Under review as a conference paper at ICLR 2026

MuLTIMAT: MULTIMODAL PROGRAM SYNTHESIS FOR PRrO-
CEDURAL MATERIALS USING LARGE MULTIMODAL MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Material node graphs are programs that generate the 2D channels of procedural
materials, including geometry such as roughness and displacement maps, and
reflectance such as albedo and conductivity maps. They are essential in computer
graphics for representing the appearance of virtual 3D objects parametrically and
at arbitrary resolution. In particular, their directed acyclic graph structures and
intermediate states provide an intuitive understanding and workflow for interactive
appearance modeling. Creating such graphs is a challenging task and typically
requires professional training. While recent neural program synthesis approaches
attempt to simplify this process, they solely represent graphs as fextual programs,
failing to capture the inherently visual-spatial nature of node graphs that makes them
accessible to humans. To address this gap, we present MULTIMAT, a multimodal
program synthesis framework that leverages large multimodal models to process
both visual and textual graph representations for improved generation of procedural
material graphs. We train our models on a new dataset of production-quality
procedural materials and combine them with a constrained tree search inference
algorithm that ensures syntactic validity while efficiently navigating the program
space. Our experimental results show that our multimodal program synthesis
method is more efficient in both unconditional and conditional graph synthesis
with higher visual quality and fidelity than text-only baselines, establishing new
state-of-the-art performance.

1 INTRODUCTION

Procedural materials have become increasingly important in modern 3D content creation, offering
artists greater control and flexibility in designing surface appearances for digital assets. Unlike
traditional image-based textures, which are constrained by fixed resolutions and limited editability, pro-
cedural material modeling tools like Adobe Substance Designer (Adobe, 2025¢) or Blender (Blender,
2025) leverage node-based graphs to generate textures programmatically. This enables resolution-
independent execution, high-level parametric control, and non-destructive editing workflows that
have proven valuable in industries such as game development, film production, and VR/AR appli-
cations (Ebert et al., 2003). More specifically, a procedural material is defined as a directed graph
where nodes represent texture generators (e.g., noise functions, patterns) or filtering operations (e.g.,
blurs, color adjustments), and edges encode the flow of data between these operations, ultimately
producing the texture maps required by physically-based rendering (PBR) models (Pharr et al., 2016)
(cf. Figure 1). However, the complexity of crafting these procedural material graphs presents a
substantial barrier to entry, creating a pressing need for automated and semi-automated approaches to
support material artists at all levels of proficiency.

With recent advances in neural program synthesis (Huynh & Lin, 2025), procedural material synthesis
has become increasingly feasible. MaTForRMER pioneered this direction with a multi-stage transformer-
based model for unconditional generation with Adobe Substance Designer (Guerrero et al., 2022).
Building on this foundation, Hu et al. (2023) extended the approach to support conditional synthesis,
enabling applications such as inverse rendering (Patow & Pueyo, 2003), i.e., generating procedural
materials that match the appearance of captured or rendered images. More recently, VLMATERIAL
demonstrated that large language models (Zhao et al., 2025) can effectively perform end-to-end
procedural material synthesis (Li et al., 2025a). However, these approaches share a fundamental
limitation: they generate node graphs as text-only programs without access to visual feedback during

Under review as a conference paper at ICLR 2026

e Rendering
Material u Engine
Engine

Parameter Set
Material Maps - Mesh

Rendering
"""" o . Engine

Nodes Procedural Material Graph

Figure 1: Procedural materials offer powerful control over the appearance of 3D objects through a
few high-level parameters. Here, a production-grade example (left) with the images obtained using
two distinct parameter sets A and B (right).

synthesis. This contrasts sharply with how human artists work, who create procedural materials
by manipulating node graphs through an arguably more intuitive visual interface, as illustrated in
Figure 1 (left). Without visual feedback, models must rely solely on textual representations to reason
about complex spatial relationships and visual outcomes, a task that becomes increasingly difficult
as material complexity grows. To address this limitation, we propose a novel multimodal program
synthesis paradigm based on large multimodal models (Yin et al., 2024) that incorporates visual
feedback throughout the generation process, more closely mirroring human creative workflows. We
demonstrate that this approach, to which we refer as MuLTIMAT, outperforms previous state-of-the-art
methods (cf. §6). Our key contributions are as follows:

1. We introduce MULTIMAT, a novel procedural material synthesis approach that incorporates
visualizations of intermediate graphs, including node states, into its context. This multimodal
feedback loop improves material quality substantially compared to text-only baselines.

2. Investigating intermediate states enables real-time validation of each generated node. This
allows us to develop a tree search algorithm that backtracks upon encountering invalid states,
enabling more efficient inference than prior methods, which often produce invalid graphs.

3. We implement a transpiler that converts between Adobe Substance Designer formats and
a compact representation suitable for language modeling while supporting the complete
feature set. This enables training on larger datasets and the generation of more complex
materials than previous approaches, which examined only limited subsets of Designer’s
capabilities.

2 REeLATED WORK

Large Language Models for Program Synthesis Our work builds upon recent advances in neural
program synthesis (Parisotto et al., 2017; Devlin et al., 2017; Ellis et al., 2021). Traditional program
synthesizers require formal specifications and employ search or logical derivation to produce programs
that provably satisfy these specifications (Alur et al., 2013). Recently, large language models have
demonstrated impressive capabilities in this domain (Huynh & Lin, 2025; Li et al., 2025b; Lozhkov
et al., 2024; Li et al., 2023b; Roziere et al., 2023; Fried et al., 2023; Li et al., 2022; Chen et al.,
2021). However, current research predominantly targets high-resource programming languages
such as Python, Java, and JavaScript (Zan et al., 2023; Huynh & Lin, 2025). In contrast, our work
synthesizes graphics programs, which pose unique challenges due to domain-specific requirements
and considerable data scarcity, establishing it as a distinct research area.

Graphics Program Synthesis Deep learning approaches have shown strong performance in
synthesizing graphics programs that compile to visual outputs (Ellis et al., 2018; 2019; Ganin et al.,
2018). This progress has been accelerated by the emergence of large multimodal models, particularly
vision-language models that bridge visual and textual domains (Alayrac et al., 2022; Liu et al., 2023;
Belouadi et al., 2024b; Kulits et al., 2024; Li & Ellis, 2024; Kapur et al., 2025). The field encompasses
both controlled experimental settings using domain-specific languages (Ellis et al., 2018; Tian et al.,
2019; Sharma et al., 2018; Camara et al., 2023; Kulits et al., 2024; Kapur et al., 2025) and practical
applications. Notable examples include systems for generating scientific figures using TikZ (Belouadi
et al., 2024a;b; 2025; Laurencon et al., 2024; Laurencon et al., 2024; Tong et al., 2024; Zhang et al.,

Under review as a conference paper at ICLR 2026

- i/+
ultimodal G /1 i ' Material
Program s Material Engine

Tree T~ Engine T
G/1 Rende?rmg
Valid Engine
% New Node op | inished Parameter L
Definition v, Transpiler Optimization | | | Procedural .
I Invalid Material
G_ /1
S Program
Generate Validate Output

Figure 2: Architecture overview of MuLTIMAT during inference. The system constructs a multimodal
program tree 7~ by iteratively generating node definitions. At each step ¢, the system derives a graph G,
of valid nodes along with corresponding intermediate outputs I; by traversing 7, which may contain
both valid and invalid nodes, to generate the next node v;;;. When transpilation and execution succeed,
the system advances with updated graph G, and outputs /.. If errors occur, it reverts to a previous
state (G <y, I<;). The generation process initiates from either an input image or unconditionally using
a beginning-of-sequence token (<bos>). Following optional parameter optimization (cf. §6.2), the
final procedural material can be applied to any target geometry for rendering.

2025) and automating data visualization (Mackinlay, 1986; Roth et al., 1994; Luo et al., 2021; Wu
et al., 2024; Voigt et al., 2024). However, these approaches generate code designed for text-based
editing and therefore do not face the unique circumstances of node graphs in procedural material
synthesis that our work addresses.

Procedural Material Synthesis Procedural material modeling is one of the most challenging
domains in graphics program synthesis. The combination of lengthy, complex material programs and
severe data scarcity creates unique obstacles for learning-based approaches (Li et al., 2025a; 2024).
Existing methods primarily focus on inverse procedural material modeling by synthesizing graphs that
reproduce a given target appearance (Hu et al., 2023) or unconditional generation to create diverse,
novel materials without specific targets (Guerrero et al., 2022). A related line of work optimizes
parameters of existing material graphs to match image targets by transpiling them into differentiable
programs (Shi et al., 2020; Hu et al., 2022; Li et al., 2023a). As discussed in §1, previous generative
approaches are limited to text-only representations, a limitation we address in this work.

3 BACKGROUND ON PROCEDURAL MATERIALS

As indicated in §1, procedural materials are directed acyclic graphs G, executed by a material engine
to produce raster images representing the physical properties of materials. These so-called material
maps define surface characteristics e.g., albedo, roughness or normal (tangent space orientation), that
enable photorealistic rendering when applied to 3D objects, with their appearance controlled through
a small set of high-level parameters (cf. Figure 1). The internal structure of a material graph G
comprises nodes {vy, vy, ..., vy} connected by edges that define the flow of image data. Each node v;
functions as either a generator that creates new image content or a filter that transforms existing images
from upstream nodes. Common node operations include noise generation, blending, and mathematical
transformations, which collectively produce intermediate image outputs I = {iy,i3,...,in}. The
behavior of each node is governed by parameters that may be discrete or continuous scalars or vectors,
providing fine-grained control over the final material appearance.

Professional material authoring tools such as Blender and Adobe Substance Designer enable artists
to construct and modify procedural material graphs through visual interfaces (cf. Figure 1). Users
can interactively add or remove nodes and edges while adjusting node parameters to achieve desired
visual effects. Among these tools, Adobe Substance Designer stands out for its particularly expressive
node graph system, which MuLTiIMAT specifically targets. It offers advanced capabilities for creating
complex material appearances through features like function graphs and pixel processors. Function
graphs allow parameters to be controlled through custom operations on input values, while pixel
processors enable users to define specialized computational graphs that operate on individual pixels

Under review as a conference paper at ICLR 2026

CompacTSBS Visualization CompacTSBS
- . s5:
Detokenizer fnction:
I safe_transform_grayscale
dependency:
sbs://safe_transforn. sbs
—~ MuLTIMAT connections:
= input:
a T 4 44422 node: s4
= i i id: output
k=] st st params:
= 44 4 absolute:
. . . rotation: 6.25
Vision Encoder | | Tokenizer | tile: wU_vv Vesl
| I 4 4
(2) Mixed

Figure 3: Visualization of the two conditioning approaches used by MuLTiMaT for generating node
definition v,.;. In the graph-conditioned approach (1), MuLTIMAT processes the graph G, as a visual
representation similar to human perception. In the mixed-conditioned approach (2), MULTIMAT
receives G; as a multimodal program where tokens are replaced with their corresponding
vision encoder representations from I;.

using sequences of atomic mathematical operations. These sophisticated capabilities make automated
procedural material synthesis a particularly challenging problem in this domain.

4 TuE MuLTIMAT MODEL & ARCHITECTURE

Figure 2 illustrates our complete model pipeline. At its core, MULTIMAT is a vision-language model,
trained for synthesizing procedural material graphs. It accepts images as input for inverse procedural
material synthesis and supports unconditional generation. Unlike previous approaches, MuLTIMAT
generates nodes topologically, ensuring each node precedes all nodes it connects to. This enables an
iterative generation process detailed below that can provide continuous visual feedback to the model,
verify the validity of intermediate outputs, and recover from errors automatically in certain cases.

4.1 MuLriMoDAL PROGRAM SYNTHESIS

Given a partially generated material graph G, = {vi,v2,...,v,} with nodes v; at generation step
t, the topological ordering of nodes allows to visualize intermediate node states, similar to visual
editing environments that target humans. This enables an iterative generation loop where MULTIMAT
generates one node definition—including node parameters and connections to previous nodes—at a
time that is processed accordingly before the generation continues. After generating node v,;; in
an intermediate text format (cf. §5), we combine it with the existing node definitions {vy,...,v;}
and feed them to a transpiler, which compiles the intermediate representations back to a format
the material engine understands. We then use the material engine to visualize the state of node v;.
Upon successful transpilation and execution, v, is appended to the graph G,.. This updated state,
including the visualized intermediate outputs /;, is fed back to the model to generate the subsequent
node v, (cf. Figure 2). If execution or transpilation fails, we discard the current v, and resample, or
backtrack further in case of repeated errors (cf. §4.2). We explore two complementary approaches for
representing G; and I; as multimodal programs to the model, as visualized in Figure 3:

Mixed Conditioning Starting with a textual representation of G, (cf. §5), we enhance each node v;
with an additional field containing its visualized intermediate state. This creates a multimodal
program where the model processes textual tokens interleaved with image patch embeddings
(cf. Figure 3). To manage the increased context size from image embeddings, we omit
node parameters (which are implicitly encoded in the visualizations) but explicitly include
node output type information (e.g., grayscale or color) that the model cannot infer from the
visualization alone.

Graph Conditioning This approach more closely mirrors human visual experience by conditioning
MuLtiMarT solely on a visualization of the entire graph G; with embedded intermediate
visual outputs /;, as shown in Figure 3. The model generates subsequent node v, using only
this complete visual context, without explicit access to underlying textual node definitions.

Under review as a conference paper at ICLR 2026

1) (2a) (2b) (3)

£® © ® p
@ 0 o 4’.@\\.0 ® 4@\\.0 ® oo
® @ ® ®

Figure 4: Visualization of our inference algorithm as a tree search. Tree nodes represent generated
node definitions, and edges represent possible continuations. The algorithm proceeds as follows:
generation continues until an invalid state (X) is encountered (1), triggering backtracking to the
previous node; from this point, if a valid node (v') is generated, normal generation resumes (2a), but
if invalid outputs persist (2b), the algorithm backtracks further until a valid path is found (3).

4.2 INCREMENTAL TREE SEARCH

Another advantage of topological node ordering is the ability to validate node definitions incrementally
during generation. By invoking our transpiler and material engine at each step, we can detect
syntactic and semantic errors immediately rather than waiting until the entire graph is complete.
When an erroneous node definition is encountered, we execute an adaptive backtracking strategy:
first discarding and resampling the problematic node, and if errors persist, inferring deeper structural
issues by reversing further back in the generation sequence. Specifically, we discard the 2(~1)
most recently generated nodes, where i represents the current backtracking iteration. This approach
effectively transforms our generation process into an incremental tree search on a tree 7 of valid and
invalid nodes (cf. Figure 4), systematically exploring the solution space to discover valid programs.
This incremental validation approach identifies invalid outputs much faster than previous approaches,
which require sampling complete programs before validation can commence.

4.3 AutoMmATic ERROR REPAIR

Through systematic analysis of failure cases, we identified recurring error patterns that could be
repaired automatically: (1) removal of extraneous parameters that are specified for node types that do
not support them, and (2) automatic insertion of conversion nodes to resolve type mismatches between
connected nodes. For instance, when a color output is erroneously connected to a grayscale input, we
automatically insert an appropriate grayscale conversion node. Conversely, when a grayscale output
feeds into a color input, we insert a gradient map node to perform type conversion. These repair
mechanisms increase the proportion of valid generations without requiring additional sampling steps.

5 DATASET

To support the training and

: Models Size Max Nodes Feature Set Program
evaluation of MULTIMAT, we
collect procedural materials MatForMER 2820 < 400! Subset Designer
from Adobe’s Substance 3D Mar. (Conp) 4667 < 80! Subset Designer
Assets Repository (Adobe, VLMATERIAL 3663 30 Limited Blender
2025a). Unlike previous — MurTiIMAT 6878 128 Complete Designer

work that either focuses on
basic graphs utilizing only
a subset of Substance De-
signer features (e.g., lack-
ing complex nodes such as
pixel processors or func-
tion graphs; Guerrero et al.,
2022; Hu et al., 2023) or targets other tools with more limited capabilities (Li et al., 2025a), our
approach supports the complete feature set. This comprehensive coverage enables us to collect
over 6000 unique materials, substantially more than existing datasets. Table 1 summarizes key
characteristics of our dataset compared to prior work.

! Upper bound in complex filtering pipeline, actual could be less.

Table 1: Comparison of training data of MATForMER (Guerrero et al.,
2022), conditional MaTForMER (Hu et al., 2023), VLMATERIAL (Li
et al., 2025a), and MuLTiIMAT (ours). We procure the largest dataset
with the most comprehensive set of features.

Under review as a conference paper at ICLR 2026

Human-Readable Graph Representation Substance Designer’s native file format (SBS) has not
been designed for human readability, containing verbose XML structures, embedded binary data,
legacy metadata, and other implementation details, which makes direct language modeling impractical.
To address this, we develop a bidirectional transpiler that converts between SBS and a compact,
human-readable YAML-based representation with topological node order, which we call CompactSBS.
Unlike previous approaches that support only partial feature sets (Guerrero et al., 2022; Hu et al.,
2023), our transpiler preserves the complete functionality of Substance graphs with programs that are,
on average, over 80% shorter. Models operate exclusively in CompacTSBS, with outputs transpiled
back to SBS for execution. We provide representative examples in Figure 3 and complete program
listings in Appendix A.

Graph Preprocessing Our preprocessing pipeline standardizes graphs for the PBR workflow,
focusing on five essential texture maps: base color, normal, roughness, metallic, and height. We trace
backwards from these outputs to identify all contributing nodes, pruning unconnected components
and other output maps. Graphs containing embedded bitmap graphics and SVGs are excluded
to keep graphs fully procedural. We further filter out graphs exceeding 128 nodes and flatten
hierarchical structures by inlining nested subgraphs and custom author dependencies into the main
graph. Non-atomic nodes from the standard Substance Designer library remain as external references.

6 EXPERIMENTS

We build MuLTiIMAT models upon the QWEN2.5y, (7B) foundation model (Bai et al., 2025). We train
and evaluate separate models for unconditional generation (cf. §6.1) and inverse procedural material
synthesis (cf. §6.2). Across all model variants, we maintain a consistent maximum sequence length
of 8 192 tokens. The training setup consists of 5 epochs using a learning rate of Se—5 and a batch size
of 128. To ensure diversity in our generated outputs, we set the inference sampling parameters to a
temperature of 0.8 and a top-p value of 0.95. We provide examples in Figure 5 and Appendix A.

6.1 EvaALuATION OF UNCONDITIONAL GENERATION

For unconditional generation, the mixed conditioning variant, MurLtiMar (Mixed), embeds node
previews at 140 X 140 resolution, resulting in 25 patch embeddings per image. For the graph
conditioning variant, MurtiMat (Graph), graph visualizations can utilize up to 6 144 tokens, with
larger images downscaled to accommodate this limit. We generate 100 outputs per model for
evaluation.

Baselines For text-only procedural material synthesis, VLMATERIAL represents the current state-of-
the-art approach. However, its Blender-specific training makes direct comparison with our method
difficult. We therefore create VLMATERIAL (SBS) by retraining a VLMATERIAL-style model on
our dataset for fair comparison. Since VLMATERIAL (SBS) does not receive any images in the
unconditional setting, we base it on the larger and more powerful text-only model QWEN3 (8B; YANG
ET AL., 20254A), giving it a slight advantage over our models. While graphics program synthesis
research typically also benchmarks against proprietary large language models such as GPT-40 (OpenAl
et al., 2024) or CLAUDE 4 (Anthropic, 2025), which have demonstrated competitive performance in
related domains (Belouadi et al., 2024a;b; 2025; Rodriguez et al., 2025), these models’ unfamiliarity
with CompacTSBS and inability to produce valid SBS output preclude their inclusion as baselines.

Metrics Our multimodal task permits diverse evaluation schemes for automatic evaluation. To
evaluate the visual quality of generated materials, we compute the Kernel Inception Distance (KID;
Birikowski et al., 2018), which compares the distribution of generated material maps with material
maps from our dataset. To detect degenerate low KID scores due to memorization of training data (a
legitimate concern given our relatively small dataset), we also calculate ROUGE-L scores (Lin, 2004)
between the CompAacTSBS representation of our generated materials and the training set (with masked
parameters). This metric computes the longest common subsequence and serves as an effective
memorization indicator (Hans et al., 2024). Notably, we specifically require consecutive subsequences
due to CompacTSBS’s limited syntactic diversity, which could otherwise produce misleading matches.
To measure efficiency, we introduce the Node Error Ratio (NER), defined as the average ratio between
discarded nodes and the total number of generated nodes.

Under review as a conference paper at ICLR 2026

Models DSim; CLIP; Sryeg; KID; ROUGE-L; NER;

VLMaterIAL (SBS) 31.344 65.678 3.211 14.976 1.621 16.933
MurtiMat (Mixed) 34.922 66.737 3.199 3.675 2.194 12.388
MurtiMAT (Graph) 36.609 67.907 3.178 2.801 2.037 17.046

VLMateriaLt (SBS) 31.348 65.867 3.126 27.862
MurtiMatt (Mixed) 40.258 69.687 3.093 17.792
MuLtiMat* (Graph) 40.367 70.114 3.046 14.886

Table 3: System-level scores x 100 for conditional (inverse) generation, without (top) and with
(bottom) parameter optimization. Bold and underlined values indicate the best and second-best scores
for each metric column, respectively. Arrows indicate metric directionality. ROUGE-L and NER
scores remain unchanged by parameter optimization and are shown only once. MuLTIMAT (Graph)
and MurTiMat* (Graph) achieve the best overall performance.

Results Table 2 presents the system-

1 .) Models KID; ROUGE-L; NER;
evel metric scores for our evaluation.

MurriMat (Graph) leads in visual VLMaTeRIAL (SBS) 14.155 3.641 14.846
quality with the lowest KID score, =~ MuLtiMAT (Mixed) 6.752 2.195 8.923
outperforming MurTiMat (Mixed) by MuLtiMAT (Graph) 2.365 1.915 15.024

over 4pp (percentage points) and VL-
MaTeRIAL (SBS) by more than 11pp. Table 2: System-level scores x 100 for unconditional gen-
This considerable gap in performance eration. Bold and underlined values indicate the best and
suggests that the better the visual repre- second-best scores for each metric column, respectively.
sentations are aligned with human cre- Arrows indicate metric directionality. MurLTIMAT (Graph)
ative workflows, the better the results— achieves the best overall performance.

an intuitive but important finding. All

models exhibit minimal memorization, with ROUGE-L scores showing that no more than 4% of
any generated sequence matches a contiguous segment from the training data. Nonetheless, both
MuLtiMAT variants demonstrate approximately 1.5pp lower copying rates compared to VLMATERIAL
(SBS), suggesting slightly better generalization. Regarding efficiency, MuLtTiMat (Mixed) excels with
the lowest NER, achieving a 6pp improvement over the other models. Both MurLtiMart (Graph) and
VLMAaTEeRIAL (SBS) show comparable NER scores around 15%. For MurLtiMAT (Graph), these errors
are primarily due to OCR-like errors in reading node names and function types embedded as text in
graph images. In contrast, we attribute the errors in VLMATERIAL (SBS) to fundamental difficulties
in understanding graph structures. Despite these limitations, the error rates remain within acceptable
bounds for practical applications, and MuLTIMAT (Graph) emerges as the best overall model.

6.2 EvALUATION OF CONDITIONAL GENERATION

As in prior work (Hu et al., 2023; Li et al., 2025a), we train inverse MULTIMAT variants that learn
to generate procedural materials from rendered images. These models follow the same training
procedure as their unconditional counterparts, with one key modification: each training example
is preceded by a 512 x 512 rendering of itself, which adds 324 additional image patches to the
model context. During inference, the model takes an image as input and generates a corresponding
procedural material. We reserve 100 examples from our data as held-out test data for evaluation.

Baselines Analogously to §6.1, we adapt VLMATERIAL for inverse rendering with SBS and use
it as a baseline. Since an image input is now required for VLMATERIAL (SBS), we also base it on
QWEN2.5yL, (7B) instead of QWEN3 (8B) and train it using the same method as MuLTIMAT.

Parameter Optimization To further refine generated materials, we apply gradient-based opti-
mization using differentiable rendering. This approach has proven effective for optimal parameter
estimation (Shi et al., 2020; Hu et al., 2022; Li et al., 2023a; Hu et al., 2023). We employ DiffMat (Shi
et al., 2020; Li et al., 2023a), a widely adopted differentiable renderer for Designer materials, to
optimize the generated graphs against the input images. Models using this refinement step are denoted
as MuLtiMAT* and VLMATERIAL] respectively.

Under review as a conference paper at ICLR 2026

Metrics In addition to the metrics from §6.1, we evaluate reconstruction quality by rendering the
generated materials and comparing them to the input images using perceptual similarity metrics.
Specifically, we measure cosine similarity between CLIP image embeddings (Radford et al., 2021;
Hessel et al., 2021), compute STYLE Loss loss (STYLE; Gatys et al., 2016) as the L1 distance between
Gram matrices of VGG features, and calculate DReamSim (DS1m; Fu et al., 2023), a learned perceptual
similarity metric designed to align with human judgments.

Results Table 3 presents the system-level metric scores for conditional evaluation. The perceptual
similarity metrics consistently demonstrate that MuLTIMAT (Graph) achieves the highest fidelity to
input images, with MurLTiMaT (Mixed) performing second-best and VLMATERIAL (SBS) ranking
last. For example, DREAMS1M scores are 36.609, 34.922, and 31.344, respectively, a ranking that
mirrors our unconditional evaluation results. Parameter optimization yields substantial improvements
in perceptual similarity, with MurLTiMAT* (Graph) and MuLtiMaT" (Mixed) showing average gains
of 6% and 8%, respectively. In contrast, VLMAaTerRIAL* (SBS) exhibits minimal improvement
(only 1%), suggesting its outputs deviate too far from the input for parameter optimization to be
effective. Interestingly, while parameter optimization improves perceptual similarity, KID scores
increase. This could occur because optimization aligns outputs more closely with the test set, which
represents only a subset of the training distribution, potentially increasing distance from the full
distribution. Nevertheless, both MuLTIMAT and MurTiMat* variants outperform VLMATERIAL
(SBS) and VLMaterIaL" (SBS) on KID by over 10pp, respectively. The remaining metrics reinforce
trends from unconditional evaluation. ROUGE-L scores do not exceed 2% (indicating minimal
memorization), and MuLtiMAT (Mixed) produces the fewest errors. Overall, MuLTiIMAaT (Graph) and
its optimized variant, MuLTiMat* (Graph), deliver the strongest performance across metrics.

7 ANAaLysis & DiscussioN

Our results show that model performance steadily improves as the degree of visualization of graphs
increases, with MuLTiIMAT (Graph) achieving the best results overall. This finding aligns with how
humans interact with procedural materials—through visual node graph interfaces—and validates
established UX design principles in this domain. The qualitative examples in Figure 5 further illustrate
this trend, with VLMAaTeRIALT (SBS) struggling to generate faithful outputs, indicating that purely
text-based approaches are not ideal for expressive node graph systems like Designer. This limitation
persists even with more powerful base models, as our unconditional generation experiments confirm.
Beyond architectural improvements, our tree search algorithm enables more efficient graph generation;
without it, models may have to resort to sampling complete outputs for validation (the inference
approach used by previous methods), which is expensive. For instance, disabling tree search causes
NER of VLMATERIAL (SBS) to deteriorate further from 14.846 to 33.953, highlighting how our
search strategy can improve inference without further training.

8 CoNCLUSION

We present MuLTIMAT, a multimodal program synthesis framework and model suite that generates
procedural materials by incorporating visual feedback throughout the generation process. Our
key insight is that procedural material graphs are inherently visual-spatial programs, and treating
them as such leads to substantial improvements over text-only approaches. By conditioning on
visual intermediate states—either interleaved with text (mixed conditioning) or as complete graph
visualizations (graph conditioning)—our models achieve consistent improvements over text-only
baselines. Our incremental tree search algorithm further enhances generation efficiency by validating
nodes as they are created and backtracking upon errors. While we demonstrate MurLTIMAT specifically
for procedural material synthesis, we hope its general principles will inspire further research at the
intersection of computer graphics, program synthesis, and multimodal Al

Future Work The development of procedural material graph synthesis approaches is currently
constrained by limited training data availability. We plan to address this challenge through self-learning
techniques (He et al., 2020; Wei et al., 2021) that leverage our unconditional models to generate
synthetic supervised training data by rendering outputs and subsequently training conditional models
on this expanded data. Additionally, we aim to develop a unified model trained across multiple

Under review as a conference paper at ICLR 2026

\ VLMATERIALY (SBS) MuLtiMaTt (Mixed)

MuLtiMaTt* (Graph)

X

A
&

Figure 5: Qualitative results for inverse procedural material modeling. The leftmost column shows
input materials from graphs filtered during preprocessing (e.g., due to excessive length), making these
particularly challenging test cases. Following Hu et al. (2023); Li et al. (2025a), we generate multiple
programs (N = 40) per model and select the result with the highest DREAMS™ score. MurTIMAT*
(Mixed) consistently outperforms VLMATerIAL (SBS), while MuLtiMat* (Graph) achieves the best
results overall. Additional examples, including failure cases, are provided in Appendix A.

node graph systems to investigate potential transfer learning benefits (Pan & Yang, 2010). Beyond
methodological advances, our models offer promising practical applications: conditional models
could extract material graphs directly from photographic regions, while unconditional models could
power intelligent auto-completion features in user interfaces. Furthermore, our methodology naturally
extends to related domains such as vector graphics synthesis (Wu et al., 2023; Polaczek et al., 2025;
Rodriguez et al., 2025; Yang et al., 2025b), where visual editing interfaces are similarly prevalent.

Limitations Although our models and baselines use the same or similar base models, they generate
graphs in fundamentally different ways, resulting in considerable differences in training efficiency.
Text-only models like VLMATERIAL can process entire graphs as single training examples, whereas
MurtiMaT must adapt the visual context for each individual node, effectively processing training
examples one node at a time. This difference leads to much longer training times: while VLMATERIAL
completes training in a few hours on 8 X A100 80GB GPUs, MuLTIMAT models require several days
on the same hardware despite being trained on a comparable number of tokens. However, this training
inefficiency does not affect inference, where both approaches achieve comparable generation speeds.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We ensure that all procedural materials collected for model training are properly licensed and explicitly
permit such usage, thereby preventing any copyright infringement. In adherence to this principle,
we specifically exclude Substance 3D Community Assets (Adobe, 2025b) from our training data
due to licensing restrictions. While we acknowledge the use of generative models in preparing this
manuscript, their application is strictly limited to writing assistance, such as paraphrasing, spell
checking, and synonym suggestions.

REFERENCES
Adobe. Substance 3D Assets. https://substance3d.adobe.com/assets, 2025a.

Adobe. Substance 3D Community Assets. https://substance3d.adobe.com/
community-assets, 2025b.

Adobe. Substance 3D Designer. https://www.adobe.com/products/substance3d.html,
2025¢.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, and 8 others. Flamingo: a visual language model for few-shot learning. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=EbMuimAbPbs.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. In 2013 Formal Methods in Computer-Aided Design, pp. 1-8, 2013. doi:
10.1109/FMCAD.2013.6679385.

Anthropic. System card: Claude Opus 4 & Claude Sonnet 4, 2025. URL https://www-cdn.
anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 others. Qwen2.5-VL technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

Jonas Belouadi, Anne Lauscher, and Steffen Eger. AutomaTikZ: Text-guided synthesis of scientific
vector graphics with TikZ. In The Twelfth International Conference on Learning Representations,
Vienna, Austria, May 2024a. URL https://openreview.net/forum?id=v3K5TVP8kZ.

Jonas Belouadi, Simone Paolo Ponzetto, and Steffen Eger. DeTikZify: Synthesizing graphics
programs for scientific figures and sketches with TikZ. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, Vancouver, Canada, December 2024b. URL https:
//openreview.net/forum?id=bcVLFQCOjc.

Jonas Belouadi, Eddy Ilg, Margret Keuper, Hideki Tanaka, Masao Utiyama, Raj Dabre, Steffen
Eger, and Simone Paolo Ponzetto. TikZero: Zero-shot text-guided graphics program synthesis. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Honolulu,
Hawaii, October 2025.

Mikotaj Birikowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying
MMD GANSs. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r11U0zWCW.

Blender. Blender. https://www.blender.org/, 2025.

Javier Cadmara, Javier Troya, Lola Burguefio, and Antonio Vallecillo. On the assessment of generative
Al in modeling tasks: an experience report with chatgpt and UML. Softw. Syst. Model., 22
(3):781-793, 2023. doi: 10.1007/S10270-023-01105-5. URL https://doi.org/10.1007/
s10270-023-01105-5.

10

https://substance3d.adobe.com/assets
https://substance3d.adobe.com/community-assets
https://substance3d.adobe.com/community-assets
https://www.adobe.com/products/substance3d.html
https://openreview.net/forum?id=EbMuimAbPbs
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://arxiv.org/abs/2502.13923
https://openreview.net/forum?id=v3K5TVP8kZ
https://openreview.net/forum?id=bcVLFQCOjc
https://openreview.net/forum?id=bcVLFQCOjc
https://openreview.net/forum?id=r1lUOzWCW
https://openreview.net/forum?id=r1lUOzWCW
https://www.blender.org/
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.1007/s10270-023-01105-5

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, and 39 others. Evaluating large language models trained on code, 2021.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and
Pushmeet Kohli. RobustFill: Neural program learning under noisy I/O. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 990-998. PMLR, 06-11 Aug 2017.
URL https://proceedings.mlr.press/v70/devlinl7a.html.

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley. Texturing and
modeling - a procedural approach, Third Edition. Morgan Kaufmann series in computer graphics
and geometric modeling. Elsevier, 2003. ISBN 978-1-55860-848-1. doi: https://doi.org/10.5860/
choice.32-5129.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer
graphics programs from hand-drawn images. In Thirty-second Conference on Neural Infor-
mation Processing Systems, pp. 6062—6071, 2018. URL http://papers.nips.cc/paper/
7845-1earning-to-infer-graphics-programs- from-hand-drawn-images.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. Write,
execute, assess: Program synthesis with a REPL. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/£file/50d2d2262762648589b1943078712aa6-Paper.pdf.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc
Cary, Armando Solar-Lezama, and Joshua B. Tenenbaum. DreamCoder: bootstrapping inductive
program synthesis with wake-sleep library learning. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI 2021, pp.
835-850, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383912.
doi: 10.1145/3453483.3454080. URL https://doi.org/10.1145/3453483.3454080.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=hQwb-1bM6EL.

Stephanie Fu, Netanel Yakir Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
Phillip Isola. DreamSim: Learning new dimensions of human visual similarity using synthetic
data. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=DEiNSfh1k7.

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals. Synthesizing
programs for images using reinforced adversarial learning. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 1666-1675. PMLR, 10-15 Jul 2018. URL
https://proceedings.mlr.press/v80/ganinl8a.html.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

Paul Guerrero, Milo§ Hasan, Kalyan Sunkavalli, Radomir Méch, Tamy Boubekeur, and Niloy J. Mitra.
MatFormer: a generative model for procedural materials. ACM Trans. Graph., 41(4), July 2022.
ISSN 0730-0301. doi: 10.1145/3528223.3530173. URL https://doi.org/10.1145/3528223.
3530173.

Abhimanyu Hans, John Kirchenbauer, Yuxin Wen, Neel Jain, Hamid Kazemi, Prajwal Singhania,
Siddharth Singh, Gowthami Somepalli, Jonas Geiping, Abhinav Bhatele, and Tom Goldstein.
Be like a goldfish, don’t memorize! mitigating memorization in generative LLMs. In The

11

https://proceedings.mlr.press/v70/devlin17a.html
http://papers.nips.cc/paper/7845-learning-to-infer-graphics-programs-from-hand-drawn-images
http://papers.nips.cc/paper/7845-learning-to-infer-graphics-programs-from-hand-drawn-images
https://proceedings.neurips.cc/paper_files/paper/2019/file/50d2d2262762648589b1943078712aa6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/50d2d2262762648589b1943078712aa6-Paper.pdf
https://doi.org/10.1145/3453483.3454080
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=DEiNSfh1k7
https://proceedings.mlr.press/v80/ganin18a.html
https://doi.org/10.1145/3528223.3530173
https://doi.org/10.1145/3528223.3530173

Under review as a conference paper at ICLR 2026

Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=DylSyAfmiis.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. Revisiting self-training for neural
sequence generation. In Proceedings of ICLR, 2020. URL https://openreview.net/forum?
1d=SJgdnAVKDH.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
reference-free evaluation metric for image captioning. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 7514-7528, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.595. URL https://aclanthology.org/2021.emnlp-main.595.

Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier, and Valentin Deschaintre. Node graph
optimization using differentiable proxies. In ACM SIGGRAPH 2022 Conference Proceedings,
SIGGRAPH 22, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393379. doi: 10.1145/3528233.3530733. URL https://doi.org/10.1145/3528233.
3530733.

Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier, and Valentin Deschaintre. Generating
procedural materials from text or image prompts. InACM SIGGRAPH 2023 Conference Proceedings,
SIGGRAPH °23, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9798400701597. doi: 10.1145/3588432.3591520. URL https://doi.org/10.1145/3588432.
3591520.

Nam Huynh and Beiyu Lin. Large language models for code generation: A comprehensive survey
of challenges, techniques, evaluation, and applications, 2025. URL https://arxiv.org/abs/
2503.01245.

Shreyas Kapur, Erik Jenner, and Stuart Russell. Diffusion on syntax trees for program synthesis.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=wN3KaUXA5X.

Peter Kulits, Haiwen Feng, Weiyang Liu, Victoria Fernandez Abrevaya, and Michael J. Black.
Re-thinking inverse graphics with large language models. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=ufeiulMTS7.

Hugo Laurencon, Leo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building vision-
language models? In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=dtv]F1Vy2i.

Hugo Laurencon, Andrés Marafioti, Victor Sanh, and Léo Tronchon. Building and better understanding
vision-language models: insights and future directions, 2024. URL https://arxiv.org/abs/
2408.12637.

Beichen Li, Liang Shi, and Wojciech Matusik. End-to-end procedural material capture with proxy-free
mixed-integer optimization. ACM Transactions on Graphics (TOG), 42(4):1-15, 2023a.

Beichen Li, Yiwei Hu, Paul Guerrero, Milos Hasan, Liang Shi, Valentin Deschaintre, and Wojciech
Matusik. Procedural material generation with reinforcement learning. ACM Trans. Graph., 43(6),
November 2024. ISSN 0730-0301. doi: 10.1145/3687979. URL https://doi.org/10.1145/
3687979.

Beichen Li, Rundi Wu, Armando Solar-Lezama, Changxi Zheng, Liang Shi, Bernd Bickel, and
Wojciech Matusik. VLMaterial: Procedural material generation with large vision-language
models. In The Thirteenth International Conference on Learning Representations, 2025a. URL
https://openreview.net/forum?id=wHebuIb6IH.

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia LI, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier, Joao Monteiro, Nicolas Gontier, Ming-
Ho Yee, and 39 others. StarCoder: may the source be with you! Transactions on Machine Learning

12

https://openreview.net/forum?id=DylSyAfmWs
https://openreview.net/forum?id=DylSyAfmWs
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
https://aclanthology.org/2021.emnlp-main.595
https://doi.org/10.1145/3528233.3530733
https://doi.org/10.1145/3528233.3530733
https://doi.org/10.1145/3588432.3591520
https://doi.org/10.1145/3588432.3591520
https://arxiv.org/abs/2503.01245
https://arxiv.org/abs/2503.01245
https://openreview.net/forum?id=wN3KaUXA5X
https://openreview.net/forum?id=wN3KaUXA5X
https://openreview.net/forum?id=u0eiu1MTS7
https://openreview.net/forum?id=dtvJF1Vy2i
https://arxiv.org/abs/2408.12637
https://arxiv.org/abs/2408.12637
https://doi.org/10.1145/3687979
https://doi.org/10.1145/3687979
https://openreview.net/forum?id=wHebuIb6IH

Under review as a conference paper at ICLR 2026

Research, 2023b. ISSN 2835-8856. URL https://openreview.net/forum?id=KoFOg41haE.
Reproducibility Certification.

Wen-Ding Li and Kevin Ellis. Is programming by example solved by LLMs? In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=xqc8yyhScL.

Wen-Ding Li, Darren Yan Key, and Kevin Ellis. Toward trustworthy neural program synthesis. In
ICLR 2025 Workshop on Human-Al Coevolution, 2025b. URL https://openreview.net/
forum?id=HP1vbIJGWy.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Ré mi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, and 7 others. Competition-level code generation with AlphaCode. Science,
378(6624):1092—-1097, dec 2022. doi: 10.1126/science.abql158. URL https://doi.org/10.
1126%2Fscience.abql1158.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74-81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://aclanthology.org/Wo4-1013/.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=wOH2xGH1kw.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis
Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil
Paul, and 47 others. StarCoder 2 and The Stack v2: The next generation, 2024. URL https:
//arxiv.org/abs/2402.19173.

Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin. Synthesizing natural
language to visualization (NL2VIS) benchmarks from NL2SQL benchmarks. In Proceedings
of the 2021 International Conference on Management of Data, SIGMOD ’21, pp. 1235-1247,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383431. doi:
10.1145/3448016.3457261. URL https://doi.org/10.1145/3448016.3457261.

Jock Mackinlay. Automating the design of graphical presentations of relational information. ACM
Trans. Graph., 5(2):110-141, April 1986. ISSN 0730-0301. doi: 10.1145/22949.22950. URL
https://doi.org/10.1145/22949.22950.

OpenAl, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, and 400 others.
GPT-40 system card, 2024. URL https://arxiv.org/abs/2410.21276.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345-1359, 2010. doi: 10.1109/TKDE.2009.191.

Emilio Parisotto, Abdel rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and
Pushmeet Kohli. Neuro-symbolic program synthesis. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=rJ0JwFcex.

Gustavo Patow and Xavier Pueyo. A survey of inverse rendering problems. Computer Graphics
Forum, 22(4):663-687, 2003. doi: https://doi.org/10.1111/j.1467-8659.2003.00716.x. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2003.00716.x.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From Theory to

Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition,
November 2016. ISBN 9780128006450.

13

https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=xqc8yyhScL
https://openreview.net/forum?id=xqc8yyhScL
https://openreview.net/forum?id=HPlvbIJGWy
https://openreview.net/forum?id=HPlvbIJGWy
https://doi.org/10.1126%2Fscience.abq1158
https://doi.org/10.1126%2Fscience.abq1158
https://aclanthology.org/W04-1013/
https://openreview.net/forum?id=w0H2xGHlkw
https://openreview.net/forum?id=w0H2xGHlkw
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://doi.org/10.1145/3448016.3457261
https://doi.org/10.1145/22949.22950
https://arxiv.org/abs/2410.21276
https://openreview.net/forum?id=rJ0JwFcex
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2003.00716.x

Under review as a conference paper at ICLR 2026

Sagi Polaczek, Yuval Alaluf, Elad Richardson, Yael Vinker, and Daniel Cohen-Or. NeuralSVG:
An implicit representation for text-to-vector generation, 2025. URL https://arxiv.org/abs/
2501.03992.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 8748-8763. PMLR, 18-24 Jul 2021. URL
https://proceedings.mlr.press/v139/radford2la.html.

Juan A. Rodriguez, Abhay Puri, Shubham Agarwal, Issam H. Laradji, Pau Rodriguez, Sai Rajeswar,
David Vazquez, Christopher Pal, and Marco Pedersoli. StarVector: Generating scalable vector
graphics code from images and text. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 16175-16186, June 2025.

Steven F. Roth, John Kolojejchick, Joe Mattis, and Jade Goldstein. Interactive graphic design
using automatic presentation knowledge. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI *94, pp. 112—-117, New York, NY, USA, 1994. Association
for Computing Machinery. ISBN 0897916506. doi: 10.1145/191666.191719. URL https:
//doi.org/10.1145/191666.191719.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, and 6 others. Code LLaMA: Open foundation models for code, 2023.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. CSGNet:
Neural shape parser for constructive solid geometry. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp.
5515-5523. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00578. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Sharma_
CSGNet_Neural_Shape_CVPR_2018_paper.html.

Liang Shi, Beichen Li, Milo§ Hasan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir Mech, and
Wojciech Matusik. Match: Differentiable material graphs for procedural material capture. ACM
Transactions on Graphics (TOG), 39(6):1-15, 2020.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum,
and Jiajun Wu. Learning to infer and execute 3D shape programs. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=ryl1NH20gFQ.

Shengbang Tong, Ellis L Brown II, Penghao Wu, Sanghyun Woo, Adithya Jairam Iyer, Sai Charitha
Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, Xichen Pan, Rob Fergus,
Yann LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal
LLMs. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=Vi8AepAXGy.

Henrik Voigt, Kai Lawonn, and Sina ZarrieB. Plots made quickly: An efficient approach for generating
visualizations from natural language queries. In Nicoletta Calzolari, Min-Yen Kan, Veronique
Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pp. 1278712793, Torino, Italia, May 2024. ELRA and ICCL. URL
https://aclanthology.org/2024.1rec-main.1119/.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training with
deep networks on unlabeled data. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=rC8sJ4i6kaH.

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. IconShop: Text-guided vector icon synthesis
with autoregressive transformers. ACM Trans. Graph., 42(6), December 2023. ISSN 0730-0301.
doi: 10.1145/3618364. URL https://doi.org/10.1145/3618364.

14

https://arxiv.org/abs/2501.03992
https://arxiv.org/abs/2501.03992
https://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.1145/191666.191719
https://doi.org/10.1145/191666.191719
http://openaccess.thecvf.com/content_cvpr_2018/html/Sharma_CSGNet_Neural_Shape_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sharma_CSGNet_Neural_Shape_CVPR_2018_paper.html
https://openreview.net/forum?id=rylNH20qFQ
https://openreview.net/forum?id=Vi8AepAXGy
https://aclanthology.org/2024.lrec-main.1119/
https://openreview.net/forum?id=rC8sJ4i6kaH
https://doi.org/10.1145/3618364

Under review as a conference paper at ICLR 2026

Yang Wu, Yao Wan, Hongyu Zhang, Yulei Sui, Wucai Wei, Wei Zhao, Guandong Xu, and
Hai Jin. Automated data visualization from natural language via large language models: An
exploratory study. Proc. ACM Manag. Data, 2(3), May 2024. doi: 10.1145/3654992. URL
https://doi.org/10.1145/3654992.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, and 41 others. Qwen3 technical report, 2025a. URL
https://arxiv.org/abs/2505.09388.

Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Fukun Yin, Jiaxu Zhang, Liao Wang, Gang Yu,
Xingjun Ma, and Yu-Gang Jiang. OmniSVG: A unified scalable vector graphics generation model,
2025b. URL https://arxiv.org/abs/2504.06263.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. National Science Review, 11(12):nwae403, 11 2024. ISSN
2095-5138. doi: 10.1093/nsr/nwae403. URL https://doi.org/10.1093/nsr/nwae403.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Wang Yongji, and
Jian-Guang Lou. Large language models meet NL2Code: A survey. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp- 7443-7464, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.411. URL https://aclanthology.org/2023.acl-1long.411.

Haotian Zhang, Mingfei Gao, Zhe Gan, Philipp Dufter, Nina Wenzel, Forrest Huang, Dhruti
Shah, Xianzhi Du, Bowen Zhang, Yanghao Li, Sam Dodge, Keen You, Zhen Yang, Aleksei
Timofeev, Mingze Xu, Hong-You Chen, Jean-Philippe Fauconnier, Zhengfeng Lai, Haoxuan
You, and 4 others. MM1.5: Methods, analysis & insights from multimodal LLM fine-tuning.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=HVtu26XDAA.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, and 3 others. A survey of large
language models, 2025. URL https://arxiv.org/abs/2303.18223.

15

https://doi.org/10.1145/3654992
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2504.06263
https://doi.org/10.1093/nsr/nwae403
https://aclanthology.org/2023.acl-long.411
https://openreview.net/forum?id=HVtu26XDAA
https://openreview.net/forum?id=HVtu26XDAA
https://arxiv.org/abs/2303.18223

Under review as a conference paper at ICLR 2026

MuLtiMaAT?*

Input VLMAaterIAL® (SBS) MurtiMar* (Mixed) (Graph)

%
s

a
G

Figure 6: Representative failure cases from the same challenging subset in Figure 5. All models
struggle to reproduce the intricate patterns in these examples, though MurTiMAaT* (Graph) and
MurtiMaT* (Mixed) still outperform VLMATERIALT (SBS).

A ApDITIONAL EXAMPLES

Figure 6 complements Figure 5 by showcasing failure cases where our models struggle to produce
faithful outputs, though notably, the outputs from MurLriMat* (Graph) and MuLtiMAT" (Mixed) still
demonstrate superior representation of the input compared to VLMAaTterIAL (SBS). Beyond these
conditional generation examples, Figure 7 presents unconditional samples generated by MuLTIMAT
(Graph), which exhibit high visual quality with realistic material properties. Adjacent to these
rendered materials, we visualize their underlying material graphs in the same format used as model

input. In Figure 8, we show a graph in CompAacTSBS representation to give an impression of the
structure of our format.

16

Under review as a conference paper at ICLR 2026

Figure 7: Example materials generated unconditionally by MuLTiMAT (Graph), shown alongside their
corresponding procedural graphs.

17

Under review as a conference paper at ICLR 2026

variables:
contrast: 0.0
fabric_color: [0.94, .79, 0.69]
fabric_metallic: 0.0
fabric_roughnes:
height_position: 0.5
height_; range 1)
hue_shi ft:
luminosity a.s
normal_format: 0
normal_intensity:
saturation: 0.5

0
function: uniform
colorswitch: false
outputcolnr
(uncnnn get_floatl
ams :

par:
get_floatl: fabric_metallic

solute:
colorswitch: false
outputcolor:
fo:
function: get_floatl
params:

get_floatl: fabric_roughness
outputsize: [4, 4]
s2:

function: uniform

parans:
absolute:
colorswitch: false
outputcolor: [6.5, 0.5, 0.5, 1.0]
outputsize: [4, 4]

3:

outputcolor:
£0:

funcnnn get_float3
geLﬂoat3: fabric_color
£1:

function: const_floatl

aram:
const_floatl: 1.0
2:
function: vectord
connections:
componentsin: £0
componentslast: 1
outputsize: [4,
s4:

function:
dependency:
sbs://pattern_tile_generator.sbs
parans:
absolute:
pattern
scale: 2.0
interstice: [0.64, 0.0, 0.0, 0.9]
blending_mode:

ile_generator

rotation: 0.05
luminance_random: 0.55
t: 200

s5:
function: fractal_sum_base_2
dependency:
sbs://noise_fractal_sun_base.sbs
s6:
outputs:
metallic: RGBA
connections:
inputNodeOutput :
node: 50

function:
nulti_directional _varp_grayscale
dependency:
sbs://multi_directional warp.sbs
connections:
input:
node: s4
id: output
intensity_input:

node: s5
id: output
lute
intensity: 3.25
g:

function: transformation
connections:

inputl

node: s7

id: output

am:

absolute:
offset: [0.38, 0.54]
matrix22: [-1.0, 0.0, 0.0, 1.0]
s9:
function: blend
connections:
destmatmn»

id: output
parans:
absolute:
blendingmode: MAX
sto:
function: safe_transforn_grayscale

dependency: sbs://safe_transform.sbs
connections:

input:

absolute:
rotation: 0.25
tile: uU_vv
sil:
function: blend
connection:

id: output
params:
absolute:
blendingmode: ADD
\macnynmlt 0.2

: [0, 0]

s:
function: levels
connections:

id: output
params:
absolute:
levelinlow: [0.02, 0.62, 0.02, 0.0]
levelinhigh: [6.95, 0.95, 0.95, 1.0]
leveloutlow: [1.6, 1.6, 1.6, 1.0]
levelouthigh: [0.0, 0.0, 0.0, 0.0]
levelinmid: [0.41, 0.41, 0.41, 0.5]
s13:
function: highpass_grayscale
dependency: sbs: //highpass.sbs

parans:
absolute:
intensity:

function: get_floatl
params:

get_float1: normal_intensity
1:

function: const_floatl
params:
const_floatl: 3.0
£2:
function: mul
connections:

b: £1
inversedy:
f0:

function: get_integerl
params:

get_integer1: normal_format
1:

function: const_intl
params:
const_int1: 1
£2:
ction: eq
connections:
a: fi

b: £1
input2alpha: false
sis:
ction: histogran_range
dependency: shs://histogran_range.sbs
connections:

node: s11
id: output

parans:
absolute:
range:
£0:
function: get_floatl
parans
get_float1: height_range
position:
fo:

function: get_floatl

arams:
get_floatl: height_position
si6:
function: blend
connection:
destination:
node: sl
id: output
urce:

blendingmode: SCREEN
opaci tymilt:
parent:
outputsize: [0, 0]
s17:
function: levels

params:
absolute:
levelinlow: [6.33, 0.33, 0.33, 0.0]
levelinhigh: [0.61, 0.61, 0.61, 1.0]
leveloutlow: [1.0, 1.0, 1.0, 1.0]
levelouthigh: [0.0, 0.0, 0.6, 0.0]

s18:

outputs:

normal: RGBA
connections:
inputNodeOutput :
node: s14
id: output

inputNodeOutput :
node: 5

id: output
s20:
outputs:
roughness: RGBA
connections:
inputNodeOutput :
node: s16
id: output
s21:
function: blend
connections:
destination:

id: output
params:
ahsolute
endingmode: MULTIPLY
npacxtymnlt. 0.35

parent
outputsize: [0, 6]
s22:
function: hsl
connections:

input1:

node: s21

id: output

function: get_floatl

paranms:
get_float1: hue_shift
£1:

f\mcmm const_floatl
s
const_float1: 0.5
function: mul

connections:
a: o

1
saturation:
function: get_floatl
arams.

get_float1: saturation
luminosity:
£0:

function: get_floatl
parans:
get_floatl: luminosity
s23:
function: levels
connections:
inputl:
node: s22
id: output
parans:
parent
levelinlow:
£0:

function: const_floatl
£1:
function: const_floatl
params:
const_float1:

function: get_floatl
params:

get_floatl: contrast
3

function: max
connections:

b: £0
£4:
function: mul
connections:

componentslast: £4
£6:
function: vector2
connections:

componentsin: f4
componentslast: £0

function: vectord
connections:
componentsin: £5
componentslast: £6
levelinhigh:
£0:

function: const_floatl

arams:
const_floatl: 1.0

function: const_float1

arams:
const_float1:

fanction: const_float1
£3:

function: get_floatl
parans:

get_floatl: contrast
£4:

function: max
connections:

5:

function: mul

connections:
£4
b: £1

£6:
function: sub
connections:

: £0

function: vector2
connections:
componentsin: 6
componentslast: £6
£8:
function: vector2
connections:
componentsin: £6
componentslast: £0
9

function: vectord

componentslast: £8

leveloutlow:
£0:
function: const_float1
£1:
function: const_£loatl
parans:
const_floatl: 0.5
£2:
function: get_floatl
params:

get_floatl: contrast

function: min
connections:
a: f2

b: £0
f4:
function: abs
connections:
a: f3
£5:
function: mul
connections:
a: f4
b: f1
£6:
function: vector2
connections
ccmponentsm £5
componentslast: £5
£7:
function: vector2
connections:
componentsin: £5
componentslast: £0
£8:
function: vectord
connection:
compunentsln: £6
componentslast: £7
levelouthigh:
£0:

function: const_floatl
arams:
const_floatl: 1.0

function: const_floatl
params:

const_floatl: 0.5
£2:

function: const_floatl
£3:

function: get_floatl
params:

get_floatl: contrast
£4:

function: min
connections:

a: 3

b: £2
£5:

function: abs
connections:

£6:
function: mul
connections:
a: f5
b: £1
£7:
function: sub
connections:
a: £o
b: £6
£8:
function: vector2
connections:
componentsin: £7
componentslast: £7
9:

function: vector2
connections:
componentsin: £7
componentslast: £0
£10:
function: vector4
connections:
componentsin: 8
componentslast: £9
s24:
outputs:
baseColor: RGBA
connections:
inputNodeOutput :
node: 523
id: output

Figure 8: Complete example of a graph in CompacTSBS format. This listing shows the full
representation of the material partially illustrated in Figure 3.

18

