
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEEKERGYM: BENCHMARKING AGENTIC INFORMA-
TION SEEKING UNDER UNCERTAINTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective information seeking is a prerequisite for AI agents, yet current sys-
tems often fail to autonomously identify, retrieve, and integrate relevant context.
We propose SeekerGym, a modular environment for evaluating LLM agents on
information-seeking tasks. Unlike prior benchmarks that focus on end-to-end task
performance, SeekerGym evaluates agentic information seeking capabilities in
two complex tasks: reconstructing Wikipedia pages and finding related literature
for computer science survey papers. Furthermore, we design an information seek-
ing agent called SeekerAgent, which employs various belief structuring pipelines
including meta-reflection for cross-example learning. Through comprehensive ex-
periments using SeekerGym, we evaluate several design choices for information
seeking agents. We find that SeekerAgent improve recall by as much as 68%
compared to frontier models.

1 INTRODUCTION

Large language models (LLMs) are increasingly used in complex agentic pipelines, such as deep
research (Huang et al., 2025) and software development (Jimenez et al., 2024). A key part of many
pipelines is information seeking (Xia et al., 2024), where agents must autonomously navigate com-
plex environment to collect information useful for solving the downstream task. Information seeking
is challenging since agents must act in an open world to discover available information, reasoning
about their uncertainty to understand what information they may still need and how they might ac-
quire it. It can be formulated as a Partially Observed Markov Decision Process (POMDP) (Tang
et al., 2025), making it a challenging reinforcement learning problem. However, recent work shows
that LLMs underperform on information seeking (Yang et al., 2024; Singh et al., 2025).

There has been substantial work on evaluating LLM agents, many of which require information
seeking—e.g., in question answering (Mavi et al., 2024; Singh et al., 2025), the agent needs to
retrieve relevant knowledge; in software development (Jimenez et al., 2024; Yang et al., 2024), the
agent needs to retrieve relevant context; and in writing survey papers (Wang et al., 2024), the agent
needs to find relevant research papers. However, existing benchmarks are end-to-end, making it
difficult to assess whether failures are due to information seeking or some other part of the pipeline.
Furthermore, information seeking failures can have severe consequences—missing information can
lead to biases and misleading results that are difficult to identify. For instance, if a deep research
agent fails to find conflicting experimental studies on a current research topic, it may incorrectly
conclude that consensus has been reached; detecting such a failure is difficult since the user has no
way of assessing the completeness of the surfaced studies.

We study the problem of evaluating and improving the information-seeking capabilities of LLM
agents. Our contributions are threefold. First, we clarify and formalize the information-seeking
task as a POMDP and introduce SeekerGym, a versatile POMDP environment for evaluating
information-seeking capabilities. Second, we design SeekerAgent, a modular LLM agent that em-
ploys several belief structuring strategies including a meta-reflection approach and an uncertainty-
augmented approach that provides substantial improvements. Third, we perform an extensive em-
pirical evaluation on the information-seeking capabilities of frontier LLMs with different agentic
designs, demonstrating that SeekerAgent can improve recall by as much as 68% compared to fron-
tier models without belief structuring.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Belief Pipeline

SeekerAgent

SeekerGym

Query Generator

Reward Function

Belief

Retriever

Episodic Buffer

Belief Pipeline

SeekerAgent

SeekerGym

Query Generator

Reward Function

Belief

Retriever

Episodic Buffer

Query Generator Reward FunctionRetriever

Anchisaurus was... 

According to the...

Fossils of Anchis...
What are the physical...?

(a) POMDP Architecture (b) Retrieval Dynamics

Figure 1: POMDP framework with four core components. (a) Our information-seeking architecture
consists of SeekerGym (red components: retriever E and reward function R) and SeekerAgent (blue
components: belief pipeline and query generator). SeekerGym tracks document coverage and re-
trieves passages from corpus X ; SeekerAgent maintains belief states and generates targeted queries
to maximize information discovery. (b) Retrieval dynamics: Given a natural language query a from
the LLM agent, the retriever E samples the most relevant passages from corpus X , returning obser-
vation o that may contain both goal-relevant and non-goal passages.

2 SEEKERGYM: AN ENVIRONMENT FOR INFORMATION SEEKING

In this section, we formalize the information seeking task as a POMDP, and introduce the Seeker-
Gym environment designed to evaluate information seeking capabilities of LLM agents.

2.1 POMDP FORMULATION

We consider an information-seeking task (Figure 1) where the agent is given a target topic (e.g.,
the title of a Wikipedia article in our Wikipedia environment, or the abstract of a survey paper in
our survey paper environment), and their goal is to iteratively issue queries a to an environment
over a fixed corpus of passages X = {x1, . . . , xN} with the goal of uncovering a target subset of
passages Xsubmit ⊆ X within a certain number of iterations. With each query a, the agent receives
an observation o from the environment (e.g., the collection of passages retrieved from X by a fixed
retriever E) along with a reward signal r encoding the amount of information uncovered.

Critically, the environment is not directly observable, so the agent must make decisions based on
its observations. Thus, we formalize information seeking as a Partial Observable Markov Decision
Process (POMDP). A (hidden) state s ∈ S encodes the environment (which is fixed) and the agent’s
progress (which is updated). Specifically, s includes (1) the corpus of items X = {x1, . . . , xN};
(2) a binary vector sgoal ∈ {0, 1}N , where the sgoali indicates whether xi it is relevant and must be
retrieved; and (3) a binary vector sretrivedt ∈ {0, 1}N , where sretrievedt,i = 1 indicates whether the
agent has already retrieved xi. The action space A consists of all natural language queries, and the
observation space Ω = 2N encodes all subsets of items X .

Environments. We provide three environments. Our CS surveys environment is the most complex.
We curate a set W of computer science survey papers, and a set X of all research papers cited by
some survey w ∈ W . Papers are represented to the agent by their title and abstract. For the initial
state, X is always the same, sgoal is sampled by choosing w ∼ Uniform(W) and then taking sgoal =

{x ∈ X | w cites x}, and sretrieved = 0⃗ is initially all zeros. Given a belief state representation
b ∈ B (described in Section 3), an agent π : B → A outputs (possibly stochastic) actions in the form
of natural language queries; this query is fed to a fixed retriever (e.g., from a vector store), which
returns k papers by their indices {i1, ..., ik} ⊆ [N] = {1, ..., N} (where k is a hyperparameter).

In addition, we prove two Wikipedia environments; they are designed to be conceptually similar
but enable evaluating diverse distribution of information-seeking tasks. The two environments are
identical except for the choice of W and X . In both, W is a collection of Wikipedia articles and
X is a set of passages in some article w ∈ W; both are represented to the agent by their titles. As
with the surveys environment, to construct an initial state, we choose w ∼ Uniform(W) and take
sgoal = {x ∈ X | w contains x} and sretrieved = 0⃗. The agent acts as before. We consider one
benchmark with short articles (i.e., each article has a relatively small number of passages), and one
with long articles.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: CS Surveys dataset

(a) Representative topic clusters

Topic Cluster Total Papers For Evaluation

Wireless Communications 357 10
Medical Image Analysis 317 10
Graph Learning 154 10
Autonomous Driving 147 10
Federated Learning 132 10
Other clusters 8,061 0

Total 9,168 50

(b) Hyperparameters

Parameter Value

Content Filtering
Minimum abstract tokens 48
Maximum abstract tokens 1024
Available abstract count threshold 75

Clustering Parameters
DBSCAN epsilon 0.8
DBSCAN min samples 128
UMAP dimensions 32

We provide additional details on how W and X are constructed in Section 2.2.

Dynamics. The observation function O : S × A → Ω implements a top-k retrieval mechanism
based on semantic similarity (i.e., retrieval from a vector store using vector embeddings):

O(s, a) = top-kx∈X {sim(a, x)}

where sim(a, x) measures the semantic similarity between query a and passage x. The initial state
distribution D is obtained by randomly sampling a goal vector, which occurs as described above,
and initializing sretrieved = 0⃗; the corpus X is fixed. The transition function T : S ×A → S is

sretrievedt+1,i =

{
1 if i ∈ ot
sretrievedt,i otherwise,

i.e., add ot to the list of retrieved items; the corpus X and goal sgoal are fixed across time steps.

Reward function. We use a reward rinfo
t that provides a reward at each time step capturing the

number of new target passages discovered at that step that are relevant:

R(a, s) =

N∑
i=1

sgoal
i · (sretrieved

t+1,i − sretrieved
t,i).

Train and test set. Finally, we enable agents to learn across different problem instances. To this
end, we can split the documents W into a training set Wtrain and a held-out test set Wtest. Then,
the agent can be trained in the POMDP constructed using Wtrain, and evaluated in the POMDP
constructed using Wtest. The training set can be used both for traditional gradient-based training, as
well as prompting-based learning strategies such as reflexion (Shinn et al., 2023).

2.2 DATASET CONSTRUCTION

CS Surveys. We collect computer science survey and review papers published between January
2024 and August 2025 from Semantic Scholar (Kinney et al., 2023), focusing on recent publications.
To achieve balanced topic representation within computer science, we apply semantic clustering us-
ing embeddings of survey paper abstracts, grouping papers into coherent research areas through
DBSCAN with UMAP dimensionality reduction. This clustering yields 11 distinct topics; Table 1a
shows representative clusters demonstrating their diversity. This stratified sampling strategy prevents
overrepresentation of dominant research trends while ensuring comprehensive coverage. Next, we
retrieve cited research papers for each survey paper through the Semantic Scholar API, and filter
papers based on various criteria. Table 1b shows hyperparameters for both filtering and clustering.
Due to publisher restrictions, approximately 50% of cited papers had missing abstracts. After apply-
ing content filtering on the survey papers, we selected the top 10 papers from each cluster based on
abstract availability ratio—ensuring minimal loss of original citation information from each survey.

Wikipedia. First, we collect all articles from the Wikipedia database (Wikimedia, 2024). To ob-
tain a useful subset of high-quality articles, we first remove outlier and noisy articles, including
those that are too sparse and contain predominantly fragmented short content (e.g., articles with
many short bullet points). For sparse article removal, we leverage Wikipedia’s hierarchical article

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: Wikipedia dataset

(a) Representative topic clusters

Topic Cluster Total Articles Ranked For Evaluation

Video Games 634 → 15
MLB Players 591 → 15
Soap Opera Characters 584 → 15
Molecular Biology 522 → 15
Navy Ships 519 → 15
U.S. Highways 437 → 15
Islamic/Persian History 361 → 15
American Politicians 357 → 15
Chinese Dynasties 356 → 15
Bird Species 325 → 15
North American Geography 242 → 15
Railroads/Transit 229 → 15
Hotels and Real Estate 205 → 15
Dinosaurs 203 → 15
Romanian History 159 → 15
Other clusters (19) 4,565 0

Total 10,289 225

(b) Hyperparameters

Parameter Value

Outlier Removal
Minimum abstract tokens 4
Maximum abstract tokens 1024
Minimum passages 8
Minimum citations 16
Minimum references 4

Sparse Article Removal
Minimum passage tokens 40
Sparse flag propagation threshold 0.1
Sparse ratio threshold 0.1

Clustering Parameters
DBSCAN epsilon 0.24
DBSCAN min samples 128
UMAP dimensions 32

Table 3: Dataset statistics

Dataset Observations |X | Observations per Document Tokens per Observation

Mean±Std (Min, Max) Median Mean±Std (Min, Max) Median

Short Wikipedia (SW) 160K 17.5±2.3 (11, 25) 17 159.6±87.7 (6, 1332) 144
Long Wikipedia (LW) 624K 54.7±17.8 (29, 143) 53 148.1±81.3 (4, 1767) 132

CS Surveys (CSS) 384K 135.9±47.7 (77, 263) 122 245.2±90.0 (48, 1023) 235

structure: starting from the deepest section level, we measure the ratio of content shorter than the
minimum passage token threshold (40 tokens). When a section is detected as too short, its parent
section considers this as sparse content. We recursively propagate this sparsity ratio up the hier-
archy, filtering out articles with more than 10% sparse content at the root article level. Table 2b
shows hyperparameters for both filtering and clustering. Second, we apply semantic clustering to
group the remaining articles into topical clusters. Then, for each article, we perform paragraph-level
segmentation to create passages x ∈ X . Within each cluster, articles are ranked using a composite
quality score that combines two factors: (1) article length, weighted by a bump function that favors
medium-sized documents suitable for multi-turn exploration, and (2) citation counts as a proxy for
article importance and completeness. The top 15 highest-scoring articles from each selected cluster
constitute our evaluation set.

We create two variants of the Wikipedia dataset with different passage selection strategies. For
Long Wikipedia (LW), we include all passages that survive the outlier removal and sparse article
removal stages, resulting in 624K observations. For Short Wikipedia (SW), we apply an additional
filtering step after clustering: passages are selected only from articles that pass clustering-based
noise detection. This results in a smaller corpus of 160K observations but with higher content
quality, as shown in Table 3.

Statistics. We show statistics for our datasets in Table 3, including the number of documents |X |
(“Documents”), statistics on the number of observations per document (i.e., the number of items in
sgoal) (“Observations per Documents”), and the number of tokens per observation (i.e., the number
of tokens in an observation x ∈ X) (“Tokens per Observation”).

Train/test split. Rather than use a global train/test split, we perform the split at the level of
clusters—i.e., we have a separate train/test split for each cluster. Then, we train the agent separately
for each cluster, and test on the corresponding set. Results can be aggregated across all clusters.
This strategy ensures the train and test sets encode related information, thereby facilitating learning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Query 1: How has 1500 Broadway's...

Answer 1-1: In the 1980s, The New...

Answer 1-2: Times Square's Theater...

Query 2: What was the original...

Query 3: What was the significance...

Answer 3-1: In the 1980s, The New...

Answer 3-2: 1501 Broadway was...

In the 1980s, The New York ...

Times Square's Theater District ...

In the 1980s, The New York ...

1501 Broadway was designed in ...

The Paramount Theatre opened ...

The building had about 65 ...

The theater entrance was near ...

When 1540 Broadway was ...

In the 1980s, The New York ...

 [Missing Information]

In the 1980s, The New York ...

1501 Broadway was designed in ...

 [Missing Information]

 [Missing Information]

The theater entrance was near ...

When 1540 Broadway was ...

Figure 2: Illustration of belief pipelines. Raw history preserves full dialogue but contains redun-
dancy; deduplication removes duplicates; reorganization reorders passages; gap detection adds miss-
ing markers. These components refine the belief representation to support effective query generation.

3 SEEKERAGENT: MODULAR AGENT ARCHITECTURE WITH
COMPOSITIONAL BELIEF MODELING

A SeekerGym agent has two components: (1) a belief pipeline that constructs a representation of the
belief state, and (2) a query generator that generates an action based on the belief state.

3.1 BELIEF PIPELINE VIA MODULAR COMPONENTS

Performance in SeekerGym hinges on the representation b ∈ B fo the belief state—i.e., how the
agent represents its belief state to guide future queries. The agent maintains an interaction history
τt = {(a1, o1), (a2, o2), ..., (at, ot)}. However, naı̈vely representing beliefs to the agent as the raw
interaction history τt leads to poor performance due to the its complexity. We consider various
strategies for constructing effective belief state representations bt = f belief(τt). Intuitively, steps in
this pipeline serve to identify knowledge gaps in the belief state and inspire more targeted queries.
Below, we describe several pipelines, each of which are comprised of a sequence of reusable com-
ponents. We visualize our pipelines in Figure 2, and provided a concrete example in Appendix D.3.

Raw history. This pipeline just uses the original interaction history τt as the belief state, including
all queries and retrieved passages. While complete, this representation is verbose—e.g., it might be
bt = [(a1, {A,B}), (a2,∅), (a3, {A,C,D})], including a repeated passage A and failed query a2.

Deduplicated history. This pipeline removes redundant information, returning all unique retrieved
passages by the order of first appearance. For example, in the above example, after deduplicated
history, the belief state would be bt = {A,B,C,D}.

Uncertainty-informed belief. This pipeline first removes duplicated passages as before, but ad-
ditionally reorganizes passages and tries to identify missing information. Specifically, it first im-
plements a reorganization component f reorg that analyzes semantic relationships to reorder pas-
sages into a logical flow (e.g., [C,D,A,B] if C and D are introductory). Second, it implements
a gap detection component f gap that analyzes the reordered sequence and inserts explicit markers
where content discontinuities are found (e.g., [C,D,[Missing]×3, A,[Missing], B]). The
marker [Missing]×3 indicate substantial missing content between D and A, while the marker
[Missing] suggests a minor gap between A and B.

Meta-Reflection. Finally, we consider a slight modification of the reflexion (Shinn et al., 2023)
algorithm, which learns across problem instances by having an LLM “reflect” to summarize useful
strategies. Specifically, we prompt an LLM to generate a summary of successful strategies deducible
from same-cluster articles by viewing them as demonstrations to learn from. These strategies are
appended to the belief pipeline prompt used for the corresponding test POMDP. In our evaluation,
meta-reflection is used in conjunction with the deduplication history pipeline, but it can be combined
with any pipeline.

Prompts. Prompt templates are shown in Appendices D.1 & D.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Claude-3-Haiku Deepseek-R1 GPT-4o-mini Gemini-2.0-Flash0.0

0.1

0.2

0.3

0.4

0.5

Re
ca

ll

(a) Performance comparison on Short Wikipedia

Short Wikipedia Long Wikipedia CS Survey0.0

0.1

0.2

0.3

0.4

0.5

(b) DeepSeek-R1 performance across dataset

Raw History
Deduplicated History

Meta Reflection
Uncertainty-Informed Belief

(Oracle)-Uncertainty-Informed Belief

Figure 3: Comparative performance analysis across foundation models and belief structuring
methodologies. (a) Performance comparison across LLM variants. The aggregated recall met-
rics demonstrate the relative efficacy of diverse large language model architectures (DeepSeek-R1,
Gemini-2.0-Flash, GPT-4o-Mini, and Claude-3-Haiku) when evaluated on three benchmark datasets
of increasing complexity: Short Wikipedia (SW), Long Wikipedia (LW), and Computer Science Sur-
veys (CSS). Performance values represent the mean recall aggregated across all belief pipeline con-
figurations for each model variant, providing a model-centric view of information retrieval capabili-
ties. (b) DeepSeek-R1 performance stratified by belief pipeline configuration. The recall metrics il-
lustrate the differential impact of four distinct belief structuring algorithms—Raw History, Dedupli-
cated History, Uncertainty-Informed Belief, and Oracle-enhanced Uncertainty-Informed Belief—on
information discovery effectiveness across the three dataset variants.

Table 4: Performance comparison across model variants and belief structuring methods on
Wikipedia datasets (Short and Long Wikipedia combined). Left section shows recall values, right
section shows average goals found per episode. Bold values indicate column maxima for each
method, underlined values show the best non-oracle method for each model, and Gemini-2.0-Flash
(bolded row) demonstrates overall superior performance.

Recall Reward (Avg Goals Found)
Model Raw Dedup Meta UIB Oracle Raw Dedup Meta UIB Oracle

Claude-3-Haiku 0.330 0.486 0.481 0.497 0.520 9.7 14.3 14.1 14.6 15.3

Deepseek-R1 0.294 0.460 0.485 0.496 0.571 8.6 13.5 14.2 14.6 16.8

GPT-4o-mini 0.300 0.429 0.423 0.449 0.451 8.8 12.6 12.4 13.2 13.3

Gemini-2.0-Flash 0.396 0.471 0.479 0.508 0.605 11.6 13.8 14.1 14.9 17.8

Method Average 0.330 0.461 0.467 0.488 0.537 9.7 13.5 13.7 14.3 15.8

3.2 QUERY GENERATOR

The query generator takes the belief state bt and generates a set of new queries to continue explo-
ration. It controls exploration strategy through parallel query generation. We set queries per turn
to 10 by default to balance experimental efficiency with exploration coverage. The LLM backend
selection affects both cost and capability; we tested multiple models with consistent prompting.

4 EXPERIMENTAL EVALUATION

We perform experiments to answer the following research questions: RQ1: Which foundation mod-
els excel at information seeking? RQ2: How do different belief pipelines affect information-seeking
performance? RQ3: What is the cost-performance efficiency across different models and methods?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Deduplicated History Uncertainty-Informed Belief
0.0

0.1

0.2

0.3

0.4

Re
ca

ll

Model
Deepseek-R1 Deepseek-V3

Figure 4: Ablation study comparing a reasoning model (DeepSeek-R1) to a similar non-reasoning
model (DeepSeek-V3) across different belief pipeline configurations on our Short Wikipedia dataset.

Example: Extended Reasoning Trace from Deepseek-R1
‘‘The ‘‘Note’’ says info was reorganized for coherence, and [Missing
Information] indicates gaps. So maybe details about the IUCN listing
date, recent population estimates for the Common Pochard, or specific
conservation efforts beyond AEWA.
Possible gaps: Current population trends for the Common Pochard.
The article mentions declines in Europe, but exact numbers? Maybe
global population estimates. Also, are there specific threats not
covered, like diseases or climate change?’’

Figure 5: Qualitative example of reasoning in Deepseek-R1 when processing uncertainty templates.
The model demonstrates extended reasoning by explicitly analyzing information gaps and generat-
ing specific hypotheses about missing details, including [Missing Information] markers.

4.1 EXPERIMENTAL SETUP

For SeekerGym, we use OpenAI’s text-embedding-3-large embedding model (1536 dimensional
vectors), with a similarity threshold being 0.7. We set the top-k retrieval number to 10. For Seek-
erAgent, we use Claude-3-Haiku, Deepseek-R1, GPT-4o-mini, and Gemini-2.0-Flash as the LLM
backends. We set the temperature of all models to 1.0, maximum query per iteration to 10, and
maximum token length to 3200 for all models except Deepseek-R1, which uses 6400 tokens to
accommodate its reasoning requirements.

Experimental Configuration. We conduct experiments across three datasets: Short Wikipedia (15
clusters, 15 episodes per cluster, 10 steps per episode), Long Wikipedia (15 clusters, 15 episodes
per cluster, 15 steps per episode), and CS Surveys (5 clusters, 10 episodes per cluster, 15 steps per
episode). Each episode is evaluated with a single run (no multiple trials per episode). We evalu-
ate five belief pipeline configurations: (1) Raw History, (2) Deduplicated History, (3) Uncertainty-
Informed Belief, (4) Meta-Reflection, and (5) Oracle-version of Uncertainty-Informed Belief. The
last configuration replaces the LLM-based reorganization component f reorg and gap detection com-
ponent f gap with oracles based on the ground truth; this variant is designed to represent the gap
between LLM-based belief state representation and the best possible representation. Note that con-
figurations (4) and (5) were not evaluated on the CSS survey task due to computational constraints
from the extensive context length of survey papers, which limits the volume of data processable
by the meta-reflection generator LLM, and due to unavailable Oracle information for survey paper
infrastructure.

Evaluation Metrics. We measure retrieval performance using recall, defined as the fraction of
relevant target paragraphs successfully retrieved by the agent out of all ground-truth paragraphs for a
given task: recall = |Xretrieved∩Xgoal|/|Xgoal|. We focus on recall since our query generator outputs a
fixed number of queries per iteration, making precision comparisons less informative across different
belief pipelines. Additionally, we compute cost as the absolute LLM usage cost in USD, calculated
using each provider’s tokenizer with input token cost weights and output token cost weights (USD
per million tokens), ensuring valid cost comparisons across different LLM variants. Detailed cost
calculation methodology is provided in Appendix B.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Efficiency ratios across model variants and belief structuring methods on Short and Long
Wikipedia. Values represent |Xretrieved ∩ Xgoal|/(1000 × total cost) , where higher values indicate
better cost-effectiveness. Bold values show column maxima, underlined values show the best non-
oracle method for each model.

Model Raw History Dedup. History Meta Reflection UIB Oracle-UIB

Claude-3-Haiku 0.308 0.987 0.968 0.650 1.165
Deepseek-R1 0.199 0.405 0.418 0.098 0.459
GPT-4o-mini 0.639 1.654 1.564 0.375 1.853
Gemini-2.0-Flash 1.109 2.417 2.267 1.306 3.243

Without [Missing] With [Missing]
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
ca

ll

0.403 0.404

0.499
0.458

Final Recall Score

Without [Missing] With [Missing]
0

200

400

600

800

1000

1200

1400

Re
as

on
in

g
To

ke
ns

736 757

1236

820

Average Reasoning Tokens per Episode

(Oracle)-Reorganized Information Reorganized Information (Oracle)-Uncertainty-Informed Belief Uncertainty-Informed Belief

Figure 6: Ablation study analyzing the impact of the gap detection component f gap on performance
and token usage. Specifically, it “Without Gaps” removes the gap detection component f gap from
the Uncertainty-informed belief pipeline as well as from the oracle version of this pipeline.

4.2 RESULTS

RQ1: Foundation models. First, we assess different foundation models on information-seeking
performance. This is crucial for understanding whether general model capabilities correlate with
effective exploration or if specialized competencies are required; results are shown in Figure 3a and
Table 4. As can be seen, Gemini-2.0-Flash generally outperforms other models.

A particular question of interest is the impact of reasoning on performance. In Figure 4, we show
an ablation comparing Deepseek-R1 (a reasoning model) to Deepseek-V3 (its non-reasoning base
model) for two of our pipelines on Short Wikipedia. As can be seen, reasoning improves perfor-
mance. However, looking at the broader pattern in Table 4, we observe that other non-reasoning
models (Gemini-2.0-Flash) achieve the best performance across most belief pipeline variants. We
hypothesize that since reasoning models are typically trained for tasks like mathematical problem
solving, they may not consistently excel at information seeking, which necessitates the design of
specialized information seeking agents.

RQ2: Belief structuring. Next, we investigate the effect of our belief pipelines. The purpose of this
experiment is to determine how progressively sophisticated belief representations impact exploration
efficiency. By structuring the agent’s belief state, we aim to reduce redundant searches and improve
the generation of targeted queries. Results are shown in Figure 3b and Table 4. As can be seen, even
deduplication yields a noticeable improvement over raw history. Meta-reflection achieves a small
improvement over deduplication. Our uncertainty-informed belief pipeline, which explicitly models
information gaps, achieves the highest performance by precisely targeting missing content. Figure 6
shows an ablation where we remove the gap detection component f gap. Additionally, we find that
the reasoning traces exhibit extensive belief structuring behaviors when they notice [Missing]
markers; see Figure 5 for an example.

RQ3: Cost-performance tradeoff. We analyze the tradeoffs between computational cost and
retrieval performance across different models and methods. Table 5 shows results. Our cost-
performance analysis reveals that Gemini-2.0-Flash emerges as the most cost-efficient model,
achieving competitive recall performance at significantly lower cost per episode compared to
reasoning-heavy models like DeepSeek-R1. As can be seen in Table 4, while component f gap im-
proves performance, it also significantly improves the number of reasoning tokens, leading to its
comparatively worse performance, as can be seen in Figure 7. Among belief pipelines, Dedupli-
cated History achieves the best cost-performance efficiency, due to its simple design of information
duplication handling mechanism.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8

Timestep

2000

4000

6000

8000

10000

In
pu

t T
ok

en
s

Input Tokens per Step

0 1 2 3 4 5 6 7 8

Timestep
400

600

800

1000

1200

1400

1600

1800

Ou
tp

ut
 To

ke
ns

Output Tokens per Step

0 1 2 3 4 5 6 7 8

Timestep
2000

4000

6000

8000

10000

12000

To
ta

l T
ok

en
s

Total Tokens per Step

Raw History Deduplicated History (Oracle)-Uncertainty-Informed Belief Uncertainty-Informed Belief

Figure 7: Token usage comparison across different methods and models. The analysis shows how
different belief pipeline configurations affect computational costs through token consumption, pro-
viding insights into the efficiency trade-offs of various approaches.

5 RELATED WORK

Information seeking. Prior work has explored how to use deep RL to train information seeking
agents, e.g., to iteratively search until finding an optimal information source (Narasimhan et al.,
2016). More broadly, there has been work on algorithms for active information gathering in con-
trol (Sadigh et al., 2016), which motivates our POMDP formulation. However, their approach re-
quires gradient-based training of the agent, which can be prohibitively expensive. In contrast, our
belief representation pipeline improves information seeking without finetuning.

Benchmarking LLM Agents. While there are a large number of benchmarks for assessing the
performance of LLM agents, they use end-to-end tasks instead of isolating the information seeking
components. For instance, question-answering benchmarks such as HotpotQA (Yang et al., 2018)
and MultihopQA (Mavi et al., 2024) require information seeking, but conflate these capabilities with
reasoning and answer generation. Recent DeepResearch benchmarks (Du et al., 2025; Bosse et al.,
2025) similarly focus on end-to-end generation of survey papers instead of isolating the task of
identifying relevant research papers. SWE-Bench (Jimenez et al., 2024) similarly evaluate end-to-
end performance, making it difficult to isolate information-seeking failures. SeekerGym addresses
this gap by providing a benchmark specifically for evaluating information seeking.

6 CONCLUSION

We have introduced SeekerGym, a comprehensive benchmark for evaluating information-seeking
capabilities of LLM agents in multi-turn scenarios. We frame the problem as a Partially Observ-
able Markov Decision Process (POMDP), based on which we design the SeekerGym environment.
Furthermore, we have designed SeekerAgent, which uses a compositional belief state representation
pipeline that explicitly models both content structure and agent uncertainty to improve the perfor-
mance of downstream query generation. Through extensive experiments, we have demonstrated
that structured belief representations significantly improve information seeking capabilities. Infor-
mation seeking forms a critical component of many agentic systems, and more work is needed to
design effective information seeking agents.

REFERENCES

Nikos I Bosse, Jon Evans, Robert G Gambee, Daniel Hnyk, Peter Mühlbacher, Lawrence Phillips,
Dan Schwarz, Jack Wildman, et al. Deep research bench: Evaluating ai web research agents.
arXiv preprint arXiv:2506.06287, 2025.

Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench:
A comprehensive benchmark for deep research agents. arXiv preprint arXiv:2506.11763, 2025.

Yuxuan Huang, Yihang Chen, Haozheng Zhang, Kang Li, Huichi Zhou, Meng Fang, Linyi Yang,
Xiaoguang Li, Lifeng Shang, Songcen Xu, Jianye Hao, Kun Shao, and Jun Wang. Deep research

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

agents: A systematic examination and roadmap, 2025. URL https://arxiv.org/abs/
2506.18096.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Rodney Michael Kinney, Chloe Anastasiades, Russell Authur, Iz Beltagy, Jonathan Bragg, Alexan-
dra Buraczynski, Isabel Cachola, Stefan Candra, Yoganand Chandrasekhar, Arman Cohan, Miles
Crawford, Doug Downey, Jason Dunkelberger, Oren Etzioni, Rob Evans, Sergey Feldman, Joseph
Gorney, David W. Graham, F.Q. Hu, Regan Huff, Daniel King, Sebastian Kohlmeier, Bailey
Kuehl, Michael Langan, Daniel Lin, Haokun Liu, Kyle Lo, Jaron Lochner, Kelsey MacMil-
lan, Tyler C. Murray, Christopher Newell, Smita R Rao, Shaurya Rohatgi, Paul Sayre, Zejiang
Shen, Amanpreet Singh, Luca Soldaini, Shivashankar Subramanian, A. Tanaka, Alex D Wade,
Linda M. Wagner, Lucy Lu Wang, Christopher Wilhelm, Caroline Wu, Jiangjiang Yang, An-
gele Zamarron, Madeleine van Zuylen, and Daniel S. Weld. The semantic scholar open data
platform. ArXiv, abs/2301.10140, 2023. URL https://api.semanticscholar.org/
CorpusID:256194545.

Vaibhav Mavi, Anubhav Jangra, and Adam Jatowt. Multi-hop question answering, 2024. URL
https://arxiv.org/abs/2204.09140.

Karthik Narasimhan, Adam Yala, and Regina Barzilay. Improving information extraction by acquir-
ing external evidence with reinforcement learning. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp. 2355–2365, 2016.

Dorsa Sadigh, S Shankar Sastry, Sanjit A Seshia, and Anca Dragan. Information gathering actions
over human internal state. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 66–73. IEEE, 2016.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. Agentic retrieval-augmented
generation: A survey on agentic rag, 2025. URL https://arxiv.org/abs/2501.09136.

Wenjing Tang, Xinyu He, Yongxi Huang, Yunxiao Xiao, Cewu Lu, and Panpan Cai. Tru-pomdp:
Task planning under uncertainty via tree of hypotheses and open-ended pomdps, 2025. URL
https://arxiv.org/abs/2506.02860.

Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang, Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu
Dai, Min Zhang, Qingsong Wen, Wei Ye, Shikun Zhang, and Yue Zhang. Autosurvey: Large
language models can automatically write surveys, 2024. URL https://arxiv.org/abs/
2406.10252.

Wikimedia. Wikipedia structured contents. https://www.kaggle.com/datasets/wikimedia-
foundation/wikipedia-structured-contents, 2024.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

10

https://arxiv.org/abs/2506.18096
https://arxiv.org/abs/2506.18096
https://arxiv.org/abs/2310.06770
https://api.semanticscholar.org/CorpusID:256194545
https://api.semanticscholar.org/CorpusID:256194545
https://arxiv.org/abs/2204.09140
https://arxiv.org/abs/2501.09136
https://arxiv.org/abs/2506.02860
https://arxiv.org/abs/2406.10252
https://arxiv.org/abs/2406.10252
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2405.15793

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A SEEKERGYM DETAILS

Goals per Step Distractors per Step Duplicates per Step
Metric Type

0

2

4

6

8

10

12

14

16

Co
un

t p
er

 T
im

es
te

p

1.1

14.3

8.6

1.7

5.0 4.6

0.7

3.1 2.7

CS Survey
Long Wikipedia
Short Wikipedia

Local Density KNN-10 Similarity
Embedding Similarity Metrics

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Si
m

ila
rit

y
Sc

or
e

/ D
en

sit
y

2.728

0.354

2.433

0.393

1.998

0.480

CS Survey
Short Wikipedia
Long Wikipedia

(a) Dataset Comparison: Per-Step Rates (b) k-NN-based environment analysis

Figure 8: Dataset characteristics and environment analysis. (a) Per-step rates across three datasets
showing unique goals retrieved per step from |X goal|, unique distractors accumulated per step, and
duplicates encountered per step in τt that agent has as episodic memory. (b) k-NN based environ-
ment investigation measuring local distance patterns in each environment’s embedding space X to
analyze retrieval difficulty and information density.

B COST CALCULATION DETAILS

We compute experimental costs using model-specific tokenizers and official pricing rates. For each
model, we use the appropriate tokenizer:

Claude-3-Haiku: o200k base tokenizer (due to API latency constraints)

GPT-4o-mini: o200k base tokenizer

DeepSeek-R1: Open-source V3 tokenizer

Gemini-2.0-Flash: Vertex AI tokenizer

Costs are calculated by multiplying token counts (input and output) by the respective model’s pricing
rate (USD per million tokens) as published by each provider.

C TOPIC-SPECIFIC PERFORMANCE INFORMATION

This section analyzes performance variations across different topic clusters, examining how domain-
specific characteristics affect information-seeking effectiveness. We aggregate the metrics over all
methods and LLM models to identify topic-level patterns. (Figure 9, 10)

D SEEKERAGENT DETAILS

D.1 BELIEF PIPELINE COMPONENT PROMPTS

We employ unified prompt templates across all belief components to ensure consistency in query
generation. The actual implementation uses the following prompt templates:

Base Agent Introduction

You are an elite, AI-Powered Search Agent tasked with
retrieving the most relevant information from a search
engine to complete an article about {topic}.

Initial Exploration Prompt

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Topic

0.0

0.1

0.2

0.3

0.4

0.5

Re
ca

ll

Molecular Biology

Chinese Dynasties

North American Geography

Islamic/Persian History

Hotels and Real Estate
Video Games

Railroads/Transit

American Politicians

Romanian History
U.S. Highways

Soap Opera Characters
Navy Ships

Dinosaurs
MLB Players

Bird Species

Performance Comparison Across Topics (Wikipedia)

Figure 9: Performance across Wikipedia topic clusters. We aggregate recall metrics across all mod-
els (Claude-3-Haiku, Deepseek-R1, GPT-4o-mini, and Gemini-2.0-Flash) and belief pipeline meth-
ods to analyze topic-level performance patterns. Results show that LLMs struggle with information
seeking in technical domains like Molecular Biology and Chinese Dynasties, which require spe-
cialized terminology and domain expertise, but perform well on casual topics like Bird Species and
MLB Players, where the vocabulary and concepts are more accessible and commonly represented
in training data.

Topic

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Re
ca

ll

Autonomous Driving

Federated Learning
Graph Learning

Medical Image Analysis

Wireless Communications

Performance Comparison Across Topics (CS Survey)

Figure 10: Performance across CS Surveys topic clusters. We aggregate recall metrics across all
models (Claude-3-Haiku, Deepseek-R1, GPT-4o-mini, and Gemini-2.0-Flash) and belief pipeline
methods to analyze topic-level performance patterns within computer science research domains.

{base_intro}

{abstract_section}No observations have been retrieved yet.
Your task is to formulate initial search queries to begin
exploring the topic comprehensively.

Instructions:
1. Generate broad, exploratory queries to understand

different aspects of {topic}.
2. Wrap each question in:

<Question>...your natural-language question...</Question>
3. Generate up to {num_queries} questions total.

Standard Instructions Template

{base_intro}

Your task is to analyze {content_description} and formulate
targeted follow-up search queries to fill any identified

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

information gaps.

Instructions:
1. {analysis_instruction}
2. Whenever you notice missing information, ambiguity,

or anything that requires further information for
article completion, pose a question to retrieve the
corresponding information.

3. Generate natural language questions about the content
itself. Do NOT include any metadata{metadata_note}
in your questions.

4. Wrap each question in:
<Question>...your natural-language question...</Question>

5. Generate up to {num_queries} questions total.

D.2 META REFLECTION PROMPT

Input Prompt: Topic

Analyze the content patterns across these articles and create a
GENERALIZED information structure that captures how this topic is
typically organized.

YOUR TASK: Identify common information groupings that appear
across multiple articles. Create logical sections that would
apply to ANY article in this topic.

OUTPUT REQUIREMENTS: - Use keyword-focused, concise descriptions
- Avoid filler words like "This section contains..." or "includes
information about..." - List information types directly (e.g.,
"name, type, classification" NOT "This section introduces the
name, type, and classification") - Create 5-10 main sections
maximum - Use abstract, generalizable section names

OUTPUT FORMAT: <ANSWER> ## Section Name 1 keyword1, keyword2,
keyword3, brief-description-of-content-type

Section Name 2 technical-specs, measurements,
performance-data, comparative-metrics

Section Name 3 origins, development-timeline, key-events,
predecessor-information

(Continue for all major content groupings you identify)
</ANSWER>

IMPORTANT: - Be CONCISE and KEYWORD-FOCUSED in descriptions - NO
specific names, dates, or examples from the articles - Focus on
TYPES of information, not specific content - Each section should
be reusable for ANY new article in this topic

Output Sample (Topic: Video Games)

Overview & Core Mechanics

gameplay-type, genre-classification, perspective-view,
control-scheme, primary-objectives, basic-rules

Gameplay Systems & Features

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

combat-mechanics, progression-systems, multiplayer-modes,
difficulty-settings, special-abilities, customization-options

Narrative & Setting

plot-summary, main-characters, world-description,
timeline-placement, thematic-elements, story-structure

Development & Production development-team, creation-timeline,
technical-engine, design-philosophy, production-challenges,
platform-decisions

Audio & Visual Design

graphics-style, art-direction, soundtrack-composition,
voice-acting, technical-specifications, aesthetic-influences

Release & Distribution

launch-dates, platforms, regional-availability,
special-editions, downloadable-content, post-launch-updates

Reception & Impact

critical-scores, review-highlights, sales-figures,
awards-recognition, cultural-influence, legacy-assessment

Related Media & Franchise

sequels-prequels, spin-offs, adaptations, merchandise,
expanded-universe, series-connections

D.3 BELIEF COMPONENT USAGE EXAMPLES

We provide a concrete example of how each belief pipeline transforms the interaction history.

Raw history format f raw. The raw history preserves the complete dialogue:

Query 1: What are the main features of quantum computing?
Answer 1-1: Quantum computers use qubits instead of classical bits...
Answer 1-2: Superposition allows qubits to exist in multiple states...
Answer 1-3: Quantum entanglement enables correlated quantum states...

Query 2: Explain quantum error correction techniques
Answer 2-1: Error correction is crucial because quantum states are fragile...
Answer 2-2: Quantum computers use qubits instead of classical bits...
Answer 2-3: Surface codes are a popular error correction method...

Note the duplication: Answer 2-2 repeats Answer 1-1 verbatim, creating redundancy.

Deduplicated observations fdedup. After deduplication, only unique passages remain:

[1] Quantum computers use qubits instead of classical bits...
[2] Superposition allows qubits to exist in multiple states...
[3] Quantum entanglement enables correlated quantum states...
[4] Error correction is crucial because quantum states are fragile...
[5] Surface codes are a popular error correction method...

Reorganized with missing placeholders f gap. The final pipeline marks gaps:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

[1] Quantum computers use qubits instead of classical bits...
[2] Superposition allows qubits to exist in multiple states...
[3] Quantum entanglement enables correlated quantum states...
[4] [Missing Information] [Missing Information] [Missing Information]
[5] Error correction is crucial because quantum states are fragile...
[6] [Missing Information]
[7] Surface codes are a popular error correction method...

The gap detection system identified that intermediate concepts (e.g., decoherence, noise models)
are likely missing between basic quantum properties [1-3] and error correction [5], inserting three
markers. A single marker at [6] suggests minor missing details about error correction approaches.

15

	Introduction
	SeekerGym: An Environment for Information Seeking
	POMDP Formulation
	Dataset Construction

	SeekerAgent: Modular Agent Architecture with Compositional Belief Modeling
	Belief Pipeline via Modular Components
	Query Generator

	Experimental Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusion
	SeekerGym Details
	Cost Calculation Details
	Topic-Specific Performance Information
	SeekerAgent Details
	Belief Pipeline Component Prompts
	Meta Reflection Prompt
	Belief Component Usage Examples

