditioning)—our models achieve consistent improvements over text-only
baselines. Our incremental tree search algorithm further enhances generation efficiency by validating
nodes as they are created and backtracking upon errors. While we demonstrate MultiMat specifically
for procedural material synthesis, we hope its general principles will inspire further research at the
intersection of computer graphics, program synthesis, and multimodal AI.

Future Work The development of procedural material graph synthesis approaches is currently
constrained by limited training data availability. We plan to address this challenge through self-learning
techniques (He et al., 2020; Wei et al., 2021) that leverage our unconditional models to generate
synthetic supervised training data by rendering outputs and subsequently training conditional models
on this expanded data. Additionally, we aim to develop a unified model trained across multiple

8
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Input VLMaterial+ (SBS) MultiMat+ (Mixed) MultiMat+ (Graph)

Figure 5: Qualitative results for inverse procedural material modeling. The leftmost column shows
input materials from graphs filtered during preprocessing (e.g., due to excessive length), making these
particularly challenging test cases. Following Hu et al. (2023); Li et al. (2025a), we generate multiple
programs (𝑁 = 40) per model and select the result with the highest DreamSim score. MultiMat+

(Mixed) consistently outperforms VLMaterial+ (SBS), while MultiMat+ (Graph) achieves the best
results overall. Additional examples, including failure cases, are provided in Appendix A.

node graph systems to investigate potential transfer learning benefits (Pan & Yang, 2010). Beyond
methodological advances, our models offer promising practical applications: conditional models
could extract material graphs directly from photographic regions, while unconditional models could
power intelligent auto-completion features in user interfaces. Furthermore, our methodology naturally
extends to related domains such as vector graphics synthesis (Wu et al., 2023; Polaczek et al., 2025;
Rodriguez et al., 2025; Yang et al., 2025b), where visual editing interfaces are similarly prevalent.

Limitations Although our models and baselines use the same or similar base models, they generate
graphs in fundamentally different ways, resulting in considerable differences in training efficiency.
Text-only models like VLMaterial can process entire graphs as single training examples, whereas
MultiMat must adapt the visual context for each individual node, effectively processing training
examples one node at a time. This difference leads to much longer training times: while VLMaterial
completes training in a few hours on 8 × A100 80GB GPUs, MultiMat models require several days
on the same hardware despite being trained on a comparable number of tokens. However, this training
inefficiency does not affect inference, where both approaches achieve comparable generation speeds.
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Ethics Statement

We ensure that all procedural materials collected for model training are properly licensed and explicitly
permit such usage, thereby preventing any copyright infringement. In adherence to this principle,
we specifically exclude Substance 3D Community Assets (Adobe, 2025b) from our training data
due to licensing restrictions. While we acknowledge the use of generative models in preparing this
manuscript, their application is strictly limited to writing assistance, such as paraphrasing, spell
checking, and synonym suggestions.
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Input VLMaterial+ (SBS) MultiMat+ (Mixed) MultiMat+

(Graph)

Figure 6: Representative failure cases from the same challenging subset in Figure 5. All models
struggle to reproduce the intricate patterns in these examples, though MultiMat+ (Graph) and
MultiMat+ (Mixed) still outperform VLMaterial+ (SBS).

A Additional Examples

Figure 6 complements Figure 5 by showcasing failure cases where our models struggle to produce
faithful outputs, though notably, the outputs from MultiMat+ (Graph) and MultiMat+ (Mixed) still
demonstrate superior representation of the input compared to VLMaterial (SBS). Beyond these
conditional generation examples, Figure 7 presents unconditional samples generated by MultiMat
(Graph), which exhibit high visual quality with realistic material properties. Adjacent to these
rendered materials, we visualize their underlying material graphs in the same format used as model
input. In Figure 8, we show a graph in CompactSBS representation to give an impression of the
structure of our format.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Render Graph

s0
uniform

0

s10
metallic

0

s1
uniform

0

s58
blend

0 0

1

2

s2
uniform

0

s100
switch

0 0

1

s3
bnw_spots_3

0

s11
blur

0 0

s14
blend

0 0

1

2

s15
blur_hq_grayscale

0 0

s33
warp

0 0

1

s46
directionalwarp

0 0

1

s50
directionalwarp

0 0

1

s51
directionalwarp

0 0

1

s109
blend

0 0

1

2
s4

white_noise

0

s60
blend

0 0

1

2

s63
slope_blur_grayscale_2

0 0

1

s5
shape

0

s12
transformation

0 0

s6
uniform

0

s59
blend

0 0

1

2

s7
shape

0

s13
transformation

0 0

s8
tile_generator

0 0

1

2

3

4

5

6

s16
levels

0 0

s9
splatter_circular

0 0

1

2

3

4

5

6

s17
tile_generator

0 0

1

2

3

4

5

6

s47
directionalwarp

0 0

1

s55
blend

0 0

1

2

s18
tile_generator

0 0

1

2

3

4

5

6

s19
blur_hq_grayscale

0 0

s74
blend

0 0

1

2

s36
warp

0 0

1

s20
non_uniform_blur_grayscale

0 0

1
s30
blend

0 0

1

2

s21
blur_hq_grayscale

0 0 s25
warp

0 0

1

s28
blend

0 0

1

2

s22
blur_hq_grayscale

0 0

s23
histogram_select

0 0

s24
slope_blur_grayscale_2

0 0

1

s29
tile_generator

0 0

1

2

3

4

5

6

s26
blur_hq_grayscale

0 0

s27
levels

0 0

s31
safe_transform_grayscale

0 0

s32
safe_transform_grayscale

0 0

s34
levels

0 0

s40
warp

0 0

1

s42
blend

0 0

1

2

s45
warp

0 0

1

s35
levels

0 0

s37
blur_hq_grayscale

0 0

s101
blend

0 0

1

2

s38
levels

0 0

s39
histogram_range

0 0

s41
histogram_range

0 0

s43
normal

0 0

s57
blend

0 0

1

2

s70
blend

0 0

1

2

s49
blend

0 0

1

2

s44
blur_hq_grayscale

0 0

s72
normal_combine

0 0

1

s48
histogram_select

0 0

s52
histogram_select

0 0

s53
histogram_select

0 0

s54
blur_hq_grayscale

0 0

s56
levels

0 0

s64
blend

0 0

1

2

s85
blend

0 0

1

2

s103
blend

0 0

1

2

s108
switch

0 0

1

s61
blur_hq_grayscale

0 0

s62
slope_blur_grayscale_2

0 0

1

s65
levels

0 0

s66
histogram_range

0 0

s67
histogram_range

0 0

s68
highpass_grayscale

0 0

s69
normal

0 0

s71
histogram_select

0 0

s73
histogram_range

0 0

s75
normal_invert

0 0

s78
multi_switch

0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

s76
height

0

s77
hsl

0 0

s79
levels

0 0

s80
normal_invert

0 0

s81
hsl

0 0

s82
normal_intensity

0 0

s83
levels

0 0

s84
normal

0

s86
hsl

0 0

s87
levels

0 0

s88
hsl

0 0

s89
levels

0 0

s90
hsl

0 0

s91
levels

0 0

s92
hsl

0 0

s93
levels

0 0

s94
hsl

0 0

s95
levels

0 0

s96
hsl

0 0

s97
levels

0 0

s98
hsl

0 0

s99
levels

0 0
s102
levels

0 0

s104
hsl

0 0

s105
levels

0 0

s106
hsl

0 0

s107
levels

0 0

s110
hsl

0 0

s111
levels

0 0

s112
baseColor

0

s0
uniform

0

s9
metallic

0

s1
uniform

0 s67
blend

0 0

1

2

s2
white_noise

0

s45
blend

0 0

1

2

s48
slope_blur_grayscale_2

0 0

1

s3
bnw_spots_3

0

s10
blend

0 0

1

2

s11
blur

0 0

s41
directionalwarp

0 0

1

s4
uniform

0

s5
bnw_spots_3

0

s12
blur_hq_grayscale

0 0

s23
warp

0 0

1
s6

tile_generator

0 0

1

2

3

4

5

6

s13
levels

0 0

s7
splatter_circular

0 0

1

2

3

4

5

6

s14
blend

0 0

1

2

s8
starburst

0

s53
blend

0 0

1

2

s42
directionalwarp

0 0

1

s25
warp

0 0

1

s15
non_uniform_blur_grayscale

0 0

1

s21
blend

0 0

1

2

s63
blend

0 0

1

2

s16
tile_generator

0 0

1

2

3

4

5

6

s17
slope_blur_grayscale_2

0 0

1

s18
blur_hq_grayscale

0 0

s20
warp

0 0

1

s22
blend

0 0

1

2

s19
levels

0 0

s24
safe_transform_grayscale

0 0

s26
levels

0 0

s30
warp

0 0

1

s31
blend

0 0

1

2

s27
histogram_range

0 0

s28
blend

0 0

1

2

s40
blend

0 0

1

2

s29
blur_hq_grayscale

0 0

s32
levels

0 0

s33
levels

0 0

s34
non_uniform_blur_grayscale

0 0

1

s35
blur_hq_grayscale

0 0

s38
blend

0 0

1

2s36
slope_blur_grayscale_2

0 0

1

s37
sharpen

0 0

s39
histogram_range

0 0
s43

blur_hq_grayscale

0 0

s44
blend

0 0

1

2

s46
blur_hq_grayscale

0 0

s49
blend

0 0

1

2

s47
slope_blur_grayscale_2

0 0

1

s50
levels

0 0

s51
histogram_select

0 0

s52
histogram_range

0 0

s54
highpass_grayscale

0 0

s56
blend

0 0

1

2

s55
blend

0 0

1

2

s57
invert_grayscale

0 0

s59
histogram_select

0 0

s60
histogram_select

0 0

s58
hsl

0 0

s61
levels

0 0

s62
levels

0 0

s64
levels

0 0

s65
histogram_range

0 0 s66
normal

0 0

s68
blend

0 0

1

2

s69
normal_intensity

0 0

s70
hsl

0 0

s71
roughness

0

s72
normal

0

s73
levels

0 0

s74
baseColor

0

s0
uniform

0

s101
blend

0 0

1

2

s1
uniform

0

s2
uniform

0

s93
blend

0 0

1

2

s3
uniform

0

s4
uniform

0

s100
blend

0 0

1

2

s5
uniform

0

s97
blend

0 0

1

2

s6
fractal_sum_base_2

0

s68
multi_directional_warp_grayscale

0 0

1

s7
shape

0

s19
directionalwarp

0 0

1

s8
gradient_linear_2

0

s38
blend

0 0

1

2

s9
anisotropic_noise

0

s28
blend

0 0

1

2

s10
shape

0

s20
transformation

0 0

s11
bnw_spots_3

0

s21
transformation

0 0

s12
gradient_linear_2

0

s30
blend

0 0

1

2

s13
tile_generator

0 0

1

2

3

4

5

6

s22
levels

0 0

s14
fibers_1

0

s23
transformation

0 0

s15
anisotropic_noise

0

s24
transformation

0 0

s16
shape

0

s25
transformation

0 0

s17
shape

0

s26
transformation

0 0 s18
gradient_linear_2

0

s27
non_uniform_blur_grayscale

0 0

1

s29
levels

0 0

s43
blend

0 0

1

2
s47
blend

0 0

1

2

s37
directionalwarp

0 0

1

s41
blend

0 0

1

2

s35
blend

0 0

1

2

s31
levels

0 0

s36
blend

0 0

1

2

s32
transformation

0 0

s33
levels

0 0

s34
levels

0 0

s49
blend

0 0

1

2

s39
transformation

0 0

s40
levels

0 0

s46
directionalwarp

0 0

1

s42
transformation

0 0

s44
transformation

0 0

s45
transformation

0 0 s48
blend

0 0

1

2

s54
blend

0 0

1

2

s50
tile_generator

0 0

1

2

3

4

5

6

s51
levels

0 0

s52
tile_generator

0 0

1

2

3

4

5

6

s53
safe_transform_grayscale

0 0

s55
safe_transform_grayscale

0 0

s71
blend

0 0

1

2

s56
transformation

0 0

s57
transformation

0 0

s75
blend

0 0

1

2

s58
transformation

0 0

s60
blend

0 0

1

2s59
transformation

0 0 s61
blend

0 0

1

2

s62
transformation

0 0

s65
blend

0 0

1

2

s63
transformation

0 0

s64
safe_transform_grayscale

0 0

s66
transformation

0 0

s67
transformation

0 0 s69
levels

0 0

s70
levels

0 0

s82
blend

0 0

1

2

s72
sharpen

0 0

s73
tile_generator

0 0

1

2

3

4

5

6

s74
tile_generator

0 0

1

2

3

4

5

6

s76
safe_transform_grayscale

0 0

s77
levels

0 0

s78
levels

0 0

s79
levels

0 0

s80
levels

0 0

s81
levels

0 0

s91
blend

0 0

1

2

s105
blend

0 0

1

2

s83
blend

0 0

1

2

s84
blend

0 0

1

2

s85
transformation

0 0

s89
blend

0 0

1

2

s95
switch_grayscale

0 0

1

s86
safe_transform_grayscale

0 0

s87
levels

0 0

s88
levels

0 0

s90
levels

0 0

s92
levels

0 0

s96
non_uniform_blur_grayscale

0 0

1

s94
levels

0 0

s98
levels

0 0

s99
levels

0 0

s102
blur_hq_grayscale

0 0

s103
hsl

0 0

s104
metallic

0

s106
levels

0 0

s107
levels

0 0

s108
baseColor

0

s109
normal

0 0

s110
histogram_range

0 0

s111
normal

0

s112
height

0

s0
uniform

0

s12
metallic

0

s1
uniform

0

s88
blend

0 0

1

2 s89
blend

0 0

1

2

s2
uniform

0

s87
blend

0 0

1

2

s3
shape

0

s13
levels

0 0

s21
blend

0 0

1

2 s4
uniform

0

s84
blend

0 0

1

2

s5
clouds_2

0

s14
blur_hq_grayscale

0 0

s6
uniform

0 s15
hsl

0 0

s85
blend

0 0

1

2

s7
bnw_spots_3

0

s16
blur_hq_grayscale

0 0

s17
slope_blur_grayscale_2

0 0

1
s42
warp

0 0

1

s8
perlin_noise

0

s37
warp

0 0

1

s9
shape

0

s18
curve

0 0

s26
blend

0 0

1

2

s10
gradient_linear_3

0

s19
curve

0 0

s11
shape

0 s20
transformation

0 0

s23
levels

0 0

s22
levels

0 0

s72
warp

0 0

1

s86
blend

0 0

1

2

s38
warp

0 0

1

s24
levels

0 0

s25
blend

0 0

1

2

s27
invert_grayscale

0 0

s28
curve

0 0

s46
slope_blur_grayscale_2

0 0

1

s29
safe_transform_grayscale

0 0

s33
blend

0 0

1

2

s30
transformation

0 0

s32
tile_generator

0 0

1

2

3

4

5

6

s31
tile_generator

0 0

1

2

3

4

5

6

s68
blend

0 0

1

2

s71
warp

0 0

1

s34
blend

0 0

1

2 s35
blur_hq_grayscale

0 0

s75
blend

0 0

1

2

s36
levels

0 0

s39
blur_hq_grayscale

0 0

s40
tile_generator

0 0

1

2

3

4

5

6

s41
levels

0 0

s43
levels

0 0

s44
histogram_scan

0 0

s45
histogram_select

0 0

s47
invert_grayscale

0 0

s48
blur_hq_grayscale

0 0

s49
invert_grayscale

0 0

s52
blend

0 0

1

2

s53
blend

0 0

1

2

s56
blend

0 0

1

2

s60
blend

0 0

1

2

s50
histogram_scan

0 0

s51
slope_blur_grayscale_2

0 0

1

s58
blend

0 0

1

2

s83
blend

0 0

1

2

s69
blend

0 0

1

2

s54
levels

0 0

s55
invert_grayscale

0 0

s63
blend

0 0

1

2

s57
blur_hq_grayscale

0 0

s59
levels

0 0

s61
blur_hq_grayscale

0 0

s64
blend

0 0

1

2

s67
blend

0 0

1

2

s62
histogram_scan

0 0

s65
histogram_scan

0 0

s66
invert_grayscale

0 0

s79
blend

0 0

1

2

s70
blend

0 0

1

2

s73
histogram_range

0 0

s74
blend

0 0

1

2

s76
normal

0 0

s77
histogram_range

0 0

s78
auto_levels

0 0

s80
normal

0

s81
height

0

s82
invert_grayscale

0 0

s90
hsl

0 0

s91
levels

0 0

s92
baseColor

0

s0
uniform

0

s13
metallic

0

s1
uniform

0
s14
hsl

0 0

s54
blend

0 0

1

2

s63
blend

0 0

1

2

s2
uniform

0

s51
blend

0 0

1

2

s3
bnw_spots_2

0

s33
directionalwarp

0 0

1

s35
blend

0 0

1

2

s37
directionalwarp

0 0

1

s4
clouds_2

0

s15
levels

0 0s18
transformation

0 0

s22
levels

0 0

s5
uniform

0

s49
blend

0 0

1

2
s57
switch

0 0

1

s6
perlin_noise

0 s29
blend

0 0

1

2

s7
cells_4

0 0

s16
dirmotionblur

0 0

s8
crystal_1

0

s17
blur_hq_grayscale

0 0

s9
uniform

0

s45
blend

0 0

1

2

s10
directional_noise_2

0

s19
transformation

0 0

s20
transformation

0 0

s21
transformation

0 0

s28
directionalwarp

0 0

1

s39
blend

0 0

1

2

s11
uniform

0

s12
gradient_linear_1

0

s23
curve

0 0

s60
blend

0 0

1

2

s46
blend

0 0

1

2

s24
levels

0 0

s25
directionalwarp

0 0

1

s26
directionalwarp

0 0

1

s40
directionalwarp

0 0

1

s43
blend

0 0

1

2

s27
directionalwarp

0 0

1

s44
blend

0 0

1

2

s31
transformation

0 0

s38
directionalwarp

0 0

1

s30
transformation

0 0

s32
blend

0 0

1

2

s34
blur_hq_grayscale

0 0

s36
levels

0 0

s48
blend

0 0

1

2

s41
blend

0 0

1

2

s42
gradient

0 0
s47
blend

0 0

1

2

s50
histogram_scan

0 0

s58
blend

0 0

1

2

s52
invert_grayscale

0 0

s53
levels

0 0

s55
switch_grayscale

0 0

1

s56
invert_grayscale

0 0

s65
blend

0 0

1

2

s59
normal

0 0

s61
roughness

0

s62
levels

0 0

s64
normal

0

s66
hsl

0 0

s67
levels

0 0

s68
baseColor

0

s0
uniform

0

s7
metallic

0

s1
uniform

0

s8
hsl

0 0

s62
blend

0 0

1

2

s2
perlin_noise_zoom

0

s9
transformation

0 0

s12
transformation

0 0

s22
directionalwarp

0 0

1

s3
fractal_sum_1

0

s21
blend

0 0

1

2

s4
bnw_spots_2

0

s10
blur

0 0

s11
transformation

0 0
s32
blend

0 0

1

2

s5
dirt_1

0

s24
blend

0 0

1

2

s29
blend

0 0

1

2

s64
blend

0 0

1

2

s6
creased

0

s13
gradient

0 0

s14
hsl

0 0

s26
blend

0 0

1

2

s28
blend

0 0

1

2

s25
directionalwarp

0 0

1
s27

directionalwarp

0 0

1

s16
transformation

0 0

s18
blur

0 0

s15
hsl

0 0
s17
hsl

0 0
s19
hsl

0 0

s20
hsl

0 0 s36
blend

0 0

1

2

s23
gradient

0 0

s46
blend

0 0

1

2

s30
levels

0 0

s31
levels

0 0

s33
histogram_scan

0 0

s34
blend

0 0

1

2

s35
blend

0 0

1

2

s41
blend

0 0

1

2

s49
blend

0 0

1

2

s37
blend

0 0

1

2

s50
blend

0 0

1

2

s38
histogram_scan

0 0

s39
gradient

0 0 s40
levels

0 0

s43
blend

0 0

1

2

s42
blend

0 0

1

2

s55
blend

0 0

1

2

s120
blend

0 0

1

2

s44
histogram_scan

0 0

s45
histogram_scan

0 0

s47
histogram_scan

0 0

s48
histogram_scan

0 0

s51
hsl

0 0

s52
transformation

0 0

s53
levels

0 0

s54
levels

0 0

s57
blend

0 0

1

2

s58
blend

0 0

1

2

s69
blend

0 0

1

2

s76
blend

0 0

1

2

s77
blend

0 0

1

2

s79
blend

0 0

1

2

s87
blend

0 0

1

2

s89
blend

0 0

1

2

s90
blend

0 0

1

2

s91
blend

0 0

1

2

s92
blend

0 0

1

2

s93
blend

0 0

1

2

s94
blend

0 0

1

2

s99
blend

0 0

1

2

s102
blend

0 0

1

2

s104
blend

0 0

1

2

s108
blend

0 0

1

2

s110
blend

0 0

1

2

s115
blend

0 0

1

2

s118
blend

0 0

1

2

s122
blend

0 0

1

2

s127
blend

0 0

1

2

s59
blend

0 0

1

2

s56
blend

0 0

1

2

s60
blend

0 0

1

2

s63
blend

0 0

1

2

s68
blend

0 0

1

2

s71
blend

0 0

1

2

s100
blend

0 0

1

2

s106
blend

0 0

1

2

s113
blend

0 0

1

2

s95
blend

0 0

1

2

s61
histogram_scan

0 0

s65
hsl

0 0

s66
hsl

0 0

s67
histogram_scan

0 0

s70
levels

0 0

s74
blend

0 0

1

2

s72
hsl

0 0

s73
levels

0 0

s75
blend

0 0

1

2

s78
hsl

0 0
s80
hsl

0 0

s81
levels

0 0

s82
baseColor

0

s83
histogram_range

0 0

s84
normal

0 0

s85
height

0

s86
levels

0 0 s88
levels

0 0

s97
blend

0 0

1

2

s96
histogram_range

0 0

s98
roughness

0

s101
hsl

0 0
s103

hsl

0 0

s105
hsl

0 0

s107
hsl

0 0 s109
hsl

0 0

s111
sharpen

0 0

s112
histogram_scan

0 0

s114
hsl

0 0 s116
hsl

0 0

s117
hsl

0 0

s119
hsl

0 0 s121
histogram_range

0 0

s123
gradient

0 0

s124
levels

0 0

s125
hsl

0 0

s126
roughness

0

Figure 7: Example materials generated unconditionally by MultiMat (Graph), shown alongside their
corresponding procedural graphs.
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variables:
contrast: 0.0
fabric_color: [0.94, 0.79, 0.69]
fabric_metallic: 0.0
fabric_roughness: 0.23
height_position: 0.5
height_range: 1.0
hue_shift: 0.0
luminosity: 0.5
normal_format: 0
normal_intensity: 0.5
saturation: 0.5
s0:
function: uniform
params:
absolute:
colorswitch: false
outputcolor:
f0:
function: get_float1
params:
get_float1: fabric_metallic

s1:
function: uniform
params:
absolute:
colorswitch: false
outputcolor:
f0:
function: get_float1
params:
get_float1: fabric_roughness

outputsize: [4, 4]
s2:
function: uniform
params:
absolute:
colorswitch: false
outputcolor: [0.5, 0.5, 0.5, 1.0]
outputsize: [4, 4]

s3:
function: uniform
params:
absolute:
outputcolor:
f0:
function: get_float3
params:
get_float3: fabric_color

f1:
function: const_float1
params:
const_float1: 1.0

f2:
function: vector4
connections:
componentsin: f0
componentslast: f1

outputsize: [4, 4]
s4:
function: tile_generator
dependency:

sbs://pattern_tile_generator.sbs
params:
absolute:
pattern: 4
scale: 2.0
interstice: [0.64, 0.0, 0.0, 0.0]
blending_mode: 2
rotation: 0.05
luminance_random: 0.55
y_amount: 200
x_amount: 150
position_offset: 0.5
vertical_offset: true

s5:
function: fractal_sum_base_2
dependency:

sbs://noise_fractal_sum_base.sbs
s6:
outputs:
metallic: RGBA
connections:
inputNodeOutput:
node: s0
id: output

s7:
function:

multi_directional_warp_grayscale
dependency:

sbs://multi_directional_warp.sbs
connections:
input:
node: s4
id: output
intensity_input:
node: s5
id: output

params:
absolute:
intensity: 3.25

s8:
function: transformation
connections:
input1:
node: s7
id: output

params:
absolute:
offset: [0.38, 0.54]
matrix22: [-1.0, 0.0, 0.0, 1.0]

s9:
function: blend
connections:
destination:
node: s7
id: output
source:
node: s8
id: output

params:
absolute:
blendingmode: MAX

s10:
function: safe_transform_grayscale
dependency: sbs://safe_transform.sbs
connections:
input:
node: s9
id: output

params:

absolute:
rotation: 0.25
tile: uU_vV

s11:
function: blend
connections:
destination:
node: s2
id: output
source:
node: s10
id: output

params:
absolute:
blendingmode: ADD
opacitymult: 0.2
format: 1
parent:
outputsize: [0, 0]

s12:
function: levels
connections:
input1:
node: s10
id: output

params:
absolute:
levelinlow: [0.02, 0.02, 0.02, 0.0]
levelinhigh: [0.95, 0.95, 0.95, 1.0]
leveloutlow: [1.0, 1.0, 1.0, 1.0]
levelouthigh: [0.0, 0.0, 0.0, 0.0]
levelinmid: [0.41, 0.41, 0.41, 0.5]

s13:
function: highpass_grayscale
dependency: sbs://highpass.sbs
connections:
Source:
node: s10
id: output

params:
absolute:
Radius: 0.1

s14:
function: normal
connections:
input1:
node: s11
id: output

params:
absolute:
intensity:
f0:
function: get_float1
params:
get_float1: normal_intensity

f1:
function: const_float1
params:
const_float1: 3.0

f2:
function: mul
connections:
a: f0
b: f1

inversedy:
f0:
function: get_integer1
params:
get_integer1: normal_format

f1:
function: const_int1
params:
const_int1: 1

f2:
function: eq
connections:
a: f0
b: f1

input2alpha: false
s15:
function: histogram_range
dependency: sbs://histogram_range.sbs
connections:
input:
node: s11
id: output

params:
absolute:
range:
f0:
function: get_float1
params:
get_float1: height_range

position:
f0:
function: get_float1
params:
get_float1: height_position

s16:
function: blend
connections:
destination:
node: s1
id: output
source:
node: s12
id: output

params:
absolute:
blendingmode: SCREEN
opacitymult: 0.15
parent:
outputsize: [0, 0]

s17:
function: levels
connections:
input1:
node: s13
id: Highpass

params:
absolute:
levelinlow: [0.33, 0.33, 0.33, 0.0]
levelinhigh: [0.61, 0.61, 0.61, 1.0]
leveloutlow: [1.0, 1.0, 1.0, 1.0]
levelouthigh: [0.0, 0.0, 0.0, 0.0]

s18:
outputs:

normal: RGBA
connections:
inputNodeOutput:
node: s14
id: output

s19:
outputs:
height: RGBA
connections:
inputNodeOutput:
node: s15
id: output

s20:
outputs:
roughness: RGBA
connections:
inputNodeOutput:
node: s16
id: output

s21:
function: blend
connections:
destination:
node: s3
id: output
opacity:
node: s17
id: output
source:
node: s3
id: output

params:
absolute:
blendingmode: MULTIPLY
opacitymult: 0.35
parent:
outputsize: [0, 0]

s22:
function: hsl
connections:
input1:
node: s21
id: output

params:
parent:
hue:
f0:
function: get_float1
params:
get_float1: hue_shift

f1:
function: const_float1
params:
const_float1: 0.5

f2:
function: mul
connections:
a: f0
b: f1

saturation:
f0:
function: get_float1
params:
get_float1: saturation

luminosity:
f0:
function: get_float1
params:
get_float1: luminosity

s23:
function: levels
connections:
input1:
node: s22
id: output

params:
parent:
levelinlow:
f0:
function: const_float1
f1:
function: const_float1
params:
const_float1: 0.5

f2:
function: get_float1
params:
get_float1: contrast

f3:
function: max
connections:
a: f2
b: f0

f4:
function: mul
connections:
a: f3
b: f1

f5:
function: vector2
connections:
componentsin: f4
componentslast: f4

f6:
function: vector2
connections:
componentsin: f4
componentslast: f0

f7:
function: vector4
connections:
componentsin: f5
componentslast: f6

levelinhigh:
f0:
function: const_float1
params:
const_float1: 1.0

f1:
function: const_float1
params:
const_float1: 0.5

f2:
function: const_float1
f3:
function: get_float1
params:

get_float1: contrast
f4:
function: max
connections:
a: f3
b: f2

f5:
function: mul
connections:
a: f4
b: f1

f6:
function: sub
connections:
a: f0
b: f5

f7:
function: vector2
connections:
componentsin: f6
componentslast: f6

f8:
function: vector2
connections:
componentsin: f6
componentslast: f0

f9:
function: vector4
connections:
componentsin: f7
componentslast: f8

leveloutlow:
f0:
function: const_float1
f1:
function: const_float1
params:
const_float1: 0.5

f2:
function: get_float1
params:
get_float1: contrast

f3:
function: min
connections:
a: f2
b: f0

f4:
function: abs
connections:
a: f3

f5:
function: mul
connections:
a: f4
b: f1

f6:
function: vector2
connections:
componentsin: f5
componentslast: f5

f7:
function: vector2
connections:
componentsin: f5
componentslast: f0

f8:
function: vector4
connections:
componentsin: f6
componentslast: f7

levelouthigh:
f0:
function: const_float1
params:
const_float1: 1.0

f1:
function: const_float1
params:
const_float1: 0.5

f2:
function: const_float1
f3:
function: get_float1
params:
get_float1: contrast

f4:
function: min
connections:
a: f3
b: f2

f5:
function: abs
connections:
a: f4

f6:
function: mul
connections:
a: f5
b: f1

f7:
function: sub
connections:
a: f0
b: f6

f8:
function: vector2
connections:
componentsin: f7
componentslast: f7

f9:
function: vector2
connections:
componentsin: f7
componentslast: f0

f10:
function: vector4
connections:
componentsin: f8
componentslast: f9

s24:
outputs:
baseColor: RGBA
connections:
inputNodeOutput:
node: s23
id: output

Figure 8: Complete example of a graph in CompactSBS format. This listing shows the full
representation of the material partially illustrated in Figure 3.
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