
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MultiMat: Multimodal Program Synthesis for Pro-
cedural Materials using Large Multimodal Models

Anonymous authors
Paper under double-blind review

Abstract

Material node graphs are programs that generate the 2D channels of procedural
materials, including geometry such as roughness and displacement maps, and
reflectance such as albedo and conductivity maps. They are essential in computer
graphics for representing the appearance of virtual 3D objects parametrically and
at arbitrary resolution. In particular, their directed acyclic graph structures and
intermediate states provide an intuitive understanding and workflow for interactive
appearance modeling. Creating such graphs is a challenging task and typically
requires professional training. While recent neural program synthesis approaches
attempt to simplify this process, they solely represent graphs as textual programs,
failing to capture the inherently visual-spatial nature of node graphs that makes them
accessible to humans. To address this gap, we present MultiMat, a multimodal
program synthesis framework that leverages large multimodal models to process
both visual and textual graph representations for improved generation of procedural
material graphs. We train our models on a new dataset of production-quality
procedural materials and combine them with a constrained tree search inference
algorithm that ensures syntactic validity while efficiently navigating the program
space. Our experimental results show that our multimodal program synthesis
method is more efficient in both unconditional and conditional graph synthesis
with higher visual quality and fidelity than text-only baselines, establishing new
state-of-the-art performance.

1 Introduction

Procedural materials have become increasingly important in modern 3D content creation, offering
artists greater control and flexibility in designing surface appearances for digital assets. Unlike
traditional image-based textures, which are constrained by fixed resolutions and limited editability, pro-
cedural material modeling tools like Adobe Substance Designer (Adobe, 2025c) or Blender (Blender,
2025) leverage node-based graphs to generate textures programmatically. This enables resolution-
independent execution, high-level parametric control, and non-destructive editing workflows that
have proven valuable in industries such as game development, film production, and VR/AR appli-
cations (Ebert et al., 2003). More specifically, a procedural material is defined as a directed graph
where nodes represent texture generators (e.g., noise functions, patterns) or filtering operations (e.g.,
blurs, color adjustments), and edges encode the flow of data between these operations, ultimately
producing the texture maps required by physically-based rendering (PBR) models (Pharr et al., 2016)
(cf. Figure 1). However, the complexity of crafting these procedural material graphs presents a
substantial barrier to entry, creating a pressing need for automated and semi-automated approaches to
support material artists at all levels of proficiency.

With recent advances in neural program synthesis (Huynh & Lin, 2025), procedural material synthesis
has become increasingly feasible. MatFormer pioneered this direction with a multi-stage transformer-
based model for unconditional generation with Adobe Substance Designer (Guerrero et al., 2022).
Building on this foundation, Hu et al. (2023) extended the approach to support conditional synthesis,
enabling applications such as inverse rendering (Patow & Pueyo, 2003), i.e., generating procedural
materials that match the appearance of captured or rendered images. More recently, VLMaterial
demonstrated that large language models (Zhao et al., 2025) can effectively perform end-to-end
procedural material synthesis (Li et al., 2025a). However, these approaches share a fundamental
limitation: they generate node graphs as text-only programs without access to visual feedback during

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Surface
Mesh

Procedural Material Graph

Parameter Set A Rendering
Engine

Rendering
Engine

Parameter Set B

Material
Engine

Albedo Normal Roughness Metallic Height

Material Maps

Nodes

Generator

Filter

Figure 1: Procedural materials offer powerful control over the appearance of 3D objects through a
few high-level parameters. Here, a production-grade example (left) with the images obtained using
two distinct parameter sets A and B (right).

synthesis. This contrasts sharply with how human artists work, who create procedural materials
by manipulating node graphs through an arguably more intuitive visual interface, as illustrated in
Figure 1 (left). Without visual feedback, models must rely solely on textual representations to reason
about complex spatial relationships and visual outcomes, a task that becomes increasingly difficult
as material complexity grows. To address this limitation, we propose a novel multimodal program
synthesis paradigm based on large multimodal models (Yin et al., 2024) that incorporates visual
feedback throughout the generation process, more closely mirroring human creative workflows. We
demonstrate that this approach, to which we refer as MultiMat, outperforms previous state-of-the-art
methods (cf. §6). Our key contributions are as follows:

1. We introduce MultiMat, a novel procedural material synthesis approach that incorporates
visualizations of intermediate graphs, including node states, into its context. This multimodal
feedback loop improves material quality substantially compared to text-only baselines.

2. Investigating intermediate states enables real-time validation of each generated node. This
allows us to develop a tree search algorithm that backtracks upon encountering invalid states,
enabling more efficient inference than prior methods, which often produce invalid graphs.

3. We implement a transpiler that converts between Adobe Substance Designer formats and
a compact representation suitable for language modeling while supporting the complete
feature set. This enables training on larger datasets and the generation of more complex
materials than previous approaches, which examined only limited subsets of Designer’s
capabilities.

2 Related Work

Large Language Models for Program Synthesis Our work builds upon recent advances in neural
program synthesis (Parisotto et al., 2017; Devlin et al., 2017; Ellis et al., 2021). Traditional program
synthesizers require formal specifications and employ search or logical derivation to produce programs
that provably satisfy these specifications (Alur et al., 2013). Recently, large language models have
demonstrated impressive capabilities in this domain (Huynh & Lin, 2025; Li et al., 2025b; Lozhkov
et al., 2024; Li et al., 2023b; Rozière et al., 2023; Fried et al., 2023; Li et al., 2022; Chen et al.,
2021). However, current research predominantly targets high-resource programming languages
such as Python, Java, and JavaScript (Zan et al., 2023; Huynh & Lin, 2025). In contrast, our work
synthesizes graphics programs, which pose unique challenges due to domain-specific requirements
and considerable data scarcity, establishing it as a distinct research area.

Graphics Program Synthesis Deep learning approaches have shown strong performance in
synthesizing graphics programs that compile to visual outputs (Ellis et al., 2018; 2019; Ganin et al.,
2018). This progress has been accelerated by the emergence of large multimodal models, particularly
vision-language models that bridge visual and textual domains (Alayrac et al., 2022; Liu et al., 2023;
Belouadi et al., 2024b; Kulits et al., 2024; Li & Ellis, 2024; Kapur et al., 2025). The field encompasses
both controlled experimental settings using domain-specific languages (Ellis et al., 2018; Tian et al.,
2019; Sharma et al., 2018; Cámara et al., 2023; Kulits et al., 2024; Kapur et al., 2025) and practical
applications. Notable examples include systems for generating scientific figures using TikZ (Belouadi
et al., 2024a;b; 2025; Laurençon et al., 2024; Laurençon et al., 2024; Tong et al., 2024; Zhang et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

New Node
Definition vt+1

MultiMat

Multimodal
Program

Tree

Input Generate Validate

Invalid

Valid
Finished Parameter

Optimization Procedural
Material
Program

Rendering
Engine

Material
Engine

Transpiler

Material
Engine

Image

<bos>
Output

Gt / It

G≤ t / I≤ t

it+1

Gt+1 / It+1

Figure 2: Architecture overview of MultiMat during inference. The system constructs a multimodal
program tree T by iteratively generating node definitions. At each step 𝑡, the system derives a graph𝐺𝑡

of valid nodes along with corresponding intermediate outputs 𝐼𝑡 by traversing T , which may contain
both valid and invalid nodes, to generate the next node 𝑣𝑡+1. When transpilation and execution succeed,
the system advances with updated graph 𝐺𝑡+1 and outputs 𝐼𝑡+1. If errors occur, it reverts to a previous
state (𝐺≤𝑡 , 𝐼≤𝑡). The generation process initiates from either an input image or unconditionally using
a beginning-of-sequence token (<bos>). Following optional parameter optimization (cf. §6.2), the
final procedural material can be applied to any target geometry for rendering.

2025) and automating data visualization (Mackinlay, 1986; Roth et al., 1994; Luo et al., 2021; Wu
et al., 2024; Voigt et al., 2024). However, these approaches generate code designed for text-based
editing and therefore do not face the unique circumstances of node graphs in procedural material
synthesis that our work addresses.

Procedural Material Synthesis Procedural material modeling is one of the most challenging
domains in graphics program synthesis. The combination of lengthy, complex material programs and
severe data scarcity creates unique obstacles for learning-based approaches (Li et al., 2025a; 2024).
Existing methods primarily focus on inverse procedural material modeling by synthesizing graphs that
reproduce a given target appearance (Hu et al., 2023) or unconditional generation to create diverse,
novel materials without specific targets (Guerrero et al., 2022). A related line of work optimizes
parameters of existing material graphs to match image targets by transpiling them into differentiable
programs (Shi et al., 2020; Hu et al., 2022; Li et al., 2023a). As discussed in §1, previous generative
approaches are limited to text-only representations, a limitation we address in this work.

3 Background on Procedural Materials

As indicated in §1, procedural materials are directed acyclic graphs 𝐺, executed by a material engine
to produce raster images representing the physical properties of materials. These so-called material
maps define surface characteristics e.g., albedo, roughness or normal (tangent space orientation), that
enable photorealistic rendering when applied to 3D objects, with their appearance controlled through
a small set of high-level parameters (cf. Figure 1). The internal structure of a material graph 𝐺

comprises nodes {𝑣1, 𝑣2, . . . , 𝑣𝑁 } connected by edges that define the flow of image data. Each node 𝑣𝑖
functions as either a generator that creates new image content or a filter that transforms existing images
from upstream nodes. Common node operations include noise generation, blending, and mathematical
transformations, which collectively produce intermediate image outputs 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑁 }. The
behavior of each node is governed by parameters that may be discrete or continuous scalars or vectors,
providing fine-grained control over the final material appearance.

Professional material authoring tools such as Blender and Adobe Substance Designer enable artists
to construct and modify procedural material graphs through visual interfaces (cf. Figure 1). Users
can interactively add or remove nodes and edges while adjusting node parameters to achieve desired
visual effects. Among these tools, Adobe Substance Designer stands out for its particularly expressive
node graph system, which MultiMat specifically targets. It offers advanced capabilities for creating
complex material appearances through features like function graphs and pixel processors. Function
graphs allow parameters to be controlled through custom operations on input values, while pixel
processors enable users to define specialized computational graphs that operate on individual pixels

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Vision Encoder Tokenizer

MultiMat

Detokenizer

.

. . .

s1
tile_generator

0 0

1

2

3

4

5

6

s2
multi_directional_warp_grayscale

0 0

1

s0
fractal_sum_base_2

0

s3
transformation

0 0

s4
blend

0 0

1

2

Visualization

𝑖0 𝑖1 𝑖2

𝑖3 𝑖4

variables:
contrast: 0.0
fabric_color: [0.94, 0.79, 0.69]
fabric_metallic: 0.0
fabric_roughness: 0.23
height_position: 0.5
height_range: 1.0
hue_shift: 0.0
luminosity: 0.5
normal_format: 0
normal_intensity: 0.5
saturation: 0.5
s4:
image:
function: tile_generator
outputs:
output: grayscale

s5:
image:
function: fractal_sum_base_2
outputs:
output: grayscale

s7:
image:
function: multi_directional_warp_grayscale
connections:
input:
node: s4
id: output
intensity_input:
node: s5
id: output

outputs:
output: grayscale

s8:
image:
function: transformation
connections:
input1:
node: s7
id: output

outputs:
output: grayscale

s9:
image:
function: blend
connections:
destination:
node: s7
id: output
source:
node: s8
id: output

outputs:
output: grayscale

s10:
function: safe_transform_grayscale
dependency: sbs://safe_transform.sbs
connections:
input:
node: s9
id: output

params:
absolute:
rotation: 0.25
tile: uU_vV

CompactSBS
s5:
function:

safe_transform_grayscale
dependency:

sbs://safe_transform.sbs
connections:
input:
node: s4
id: output

params:
absolute:
rotation: 0.25
tile: uU_vV

CompactSBS

𝐺𝑡 𝐼𝑡

𝐺𝑡 & 𝐼𝑡

𝑣𝑡+1

(1)G
raph

(2) Mixed

Figure 3: Visualization of the two conditioning approaches used by MultiMat for generating node
definition 𝑣𝑡+1. In the graph-conditioned approach (1), MultiMat processes the graph 𝐺𝑡 as a visual
representation similar to human perception. In the mixed-conditioned approach (2), MultiMat
receives 𝐺𝑡 as a multimodal program where tokens are replaced with their corresponding
vision encoder representations from 𝐼𝑡 .

using sequences of atomic mathematical operations. These sophisticated capabilities make automated
procedural material synthesis a particularly challenging problem in this domain.

4 The MultiMat Model & Architecture

Figure 2 illustrates our complete model pipeline. At its core, MultiMat is a vision-language model,
trained for synthesizing procedural material graphs. It accepts images as input for inverse procedural
material synthesis and supports unconditional generation. Unlike previous approaches, MultiMat
generates nodes topologically, ensuring each node precedes all nodes it connects to. This enables an
iterative generation process detailed below that can provide continuous visual feedback to the model,
verify the validity of intermediate outputs, and recover from errors automatically in certain cases.

4.1 Multimodal Program Synthesis

Given a partially generated material graph 𝐺𝑡 = {𝑣1, 𝑣2, . . . , 𝑣𝑡 } with nodes 𝑣𝑖 at generation step
𝑡, the topological ordering of nodes allows to visualize intermediate node states, similar to visual
editing environments that target humans. This enables an iterative generation loop where MultiMat
generates one node definition—including node parameters and connections to previous nodes—at a
time that is processed accordingly before the generation continues. After generating node 𝑣𝑡+1 in
an intermediate text format (cf. §5), we combine it with the existing node definitions {𝑣1, . . . , 𝑣𝑡 }
and feed them to a transpiler, which compiles the intermediate representations back to a format
the material engine understands. We then use the material engine to visualize the state of node 𝑣𝑡 .
Upon successful transpilation and execution, 𝑣𝑡+1 is appended to the graph 𝐺𝑡+1. This updated state,
including the visualized intermediate outputs 𝐼𝑡 , is fed back to the model to generate the subsequent
node 𝑣𝑡+2 (cf. Figure 2). If execution or transpilation fails, we discard the current 𝑣𝑡 and resample, or
backtrack further in case of repeated errors (cf. §4.2). We explore two complementary approaches for
representing 𝐺𝑡 and 𝐼𝑡 as multimodal programs to the model, as visualized in Figure 3:

Mixed Conditioning Starting with a textual representation of 𝐺𝑡 (cf. §5), we enhance each node 𝑣𝑖
with an additional field containing its visualized intermediate state. This creates a multimodal
program where the model processes textual tokens interleaved with image patch embeddings
(cf. Figure 3). To manage the increased context size from image embeddings, we omit
node parameters (which are implicitly encoded in the visualizations) but explicitly include
node output type information (e.g., grayscale or color) that the model cannot infer from the
visualization alone.

Graph Conditioning This approach more closely mirrors human visual experience by conditioning
MultiMat solely on a visualization of the entire graph 𝐺𝑡 with embedded intermediate
visual outputs 𝐼𝑡 , as shown in Figure 3. The model generates subsequent node 𝑣𝑡+1 using only
this complete visual context, without explicit access to underlying textual node definitions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

✓

✓

✗

✗ ✗

✓

✓

✓ ✗

✗ ✗

✓

✓

✗ ✗

✗ ✗

✓

✓

✗ ✗

✗ ✗ ✓

✓

(1) (2a) (2b) (3)

Figure 4: Visualization of our inference algorithm as a tree search. Tree nodes represent generated
node definitions, and edges represent possible continuations. The algorithm proceeds as follows:
generation continues until an invalid state (✗) is encountered (1), triggering backtracking to the
previous node; from this point, if a valid node (✓) is generated, normal generation resumes (2a), but
if invalid outputs persist (2b), the algorithm backtracks further until a valid path is found (3).

4.2 Incremental Tree Search

Another advantage of topological node ordering is the ability to validate node definitions incrementally
during generation. By invoking our transpiler and material engine at each step, we can detect
syntactic and semantic errors immediately rather than waiting until the entire graph is complete.
When an erroneous node definition is encountered, we execute an adaptive backtracking strategy:
first discarding and resampling the problematic node, and if errors persist, inferring deeper structural
issues by reversing further back in the generation sequence. Specifically, we discard the 2(𝑖−1)

most recently generated nodes, where 𝑖 represents the current backtracking iteration. This approach
effectively transforms our generation process into an incremental tree search on a tree T of valid and
invalid nodes (cf. Figure 4), systematically exploring the solution space to discover valid programs.
This incremental validation approach identifies invalid outputs much faster than previous approaches,
which require sampling complete programs before validation can commence.

4.3 Automatic Error Repair

Through systematic analysis of failure cases, we identified recurring error patterns that could be
repaired automatically: (1) removal of extraneous parameters that are specified for node types that do
not support them, and (2) automatic insertion of conversion nodes to resolve type mismatches between
connected nodes. For instance, when a color output is erroneously connected to a grayscale input, we
automatically insert an appropriate grayscale conversion node. Conversely, when a grayscale output
feeds into a color input, we insert a gradient map node to perform type conversion. These repair
mechanisms increase the proportion of valid generations without requiring additional sampling steps.

5 Dataset

Models Size Max Nodes Feature Set Program

MatFormer 2 820 ≤ 4001 Subset Designer
Mat. (Cond) 4 667 ≤ 801 Subset Designer
VLMaterial 3 663 30 Limited Blender
MultiMat 6 878 128 Complete Designer
1 Upper bound in complex filtering pipeline, actual could be less.

Table 1: Comparison of training data of MatFormer (Guerrero et al.,
2022), conditional MatFormer (Hu et al., 2023), VLMaterial (Li
et al., 2025a), and MultiMat (ours). We procure the largest dataset
with the most comprehensive set of features.

To support the training and
evaluation of MultiMat, we
collect procedural materials
from Adobe’s Substance 3D
Assets Repository (Adobe,
2025a). Unlike previous
work that either focuses on
basic graphs utilizing only
a subset of Substance De-
signer features (e.g., lack-
ing complex nodes such as
pixel processors or func-
tion graphs; Guerrero et al.,
2022; Hu et al., 2023) or targets other tools with more limited capabilities (Li et al., 2025a), our
approach supports the complete feature set. This comprehensive coverage enables us to collect
over 6 000 unique materials, substantially more than existing datasets. Table 1 summarizes key
characteristics of our dataset compared to prior work.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Human-Readable Graph Representation Substance Designer’s native file format (SBS) has not
been designed for human readability, containing verbose XML structures, embedded binary data,
legacy metadata, and other implementation details, which makes direct language modeling impractical.
To address this, we develop a bidirectional transpiler that converts between SBS and a compact,
human-readable YAML-based representation with topological node order, which we call CompactSBS.
Unlike previous approaches that support only partial feature sets (Guerrero et al., 2022; Hu et al.,
2023), our transpiler preserves the complete functionality of Substance graphs with programs that are,
on average, over 80% shorter. Models operate exclusively in CompactSBS, with outputs transpiled
back to SBS for execution. We provide representative examples in Figure 3 and complete program
listings in Appendix A.

Graph Preprocessing Our preprocessing pipeline standardizes graphs for the PBR workflow,
focusing on five essential texture maps: base color, normal, roughness, metallic, and height. We trace
backwards from these outputs to identify all contributing nodes, pruning unconnected components
and other output maps. Graphs containing embedded bitmap graphics and SVGs are excluded
to keep graphs fully procedural. We further filter out graphs exceeding 128 nodes and flatten
hierarchical structures by inlining nested subgraphs and custom author dependencies into the main
graph. Non-atomic nodes from the standard Substance Designer library remain as external references.

6 Experiments

We build MultiMat models upon the QWen2.5VL (7B) foundation model (Bai et al., 2025). We train
and evaluate separate models for unconditional generation (cf. §6.1) and inverse procedural material
synthesis (cf. §6.2). Across all model variants, we maintain a consistent maximum sequence length
of 8 192 tokens. The training setup consists of 5 epochs using a learning rate of 5e−5 and a batch size
of 128. To ensure diversity in our generated outputs, we set the inference sampling parameters to a
temperature of 0.8 and a top-p value of 0.95. We provide examples in Figure 5 and Appendix A.

6.1 Evaluation of Unconditional Generation

For unconditional generation, the mixed conditioning variant, MultiMat (Mixed), embeds node
previews at 140 × 140 resolution, resulting in 25 patch embeddings per image. For the graph
conditioning variant, MultiMat (Graph), graph visualizations can utilize up to 6 144 tokens, with
larger images downscaled to accommodate this limit. We generate 100 outputs per model for
evaluation.

Baselines For text-only procedural material synthesis, VLMaterial represents the current state-of-
the-art approach. However, its Blender-specific training makes direct comparison with our method
difficult. We therefore create VLMaterial (SBS) by retraining a VLMaterial-style model on
our dataset for fair comparison. Since VLMaterial (SBS) does not receive any images in the
unconditional setting, we base it on the larger and more powerful text-only model QWen3 (8B; Yang
et al., 2025a), giving it a slight advantage over our models. While graphics program synthesis
research typically also benchmarks against proprietary large language models such as GPT-4o (OpenAI
et al., 2024) or Claude 4 (Anthropic, 2025), which have demonstrated competitive performance in
related domains (Belouadi et al., 2024a;b; 2025; Rodriguez et al., 2025), these models’ unfamiliarity
with CompactSBS and inability to produce valid SBS output preclude their inclusion as baselines.

Metrics Our multimodal task permits diverse evaluation schemes for automatic evaluation. To
evaluate the visual quality of generated materials, we compute the Kernel Inception Distance (KID;
Bińkowski et al., 2018), which compares the distribution of generated material maps with material
maps from our dataset. To detect degenerate low KID scores due to memorization of training data (a
legitimate concern given our relatively small dataset), we also calculate ROUGE-L scores (Lin, 2004)
between the CompactSBS representation of our generated materials and the training set (with masked
parameters). This metric computes the longest common subsequence and serves as an effective
memorization indicator (Hans et al., 2024). Notably, we specifically require consecutive subsequences
due to CompactSBS’s limited syntactic diversity, which could otherwise produce misleading matches.
To measure efficiency, we introduce the Node Error Ratio (NER), defined as the average ratio between
discarded nodes and the total number of generated nodes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Models DSim↑ CLIP↑ Style↓ KID↓ ROUGE-L↓ NER↓

VLMaterial (SBS) 31.344 65.678 3.211 14.976 1.621 16.933
MultiMat (Mixed) 34.922 66.737 3.199 3.675 2.194 12.388
MultiMat (Graph) 36.609 67.907 3.178 2.801 2.037 17.046
VLMaterial+ (SBS) 31.348 65.867 3.126 27.862
MultiMat+ (Mixed) 40.258 69.687 3.093 17.792
MultiMat+ (Graph) 40.367 70.114 3.046 14.886

Table 3: System-level scores × 100 for conditional (inverse) generation, without (top) and with
(bottom) parameter optimization. Bold and underlined values indicate the best and second-best scores
for each metric column, respectively. Arrows indicate metric directionality. ROUGE-L and NER
scores remain unchanged by parameter optimization and are shown only once. MultiMat (Graph)
and MultiMat+ (Graph) achieve the best overall performance.

Models KID↓ ROUGE-L↓ NER↓

VLMaterial (SBS) 14.155 3.641 14.846
MultiMat (Mixed) 6.752 2.195 8.923
MultiMat (Graph) 2.365 1.915 15.024

Table 2: System-level scores × 100 for unconditional gen-
eration. Bold and underlined values indicate the best and
second-best scores for each metric column, respectively.
Arrows indicate metric directionality. MultiMat (Graph)
achieves the best overall performance.

Results Table 2 presents the system-
level metric scores for our evaluation.
MultiMat (Graph) leads in visual
quality with the lowest KID score,
outperforming MultiMat (Mixed) by
over 4pp (percentage points) and VL-
Material (SBS) by more than 11pp.
This considerable gap in performance
suggests that the better the visual repre-
sentations are aligned with human cre-
ative workflows, the better the results—
an intuitive but important finding. All
models exhibit minimal memorization, with ROUGE-L scores showing that no more than 4% of
any generated sequence matches a contiguous segment from the training data. Nonetheless, both
MultiMat variants demonstrate approximately 1.5pp lower copying rates compared to VLMaterial
(SBS), suggesting slightly better generalization. Regarding efficiency, MultiMat (Mixed) excels with
the lowest NER, achieving a 6pp improvement over the other models. Both MultiMat (Graph) and
VLMaterial (SBS) show comparable NER scores around 15%. For MultiMat (Graph), these errors
are primarily due to OCR-like errors in reading node names and function types embedded as text in
graph images. In contrast, we attribute the errors in VLMaterial (SBS) to fundamental difficulties
in understanding graph structures. Despite these limitations, the error rates remain within acceptable
bounds for practical applications, and MultiMat (Graph) emerges as the best overall model.

6.2 Evaluation of Conditional Generation

As in prior work (Hu et al., 2023; Li et al., 2025a), we train inverse MultiMat variants that learn
to generate procedural materials from rendered images. These models follow the same training
procedure as their unconditional counterparts, with one key modification: each training example
is preceded by a 512 × 512 rendering of itself, which adds 324 additional image patches to the
model context. During inference, the model takes an image as input and generates a corresponding
procedural material. We reserve 100 examples from our data as held-out test data for evaluation.

Baselines Analogously to §6.1, we adapt VLMaterial for inverse rendering with SBS and use
it as a baseline. Since an image input is now required for VLMaterial (SBS), we also base it on
QWen2.5VL (7B) instead of QWen3 (8B) and train it using the same method as MultiMat.

Parameter Optimization To further refine generated materials, we apply gradient-based opti-
mization using differentiable rendering. This approach has proven effective for optimal parameter
estimation (Shi et al., 2020; Hu et al., 2022; Li et al., 2023a; Hu et al., 2023). We employ DiffMat (Shi
et al., 2020; Li et al., 2023a), a widely adopted differentiable renderer for Designer materials, to
optimize the generated graphs against the input images. Models using this refinement step are denoted
as MultiMat+ and VLMaterial,+ respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Metrics In addition to the metrics from §6.1, we evaluate reconstruction quality by rendering the
generated materials and comparing them to the input images using perceptual similarity metrics.
Specifically, we measure cosine similarity between CLIP image embeddings (Radford et al., 2021;
Hessel et al., 2021), compute Style Loss loss (Style; Gatys et al., 2016) as the L1 distance between
Gram matrices of VGG features, and calculate DreamSim (DSim; Fu et al., 2023), a learned perceptual
similarity metric designed to align with human judgments.

Results Table 3 presents the system-level metric scores for conditional evaluation. The perceptual
similarity metrics consistently demonstrate that MultiMat (Graph) achieves the highest fidelity to
input images, with MultiMat (Mixed) performing second-best and VLMaterial (SBS) ranking
last. For example, DreamSim scores are 36.609, 34.922, and 31.344, respectively, a ranking that
mirrors our unconditional evaluation results. Parameter optimization yields substantial improvements
in perceptual similarity, with MultiMat+ (Graph) and MultiMat+ (Mixed) showing average gains
of 6% and 8%, respectively. In contrast, VLMaterial+ (SBS) exhibits minimal improvement
(only 1%), suggesting its outputs deviate too far from the input for parameter optimization to be
effective. Interestingly, while parameter optimization improves perceptual similarity, KID scores
increase. This could occur because optimization aligns outputs more closely with the test set, which
represents only a subset of the training distribution, potentially increasing distance from the full
distribution. Nevertheless, both MultiMat and MultiMat+ variants outperform VLMaterial
(SBS) and VLMaterial+ (SBS) on KID by over 10pp, respectively. The remaining metrics reinforce
trends from unconditional evaluation. ROUGE-L scores do not exceed 2% (indicating minimal
memorization), and MultiMat (Mixed) produces the fewest errors. Overall, MultiMat (Graph) and
its optimized variant, MultiMat+ (Graph), deliver the strongest performance across metrics.

7 Analysis & Discussion

Our results show that model performance steadily improves as the degree of visualization of graphs
increases, with MultiMat (Graph) achieving the best results overall. This finding aligns with how
humans interact with procedural materials—through visual node graph interfaces—and validates
established UX design principles in this domain. The qualitative examples in Figure 5 further illustrate
this trend, with VLMaterial+ (SBS) struggling to generate faithful outputs, indicating that purely
text-based approaches are not ideal for expressive node graph systems like Designer. This limitation
persists even with more powerful base models, as our unconditional generation experiments confirm.
Beyond architectural improvements, our tree search algorithm enables more efficient graph generation;
without it, models may have to resort to sampling complete outputs for validation (the inference
approach used by previous methods), which is expensive. For instance, disabling tree search causes
NER of VLMaterial (SBS) to deteriorate further from 14.846 to 33.953, highlighting how our
search strategy can improve inference without further training.

8 Conclusion

We present MultiMat, a multimodal program synthesis framework and model suite that generates
procedural materials by incorporating visual feedback throughout the generation process. Our
key insight is that procedural material graphs are inherently visual-spatial programs, and treating
them as such leads to substantial improvements over text-only approaches. By conditioning on
visual intermediate states—either interleaved with text (mixed conditioning) or as complete graph
visualizations (graph conditioning)—our models achieve consistent improvements over text-only
baselines. Our incremental tree search algorithm further enhances generation efficiency by validating
nodes as they are created and backtracking upon errors. While we demonstrate MultiMat specifically
for procedural material synthesis, we hope its general principles will inspire further research at the
intersection of computer graphics, program synthesis, and multimodal AI.

Future Work The development of procedural material graph synthesis approaches is currently
constrained by limited training data availability. We plan to address this challenge through self-learning
techniques (He et al., 2020; Wei et al., 2021) that leverage our unconditional models to generate
synthetic supervised training data by rendering outputs and subsequently training conditional models
on this expanded data. Additionally, we aim to develop a unified model trained across multiple

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Input VLMaterial+ (SBS) MultiMat+ (Mixed) MultiMat+ (Graph)

Figure 5: Qualitative results for inverse procedural material modeling. The leftmost column shows
input materials from graphs filtered during preprocessing (e.g., due to excessive length), making these
particularly challenging test cases. Following Hu et al. (2023); Li et al. (2025a), we generate multiple
programs (𝑁 = 40) per model and select the result with the highest DreamSim score. MultiMat+

(Mixed) consistently outperforms VLMaterial+ (SBS), while MultiMat+ (Graph) achieves the best
results overall. Additional examples, including failure cases, are provided in Appendix A.

node graph systems to investigate potential transfer learning benefits (Pan & Yang, 2010). Beyond
methodological advances, our models offer promising practical applications: conditional models
could extract material graphs directly from photographic regions, while unconditional models could
power intelligent auto-completion features in user interfaces. Furthermore, our methodology naturally
extends to related domains such as vector graphics synthesis (Wu et al., 2023; Polaczek et al., 2025;
Rodriguez et al., 2025; Yang et al., 2025b), where visual editing interfaces are similarly prevalent.

Limitations Although our models and baselines use the same or similar base models, they generate
graphs in fundamentally different ways, resulting in considerable differences in training efficiency.
Text-only models like VLMaterial can process entire graphs as single training examples, whereas
MultiMat must adapt the visual context for each individual node, effectively processing training
examples one node at a time. This difference leads to much longer training times: while VLMaterial
completes training in a few hours on 8 × A100 80GB GPUs, MultiMat models require several days
on the same hardware despite being trained on a comparable number of tokens. However, this training
inefficiency does not affect inference, where both approaches achieve comparable generation speeds.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement

We ensure that all procedural materials collected for model training are properly licensed and explicitly
permit such usage, thereby preventing any copyright infringement. In adherence to this principle,
we specifically exclude Substance 3D Community Assets (Adobe, 2025b) from our training data
due to licensing restrictions. While we acknowledge the use of generative models in preparing this
manuscript, their application is strictly limited to writing assistance, such as paraphrasing, spell
checking, and synonym suggestions.

References
Adobe. Substance 3D Assets. https://substance3d.adobe.com/assets, 2025a.

Adobe. Substance 3D Community Assets. https://substance3d.adobe.com/
community-assets, 2025b.

Adobe. Substance 3D Designer. https://www.adobe.com/products/substance3d.html,
2025c.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, and 8 others. Flamingo: a visual language model for few-shot learning. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=EbMuimAbPbs.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. In 2013 Formal Methods in Computer-Aided Design, pp. 1–8, 2013. doi:
10.1109/FMCAD.2013.6679385.

Anthropic. System card: Claude Opus 4 & Claude Sonnet 4, 2025. URL https://www-cdn.
anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 others. Qwen2.5-VL technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

Jonas Belouadi, Anne Lauscher, and Steffen Eger. AutomaTikZ: Text-guided synthesis of scientific
vector graphics with TikZ. In The Twelfth International Conference on Learning Representations,
Vienna, Austria, May 2024a. URL https://openreview.net/forum?id=v3K5TVP8kZ.

Jonas Belouadi, Simone Paolo Ponzetto, and Steffen Eger. DeTikZify: Synthesizing graphics
programs for scientific figures and sketches with TikZ. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, Vancouver, Canada, December 2024b. URL https:
//openreview.net/forum?id=bcVLFQCOjc.

Jonas Belouadi, Eddy Ilg, Margret Keuper, Hideki Tanaka, Masao Utiyama, Raj Dabre, Steffen
Eger, and Simone Paolo Ponzetto. TikZero: Zero-shot text-guided graphics program synthesis. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Honolulu,
Hawaii, October 2025.

Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying
MMD GANs. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1lUOzWCW.

Blender. Blender. https://www.blender.org/, 2025.

Javier Cámara, Javier Troya, Lola Burgueño, and Antonio Vallecillo. On the assessment of generative
AI in modeling tasks: an experience report with chatgpt and UML. Softw. Syst. Model., 22
(3):781–793, 2023. doi: 10.1007/S10270-023-01105-5. URL https://doi.org/10.1007/
s10270-023-01105-5.

10

https://substance3d.adobe.com/assets
https://substance3d.adobe.com/community-assets
https://substance3d.adobe.com/community-assets
https://www.adobe.com/products/substance3d.html
https://openreview.net/forum?id=EbMuimAbPbs
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://arxiv.org/abs/2502.13923
https://openreview.net/forum?id=v3K5TVP8kZ
https://openreview.net/forum?id=bcVLFQCOjc
https://openreview.net/forum?id=bcVLFQCOjc
https://openreview.net/forum?id=r1lUOzWCW
https://openreview.net/forum?id=r1lUOzWCW
https://www.blender.org/
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.1007/s10270-023-01105-5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, and 39 others. Evaluating large language models trained on code, 2021.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and
Pushmeet Kohli. RobustFill: Neural program learning under noisy I/O. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 990–998. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/devlin17a.html.

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley. Texturing and
modeling - a procedural approach, Third Edition. Morgan Kaufmann series in computer graphics
and geometric modeling. Elsevier, 2003. ISBN 978-1-55860-848-1. doi: https://doi.org/10.5860/
choice.32-5129.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer
graphics programs from hand-drawn images. In Thirty-second Conference on Neural Infor-
mation Processing Systems, pp. 6062–6071, 2018. URL http://papers.nips.cc/paper/
7845-learning-to-infer-graphics-programs-from-hand-drawn-images.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. Write,
execute, assess: Program synthesis with a REPL. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/50d2d2262762648589b1943078712aa6-Paper.pdf.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc
Cary, Armando Solar-Lezama, and Joshua B. Tenenbaum. DreamCoder: bootstrapping inductive
program synthesis with wake-sleep library learning. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI 2021, pp.
835–850, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383912.
doi: 10.1145/3453483.3454080. URL https://doi.org/10.1145/3453483.3454080.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=hQwb-lbM6EL.

Stephanie Fu, Netanel Yakir Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
Phillip Isola. DreamSim: Learning new dimensions of human visual similarity using synthetic
data. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=DEiNSfh1k7.

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals. Synthesizing
programs for images using reinforced adversarial learning. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 1666–1675. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/ganin18a.html.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

Paul Guerrero, Miloš Hašan, Kalyan Sunkavalli, Radomír Měch, Tamy Boubekeur, and Niloy J. Mitra.
MatFormer: a generative model for procedural materials. ACM Trans. Graph., 41(4), July 2022.
ISSN 0730-0301. doi: 10.1145/3528223.3530173. URL https://doi.org/10.1145/3528223.
3530173.

Abhimanyu Hans, John Kirchenbauer, Yuxin Wen, Neel Jain, Hamid Kazemi, Prajwal Singhania,
Siddharth Singh, Gowthami Somepalli, Jonas Geiping, Abhinav Bhatele, and Tom Goldstein.
Be like a goldfish, don’t memorize! mitigating memorization in generative LLMs. In The

11

https://proceedings.mlr.press/v70/devlin17a.html
http://papers.nips.cc/paper/7845-learning-to-infer-graphics-programs-from-hand-drawn-images
http://papers.nips.cc/paper/7845-learning-to-infer-graphics-programs-from-hand-drawn-images
https://proceedings.neurips.cc/paper_files/paper/2019/file/50d2d2262762648589b1943078712aa6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/50d2d2262762648589b1943078712aa6-Paper.pdf
https://doi.org/10.1145/3453483.3454080
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=DEiNSfh1k7
https://proceedings.mlr.press/v80/ganin18a.html
https://doi.org/10.1145/3528223.3530173
https://doi.org/10.1145/3528223.3530173

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=DylSyAfmWs.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. Revisiting self-training for neural
sequence generation. In Proceedings of ICLR, 2020. URL https://openreview.net/forum?
id=SJgdnAVKDH.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
reference-free evaluation metric for image captioning. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 7514–7528, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.595. URL https://aclanthology.org/2021.emnlp-main.595.

Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier, and Valentin Deschaintre. Node graph
optimization using differentiable proxies. In ACM SIGGRAPH 2022 Conference Proceedings,
SIGGRAPH ’22, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393379. doi: 10.1145/3528233.3530733. URL https://doi.org/10.1145/3528233.
3530733.

Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier, and Valentin Deschaintre. Generating
procedural materials from text or image prompts. In ACM SIGGRAPH 2023 Conference Proceedings,
SIGGRAPH ’23, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9798400701597. doi: 10.1145/3588432.3591520. URL https://doi.org/10.1145/3588432.
3591520.

Nam Huynh and Beiyu Lin. Large language models for code generation: A comprehensive survey
of challenges, techniques, evaluation, and applications, 2025. URL https://arxiv.org/abs/
2503.01245.

Shreyas Kapur, Erik Jenner, and Stuart Russell. Diffusion on syntax trees for program synthesis.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=wN3KaUXA5X.

Peter Kulits, Haiwen Feng, Weiyang Liu, Victoria Fernandez Abrevaya, and Michael J. Black.
Re-thinking inverse graphics with large language models. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=u0eiu1MTS7.

Hugo Laurençon, Leo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building vision-
language models? In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=dtvJF1Vy2i.

Hugo Laurençon, Andrés Marafioti, Victor Sanh, and Léo Tronchon. Building and better understanding
vision-language models: insights and future directions, 2024. URL https://arxiv.org/abs/
2408.12637.

Beichen Li, Liang Shi, and Wojciech Matusik. End-to-end procedural material capture with proxy-free
mixed-integer optimization. ACM Transactions on Graphics (TOG), 42(4):1–15, 2023a.

Beichen Li, Yiwei Hu, Paul Guerrero, Milos Hasan, Liang Shi, Valentin Deschaintre, and Wojciech
Matusik. Procedural material generation with reinforcement learning. ACM Trans. Graph., 43(6),
November 2024. ISSN 0730-0301. doi: 10.1145/3687979. URL https://doi.org/10.1145/
3687979.

Beichen Li, Rundi Wu, Armando Solar-Lezama, Changxi Zheng, Liang Shi, Bernd Bickel, and
Wojciech Matusik. VLMaterial: Procedural material generation with large vision-language
models. In The Thirteenth International Conference on Learning Representations, 2025a. URL
https://openreview.net/forum?id=wHebuIb6IH.

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia LI, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier, Joao Monteiro, Nicolas Gontier, Ming-
Ho Yee, and 39 others. StarCoder: may the source be with you! Transactions on Machine Learning

12

https://openreview.net/forum?id=DylSyAfmWs
https://openreview.net/forum?id=DylSyAfmWs
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
https://aclanthology.org/2021.emnlp-main.595
https://doi.org/10.1145/3528233.3530733
https://doi.org/10.1145/3528233.3530733
https://doi.org/10.1145/3588432.3591520
https://doi.org/10.1145/3588432.3591520
https://arxiv.org/abs/2503.01245
https://arxiv.org/abs/2503.01245
https://openreview.net/forum?id=wN3KaUXA5X
https://openreview.net/forum?id=wN3KaUXA5X
https://openreview.net/forum?id=u0eiu1MTS7
https://openreview.net/forum?id=dtvJF1Vy2i
https://arxiv.org/abs/2408.12637
https://arxiv.org/abs/2408.12637
https://doi.org/10.1145/3687979
https://doi.org/10.1145/3687979
https://openreview.net/forum?id=wHebuIb6IH

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Research, 2023b. ISSN 2835-8856. URL https://openreview.net/forum?id=KoFOg41haE.
Reproducibility Certification.

Wen-Ding Li and Kevin Ellis. Is programming by example solved by LLMs? In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=xqc8yyhScL.

Wen-Ding Li, Darren Yan Key, and Kevin Ellis. Toward trustworthy neural program synthesis. In
ICLR 2025 Workshop on Human-AI Coevolution, 2025b. URL https://openreview.net/
forum?id=HPlvbIJGWy.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Ré mi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, and 7 others. Competition-level code generation with AlphaCode. Science,
378(6624):1092–1097, dec 2022. doi: 10.1126/science.abq1158. URL https://doi.org/10.
1126%2Fscience.abq1158.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://aclanthology.org/W04-1013/.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=w0H2xGHlkw.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis
Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil
Paul, and 47 others. StarCoder 2 and The Stack v2: The next generation, 2024. URL https:
//arxiv.org/abs/2402.19173.

Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin. Synthesizing natural
language to visualization (NL2VIS) benchmarks from NL2SQL benchmarks. In Proceedings
of the 2021 International Conference on Management of Data, SIGMOD ’21, pp. 1235–1247,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383431. doi:
10.1145/3448016.3457261. URL https://doi.org/10.1145/3448016.3457261.

Jock Mackinlay. Automating the design of graphical presentations of relational information. ACM
Trans. Graph., 5(2):110–141, April 1986. ISSN 0730-0301. doi: 10.1145/22949.22950. URL
https://doi.org/10.1145/22949.22950.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, and 400 others.
GPT-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, 2010. doi: 10.1109/TKDE.2009.191.

Emilio Parisotto, Abdel rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and
Pushmeet Kohli. Neuro-symbolic program synthesis. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=rJ0JwFcex.

Gustavo Patow and Xavier Pueyo. A survey of inverse rendering problems. Computer Graphics
Forum, 22(4):663–687, 2003. doi: https://doi.org/10.1111/j.1467-8659.2003.00716.x. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2003.00716.x.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From Theory to
Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition,
November 2016. ISBN 9780128006450.

13

https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=xqc8yyhScL
https://openreview.net/forum?id=xqc8yyhScL
https://openreview.net/forum?id=HPlvbIJGWy
https://openreview.net/forum?id=HPlvbIJGWy
https://doi.org/10.1126%2Fscience.abq1158
https://doi.org/10.1126%2Fscience.abq1158
https://aclanthology.org/W04-1013/
https://openreview.net/forum?id=w0H2xGHlkw
https://openreview.net/forum?id=w0H2xGHlkw
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://doi.org/10.1145/3448016.3457261
https://doi.org/10.1145/22949.22950
https://arxiv.org/abs/2410.21276
https://openreview.net/forum?id=rJ0JwFcex
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2003.00716.x

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Sagi Polaczek, Yuval Alaluf, Elad Richardson, Yael Vinker, and Daniel Cohen-Or. NeuralSVG:
An implicit representation for text-to-vector generation, 2025. URL https://arxiv.org/abs/
2501.03992.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/radford21a.html.

Juan A. Rodriguez, Abhay Puri, Shubham Agarwal, Issam H. Laradji, Pau Rodriguez, Sai Rajeswar,
David Vazquez, Christopher Pal, and Marco Pedersoli. StarVector: Generating scalable vector
graphics code from images and text. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 16175–16186, June 2025.

Steven F. Roth, John Kolojejchick, Joe Mattis, and Jade Goldstein. Interactive graphic design
using automatic presentation knowledge. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’94, pp. 112–117, New York, NY, USA, 1994. Association
for Computing Machinery. ISBN 0897916506. doi: 10.1145/191666.191719. URL https:
//doi.org/10.1145/191666.191719.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, and 6 others. Code LLaMA: Open foundation models for code, 2023.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. CSGNet:
Neural shape parser for constructive solid geometry. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp.
5515–5523. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00578. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Sharma_
CSGNet_Neural_Shape_CVPR_2018_paper.html.

Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir Mech, and
Wojciech Matusik. Match: Differentiable material graphs for procedural material capture. ACM
Transactions on Graphics (TOG), 39(6):1–15, 2020.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum,
and Jiajun Wu. Learning to infer and execute 3D shape programs. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=rylNH20qFQ.

Shengbang Tong, Ellis L Brown II, Penghao Wu, Sanghyun Woo, Adithya Jairam Iyer, Sai Charitha
Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, Xichen Pan, Rob Fergus,
Yann LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal
LLMs. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=Vi8AepAXGy.

Henrik Voigt, Kai Lawonn, and Sina Zarrieß. Plots made quickly: An efficient approach for generating
visualizations from natural language queries. In Nicoletta Calzolari, Min-Yen Kan, Veronique
Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pp. 12787–12793, Torino, Italia, May 2024. ELRA and ICCL. URL
https://aclanthology.org/2024.lrec-main.1119/.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training with
deep networks on unlabeled data. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=rC8sJ4i6kaH.

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. IconShop: Text-guided vector icon synthesis
with autoregressive transformers. ACM Trans. Graph., 42(6), December 2023. ISSN 0730-0301.
doi: 10.1145/3618364. URL https://doi.org/10.1145/3618364.

14

https://arxiv.org/abs/2501.03992
https://arxiv.org/abs/2501.03992
https://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.1145/191666.191719
https://doi.org/10.1145/191666.191719
http://openaccess.thecvf.com/content_cvpr_2018/html/Sharma_CSGNet_Neural_Shape_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sharma_CSGNet_Neural_Shape_CVPR_2018_paper.html
https://openreview.net/forum?id=rylNH20qFQ
https://openreview.net/forum?id=Vi8AepAXGy
https://aclanthology.org/2024.lrec-main.1119/
https://openreview.net/forum?id=rC8sJ4i6kaH
https://doi.org/10.1145/3618364

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yang Wu, Yao Wan, Hongyu Zhang, Yulei Sui, Wucai Wei, Wei Zhao, Guandong Xu, and
Hai Jin. Automated data visualization from natural language via large language models: An
exploratory study. Proc. ACM Manag. Data, 2(3), May 2024. doi: 10.1145/3654992. URL
https://doi.org/10.1145/3654992.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, and 41 others. Qwen3 technical report, 2025a. URL
https://arxiv.org/abs/2505.09388.

Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Fukun Yin, Jiaxu Zhang, Liao Wang, Gang Yu,
Xingjun Ma, and Yu-Gang Jiang. OmniSVG: A unified scalable vector graphics generation model,
2025b. URL https://arxiv.org/abs/2504.06263.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. National Science Review, 11(12):nwae403, 11 2024. ISSN
2095-5138. doi: 10.1093/nsr/nwae403. URL https://doi.org/10.1093/nsr/nwae403.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Wang Yongji, and
Jian-Guang Lou. Large language models meet NL2Code: A survey. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 7443–7464, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.411. URL https://aclanthology.org/2023.acl-long.411.

Haotian Zhang, Mingfei Gao, Zhe Gan, Philipp Dufter, Nina Wenzel, Forrest Huang, Dhruti
Shah, Xianzhi Du, Bowen Zhang, Yanghao Li, Sam Dodge, Keen You, Zhen Yang, Aleksei
Timofeev, Mingze Xu, Hong-You Chen, Jean-Philippe Fauconnier, Zhengfeng Lai, Haoxuan
You, and 4 others. MM1.5: Methods, analysis & insights from multimodal LLM fine-tuning.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=HVtu26XDAA.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, and 3 others. A survey of large
language models, 2025. URL https://arxiv.org/abs/2303.18223.

15

https://doi.org/10.1145/3654992
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2504.06263
https://doi.org/10.1093/nsr/nwae403
https://aclanthology.org/2023.acl-long.411
https://openreview.net/forum?id=HVtu26XDAA
https://openreview.net/forum?id=HVtu26XDAA
https://arxiv.org/abs/2303.18223

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Input VLMaterial+ (SBS) MultiMat+ (Mixed) MultiMat+

(Graph)

Figure 6: Representative failure cases from the same challenging subset in Figure 5. All models
struggle to reproduce the intricate patterns in these examples, though MultiMat+ (Graph) and
MultiMat+ (Mixed) still outperform VLMaterial+ (SBS).

A Additional Examples

Figure 6 complements Figure 5 by showcasing failure cases where our models struggle to produce
faithful outputs, though notably, the outputs from MultiMat+ (Graph) and MultiMat+ (Mixed) still
demonstrate superior representation of the input compared to VLMaterial (SBS). Beyond these
conditional generation examples, Figure 7 presents unconditional samples generated by MultiMat
(Graph), which exhibit high visual quality with realistic material properties. Adjacent to these
rendered materials, we visualize their underlying material graphs in the same format used as model
input. In Figure 8, we show a graph in CompactSBS representation to give an impression of the
structure of our format.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Render Graph

s0
uniform

0

s10
metallic

0

s1
uniform

0

s58
blend

0 0

1

2

s2
uniform

0

s100
switch

0 0

1

s3
bnw_spots_3

0

s11
blur

0 0

s14
blend

0 0

1

2

s15
blur_hq_grayscale

0 0

s33
warp

0 0

1

s46
directionalwarp

0 0

1

s50
directionalwarp

0 0

1

s51
directionalwarp

0 0

1

s109
blend

0 0

1

2
s4

white_noise

0

s60
blend

0 0

1

2

s63
slope_blur_grayscale_2

0 0

1

s5
shape

0

s12
transformation

0 0

s6
uniform

0

s59
blend

0 0

1

2

s7
shape

0

s13
transformation

0 0

s8
tile_generator

0 0

1

2

3

4

5

6

s16
levels

0 0

s9
splatter_circular

0 0

1

2

3

4

5

6

s17
tile_generator

0 0

1

2

3

4

5

6

s47
directionalwarp

0 0

1

s55
blend

0 0

1

2

s18
tile_generator

0 0

1

2

3

4

5

6

s19
blur_hq_grayscale

0 0

s74
blend

0 0

1

2

s36
warp

0 0

1

s20
non_uniform_blur_grayscale

0 0

1
s30
blend

0 0

1

2

s21
blur_hq_grayscale

0 0 s25
warp

0 0

1

s28
blend

0 0

1

2

s22
blur_hq_grayscale

0 0

s23
histogram_select

0 0

s24
slope_blur_grayscale_2

0 0

1

s29
tile_generator

0 0

1

2

3

4

5

6

s26
blur_hq_grayscale

0 0

s27
levels

0 0

s31
safe_transform_grayscale

0 0

s32
safe_transform_grayscale

0 0

s34
levels

0 0

s40
warp

0 0

1

s42
blend

0 0

1

2

s45
warp

0 0

1

s35
levels

0 0

s37
blur_hq_grayscale

0 0

s101
blend

0 0

1

2

s38
levels

0 0

s39
histogram_range

0 0

s41
histogram_range

0 0

s43
normal

0 0

s57
blend

0 0

1

2

s70
blend

0 0

1

2

s49
blend

0 0

1

2

s44
blur_hq_grayscale

0 0

s72
normal_combine

0 0

1

s48
histogram_select

0 0

s52
histogram_select

0 0

s53
histogram_select

0 0

s54
blur_hq_grayscale

0 0

s56
levels

0 0

s64
blend

0 0

1

2

s85
blend

0 0

1

2

s103
blend

0 0

1

2

s108
switch

0 0

1

s61
blur_hq_grayscale

0 0

s62
slope_blur_grayscale_2

0 0

1

s65
levels

0 0

s66
histogram_range

0 0

s67
histogram_range

0 0

s68
highpass_grayscale

0 0

s69
normal

0 0

s71
histogram_select

0 0

s73
histogram_range

0 0

s75
normal_invert

0 0

s78
multi_switch

0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

s76
height

0

s77
hsl

0 0

s79
levels

0 0

s80
normal_invert

0 0

s81
hsl

0 0

s82
normal_intensity

0 0

s83
levels

0 0

s84
normal

0

s86
hsl

0 0

s87
levels

0 0

s88
hsl

0 0

s89
levels

0 0

s90
hsl

0 0

s91
levels

0 0

s92
hsl

0 0

s93
levels

0 0

s94
hsl

0 0

s95
levels

0 0

s96
hsl

0 0

s97
levels

0 0

s98
hsl

0 0

s99
levels

0 0
s102
levels

0 0

s104
hsl

0 0

s105
levels

0 0

s106
hsl

0 0

s107
levels

0 0

s110
hsl

0 0

s111
levels

0 0

s112
baseColor

0

s0
uniform

0

s9
metallic

0

s1
uniform

0 s67
blend

0 0

1

2

s2
white_noise

0

s45
blend

0 0

1

2

s48
slope_blur_grayscale_2

0 0

1

s3
bnw_spots_3

0

s10
blend

0 0

1

2

s11
blur

0 0

s41
directionalwarp

0 0

1

s4
uniform

0

s5
bnw_spots_3

0

s12
blur_hq_grayscale

0 0

s23
warp

0 0

1
s6

tile_generator

0 0

1

2

3

4

5

6

s13
levels

0 0

s7
splatter_circular

0 0

1

2

3

4

5

6

s14
blend

0 0

1

2

s8
starburst

0

s53
blend

0 0

1

2

s42
directionalwarp

0 0

1

s25
warp

0 0

1

s15
non_uniform_blur_grayscale

0 0

1

s21
blend

0 0

1

2

s63
blend

0 0

1

2

s16
tile_generator

0 0

1

2

3

4

5

6

s17
slope_blur_grayscale_2

0 0

1

s18
blur_hq_grayscale

0 0

s20
warp

0 0

1

s22
blend

0 0

1

2

s19
levels

0 0

s24
safe_transform_grayscale

0 0

s26
levels

0 0

s30
warp

0 0

1

s31
blend

0 0

1

2

s27
histogram_range

0 0

s28
blend

0 0

1

2

s40
blend

0 0

1

2

s29
blur_hq_grayscale

0 0

s32
levels

0 0

s33
levels

0 0

s34
non_uniform_blur_grayscale

0 0

1

s35
blur_hq_grayscale

0 0

s38
blend

0 0

1

2s36
slope_blur_grayscale_2

0 0

1

s37
sharpen

0 0

s39
histogram_range

0 0
s43

blur_hq_grayscale

0 0

s44
blend

0 0

1

2

s46
blur_hq_grayscale

0 0

s49
blend

0 0

1

2

s47
slope_blur_grayscale_2

0 0

1

s50
levels

0 0

s51
histogram_select

0 0

s52
histogram_range

0 0

s54
highpass_grayscale

0 0

s56
blend

0 0

1

2

s55
blend

0 0

1

2

s57
invert_grayscale

0 0

s59
histogram_select

0 0

s60
histogram_select

0 0

s58
hsl

0 0

s61
levels

0 0

s62
levels

0 0

s64
levels

0 0

s65
histogram_range

0 0 s66
normal

0 0

s68
blend

0 0

1

2

s69
normal_intensity

0 0

s70
hsl

0 0

s71
roughness

0

s72
normal

0

s73
levels

0 0

s74
baseColor

0

s0
uniform

0

s101
blend

0 0

1

2

s1
uniform

0

s2
uniform

0

s93
blend

0 0

1

2

s3
uniform

0

s4
uniform

0

s100
blend

0 0

1

2

s5
uniform

0

s97
blend

0 0

1

2

s6
fractal_sum_base_2

0

s68
multi_directional_warp_grayscale

0 0

1

s7
shape

0

s19
directionalwarp

0 0

1

s8
gradient_linear_2

0

s38
blend

0 0

1

2

s9
anisotropic_noise

0

s28
blend

0 0

1

2

s10
shape

0

s20
transformation

0 0

s11
bnw_spots_3

0

s21
transformation

0 0

s12
gradient_linear_2

0

s30
blend

0 0

1

2

s13
tile_generator

0 0

1

2

3

4

5

6

s22
levels

0 0

s14
fibers_1

0

s23
transformation

0 0

s15
anisotropic_noise

0

s24
transformation

0 0

s16
shape

0

s25
transformation

0 0

s17
shape

0

s26
transformation

0 0 s18
gradient_linear_2

0

s27
non_uniform_blur_grayscale

0 0

1

s29
levels

0 0

s43
blend

0 0

1

2
s47
blend

0 0

1

2

s37
directionalwarp

0 0

1

s41
blend

0 0

1

2

s35
blend

0 0

1

2

s31
levels

0 0

s36
blend

0 0

1

2

s32
transformation

0 0

s33
levels

0 0

s34
levels

0 0

s49
blend

0 0

1

2

s39
transformation

0 0

s40
levels

0 0

s46
directionalwarp

0 0

1

s42
transformation

0 0

s44
transformation

0 0

s45
transformation

0 0 s48
blend

0 0

1

2

s54
blend

0 0

1

2

s50
tile_generator

0 0

1

2

3

4

5

6

s51
levels

0 0

s52
tile_generator

0 0

1

2

3

4

5

6

s53
safe_transform_grayscale

0 0

s55
safe_transform_grayscale

0 0

s71
blend

0 0

1

2

s56
transformation

0 0

s57
transformation

0 0

s75
blend

0 0

1

2

s58
transformation

0 0

s60
blend

0 0

1

2s59
transformation

0 0 s61
blend

0 0

1

2

s62
transformation

0 0

s65
blend

0 0

1

2

s63
transformation

0 0

s64
safe_transform_grayscale

0 0

s66
transformation

0 0

s67
transformation

0 0 s69
levels

0 0

s70
levels

0 0

s82
blend

0 0

1

2

s72
sharpen

0 0

s73
tile_generator

0 0

1

2

3

4

5

6

s74
tile_generator

0 0

1

2

3

4

5

6

s76
safe_transform_grayscale

0 0

s77
levels

0 0

s78
levels

0 0

s79
levels

0 0

s80
levels

0 0

s81
levels

0 0

s91
blend

0 0

1

2

s105
blend

0 0

1

2

s83
blend

0 0

1

2

s84
blend

0 0

1

2

s85
transformation

0 0

s89
blend

0 0

1

2

s95
switch_grayscale

0 0

1

s86
safe_transform_grayscale

0 0

s87
levels

0 0

s88
levels

0 0

s90
levels

0 0

s92
levels

0 0

s96
non_uniform_blur_grayscale

0 0

1

s94
levels

0 0

s98
levels

0 0

s99
levels

0 0

s102
blur_hq_grayscale

0 0

s103
hsl

0 0

s104
metallic

0

s106
levels

0 0

s107
levels

0 0

s108
baseColor

0

s109
normal

0 0

s110
histogram_range

0 0

s111
normal

0

s112
height

0

s0
uniform

0

s12
metallic

0

s1
uniform

0

s88
blend

0 0

1

2 s89
blend

0 0

1

2

s2
uniform

0

s87
blend

0 0

1

2

s3
shape

0

s13
levels

0 0

s21
blend

0 0

1

2 s4
uniform

0

s84
blend

0 0

1

2

s5
clouds_2

0

s14
blur_hq_grayscale

0 0

s6
uniform

0 s15
hsl

0 0

s85
blend

0 0

1

2

s7
bnw_spots_3

0

s16
blur_hq_grayscale

0 0

s17
slope_blur_grayscale_2

0 0

1
s42
warp

0 0

1

s8
perlin_noise

0

s37
warp

0 0

1

s9
shape

0

s18
curve

0 0

s26
blend

0 0

1

2

s10
gradient_linear_3

0

s19
curve

0 0

s11
shape

0 s20
transformation

0 0

s23
levels

0 0

s22
levels

0 0

s72
warp

0 0

1

s86
blend

0 0

1

2

s38
warp

0 0

1

s24
levels

0 0

s25
blend

0 0

1

2

s27
invert_grayscale

0 0

s28
curve

0 0

s46
slope_blur_grayscale_2

0 0

1

s29
safe_transform_grayscale

0 0

s33
blend

0 0

1

2

s30
transformation

0 0

s32
tile_generator

0 0

1

2

3

4

5

6

s31
tile_generator

0 0

1

2

3

4

5

6

s68
blend

0 0

1

2

s71
warp

0 0

1

s34
blend

0 0

1

2 s35
blur_hq_grayscale

0 0

s75
blend

0 0

1

2

s36
levels

0 0

s39
blur_hq_grayscale

0 0

s40
tile_generator

0 0

1

2

3

4

5

6

s41
levels

0 0

s43
levels

0 0

s44
histogram_scan

0 0

s45
histogram_select

0 0

s47
invert_grayscale

0 0

s48
blur_hq_grayscale

0 0

s49
invert_grayscale

0 0

s52
blend

0 0

1

2

s53
blend

0 0

1

2

s56
blend

0 0

1

2

s60
blend

0 0

1

2

s50
histogram_scan

0 0

s51
slope_blur_grayscale_2

0 0

1

s58
blend

0 0

1

2

s83
blend

0 0

1

2

s69
blend

0 0

1

2

s54
levels

0 0

s55
invert_grayscale

0 0

s63
blend

0 0

1

2

s57
blur_hq_grayscale

0 0

s59
levels

0 0

s61
blur_hq_grayscale

0 0

s64
blend

0 0

1

2

s67
blend

0 0

1

2

s62
histogram_scan

0 0

s65
histogram_scan

0 0

s66
invert_grayscale

0 0

s79
blend

0 0

1

2

s70
blend

0 0

1

2

s73
histogram_range

0 0

s74
blend

0 0

1

2

s76
normal

0 0

s77
histogram_range

0 0

s78
auto_levels

0 0

s80
normal

0

s81
height

0

s82
invert_grayscale

0 0

s90
hsl

0 0

s91
levels

0 0

s92
baseColor

0

s0
uniform

0

s13
metallic

0

s1
uniform

0
s14
hsl

0 0

s54
blend

0 0

1

2

s63
blend

0 0

1

2

s2
uniform

0

s51
blend

0 0

1

2

s3
bnw_spots_2

0

s33
directionalwarp

0 0

1

s35
blend

0 0

1

2

s37
directionalwarp

0 0

1

s4
clouds_2

0

s15
levels

0 0s18
transformation

0 0

s22
levels

0 0

s5
uniform

0

s49
blend

0 0

1

2
s57
switch

0 0

1

s6
perlin_noise

0 s29
blend

0 0

1

2

s7
cells_4

0 0

s16
dirmotionblur

0 0

s8
crystal_1

0

s17
blur_hq_grayscale

0 0

s9
uniform

0

s45
blend

0 0

1

2

s10
directional_noise_2

0

s19
transformation

0 0

s20
transformation

0 0

s21
transformation

0 0

s28
directionalwarp

0 0

1

s39
blend

0 0

1

2

s11
uniform

0

s12
gradient_linear_1

0

s23
curve

0 0

s60
blend

0 0

1

2

s46
blend

0 0

1

2

s24
levels

0 0

s25
directionalwarp

0 0

1

s26
directionalwarp

0 0

1

s40
directionalwarp

0 0

1

s43
blend

0 0

1

2

s27
directionalwarp

0 0

1

s44
blend

0 0

1

2

s31
transformation

0 0

s38
directionalwarp

0 0

1

s30
transformation

0 0

s32
blend

0 0

1

2

s34
blur_hq_grayscale

0 0

s36
levels

0 0

s48
blend

0 0

1

2

s41
blend

0 0

1

2

s42
gradient

0 0
s47
blend

0 0

1

2

s50
histogram_scan

0 0

s58
blend

0 0

1

2

s52
invert_grayscale

0 0

s53
levels

0 0

s55
switch_grayscale

0 0

1

s56
invert_grayscale

0 0

s65
blend

0 0

1

2

s59
normal

0 0

s61
roughness

0

s62
levels

0 0

s64
normal

0

s66
hsl

0 0

s67
levels

0 0

s68
baseColor

0

s0
uniform

0

s7
metallic

0

s1
uniform

0

s8
hsl

0 0

s62
blend

0 0

1

2

s2
perlin_noise_zoom

0

s9
transformation

0 0

s12
transformation

0 0

s22
directionalwarp

0 0

1

s3
fractal_sum_1

0

s21
blend

0 0

1

2

s4
bnw_spots_2

0

s10
blur

0 0

s11
transformation

0 0
s32
blend

0 0

1

2

s5
dirt_1

0

s24
blend

0 0

1

2

s29
blend

0 0

1

2

s64
blend

0 0

1

2

s6
creased

0

s13
gradient

0 0

s14
hsl

0 0

s26
blend

0 0

1

2

s28
blend

0 0

1

2

s25
directionalwarp

0 0

1
s27

directionalwarp

0 0

1

s16
transformation

0 0

s18
blur

0 0

s15
hsl

0 0
s17
hsl

0 0
s19
hsl

0 0

s20
hsl

0 0 s36
blend

0 0

1

2

s23
gradient

0 0

s46
blend

0 0

1

2

s30
levels

0 0

s31
levels

0 0

s33
histogram_scan

0 0

s34
blend

0 0

1

2

s35
blend

0 0

1

2

s41
blend

0 0

1

2

s49
blend

0 0

1

2

s37
blend

0 0

1

2

s50
blend

0 0

1

2

s38
histogram_scan

0 0

s39
gradient

0 0 s40
levels

0 0

s43
blend

0 0

1

2

s42
blend

0 0

1

2

s55
blend

0 0

1

2

s120
blend

0 0

1

2

s44
histogram_scan

0 0

s45
histogram_scan

0 0

s47
histogram_scan

0 0

s48
histogram_scan

0 0

s51
hsl

0 0

s52
transformation

0 0

s53
levels

0 0

s54
levels

0 0

s57
blend

0 0

1

2

s58
blend

0 0

1

2

s69
blend

0 0

1

2

s76
blend

0 0

1

2

s77
blend

0 0

1

2

s79
blend

0 0

1

2

s87
blend

0 0

1

2

s89
blend

0 0

1

2

s90
blend

0 0

1

2

s91
blend

0 0

1

2

s92
blend

0 0

1

2

s93
blend

0 0

1

2

s94
blend

0 0

1

2

s99
blend

0 0

1

2

s102
blend

0 0

1

2

s104
blend

0 0

1

2

s108
blend

0 0

1

2

s110
blend

0 0

1

2

s115
blend

0 0

1

2

s118
blend

0 0

1

2

s122
blend

0 0

1

2

s127
blend

0 0

1

2

s59
blend

0 0

1

2

s56
blend

0 0

1

2

s60
blend

0 0

1

2

s63
blend

0 0

1

2

s68
blend

0 0

1

2

s71
blend

0 0

1

2

s100
blend

0 0

1

2

s106
blend

0 0

1

2

s113
blend

0 0

1

2

s95
blend

0 0

1

2

s61
histogram_scan

0 0

s65
hsl

0 0

s66
hsl

0 0

s67
histogram_scan

0 0

s70
levels

0 0

s74
blend

0 0

1

2

s72
hsl

0 0

s73
levels

0 0

s75
blend

0 0

1

2

s78
hsl

0 0
s80
hsl

0 0

s81
levels

0 0

s82
baseColor

0

s83
histogram_range

0 0

s84
normal

0 0

s85
height

0

s86
levels

0 0 s88
levels

0 0

s97
blend

0 0

1

2

s96
histogram_range

0 0

s98
roughness

0

s101
hsl

0 0
s103

hsl

0 0

s105
hsl

0 0

s107
hsl

0 0 s109
hsl

0 0

s111
sharpen

0 0

s112
histogram_scan

0 0

s114
hsl

0 0 s116
hsl

0 0

s117
hsl

0 0

s119
hsl

0 0 s121
histogram_range

0 0

s123
gradient

0 0

s124
levels

0 0

s125
hsl

0 0

s126
roughness

0

Figure 7: Example materials generated unconditionally by MultiMat (Graph), shown alongside their
corresponding procedural graphs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

variables:
contrast: 0.0
fabric_color: [0.94, 0.79, 0.69]
fabric_metallic: 0.0
fabric_roughness: 0.23
height_position: 0.5
height_range: 1.0
hue_shift: 0.0
luminosity: 0.5
normal_format: 0
normal_intensity: 0.5
saturation: 0.5
s0:
function: uniform
params:
absolute:
colorswitch: false
outputcolor:
f0:
function: get_float1
params:
get_float1: fabric_metallic

s1:
function: uniform
params:
absolute:
colorswitch: false
outputcolor:
f0:
function: get_float1
params:
get_float1: fabric_roughness

outputsize: [4, 4]
s2:
function: uniform
params:
absolute:
colorswitch: false
outputcolor: [0.5, 0.5, 0.5, 1.0]
outputsize: [4, 4]

s3:
function: uniform
params:
absolute:
outputcolor:
f0:
function: get_float3
params:
get_float3: fabric_color

f1:
function: const_float1
params:
const_float1: 1.0

f2:
function: vector4
connections:
componentsin: f0
componentslast: f1

outputsize: [4, 4]
s4:
function: tile_generator
dependency:

sbs://pattern_tile_generator.sbs
params:
absolute:
pattern: 4
scale: 2.0
interstice: [0.64, 0.0, 0.0, 0.0]
blending_mode: 2
rotation: 0.05
luminance_random: 0.55
y_amount: 200
x_amount: 150
position_offset: 0.5
vertical_offset: true

s5:
function: fractal_sum_base_2
dependency:

sbs://noise_fractal_sum_base.sbs
s6:
outputs:
metallic: RGBA
connections:
inputNodeOutput:
node: s0
id: output

s7:
function:

multi_directional_warp_grayscale
dependency:

sbs://multi_directional_warp.sbs
connections:
input:
node: s4
id: output
intensity_input:
node: s5
id: output

params:
absolute:
intensity: 3.25

s8:
function: transformation
connections:
input1:
node: s7
id: output

params:
absolute:
offset: [0.38, 0.54]
matrix22: [-1.0, 0.0, 0.0, 1.0]

s9:
function: blend
connections:
destination:
node: s7
id: output
source:
node: s8
id: output

params:
absolute:
blendingmode: MAX

s10:
function: safe_transform_grayscale
dependency: sbs://safe_transform.sbs
connections:
input:
node: s9
id: output

params:

absolute:
rotation: 0.25
tile: uU_vV

s11:
function: blend
connections:
destination:
node: s2
id: output
source:
node: s10
id: output

params:
absolute:
blendingmode: ADD
opacitymult: 0.2
format: 1
parent:
outputsize: [0, 0]

s12:
function: levels
connections:
input1:
node: s10
id: output

params:
absolute:
levelinlow: [0.02, 0.02, 0.02, 0.0]
levelinhigh: [0.95, 0.95, 0.95, 1.0]
leveloutlow: [1.0, 1.0, 1.0, 1.0]
levelouthigh: [0.0, 0.0, 0.0, 0.0]
levelinmid: [0.41, 0.41, 0.41, 0.5]

s13:
function: highpass_grayscale
dependency: sbs://highpass.sbs
connections:
Source:
node: s10
id: output

params:
absolute:
Radius: 0.1

s14:
function: normal
connections:
input1:
node: s11
id: output

params:
absolute:
intensity:
f0:
function: get_float1
params:
get_float1: normal_intensity

f1:
function: const_float1
params:
const_float1: 3.0

f2:
function: mul
connections:
a: f0
b: f1

inversedy:
f0:
function: get_integer1
params:
get_integer1: normal_format

f1:
function: const_int1
params:
const_int1: 1

f2:
function: eq
connections:
a: f0
b: f1

input2alpha: false
s15:
function: histogram_range
dependency: sbs://histogram_range.sbs
connections:
input:
node: s11
id: output

params:
absolute:
range:
f0:
function: get_float1
params:
get_float1: height_range

position:
f0:
function: get_float1
params:
get_float1: height_position

s16:
function: blend
connections:
destination:
node: s1
id: output
source:
node: s12
id: output

params:
absolute:
blendingmode: SCREEN
opacitymult: 0.15
parent:
outputsize: [0, 0]

s17:
function: levels
connections:
input1:
node: s13
id: Highpass

params:
absolute:
levelinlow: [0.33, 0.33, 0.33, 0.0]
levelinhigh: [0.61, 0.61, 0.61, 1.0]
leveloutlow: [1.0, 1.0, 1.0, 1.0]
levelouthigh: [0.0, 0.0, 0.0, 0.0]

s18:
outputs:

normal: RGBA
connections:
inputNodeOutput:
node: s14
id: output

s19:
outputs:
height: RGBA
connections:
inputNodeOutput:
node: s15
id: output

s20:
outputs:
roughness: RGBA
connections:
inputNodeOutput:
node: s16
id: output

s21:
function: blend
connections:
destination:
node: s3
id: output
opacity:
node: s17
id: output
source:
node: s3
id: output

params:
absolute:
blendingmode: MULTIPLY
opacitymult: 0.35
parent:
outputsize: [0, 0]

s22:
function: hsl
connections:
input1:
node: s21
id: output

params:
parent:
hue:
f0:
function: get_float1
params:
get_float1: hue_shift

f1:
function: const_float1
params:
const_float1: 0.5

f2:
function: mul
connections:
a: f0
b: f1

saturation:
f0:
function: get_float1
params:
get_float1: saturation

luminosity:
f0:
function: get_float1
params:
get_float1: luminosity

s23:
function: levels
connections:
input1:
node: s22
id: output

params:
parent:
levelinlow:
f0:
function: const_float1
f1:
function: const_float1
params:
const_float1: 0.5

f2:
function: get_float1
params:
get_float1: contrast

f3:
function: max
connections:
a: f2
b: f0

f4:
function: mul
connections:
a: f3
b: f1

f5:
function: vector2
connections:
componentsin: f4
componentslast: f4

f6:
function: vector2
connections:
componentsin: f4
componentslast: f0

f7:
function: vector4
connections:
componentsin: f5
componentslast: f6

levelinhigh:
f0:
function: const_float1
params:
const_float1: 1.0

f1:
function: const_float1
params:
const_float1: 0.5

f2:
function: const_float1
f3:
function: get_float1
params:

get_float1: contrast
f4:
function: max
connections:
a: f3
b: f2

f5:
function: mul
connections:
a: f4
b: f1

f6:
function: sub
connections:
a: f0
b: f5

f7:
function: vector2
connections:
componentsin: f6
componentslast: f6

f8:
function: vector2
connections:
componentsin: f6
componentslast: f0

f9:
function: vector4
connections:
componentsin: f7
componentslast: f8

leveloutlow:
f0:
function: const_float1
f1:
function: const_float1
params:
const_float1: 0.5

f2:
function: get_float1
params:
get_float1: contrast

f3:
function: min
connections:
a: f2
b: f0

f4:
function: abs
connections:
a: f3

f5:
function: mul
connections:
a: f4
b: f1

f6:
function: vector2
connections:
componentsin: f5
componentslast: f5

f7:
function: vector2
connections:
componentsin: f5
componentslast: f0

f8:
function: vector4
connections:
componentsin: f6
componentslast: f7

levelouthigh:
f0:
function: const_float1
params:
const_float1: 1.0

f1:
function: const_float1
params:
const_float1: 0.5

f2:
function: const_float1
f3:
function: get_float1
params:
get_float1: contrast

f4:
function: min
connections:
a: f3
b: f2

f5:
function: abs
connections:
a: f4

f6:
function: mul
connections:
a: f5
b: f1

f7:
function: sub
connections:
a: f0
b: f6

f8:
function: vector2
connections:
componentsin: f7
componentslast: f7

f9:
function: vector2
connections:
componentsin: f7
componentslast: f0

f10:
function: vector4
connections:
componentsin: f8
componentslast: f9

s24:
outputs:
baseColor: RGBA
connections:
inputNodeOutput:
node: s23
id: output

Figure 8: Complete example of a graph in CompactSBS format. This listing shows the full
representation of the material partially illustrated in Figure 3.

18

