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ABSTRACT

Material node graphs are programs that generate the 2D channels of procedural
materials, including geometry such as roughness and displacement maps, and
reflectance such as albedo and conductivity maps. They are essential in computer
graphics for representing the appearance of virtual 3D objects parametrically
and at arbitrary resolution. In particular, their directed acyclic graph structure
and intermediate states enable a modular, interpretable workflow for interactive
appearance modeling. However, creating such graphs remains challenging and
typically requires professional training. While recent neural program synthesis
approaches attempt to simplify this process, they solely represent graphs as textual
programs, failing to capture the inherently visual-spatial nature of node graphs that
makes them accessible to humans. To address this gap, we present MULTIMAT, a
multimodal program synthesis framework that leverages large multimodal models
to process both visual and textual graph representations for improved generation of
procedural material graphs. We train our models on a new dataset of production-
quality procedural materials and combine them with a constrained tree search
inference algorithm that ensures static correctness while efficiently navigating
the program space. Our experimental results show that our multimodal program
synthesis method is more efficient in both unconditional and conditional graph
synthesis with higher visual quality and fidelity than text-only baselines, establishing
new state-of-the-art performance.

1 INTRODUCTION

Procedural materials have become increasingly important in modern 3D content creation, offering
artists greater control and flexibility in designing surface appearances for digital assets. Unlike
traditional image-based textures, which are constrained by fixed resolutions and limited editability, pro-
cedural material modeling tools like Adobe Substance Designer (Adobe, 2025¢) or Blender (Blender,
2025) leverage node-based graphs to generate textures programmatically. This enables resolution-
independent execution, high-level parametric control, and non-destructive editing workflows that
have proven valuable in industries such as game development, film production, and VR/AR applica-
tions (Musgrave et al., 2002). More specifically, a procedural material is defined as a directed graph
where nodes represent texture generators (e.g., noise functions, patterns) or filtering operations (e.g.,
blurs, color adjustments), and edges encode the flow of data between these operations, ultimately
producing the texture maps required by physically-based rendering (PBR) models (Pharr et al., 2016)
(cf. Figure 1). However, the complexity of crafting these procedural material graphs presents a
substantial barrier to entry, creating a pressing need for automated and semi-automated approaches to
support material artists at all levels of proficiency.

With recent advances in neural program synthesis (Huynh & Lin, 2025), procedural material synthesis
has become increasingly feasible. MATFORMER pioneered this direction with a multi-stage transformer-
based model for unconditional generation with Adobe Substance Designer (Guerrero et al., 2022).
Building on this foundation, Hu et al. (2023) extended the approach to support conditional synthesis,
enabling applications such as inverse rendering (Patow & Pueyo, 2003), i.e., generating procedural
materials that match the appearance of captured or rendered images. More recently, VLMATERIAL
demonstrated that large language models (Zhao et al., 2025) can effectively perform end-to-end
procedural material synthesis (Li et al., 2025a). However, these approaches share a fundamental
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Figure 1: Procedural materials offer powerful control over the appearance of 3D objects through a
few high-level parameters. Here, a production-grade example (left) with the images obtained using
two distinct parameter sets A and B (right).

limitation: they generate node graphs as text-only programs without access to visual feedback during
synthesis. This contrasts sharply with how human artists work, who create procedural materials
by manipulating node graphs through an arguably more intuitive visual interface, as illustrated in
Figure 1 (left). Without visual feedback, models must rely solely on textual representations to reason
about complex spatial relationships and visual outcomes, a task that becomes increasingly difficult
as material complexity grows. To address this limitation, we propose a novel multimodal program
synthesis paradigm based on large multimodal models (Yin et al., 2024) that incorporates visual
feedback throughout the generation process, more closely mirroring human creative workflows. We
demonstrate that this approach, to which we refer as MuLTIMAT, outperforms previous state-of-the-art
methods (cf. §6). Our key contributions are as follows:

1. We introduce MurLTIMAT, a novel procedural material synthesis approach that incorporates
visualizations of intermediate graphs, including node states, into its context. This multimodal
feedback loop improves material quality substantially compared to text-only baselines.

2. Investigating intermediate states enables real-time validation of each generated node. This
allows us to develop a tree search algorithm that backtracks upon encountering invalid states,
enabling more efficient inference than prior methods, which often produce invalid graphs.

3. We implement a transpiler that converts between Adobe Substance Designer formats and
a compact representation suitable for language modeling while supporting the complete
feature set. This enables training on larger datasets and the generation of more complex
materials than previous approaches, which examined only limited subsets of Designer’s
capabilities.

2  RELATED WORK

Large Language Models for Program Synthesis Our work builds upon recent advances in neural
program synthesis (Parisotto et al., 2017; Devlin et al., 2017; Thakoor et al., 2018; Ye et al., 2021;
Ellis et al., 2021). Traditional program synthesizers require formal specifications and employ search
or logical derivation to produce programs that provably satisfy these specifications (Alur et al., 2013).
Recently, large language models have demonstrated impressive capabilities in this domain (Huynh
& Lin, 2025; Li et al., 2025b; Lozhkov et al., 2024; Li et al., 2023b; Roziére et al., 2023; Fried
et al., 2023; Li et al., 2022; Chen et al., 2021). However, current research predominantly targets
high-resource programming languages such as Python, Java, or JavaScript (Zan et al., 2023; Huynh &
Lin, 2025). In contrast, our work synthesizes graphics programs, which pose unique challenges due to
domain-specific requirements and considerable data scarcity, establishing it as a distinct research area.

Graphics Program Synthesis Deep learning approaches have shown strong performance in
synthesizing graphics programs that compile to visual outputs (Ellis et al., 2018; 2019; Ganin et al.,
2018). This progress has been accelerated by the emergence of large multimodal models, particularly
vision-language models that bridge visual and textual domains (Alayrac et al., 2022; Liu et al., 2023;
Belouadi et al., 2024b; Kulits et al., 2024; Li & Ellis, 2024; Kapur et al., 2025; Lin et al., 2025; Xu
et al., 2025). The field encompasses both controlled experimental settings using domain-specific
languages (Ellis et al., 2018; Tian et al., 2019; Sharma et al., 2018; Cdmara et al., 2023; Kulits et al.,
2024; Kapur et al., 2025; Wen et al., 2025) and practical applications. Notable examples include
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Figure 2: Architecture overview of MuLTIMAT during inference. The system constructs a multimodal
program tree 7~ by iteratively generating node definitions. At each step ¢, the system derives a
graph G, of valid nodes along with corresponding intermediate outputs /; by traversing 7, which
may contain both valid and invalid nodes, to generate the next node v,.;. When transpilation and
execution succeed, the system advances with an updated graph G, and outputs ;.. If errors occur,
it reverts to a previous state (G <;, I<;). The generation process initiates from either an input image
or unconditionally using a beginning-of-sequence token (<bos>). Following optional parameter
optimization (cf. §6.2), the final procedural material can be applied to any target geometry for
rendering.

systems for generating scientific figures using TikZ (Belouadi et al., 2024a;b; 2025; Laurencon
et al., 2024; Laurencon et al., 2024; Tong et al., 2024; Zhang et al., 2025) and automating data
visualization (Mackinlay, 1986; Roth et al., 1994; Luo et al., 2021; Wu et al., 2024; Voigt et al., 2024).
However, these approaches generate code designed for text-based editing and therefore do not face the
unique circumstances of node graphs in procedural material synthesis that our work addresses.

Procedural Material Synthesis Procedural material modeling is one of the most challenging
domains in graphics program synthesis. The combination of lengthy, complex material programs and
severe data scarcity creates unique obstacles for learning-based approaches (Li et al., 2025a; 2024).
Existing methods primarily focus on inverse procedural material modeling by synthesizing graphs that
reproduce a given target appearance (Hu et al., 2023) or unconditional generation to create diverse,
novel materials without specific targets (Guerrero et al., 2022). A related line of work optimizes
parameters of existing material graphs to match image targets by transpiling them into differentiable
programs (Shi et al., 2020; Hu et al., 2022; Li et al., 2023a). As discussed in §1, previous generative
approaches are limited to text-only representations, a limitation we address in this work.

3 BACKGROUND ON PROCEDURAL MATERIALS

As indicated in §1, procedural materials are directed acyclic graphs G, executed by a material engine
to produce raster images representing the physical properties of materials. These so-called material
maps define surface characteristics, e.g., albedo, roughness, or normal (tangent space orientation), that
enable photorealistic rendering when applied to 3D objects, with their appearance controlled through
a small set of high-level parameters (cf. Figure 1). The internal structure of a material graph G
comprises nodes {v{, v2, ..., vy} connected by edges that define the flow of image data. Each node v;
functions as either a generator that creates new image content or a filter that transforms existing images
from upstream nodes. Common node operations include noise generation, blending, and mathematical
transformations, which collectively produce intermediate image outputs I = {ij,i2,...,in}. The
behavior of each node is governed by parameters that may be discrete or continuous scalars or vectors,
providing fine-grained control over the final material appearance.

Professional material authoring tools such as Blender and Adobe Substance Designer enable artists
to construct and modify procedural material graphs through visual interfaces (cf. Figure 1). Users
can interactively add or remove nodes and edges while adjusting node parameters to achieve desired
visual effects. Among these tools, Adobe Substance Designer stands out for its particularly expressive
node graph system, which MuLTIMAT specifically targets. It offers advanced capabilities for creating
complex material appearances through features like function graphs and pixel processors. Function
graphs allow parameters to be controlled through custom operations on input values, while pixel
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Figure 3: Visualization of the two conditioning approaches used by MuLTiMaT for generating node
definition v,.;. In the graph-conditioned approach (1), MuLTIMAT processes the graph G, as a visual
representation similar to human perception. In the mixed-conditioned approach (2), MULTIMAT
receives G; as a multimodal program where <img> tokens are replaced with their corresponding
vision encoder representations from I;.

processors enable users to define specialized computational graphs that operate on individual pixels
using sequences of atomic mathematical operations. These sophisticated capabilities make automated
procedural material synthesis a particularly challenging problem in this domain.

4 TuHE MuLTIMAT MODEL & ARCHITECTURE

Figure 2 illustrates our complete model pipeline. At its core, MULTIMAT is a vision-language model,
trained for synthesizing procedural material graphs. It accepts images as input for inverse procedural
material synthesis and supports unconditional generation. Unlike previous approaches, MuLTIMAT
generates nodes fopologically, ensuring each node precedes all nodes it connects to. This enables an
iterative generation process detailed below that can provide continuous visual feedback to the model,
verify the validity of intermediate outputs, and recover from errors automatically in certain cases.

4.1 MuLTiIMODAL PROGRAM SYNTHESIS

Given a partially generated material graph G; = {v{,vs,...,v,} with nodes v; at generation step ¢,
the topological ordering of nodes allows for visualizing intermediate node states, similar to visual
editing environments that target humans. This enables an iterative generation loop where MuLTIMAT
generates one node definition—including node parameters and connections to previous nodes—at a
time that is processed accordingly before the generation continues. After generating node v;4; in
an intermediate text format (cf. §5), we combine it with the existing node definitions {vy,...,v,;}
and feed them to a transpiler, which compiles the intermediate representations back to a format
the material engine understands. We then use the material engine to visualize the state of node v;.
Upon successful transpilation and execution, v;4; is appended to the graph G;.;. This updated state,
including the visualized intermediate outputs /;, is fed back to the model to generate the subsequent
node v, 47 (cf. Figure 2). If execution or transpilation fails, we discard the current v, and resample, or
backtrack further in case of repeated errors (cf. §4.2). We explore two complementary approaches for
representing G, and I, as multimodal programs to the model, as visualized in Figure 3:

Mixed Conditioning Starting with a textual representation of G, (cf. §5), we enhance each node v;
with an additional field containing its visualized intermediate state. This creates a multimodal
program where the model processes textual tokens interleaved with image patch embeddings
(cf. Figure 3). To manage the increased context size from image embeddings, we omit
node parameters (which are implicitly encoded in the visualizations) but explicitly include
node output type information (e.g., grayscale or color) that the model cannot infer from the
visualization alone.

Graph Conditioning This approach more closely mirrors human visual experience by conditioning
MuLtiMarT solely on a visualization of the entire graph G; with embedded intermediate
visual outputs /;, as shown in Figure 3. The model generates subsequent node v, using only
this complete visual context, without explicit access to underlying textual node definitions.
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Figure 4: Visualization of our inference algorithm as a tree search. Tree nodes represent generated
node definitions, and edges represent possible continuations. The algorithm proceeds as follows:
generation continues until an invalid state (X) is encountered (1), triggering backtracking to the
previous node; from this point, if a valid node (v') is generated, normal generation resumes (2a), but
if invalid outputs persist (2b), the algorithm backtracks further until a valid path is found (3).

At their core, both approaches remain autoregressive language models, and MULTIMAT can be trained
by minimizing a cross-entropy objective:

T S
L==" 3" logp(vis | i<y Gor 11 x:0), ()

t=1 s=1

where v,  is the expected token of v, in our intermediate text format at position s, v; <5 represents
previous tokens, x denotes the input conditions (which can be empty for unconditional generation),
and 6 represents the model parameters.

4.2 INCREMENTAL TREE SEARCH

Another advantage of topological node ordering is the ability to validate node definitions incrementally
during generation. By invoking our transpiler and material engine at each step, we can detect
syntactic and semantic errors immediately rather than waiting until the entire graph is complete.
When an erroneous node definition is encountered, we execute an adaptive backtracking strategy:
first discarding and resampling the problematic node, and if errors persist, inferring deeper structural
issues by reversing further back in the generation sequence. Specifically, we discard the 2(~1)
most recently generated nodes, where i represents the current backtracking iteration. This approach
effectively transforms our generation process into an incremental tree search on a tree 7 of valid and
invalid nodes (cf. Figure 4), systematically exploring the solution space to discover valid programs.
This incremental validation approach identifies invalid outputs much faster than previous approaches,
which require sampling complete programs before validation can commence.

4.3  AutomAaTic ERROR REPAIR

Through systematic analysis of failure cases, we identified recurring error patterns that could be
repaired automatically: (1) removal of extraneous parameters that are specified for node types that do
not support them, and (2) automatic insertion of conversion nodes to resolve type mismatches between
connected nodes. For instance, when a color output is erroneously connected to a grayscale input, we
automatically insert an appropriate grayscale conversion node. Conversely, when a grayscale output
feeds into a color input, we insert a gradient map node to perform type conversion. These repair
mechanisms increase the proportion of valid generations without requiring additional sampling steps.

5 DATASET

To support the training and evaluation of MurTiMAT, we collect procedural materials from Adobe’s
Substance 3D Assets Repository (Adobe, 2025a). Unlike previous work that either focuses on basic
graphs utilizing only a subset of Substance Designer features (e.g., lacking complex nodes such as
pixel processors or function graphs; Guerrero et al., 2022; Hu et al., 2023) or targets other tools with
more limited capabilities (Li et al., 2025a), our approach supports the complete feature set. This
comprehensive coverage enables us to collect over 6 000 unique materials, substantially more than
existing datasets. Table 1 summarizes key characteristics of our dataset compared to prior work.
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. Models Size Max Nodes Feature Set Program
Representation Sub-
stance Designer’s native MatForMER 2820 < 400! Subset Designer
file format (SBS) has not ~ Mat. (Conp) 4667 < 80! Subset Designer
been designed for human  VLMATERIAL 3663 30 Limited Blender
readability, containing ~ MuLTIMAT 6878 128 Complete  Designer

verbose XML structures,
embedded binary data,
legacy metadata, and other
implementation details,
which makes direct lan-
guage modeling impractical.
To address this, we develop
a bidirectional transpiler that converts between SBS and a compact, human-readable YAML-based
representation with topological node order, which we call CompractSBS. Unlike previous approaches
that support only partial feature sets (Guerrero et al., 2022; Hu et al., 2023), our transpiler preserves
the complete functionality of Substance graphs with programs that are, on average, over 80% shorter.
Models operate exclusively in CompacTSBS, with outputs transpiled back to SBS for execution. We
provide representative examples in Figure 3 and complete program listings in Appendix A.

! Upper bound in complex filtering pipeline, actual could be less.

Table 1: Comparison of training data of MATForMER (Guerrero et al.,
2022), conditional MAaTForMER (Hu et al., 2023), VLMATERIAL (Li
etal., 2025a), and MuLTIMAT (ours). We assembled the largest dataset
with the most comprehensive set of features.

Graph Preprocessing Our preprocessing pipeline standardizes graphs for the PBR workflow,
focusing on five essential texture maps: base color, normal, roughness, metallic, and height. We trace
backwards from these outputs to identify all contributing nodes, pruning unconnected components
and other output maps. Graphs containing embedded bitmap graphics and SVGs are excluded
to keep graphs fully procedural. We further filter out graphs exceeding 128 nodes and flatten
hierarchical structures by inlining nested subgraphs and custom author dependencies into the main
graph. Non-atomic nodes from the standard Substance Designer library remain as external references.

6 EXPERIMENTS

We build MurtiMAaT models upon the QWEN2.5y (7B) vision-language model which leverages
a late fusion approach to combine image and text tokens (Bai et al., 2025). We train and evaluate
separate models for unconditional generation (cf. §6.1) and inverse procedural material synthesis
(cf. §6.2). We also conduct a human evaluation (cf. §6.3). Across all model variants, we maintain a
consistent maximum sequence length of 8 192 tokens. The training setup consists of 5 epochs using
ApaMW (Loshchilov & Hutter, 2019), a learning rate of 5e—5, and a batch size of 128. To ensure
diversity in our generated outputs, we set the inference sampling parameters to a temperature of 0.8
and a top-p value of 0.95. We provide examples in Figure 6 and Appendix A. We ablate incremental
tree search in §7.

6.1 EvaLuaTiON OF UNCONDITIONAL GENERATION

For unconditional generation, the mixed conditioning variant, MurLtiMar (Mixed), embeds node
previews at 140 x 140 resolution, resulting in 25 patch embeddings per image. For the graph
conditioning variant, MurriMar (Graph), graph visualizations can utilize up to 6 144 tokens, with
larger images downscaled to accommodate this limit. We generate 100 outputs per model for
evaluation.

Baselines For text-only procedural material synthesis, VLMATERIAL represents the current state-of-
the-art approach. However, its Blender-specific training makes direct comparison with our method
difficult. We therefore create VLMATERIAL (SBS) by retraining a VLMATERIAL-style model on our
dataset for fair comparison. Unlike the objective in equation (1), VLMATERIAL is trained to generate
complete graphs in a single pass. However, during inference, we can still validate nodes as they are
generated and roll back upon detecting irreparable errors (cf. §4.2) or repair them after generation
completes (cf. §4.3). This means the progression from VLMATERIAL (SBS) to MuLTIMAT (Mixed) to
MurtiMAaT (Graph) represents a comparable, gradual shift from complete graph generation toward
iterative node generation. Since VLMATERIAL (SBS) does not receive any images in the unconditional
setting, we base it on the larger and more powerful text-only model QWEN3 (8B; YANG ET AL.,
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Models DSim; CLIP; Sryeg; KID; ROUGE-L; NER;

VLMaterIAL (SBS)  31.344 65.678  3.211  14.976 1.621 16.933
MurtiMat (Mixed) 34.922  66.737  3.199 3.675 2.194 12.388
MurtiMAT (Graph) 36.609 67.907 3.178 2.801 2.037 17.046

VLMateriaLt (SBS) 31.348 65.867 3.126  27.862
MurtiMatt (Mixed) 40.258 69.687  3.093  17.792
MuLtiMat* (Graph)  40.367 70.114 3.046 14.886

Table 3: System-level scores x 100 for conditional (inverse) generation, without (top) and with
(bottom) parameter optimization. Bold and underlined values indicate the best and second-best scores
for each metric column, respectively. Arrows indicate metric directionality. ROUGE-L and NER
scores remain unchanged by parameter optimization and are shown only once. MuLTIMAT (Graph)
and MurTiMat* (Graph) achieve the best overall performance.

MuLriMat* (Mixed) i 8é.3% ‘ | 16.7% ‘ VLMAaTterIaL* (SBS)
MurtiMart* (Graph) | 81.1% | 18.9% | VLMATERIAL* (SBS)
MurtiMaTt* (Graph) | 58.3% | 41.7% ‘ MuLtiMat* (Mixed)

Figure 5: Human preferences for model outputs as a diverging bar chart. MurLtiMat* (Graph) is the
most preferred model overall, while VLMaTerIAL" (SBS) is consistently the least preferred.

20254), giving it a slight advantage over our models. While graphics program synthesis research
typically also benchmarks against proprietary large language models such as GPT-40 (OpenAl et al.,
2024) or CLaUDE 4 (Anthropic, 2025), which have demonstrated competitive performance in related
domains (Belouadi et al., 2024a;b; 2025; Rodriguez et al., 2025), these models’ unfamiliarity with
CompacTSBS and inability to produce valid SBS output preclude their inclusion as baselines.

Metrics Our multimodal task permits diverse evaluation schemes for automatic evaluation. To
evaluate the visual quality of generated materials, we compute the Kernel Inception Distance (KID;
Binkowski et al., 2018), which compares the distribution of generated material maps with material
maps from our dataset. To detect degenerate low KID scores due to memorization of training data (a
legitimate concern given our relatively small dataset), we also calculate ROUGE-L scores (Lin, 2004)
between the CompacTSBS representation of our generated materials and the training set (with masked
parameters). This metric computes the longest common subsequence and serves as an effective
memorization indicator (Hans et al., 2024). Notably, we specifically require consecutive subsequences
due to CompacTSBS’s limited syntactic diversity, which could otherwise produce misleading matches.
To measure efficiency, we introduce the Node Error Ratio (NER), defined as the average ratio between
discarded nodes and the total number of generated nodes.

Results Table 2 presents the system- Models

level metric scores for our evaluation. KID, ROUGE-L, NER,

MurtiMat (Graph) leads in visual VLMATERIAL (SBS) 14.155 3.641 14.846
quality with the lowest KID score, MuLriMaT (Mixed) 6.752 2.195 8.923
outperforming MurtiMat (Mixed) by MuLtiMat (Graph) 2.365 1.915 15.024

over 4pp (percentage points) and VL-
MAaTERIAL (SBS) by more than 11pp. Table 2: System-level scores x 100 for unconditional gen-
This considerable gap in performance eration. Bold and underlined values indicate the best and
suggests that the better the visual repre-  second-best scores for each metric column, respectively.
sentations are aligned with human cre- Arrows indicate metric directionality. MuLTIMAT (Graph)
ative workflows, the better the results— achieves the best overall performance.

an intuitive but important finding. All

models exhibit minimal memorization, with ROUGE-L scores showing that no more than 4% of
any generated sequence matches a contiguous segment from the training data. Nonetheless, both
MucrtiMAT variants demonstrate approximately 1.5pp lower copying rates compared to VLMATERIAL
(SBS), suggesting slightly better generalization. Regarding efficiency, MuLTIMAT (Mixed) excels with
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the lowest NER, achieving a 6pp improvement over the other models. Both MurLtiMart (Graph) and
VLMATERIAL (SBS) show comparable NER scores around 15%. For MuLtiMart (Graph), these errors
are primarily due to OCR-like errors in reading node names and function types embedded as text in
graph images. In contrast, we attribute the errors in VLMATERIAL (SBS) to fundamental difficulties
in understanding graph structures. Despite these limitations, the error rates remain within acceptable
bounds for practical applications, and MuLTIMAT (Graph) emerges as the best overall model.

6.2 EvALUATION OF CONDITIONAL GENERATION

As in prior work (Hu et al., 2023; Li et al., 2025a), we train inverse MULTIMAT variants that learn
to generate procedural materials from rendered images. These models follow the same training
procedure as their unconditional counterparts, with one key modification: each training example
is preceded by a 512 x 512 rendering of itself, which adds 324 additional image patches to the
model context. During inference, the model takes an image as input and generates a corresponding
procedural material. We reserve 100 examples from our data as held-out test data for evaluation.

Baselines Analogously to §6.1, we adapt VLMATERIAL for inverse rendering with SBS and use
it as a baseline. Since an image input is now required for VLMaTERIAL (SBS), we also base it on
QWEN2.5yL (7B) instead of QWEN3 (8B) and train it using the same method as MULTIMAT.

Parameter Optimization To further refine generated materials, we apply gradient-based opti-
mization using differentiable rendering. This approach has proven effective for optimal parameter
estimation (Shi et al., 2020; Hu et al., 2022; Li et al., 2023a; Hu et al., 2023). We employ DiffMat (Shi
et al., 2020; Li et al., 2023a), a widely adopted differentiable renderer for Designer materials, to
optimize the generated graphs against the input images. Models using this refinement step are denoted
as MuLtiMAT" and VLMATERIAL] respectively.

Metrics In addition to the metrics from §6.1, we evaluate reconstruction quality by rendering the
generated materials and comparing them to the input images using perceptual similarity metrics.
Specifically, we measure cosine similarity between CLIP image embeddings (Radford et al., 2021;
Hessel et al., 2021), compute STYLE Loss loss (STYLE; Gatys et al., 2016) as the L1 distance between
Gram matrices of VGG features, and calculate DReamSim (DSmm; Fu et al., 2023), a learned perceptual
similarity metric designed to align with human judgments.

Results Table 3 presents the system-level metric scores for conditional evaluation. The perceptual
similarity metrics consistently demonstrate that MurtiMAT (Graph) achieves the highest fidelity to
input images, with MurLTiMaT (Mixed) performing second-best and VLMATERIAL (SBS) ranking
last. For example, DREAMS1M scores are 36.609, 34.922, and 31.344, respectively, a ranking that
mirrors our unconditional evaluation results. Parameter optimization yields substantial improvements
in perceptual similarity, with MurLTIMAT" (Graph) and MurtiMAT" (Mixed) showing average gains
of 6% and 8%, respectively. In contrast, VLMaTerRIAL* (SBS) exhibits minimal improvement
(only 1%), suggesting its outputs deviate too far from the input for parameter optimization to be
effective. Interestingly, while parameter optimization improves perceptual similarity, KID scores
increase. This could occur because optimization aligns outputs more closely with the test set, which
represents only a subset of the training distribution, potentially increasing distance from the full
distribution. Nevertheless, both MuLTIMAT and MurTiMat* variants outperform VLMATERIAL
(SBS) and VLMarteriaL* (SBS) on KID by over 10pp, respectively. The remaining metrics reinforce
trends from unconditional evaluation. ROUGE-L scores do not exceed 2% (indicating minimal
memorization), and MuLtiMAT (Mixed) produces the fewest errors. Overall, MuLTiIMAT (Graph) and
its optimized variant, MuLTiMat* (Graph), deliver the strongest performance across metrics.

6.3 HumaN EvaLuAaTiON

To corroborate our automatic evaluation results, we conduct a human evaluation. We employ
comparative annotation (Thurstone, 1927) and focus on the image reconstruction/inverse rendering
use case, which allows for intuitive human assessment (cf. Figure 6). Annotators receive triplets
of rendered generated materials from VLMateriaL* (SBS), MurtiMaTt (Mixed), and MuLTIMAT
(Graph) and identify which output best and least resembles the input image. Following Hu et al.



Published as a conference paper at ICLR 2026

MuLmiMAaTt* (Mixed) MuLtiMATt* (Graph)

W o
W

Figure 6: Qualitative examples for inverse procedural material modeling following the setup of our
human evaluation in §6.3. The leftmost column shows input materials from graphs filtered during
preprocessing, making these particularly challenging test cases. MuLTIMAT" (Mixed) consistently
outperforms VLMAaTerIAL" (SBS), while MurtiMat* (Graph) achieves the best results overall.
Additional examples, including failure cases, are provided in Appendix A.

(2023); Li et al. (2025a), we generate multiple programs (N = 40) per model and image, selecting the
result with the highest DREaAMS1M score as the final candidate. We test 33 input materials from graphs
filtered during preprocessing (e.g., due to excessive length), which represent particularly challenging
cases. Eight expert annotators with extensive procedural material experience assess each triplet in
randomized order. As shown in Figure 5, annotators rank VLMAaTerIAL* (SBS) considerably lower
than MuLTiIMAT" (Mixed) and MuLTiMAT" (Graph), and prefer MuLTiMAT" (Graph) over MuLTIMAT*
(Mixed). These findings align with our automatic evaluation rankings and demonstrate our approach’s
effectiveness in generating perceptually similar materials.

7 AnNALysis & DiscussioN

Our comparisons demonstrate that model performance improves steadily as the degree of graph
visualization increases, with MuLTIMAT (Graph) achieving the highest performance overall (cf.
Tables 2 & 3; Figure 5). This finding aligns with how humans interact with procedural materials—
through visual node graph interfaces—and validates established UX design principles in this domain.
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The qualitative examples in Figure 6 fur-

ther illustrate this trend, with VLMaTERIAL* Models Deletion, Conversion,
(SBS) struggling to generate faithful outputs, VLMATERIAL (SBS) 2.71 12.26
indicating that purely text-based approaches MurtiMat (Mixed) 1.18 3.51
are not ideal for expressive node graph sys-  MuLTIMAT (Graph) 1.1 6.49

tems like Designer. This limitation persists
even with more powerful base models, as our Table 4: Percentage of nodes repaired through pa-
unconditional generation experiments con- rameter deletion or conversion node insertion in our
firm. Beyond architectural improvements, unconditional and conditional evaluations. Bold and
our tree search algorithm enables more ef- underlined values indicate the best and second-best
ficient graph generation; without it, models scores for each metric column, respectively. Arrows
may have to resort to sampling complete out- indicate metric directionality. Our MuLTIMAT models
puts for validation (the inference approach require the least amount of repair.

used by previous methods), which is expen-

sive. For instance, disabling tree search causes NER of VLMATERIAL (SBS) to deteriorate further from
14.846 to 33.953, highlighting how our search strategy can improve inference without further training.
The impact of automatic error repair is more nuanced, as shown in Table 4. Only approximately
1% of nodes generated by MuLTiIMAT contain hallucinated parameters, and fewer than 6.5% require
conversion. In contrast, VLMATERIAL exhibits nearly double the scores for both repair mechanisms.
This difference demonstrates that VLMATERIAL requires considerably more repair than our models and
supports our claim that our models possess a better understanding of graph structures. Notably, since
corrections are not fed back to the models, these results reflect their intrinsic generation capabilities.

8 CoNCLUSION

We present MuLTIMAT, a multimodal program synthesis framework and model suite that generates
procedural materials by incorporating visual feedback throughout the generation process. Our
key insight is that procedural material graphs are inherently visual-spatial programs, and treating
them as such leads to substantial improvements over text-only approaches. By conditioning on
visual intermediate states—either interleaved with text (mixed conditioning) or as complete graph
visualizations (graph conditioning)—our models achieve consistent improvements over text-only
baselines. Our incremental tree search algorithm further enhances generation efficiency by validating
nodes as they are created and backtracking upon errors. While we demonstrate MuLTIMAT specifically
for procedural material synthesis, we hope its general principles will inspire further research at the
intersection of computer graphics, program synthesis, and multimodal AL

Future Work The development of procedural material graph synthesis approaches is currently
constrained by limited training data availability. We plan to address this challenge through self-learning
techniques (He et al., 2020; Wei et al., 2021) that leverage our unconditional models to generate
synthetic supervised training data by rendering outputs and subsequently training conditional models
on this expanded data. Additionally, we aim to develop a unified model trained across multiple
node graph systems to investigate potential transfer learning benefits (Pan & Yang, 2010). Beyond
methodological advances, our models offer promising practical applications: conditional models
could extract material graphs directly from photographic regions, while unconditional models could
power intelligent auto-completion features in user interfaces. Furthermore, our methodology naturally
extends to related domains such as vector graphics synthesis (Wu et al., 2023; Polaczek et al., 2025;
Rodriguez et al., 2025; Yang et al., 2025b), where visual editing interfaces are similarly prevalent.

Limitations Although our models and baselines use the same or similar base models, they generate
graphs in fundamentally different ways, resulting in considerable differences in training efficiency.
Text-only models like VLMATERIAL can process entire graphs as single training examples, whereas
MurtiMAT must adapt the visual context for each individual node, effectively processing training
examples one node at a time. This difference leads to much longer training times: while VLMATERIAL
completes training in a few hours on 8 x A100 80GB GPUs, MuLTIMAT models require several
days on the same hardware despite being trained on a comparable number of tokens. Nevertheless,
since the amount of procedural materials is very small (regardless of the dataset), training times
remain within acceptable bounds in absolute terms, despite the relative differences between methods.
Additionally, both approaches achieve a more similar throughput during inference.
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A AppITiIONAL EXAMPLES

In Figure 7 we provide additional qualitative examples. MurLTiMAat* (Mixed) consistently surpasses
VLMateriaLt (SBS), while MurTiMAT" (Graph) demonstrates the strongest results overall. Figure 8
complements Figures 6 & 7 by showcasing failure cases where our models struggle to produce
faithful outputs, though notably, the outputs from MurLriMat* (Graph) and MurLtiMAT" (Mixed) still
demonstrate superior representation of the input compared to VLMAaTERrIAL (SBS). Beyond these
conditional generation examples, Figure 9 presents unconditional samples generated by MuLTIMAT
(Graph), which exhibit high visual quality with realistic material properties. Adjacent to these
rendered materials, we visualize their underlying material graphs in the same format used as model
input. In Figure 10, we show a graph in CompacTSBS representation to give an impression of the
structure of our format.
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Input | VLMATERIALY (SBS) MurLtiMAT* (Mixed) MuLtiMaT* (Graph)

Figure 7: Additional qualitative examples for inverse procedural material modeling following the
setup of our human evaluation in §6.3. The leftmost column shows input materials from graphs
filtered during preprocessing, making these particularly challenging test cases. MuLTIMAT' (Mixed)
consistently outperforms VLMAaTerIAL* (SBS), while MurTiMat* (Graph) achieves the best results
overall.
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Input | VLMATerIALY (SBS) MurtiMaT* (Mixed) MurtiMaT* (Graph)

Figure 8: Representative failure cases from the same challenging subset in Figures 6 & 7. All
models struggle to reproduce the intricate patterns in these examples, though MurtiMaTt* (Graph)
and MurLtiMAT* (Mixed) still outperform VLMATERIALY (SBS).
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Figure 9: Example materials generated unconditionally by MuLTiMAT (Graph), shown alongside their
corresponding procedural graphs.
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function: mul

connections:
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connections:
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function: const_floatl
£1:
function: const_floatl
params:
const_float1:

function: get_floatl
params:

get_floatl: contrast
3

function: max
connections:

b: £0
£4:
function: mul
connections:

componentslast: £4
£6:
function: vector2
connections:

componentsin: f4
componentslast: £0

function: vectord
connections:
componentsin: £5
componentslast: £6
levelinhigh:
£0:

function: const_floatl

arams:
const_floatl: 1.0

function: const_float1

arams:
const_float1:

fanction: const_float1
£3:

function: get_floatl
parans:

get_floatl: contrast
£4:

function: max
connections:

5:

function: mul

connections:
£4
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£6:
function: sub
connections:
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function: vector2
connections:
componentsin: 6
componentslast: £6
£8:
function: vector2
connections:
componentsin: £6
componentslast: £0
9

function: vectord

componentslast: £8

leveloutlow:
£0:
function: const_float1
£1:
function: const_£loatl
parans:
const_floatl: 0.5
£2:
function: get_floatl
params:

get_floatl: contrast

function: min
connections:
a: f2

b: £0
f4:
function: abs
connections:
a: f3
£5:
function: mul
connections:
a: f4
b: f1
£6:
function: vector2
connections
ccmponentsm £5
componentslast: £5
£7:
function: vector2
connections:
componentsin: £5
componentslast: £0
£8:
function: vectord
connection:
compunentsln: £6
componentslast: £7
levelouthigh:
£0:

function: const_floatl
arams:
const_floatl: 1.0

function: const_floatl
params:

const_floatl: 0.5
£2:

function: const_floatl
£3:

function: get_floatl
params:

get_floatl: contrast
£4:

function: min
connections:

a: 3

b: £2
£5:

function: abs
connections:

£6:
function: mul
connections:
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£7:
function: sub
connections:
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£8:
function: vector2
connections:
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9:

function: vector2
connections:
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£10:
function: vector4
connections:
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s24:
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connections:
inputNodeOutput :
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Figure 10: Complete example of a graph in CompacTSBS format.

representation of the material partially illustrated in Figure 3.
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