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Abstract

Can we obtain insights about the brain using AI models? How is the information in
deep learning models related to brain recordings? Can we improve AI models with the
help of brain recordings? Such questions can be tackled by studying brain recordings like
functional magnetic resonance imaging (fMRI). As a first step, the neuroscience commu-
nity has contributed several large cognitive neuroscience datasets related to passive read-
ing/listening/viewing of concept words, narratives, pictures, and movies. Encoding and
decoding models using these datasets have also been proposed in the past two decades.
These models serve as additional tools for basic cognitive science and neuroscience research.
Encoding models aim at generating fMRI brain representations given a stimulus automat-
ically. They have several practical applications in evaluating and diagnosing neurological
conditions and thus may also help design therapies for brain damage. Decoding models
solve the inverse problem of reconstructing the stimuli given the fMRI. They are useful for
designing brain-machine or brain-computer interfaces. Inspired by the effectiveness of deep
learning models for natural language processing, computer vision, and speech, several neural
encoding and decoding models have been recently proposed. In this survey, we will first dis-
cuss popular representations of language, vision and speech stimuli, and present a summary
of neuroscience datasets. Further, we will review popular deep learning based encoding and
decoding architectures and note their benefits and limitations. Finally, we will conclude
with a summary and discussion about future trends. Given the large amount of recently
published work in the computational cognitive neuroscience (CCN) community, we believe
that this survey enables an entry point for DNN researchers to diversify into CCN research.

1 Introduction

The central aim of neuroscience is to unravel how the brain represents information and processes it to carry
out various tasks (visual, linguistic, auditory, etc.). Two important models related to how brain represents
information are, how external stimuli are represented in the form of neural responses (the encoding model)
and how stimuli are recovered or reconstructed from the neuronal responses (the decoding model). The recent
progress in deep neural networks in processing visual, auditory, linguistic, and multimodal stimuli makes
one wonder if we could investigate these computational models and shed light on how the brain solves these
problems. Thus, deep neural networks (DNN) may offer a computational medium to capture brain activities
unprecedented complexity and richness of, leading to accurate encoding and decoding solutions. Previous
surveys (Cao et al., 2021; Karamolegkou et al.,|2023)) have primarily focused on brain encoding and decoding
studies for language stimuli. But recent attempts in cognitive neuroscience have focused on naturalistic
and multimodal stimuli using DNNs. Hence, this survey systematically summarizes the latest encoding and
decoding efforts on (i) how DNNs have begun to explain the underlying information processing in the brain
for naturalistic stimuli of various modalities, (ii) the ways in which DNN models may be improved using the
brain data, and (iii) the exploration of the shared underlying characteristics of both the systems.

The survey aims to introduce the challenges in Computational Cognitive Neuroscience (CCN) to Al re-
searchers familiar with recent advances in deep neural networks (DNNs). A good section of the DNN
community is interested in neuroscience and psycholinguistics. Therefore, in this survey, we do not delve
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Figure 1: Brain Encoding and Decoding: Datasets & Stimulus Representations. The plot of the encoding-
decoding framework was derived from the study by [[vanova et al. (2022).

into architectural details and the learning procedures for DNNs rather, highlight how the advances in DNNs
are used to address CCN problems. This enables an entry point for DNN researchers to diversify into CCN
research.

Specifically, DNN researchers have the following advantages:

1. Interpreting DNN models and evaluating their capabilities using naturalistic brain datasets.

2. Using open-source brain datasets as evaluation benchmarks to improve DNN model capabilities

further.

Training DNN models by incorporating brain recordings.

4. Developing better brain-computer interface (BCI) capabilities to decode brain patterns using ad-
vanced DNN models.

5. Clear exposition of various open source ecological stimuli datasets available and a curated GitHub
repository for quick start of a study.

6. An accessible taxonomy of models and approaches.

7. A collection of open research problems in this fast-breaking research domain.

@

Brain encoding and decoding. Two main tools studied in cognitive neuroscience are brain encoding and
brain decoding, as shown in Figure[I] Encoding is the process of learning the mapping e from the stimuli S
to the neural activation F. The mapping can be learned using features engineering or deep neural networks.
On the other hand, decoding constitutes learning mapping d, which predicts stimuli S back from the brain
activation F. However, in most cases, brain decoding aims to predict a stimulus representation R rather
than reconstructing S. In both cases, the first step is to learn a semantic representation R of the stimuli .S
at the train time. Next, a regression function e : R — F' is trained for encoding. For decoding, a function
d : F — R is trained. These functions d and e can then be used at test time to process new stimuli and
brain activations, respectively. Ridge regression is the most popular choice for the functions d and e.

To study the brain response to various modalities of stimuli, neuroscience researchers have curated several
datasets. These datasets consist of stimuli and corresponding brain activity while participants were involved
in interactions with the stimuli and optionally performing tasks such as language comprehension, visual and
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Figure 2: Overview of different brain—machine interfacing methods and their spatial and temporal reso-
lution. Methods included: electroencephalography (EEG), magnetoencephalography (MEG), near-infrared
spectroscopy (NIRS), functional magnetic resonance imaging (fMRI), electrocorticography (ECoG), micro-
electrode array (MEA) recordings and single microelectrode (ME) recordings. Adapted from

ot L} [2009).

auditory processing, etc. Next, we discuss various techniques for obtaining the brain recordings and methods
for representing stimuli.

Techniques for recording brain activations. Popular techniques for recording brain activations can
be broadly classified into invasive and non-invasive techniques, as shown in Figure Invasive techniques
include single Micro-Electrode (ME), Micro-Electrode array (MEA), and Electro-Corticography (ECoG).
The non-invasive recording techniques include functional magnetic resonance imaging (fMRI), Magneto-
encephalography (MEG), Electro-encephalography (EEG) and Near-Infrared Spectroscopy (NIRS). Apart
from the dimension of invasiveness, these techniques differ in their spatial resolution of neural recording and
temporal resolution. fMRI recording enables data acquisition at high spatial but low temporal resolution.
Hence, they are suitable for examining which parts of the brain handle critical functions. A typical whole
brain fMRI acquisition takes 1-4 seconds to complete a scan. This is far slower than the speed at which
humans can process language. On the other hand, both MEG and EEG have high temporal but low spatial
resolution. They can preserve rich syntactic information (Hale et al., 2018) but cannot be used for source
analysis. fNIRS offers a compromise option. The time resolution is better than fMRI, and spatial resolution
is better than EEG. However, this spatial and temporal resolution balance may not compensate for the loss
in both and its restriction in terms of only recording cortical activity but not from nuclei that are deeper
in the brain, such as the basal ganglia, amygdala, hippocampus, etc. Further details on curation of brain
recordings to specific brain regions are discussed in Section [4]

Stimulus representations. Neuroscience datasets contain stimuli across various modalities, including text,
visual, audio, video, and other multimodal forms. Representations differ based on the modality. We briefly
discuss extracting of stimulus representations from DNN models according to the following criteria: (1)
Traditional and advanced models for text-based stimulus representations. (2) Image-based representations
from deep vision models. (3) Extraction of low-level speech to Transformer-based speech-based auditory
representations. (4) Finally, for multimodal stimulus representations, we explore early fusion and late fusion
deep learning methods. Early fusion methods combine information across modalities at the initial processing
stages, whereas late fusion combines it only at the end. Further details on different stimulus representation
methods are discussed in Section

Naturalistic neuroscience datasets. Several neuroscience datasets have been proposed across modalities
(see Figure [3). These datasets differ in terms of the following criteria: (1) Method for recording activa-
tions: fMRI, EEG, MEG, etc. (2) Repetition time (TR), i.e. the sampling rate. (3) Characteristics of
fixation points: location, color, shape. (4) Form of stimuli presentation: text, video, audio, images, or other
multimodality. (5) Task that participant performs during recording sessions: question answering, property
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Figure 3: Representative Samples of Naturalistic Brain Datasets: (Left) Brain activity recorded when sub-
jects are reading and listening to the same narrative (Deniz et all, 2019), and (Right) example naturalistic
stimuli from various public repositories: BOLD5000 (Chang et all 2019), ShortClips (Huth et al., 2022),
Natural Scenes Dataset (NSD) (Allen et al.| 2022) and Pereira dataset (Pereira et al., 2018).

generation, rating quality, etc. (6) Time given to participants for the task, e.g., 1 minute to list given object
properties. (7) Demography of participants: males or females, sighted or blind, etc. (8) Number of times
the response to stimuli was recorded. (9) Natural language associated with the stimuli. We discuss details
of proposed datasets in Section

Evaluation of brain encoding and decoding methods. 2V2 accuracy and Pearson Correlation are
two popularly used metrics for the evaluation of brain encoding models. On the other hand, brain decoding
models are evaluated using metrics such as pairwise accuracy, rank accuracy, R? score, and mean squared
error. We discuss the detailed definitions of these metrics in Section

Interpreting brain recordings through the robustness of DNN model representations. To inter-
pret the stimulus representations obtained from DNN models and examine their impact on brain alignment,
prior studies have proposed three different methods: variance partitioning (de Heer et al.,[2017), the residual
approach (Toneva et al., |2022a; |Oota et al., 2024b)), an indirect approach (Schrimpf et al., 2021; |Goldstein|

2022), and the stacked regression approach (Lin et al. [2023)). We discuss the details of each method
in Section [6.3l

Computational Cognitive Neuroscience (CCN) research goals. CCN researchers have primarily
focused on two main areas (Doerig et al.| 2023).

1. Improving predictive accuracy. In this area, the work is around the following questions.

e Compare feature sets: Which feature set provides the most faithful reflection of the neural
representational space?
o Test feature decodability: “Does neural data Y contain information about features X?7”

e Build accurate models of brain data: The aim is to enable the simulation of neuroscience
experiments.

2. Interpretability. In this area, the work is around the following questions.

o Examine individual features: Which contributes most to neural activity?
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o Test correspondences between representational spaces: “CNNs vs ventral visual stream” or
“Two text representations”.

o Interpret feature sets: Do features X, generated by a known process, accurately describe the
space of neural responses Y? Do voxels respond to a single feature or exhibit mixed selectivity?

e How does the mapping relate to other brain function models or theories?

We discuss some of these questions in Sections [6] and [7

Brain encoding literature (Mitchell et al., [2008; [Wehbe et al., 2014; Huth et al.,|2016) has focused on studying
several important aspects: (1) Which models lead to better predictive accuracy across modalities?
[& Wehbe, |2019} Deniz et al., [2019; [Schrimpf et al., [2021) (2) How can we disentangle the contributions of
syntax and semantics from language model representations to the alignment between brain recordings and
language models? (Lopopolo et al., 2017} Reddy & Wehbel [2021)) (3) Why do some representations lead to
better brain predictions? How are deep learning models and brains aligned in terms of their information
processing pipelines? (Merlin & Toneval [2022; |Aw & Toneval [2023)) (4) Does joint encoding of task and
stimulus representation help? (Oota et al.,[2024Db)). We discuss these details of encoding methods in Section@

Brain decoding models aim to understand what a subject is thinking, seeing, and perceiving by analyzing
neural recordings. Over the past decades, the brain-computer interface (BCI) has made significant progress
in decoding stimuli (language/images/speech) from the brain using non-invasive recordings. Like brain
encoding literature, decoding literature focuses on studying a few important aspects: (1) In the context of
language, how we compose the linguistic meaning from different stimuli such as text, images, videos, or speech
by analyzing the evoked brain activity (Pereira et al2016;2018)). (2) Given brain activations corresponding
to visual stimuli, how accurately can we decode a sentence representing the visual stimuli?
[2011} Beliy et al.,2019) (3) How can we decode natural speech processing from non-invasive brain recordings
using a single architecture and a data-driven approach? (Défossez et al., [2023) (4) How accurately can we
reconstruct perceived natural images or decode their semantic contents from non-invasive recording data
using popular deep learning models? (Takagi & Nishimoto, [2022). We discuss these details of decoding
methods in Section [1

2 Stimulus Representations

In this section, we discuss types of stimulus representations proposed in the literature across different modal-
ities: text, visual, audio, video, and other multimodal stimuli.

Text stimulus representations. Older methods for text-based stimuli representation include text corpus
co-occurrence counts (Mitchell et all [2008} [Pereira et al., 2013 [Huth et al., [2016)), topic models
2013)), syntactic features and discourse features (Wehbe et al., 2014). In recent times, for text-based
stimuli, both semantic models and experiential attribute models have been explored. Semantic representa-
tion models include word embedding methods (Pereira et al., |2018; |Wang et al., 2020; Pereira et al., |2016;
Toneva & Wehbe, 2019; [Anderson et all 2017a; (Oota et al. 2018), sentence representation models
et al. 2020; 2019; Toneva & Wehbel [2019)), RNNs (Jain & Huthl 2018; [Oota et all, 2019) and Transformer
methods (Gauthier & Levy, [2019; [Toneva & Wehbel 2019} |Schwartz et all |2019; |Schrimpf et al.l 2021} |An-|
[tonello et all, 2021} [Oota et al., 2022b; |Aw & Toneval [2023). Popular word embedding methods include
textual (i.e., Word2Vec (IMikolov et al., 2013), fastText (Bojanowski et al. 2017), and GloVe
let al, m linguistic (i.e., dependency), conceptual (i.e., RWSGwn (Goikoetxea et al. 2015) and Con-
ceptNet (]Speer et al., |2017|)), contextual (i.e., ELMo (Peters et al., 2018))). Popular sentence embedding
models include average, max, concat of avg and max, SIF (Arora et all [2017), SkipThoughts (Kiros et al.
2015), GenSen (Subramanian et al 2018), InferSent (Conneau et al. 2017), ELMo, BERT (Devlin et al.
2019), RoBERTa (Liu et al., 2019), USE (Cer et al., 2018), QuickThoughts (Logeswaran & Lee, 2018) and
GPT-2 (Radford et al) 2019). Transformer-based methods include pretrained BERT with various NLU
tasks, finetuned BERT, Transformer-XL (Dai et al [2019), GPT-2, BART (Lewis et al., [2020), BigBird

heer et al., |2020), Longformer (Beltagy et al., 2020), and LongT5 (Guo et al.,|2022). Experiential attribute
models represent words in terms of human ratings of their degree of association with different attributes of
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Figure 4: Context representation of several word orders: Past/Future context is constructed by considering
words preceding/succeeding the current word (see Past/Future context illustrated for the current word vehicle
for various orders).
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Figure 5: FEatraction of image representations: Prior research has explored the impact of various layer-
wise image representations from CNN models (Yamins et al., 2014; [Horikawa & Kamitani, 2017), for both
brain encoding and decoding models. The plot of the image feature extraction was derived from the study
by (Horikawa & Kamitani, 2017)).

experience, typically on a scale of 0-6 (Anderson et al., 2019; [2020; Berezutskaya et al., |2020; Just et al.
[2010; |Anderson et all [2017b) or binary (Handjaras et al. [2016; [Wang et al., 2017).

In the practice of employing word embeddings, encoding studies often utilize the average word representations
within a given context or derive complete sentence representations through sentence embedding models.
More recently, brain encoding research has shifted towards the use of contextualized word representations,
examining how the amount of context affects the brain predictivity (Jain & Huth, 2018; [Toneva & Wehbe,
. To obtain these contextualized word representations, Figure [4| illustrates how Past/Future context
is constructed by considering words preceding/succeeding the current word. Given the constrained context
length, each word is successively input to the network with at most C' previous tokens. For instance, given
a story of M words and considering the context length of 20, while the third word’s vector is computed by
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Figure 6: Fxtraction of contextualized speech representations: Representation of the last frame within each
window allows for the capture of temporal dynamics and contextual nuances in the speech signal. The
length of the time window is typically varied from 16, 32, to 64 secs, with strides ranging from 10 to 100
milliseconds.

inputting the network with (wq, wa, w3), the last word’s vectors wj; is computed by inputting the network
with (Was—20, .., War).

Visual stimulus representations. For visual stimuli, older methods used visual field filter bank
let al., 2006; Nishimoto et al., [2011]) and Gabor wavelet pyramid (Kay et al.| 2008} [Naselaris et al.l2009). As
shown in Figure 5| recent methods use models like CNNs (Du et al., [2020; Beliy et al., 2019; |Anderson et al),
[2017a; [Yamins et al. [2014} [Nishida et al. [2020)) and concept recognition models (Anderson et al., 2020).

Audio stimuli representations. For audio stimuli, phoneme rate and presence of phonemes have been
leveraged (Huth et all 2016). Further, low-level speech features like filter banks (FBank), Mel Spectro-
gram, and MFCC from raw audio files, phonological features, articulation, and power spectrum (PowSpec)
feature vectors were used in (Deniz et all 2019). Recently, Nishida et al| (2020) used features from an
audio deep learning model called SoundNet for audio stimuli representation. To extract representations
from Transformer-based speech models such as Wav2Vec2.0, HuBERT and Whisper, [Vaidya et al.| (2022);
[Antonello et al|(2024); |Oota et al.|(2024al) varied the length of the time windows from 16, 32, to 64 seconds,
with strides ranging from 10 to 100 milliseconds, as illustrated in Figure[6] Moreover, these studies utilized
an autoregressive approach to derive speech representations. This method involves considering the represen-
tations of the last frame within each window, allowing for the capture of temporal dynamics and contextual
nuances in speech.

Multimodal stimulus representations. To jointly model the information from multimodal stimuli,
recently, various multimodal representations have been used. These include processing videos using au-
dio+image representations like VGG (Simonyan & Zisserman| 2015) and SoundNet (Aytar et all [2016)
in (Nishida et al., 2020) or using image+text combination models like GloVe+VGG and ELMo+VGG
in (Wang et all 2020)). Recently, the usage of multimodal text+vision models like Contrastive Language-
Image Pretraining (CLIP) (Radford et al., [2021), Learning Cross-Modality Encoder Representations from

Transformers (LXMERT) (Tan & Bansal, [2019), and VisualBERT (Li et alJ 2020) was proposed in
2022€).

3 Naturalistic Neuroscience Datasets

In this section, we discuss the popular text, visual, audio, video, and other multimodal neuroscience datasets
that have been proposed in the literature. Tables[[]and [2] show a detailed overview of brain recording type,
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Table 1: Naturalistic Neuroscience Datasets (Text and Audio). Publicly available datasets are linked to their
sources in the Dataset column. In this table, |S| represents the number of participants in each dataset.

l [ Dataset [ Authors [Type[ Lang. [ Stimulus [ |S] [ Task ]
fMRI, . Reading Chapter 9 of Harry| 9 |Story understanding
Harry Potter (Wehbe et al} |2014) MEG English Potter and the Sorcerer’s Stone

Verbal, pictorial or auditory| 20 |Property generation
presentation of 40 concrete
nouns, four times

(Handjaras et al., [2016)) | fMRI| Italian

Reading 70 concrete and ab-| 7 |Imagine a situation
(Anderson et al.| [2017a)) | fMRI| Italian & &

stract nouns from law/music, with noun
% - five times
= 7 (Hollenstein et al.}|2018)) | EEG |English |Reading 1107 sentences with| 12 |Rate movie quality
uCo 21,629 words from movie re-
views
Reading 240 active voice sen-| 14 |Passive readin
240 Sentences with Con-| (Anderson et al} 2019) | fMRI| English | o (giescribing everyday sit- &
tent Words uations
Reading 20 newspaper articles| 40 |Passive readin
BCCWIJ-EEG (Oseki & Asahara;,|2020) | EEG | Japanese| g . ~3(;5—40 minutzs P &
Reading 11 stori 9 |Passi di d
Subset Moth Radio Hour| |  (Deniz ot al} [B019) | fMRI| English | & =5 S1OTIES listssrll‘i’sgrea ing an
- . Verbal ictorial or auditory| 20 |Property generation
(Handjaras et al}, [2016) | fMRI| Italian presenéatli)on of 40 Concret}e] pery 8
nouns, 4 times
Listeni 1 10-minute sto-| 7 |Passive listeni
The Moth Kadic Hour (Twth ot all 2076) fMRI | English riless ening eleven minute sto assive listening
Spoken presentation of short| 24 |Passive listenin
Narrative Brain Dataset (Lopopolo et al.| [2018)) | fMRI| Dutch e)l()cerpts I())f three stories v 8
Listening Chapter one of Al-| 33 uestion answerin
Alice (Brennan & Hale} |2019)) | EEG | English ice’s Ad\%cnturc?s in Wonderland Q &
(2,129 words in 84 sentences) as
read by Kristen McQuillan
% - . Listening one of 20 scenario| 26 |Imagine personal ex-
é (Anderson et al.| 2020) |fMRI| English names, 5 times periences

Listening 27 diverse naturalis- | 345 | Passive listening
tic spoken stories. 891 func-
tional scans

Listening Moth-Radio-Hour | 19 |Passive listening
naturalistic spoken stories.
English, | Listening audiobook for about|112 |Passive listening

Narratives (Nastase et al.} [2020) | fMRI| English

Natural Stories (Zhang et al.} |2020) fMRI | English

[The Little Prince (Li et al., 2021} fMRI Chinese, | 100 minutes.
French
MEG-MASC (Gwilliams et al] [2023) | MEG | English f:tslie:tlgiet:v Ogggli\st(é 2;?:;?: 27 | Passive listening
Music Genre (Nakai et al., |2022) fMRI | English %(i)sfﬁﬁisrilcgé);lr?rgusic picces from |5 | Passive listening
SMN4Tang (Wang ot al, 032h) {\1/\I/IERC£, Chinese aicstsiréirrilcgs(i hours of naturalis-| 12 | Passive listening

language, stimulus, number of subjects (|S]), and the task across datasets of different modalities. Figure
shows examples from a few datasets. A sample of naturalistic datasets is available at this link [ﬂ

Text datasets. These datasets are created by presenting words, sentences, passages, or chapters as stimuli.
Some of the text datasets include Harry Potter Story (Wehbe et al., [2014]), ZuCo EEG (Hollenstein et al.,
2018) and datasets proposed in (Handjaras et al.l 2016; [Anderson et al. [2017a; 2019; [Wehbe et al., 2014]).
In [Handjaras et al.| (2016, participants were asked to verbally enumerate in one minute the properties
(features) that describe the entities the words refer to. There were four groups of participants: 5 sighted
individuals were presented with a pictorial form of the nouns, 5 sighted individuals with a verbal-visual (i.e.,
written Italian words) form, 5 sighted individuals with a verbal auditory (i.e., spoken Italian words) form,
and 5 congenitally blind with a verbal auditory form. Data proposed by |Anderson et al| (2017al) contains
70 Ttalian words taken from seven taxonomic categories (abstract, attribute, communication, event/action,
person/social role, location, object/tool) in the law and music domain. The word list contains concrete as
well as abstract words. ZuCo dataset (Hollenstein et all [2018) contains sentences for which EEG recordings
were obtained for 3 tasks: normal reading of movie reviews, normal reading of Wikipedia sentences, and
task-specific reading of Wikipedia sentences. For this dataset curation, sentences were presented to the

Thttps://neuroscout.org/datasets


https://drive.google.com/drive/folders/1Q6zVCAJtKuLOhzWpkS3lH8LBvHcEOE8
https://osf.io/2urht/
https://gin.g-node.org/denizenslab/narratives_reading_listening_fmri
https://openneuro.org/datasets/ds003020
https://osf.io/utpdy/
https://sites.lsa.umich.edu/cnllab/2016/06/11/data-sharing-fmri-timecourses-story-listening/
https://datasets.datalad.org/?dir=/labs/hasson/narratives
https://osf.io/eq2ba/
https://openneuro.org/datasets/ds003643
https://osf.io/ag3kj/
https://osf.io/2zwkt/
https://openneuro.org/datasets/ds004078/versions/1.2.1
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Table 2: Naturalistic Neuroscience Datasets (Visual, Video, and Other Multimodal). Publicly available
datasets are linked to their sources in the Dataset column. In this table, |S| represents the number of
participants in each dataset.

L1

Dataset

[ Authors

[Type[ Lang. [

Stimulus

[1s1]

Task

Inverse retinotopy

(Thirion et al., |2006))

fMRI

Viewing rotating wedges (8
times), expanding/contracting
rings (8 times), rotating 36 Ga-
bor filters (4 times), grid (36
times)

9

Passive viewing

Vim-1

(Kay et al.} |2008)

fMRI

Viewing sequences of 1870 nat-
ural photos

Passive viewing

Visual

Generic Object Decoder

(Horikawa
2017)

& Kamitani,

fMRI

Viewing 1,200 images from 150
object categories; 50 images
from 50 object categories; im-
agery 10 times

Repetition detection

BOLDA5000

(Chang et al.l [2019)

fMRI

Viewing 5254 images depicting
real-world scenes

Passive viewing

Algonauts

(Cichy et al., [2019)

MR,
MEG

Viewing 92 silhouette object
images and 118 images of ob-
jects on natural background

15

Passive viewing

NSD

(Allen et al.} |2022)

THINGS

fMRI

Viewing 73000 natural scenes

Passive viewing

(Hebart et al., [2023)

fMRI,
MEG

Viewing 31188 natural images

Oddball Detection

NOD

(Gong et al., |2023)

fMRI

Viewing 57,120 natural images

30

Passive viewing

BBC’s Doctor Who

(Seeliger et al., [2019)

fMRI

English

Viewing spatiotemporal vi-
sual and auditory videos (30
episodes).  120.8 whole-brain
volumes (~23 h) of single-
presentation data, and 1.2
volumes (11 min) of repeated
narrative short episodes. 22
repetitions

Passive viewing

Japanese Ads

(Nishida et al., |2020)

fMRI

Japanese¢

Viewing 368 web and 2452 TV
Japanese ad movies (15-30s).
7200 train and 1200 test fMRIs
for web; fMRIs from 420 ads.

52

Passive viewing

Video

Pippi Langkous

(Berezutskaya et al., |12020)

ECoG

Swedish,
Dutch

Viewing 30 s excerpts of a fea-
ture film (in total, 6.5 min
long), edited together for a co-
herent story

37

Passive viewing

Algonauts

(Cichy et al.} |2021)

fMRI

English

Viewing 1000 short video clips
(3 sec each)

10

Passive viewing

Natural Short Clips

(Huth et al.} |2022)

fMRI

English

Watching natural short movie
clips

Passive viewing

Natural Short Clips

(Lahner et al.| |2023)

fMRI

English

Watching 1102 natural short
video clips

10

Passive viewing

NNDb

(Aliko et al.} |2020)

NATVIEW__EEGFMRI

fMRI

English

Watching 10 full-length movies

84

Passive viewing

(Telesford et al., [2023))

TMRI,
EEG

English

Watching 5 short-length movies

22

Passive viewing

Mind captioning

(Horikawa) |2024)

fMRI

English

Watching total of 2,196 videos

Passive viewing

60 Concrete Nouns

(Mitchell et al., |2008)

fMRI

English

Viewing 60 different word-
picture pairs from 12 -cate-
gories, 6 times each

Passive viewing

(Sudre et al.} 2012)

MEG

English

Reading 60 concrete nouns
along with line drawings. 20
questions per noun lead to 1200
examples.

Question answering

Other

(Zinszer et al.| |2018)

fNIRS

English

8 concrete nouns (audiovi-
sual word and picture stimuli):
bunny, bear, kitty, dog, mouth,
foot, hand, and nose; 12 times
repeated.

24

Passive viewing and

listening

Pereira

(Pereira et al.| |2018]

fMRI

English

Viewing 180 Words with Pic-
ture, Sentences, word clouds;
reading 96 text passages; 72
passages. 3 times repeated.

16

Passive viewing and

reading

(Cao et al., 2021}

fNIRS

Chinese

Viewing and listening 50 con-
crete nouns from 10 semantic
categories.

Passive viewing and

listening

Neuromod

(Boyle et al.} 12020)

fMRI

English

‘Watching TV series and movies
(Friends, Moviel0)

Passive viewing and

listening

Multimodal tMRI

(Jung et al.} |2024)

fMRI

English

‘Watching movies,
faces task

dynamic

101

Passive viewing and

listening
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subjects in a naturalistic reading scenario. A complete sentence is presented on the screen. Subjects read
each sentence at their own speed, i.e., the reader determines for how long each word is fixated and which
word to fixate next.

Visual datasets. Older visual datasets were based on binary visual patterns (Thirion et al., 2006). Recent
datasets contain natural images. Examples include Vim-1 (Kay et al.}[2008)), BOLD5000 (Chang et al.,2019),
Algonauts (Cichy et all 2019), NSD (Allen et all [2022), Things-data (Hebart et all, [2023), NOD (Gong]
2023), and the dataset proposed in (Horikawa & Kamitani, [2017). BOLD5000 includes ~20 hours
of MRI scans per each of the four participants. 4,916 unique images were used as stimuli from 3 image
sources. Algonauts contains two sets of training data, each consisting of an image set and brain activity
in RDM format (for fMRI and MEG). Training set 1 has 92 silhouette object images, and training set 2
has 118 object images with natural backgrounds. Testing data consists of 78 images of objects on natural
backgrounds. Most of the visual datasets involve passive viewing, but the dataset in (Horikawa & Kamitanil
involved the participant doing the one-back repetition detection task.

Audio datasets. Most of the proposed audio datasets are in English (Huth et all |2016; Brennan & Hale,
12019; |/Anderson et al., 2020; Nastase et al., 2020), while there is one (Handjaras et al., 2016)) on Italian, and
another one (Li et al., in Chinese and French. The participants were involved in a variety of tasks while
their brain activations were measured: Property generation (Handjaras et al.,[2016)), passive listening
let all [2016; Nastase et al., 2020), question answering (Brennan & Hale, 2019) and imagining themselves
personally experiencing common scenarios (Anderson et al., [2020). In the last one, participants underwent
fMRI as they reimagined the scenarios (e.g., resting, reading, writing, bathing, etc.) when prompted by
standardized cues. Narratives (Nastase et al., 2020) used 27 different stories as stimuli. Across subjects, it
is 6.4 days worth of recordings.

Video datasets. Recently, video neuroscience datasets have also been proposed. These include BBC’s
Doctor Who (Seeliger et al., 2019), Japanese Ads (Nishida et all, 2020), Pippi Langkous
and Algonauts (Cichy et al)[2021). Japanese Ads data contains data for two sets of movies provided by
NTT DATA Corp: web and TV ads. There are also four types of cognitive labels associated with the movie
datasets: scene descriptions, impression ratings, ad effectiveness indices, and ad preference votes. Algonauts
2021 contains fMRIs from 10 human subjects that watched over 1,000 short (3 sec) video clips.

Other multimodal datasets. Finally, beyond the video datasets, datasets have also been proposed with
other kinds of multimodality. These datasets are audiovisual ((Zinszer et al. [2018; |Cao et all 2021)),
words associated with line drawings (Mitchell et al., 2008; |Sudre et al., |2012)), pictures along with sentences
and word clouds (Pereira et al., [2018). These datasets have been collected using a variety of methods like
fMRIs (Mitchell et al., [2008} [Pereira et al.l 2018]), MEG (Sudre et al., 2012) and fNIRS (Zinszer et al., [2018;
Cao et al., 2021). Specifically, in |[Sudre et al.| (2012), subjects were asked to perform a question answering
(QA) task, while their brain activity was recorded using MEG. Subjects were first presented with a question
(e.g., “Is it manmade?”), followed by 60 concrete nouns, along with their line drawings, in a random order.
For all other datasets, subjects performed passive viewing and/or listening.

4 Brain Regions

In this section, we discuss the mapping of brain recordings to stimulus-specific brain regions that have
been discussed in the literature. Specifically, we discuss the regions of language network, auditory cortex
and visual cortex, along with their sub regions. To use brain recordings from preprocessed naturalistic
neuroscience datasets, follow these steps: (i) Use brain activation of voxels directly if either of the next
two steps is applicable. (ii) Apply a brain mask to the brain volume to obtain the activation of voxels. or
(iii) Project the brain volume onto the surface space (such as "fsaverageb," "fsaverage6," or "fsaverage"). To
visualize the brain maps, popular libraries such as Nilearn El or Pycortex El are useful for fMRI recordings,
while MNE-Python El is suitable for both MEG and EEG datasets.

2https://nilearn.github.io/stable/index.html
3https://gallantlab.org/pycortex/
4https://mne.tools/stable/index.html
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Figure 7: Non-invasive brain recordings: fMRI and MEG. This figure is adapted from (Toneva et al., [2022al).

Language network. The language network refers to brain regions that are involved in language processing.
Based on the Fedorenko lab’s language parcels (Fedorenko et al., [2010} [Fedorenko & Thompson-Schill, 2014)),
eight language-relevant regions encompass broader language regions: angular gyrus (AG), anterior tempo-
ral lobe (ATL), posterior temporal lobe (PTL), inferior frontal gyrus (IFG), inferior frontal gyrus orbital
(IFGOrb), middle frontal gyrus (MFG), posterior cingulate cortex (PCC) and dorsal medium prefrontal
cortex (dmPFC), as shown in Figure [7] (left). These eight language networks are used in several recent
studies (Toneva & Wehbe, [2019} |Toneva et al., 2022a; |Aw & Toneval, 2023 (Oota et al., [2024b). Oota et al.|
(2024b; [2023dja)); [Dong & Toneval (2023).

To map brain activations to these eight language regions, prior studies use the multimodal parcellation of
the human cerebral cortex based on the Glasser Atlas (which consists of 180 regions of interest in each
hemisphere) to report the ROI (region of interest) analysis for the brain maps (Glasser et al.,|2016]). Overall,
the data covers eight language brain ROIs with the following subdivisions: (i) AG: PFm, PGs, PGi, TPOJ2,
and TPOJ3; (ii) ATL: STSda, STSva, STGa, TEla, TE2a, TGv, and TGd; (iii) PTL: A5, STSdp, STSvp,
PSL, STV, TPOJ1; (iv) IFG: 44, 45, IFJa, IFSp; (v) MFG: 55b; (vi) IFGOrb: ad7r, p47r, a9-46v, (vii) PCC:
31pv, 31pd, PCV, 7m, 23, RSC; and (viii) dmPFC: 9m, 10d, d32.

Figure [§| displays the cross-subject prediction accuracy for reading and listening for a representative sample
subject. It illustrates that irrespective of text-evoked or speech-evoked brain activity, high-level information
processing occurs in the language regions (indicated by white voxels).

Auditory cortex. The auditory cortex (AC) is a specific brain region responsible for processing auditory
information, including the perception of sound, speech, music, and other auditory stimuli. Figure 8] dis-
plays the cross-subject prediction accuracy for reading and listening for a representative sample subject.
It illustrates that during speech-evoked brain activity, the early auditory cortex (EAC) has higher predic-
tion accuracy (indicated by Blue voxels), signifying early sensory information processing, while high-level
information processing occurs in the language regions (indicated by white voxels). Overall, the auditory
cortex is divided into the following subdivisions (Nastase et al.l [2020): (i) EAC (early auditory cortex): Al
(Primary Auditory Cortex), the Lateral Belt (LBelt), Posterior Belt (PBelt), Medial Belt (MBelt), Rostral
Intermediate (RI), and (ii) AAC (auditory association cortex): A4 and A5.

Together, these distinct areas work in concert to form a sophisticated system for perceiving and interpreting
the diverse aspects of auditory stimuli.

Visual cortex. The visual cortex is a critical part of the brain responsible for visual information processing,
allowing us to see and understand the world around us. Many experiments contrast brain activity elicited
by specific image categories. This functional localizer approach has been used to identify many regions of
interest (ROIs) in the visual pathway representing information from low-level visual (early) to high-level
semantic information. The early visual cortex (EVC) is primarily responsible for processing basic visual
information, including detecting of simple features like edges, colors, shapes, and motion. Higher visual

11
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Figure 8: Contrast of estimated cross-subject prediction accuracy for reading and listening for a representa-
tive subject (subject-5). Blue and Orange voxels depict higher cross-subject prediction accuracy estimates
during listening and reading, respectively. Voxels that have similar cross-subject prediction accuracy during
reading and listening appear white, and are distributed across language regions. This Figure is adapted
from [Oota et al.| (2024a)).

cortex (HVC) regions are involved in more advanced visual processing tasks, such as object recognition,
facial recognition, scene perception, and the integration of complex visual information.

Opverall, the visual cortex is divided into the following subdivisions: (i) PVC (primary visual cortex): V1, (ii)
EVC (early visual cortex): V2, V3 and V4, (ii) VWFA (visual word form area) (ii) HVC (high-level visual
cortex): the extrastriate body area (EBA), occipital face area (OFA), and the fusiform face area (FFA), the
occipital place area (OPA), the parahippocampal place area (PPA), and the retrosplenial cortex (RSC).

5 Evaluation Metrics
In this section, we discuss popular metrics for evaluation of brain encoding and decoding models.

5.1 Metrics for Brain Encoding Models

Two metrics are popularly used to evaluate brain encoding models: 2V2 accuracy (Toneva et al., 2020; |Oota|
2022b) and Pearson Correlation (Jain & Huth, 2018). They are defined as follows.

Given a subject and a brain region, let N be the number of samples. Let {¥;}N | and {V;})¥, denote the
actual and predicted voxel value vectors for the i*” sample. Thus, Y € RV*V and Y € RN*V where V is
the number of voxels in that region.

2V2 classification accuracy. This metric evaluates how close the brain activity prediction is from ground
truth, such as Euclidean distance and cosine distance. This metric evaluates the fMRI predictions using
them in a classification task on held-out data in the cross-validation setting. The classification task is to
try to match the predicted left-out brain responses to their corresponding ground truth, as introduced in
(Mitchell et al., |2008; [Wehbe et all [2014; Toneva et al., 2020; |Aw & Toneva, 2023)). Having two sets of
brain predictions Y; and Y}, and corresponding ground truth Y; and Yj;, the 2V2 classification accuracy is

12



Under review as submission to TMLR

Trie T True semantic vector True semantic vector
brain activity brain activity S; for sample i S;j for sample j
o A B B
Match
Predicted / p % Predicted
brain activity brain activity Match
for "dog" for "house"
Regression Regression H N N N
model model Predicted semantic vector Predicted semantic vector
A 4 S; for sample i 5,- for sample j
Stimulus Features Stimulus Features “An apartment is a self-contained “Arson is the criminal act of
"dog" "house" home that is a part of a building”  burning a building or wild land.”

Figure 9: Evaluation Metrics for Brain Encoding and Decoding. (Left) 2V2 Accuracy (Toneva et al., 2020)),
(Right) Pairwise Accuracy

computed as NLCQ Zfi—ll Z;‘V:i-u I[{cosD(Y;,Y;) +cosD(Y;,Y;)} < {cosD(Y;,Y;) +cosD(Y;}, Y;)}] where cosD
is the cosine distance function. I[c] is an indicator function such that I[c] = 1 if ¢ is true, else it is 0. The
higher the 2V2 accuracy, the better. Figure EI (left) illustrates the computation of 2V2 Accuracy for the
case where sample 7 and j correspond to the brain activity of concepts “dog” and “house”, respectively.
This metric was proposed to boost the signal-to-noise ratio in estimating the brain alignment for single-trial
data (Aw & Toneval, [2023)). Under this metric, chance performance is 50%.

Pearson correlation. This metric evaluates the similarity between the fMRI predictions (f/;) and the
corresponding true fMRI data (Y;) by computing the Pearson correlation for each voxel i. The Pearson
correlation for voxel i is computed as PC;=corr[Y;, Y;] where corr is the correlation function. The average
Pearson correlation across all voxels is then computed as PCC=4>"" corr[Y;,Y;], where N denotes the
number of voxels. This metric is widely used in cognitive neuroscience (Jain & Huth, |2018; Toneva & Wehbe,
[2019; |Caucheteux et al., |2021} |Goldstein et al., 2022; |Aw & Toneva, 2023; (Oota et al., 2022b; [2024b)).

Cross-subject prediction accuracy. To account for the intrinsic noise in biological measurements and
obtain a more accurate estimate of the model’s performance, [Schrimpf et al.| (2021]) proposed an approach to
estimate the cross-subject prediction accuracy. This is achieved by estimating the amount of brain response
in one subject that can be predicted using only the data from a combination of other subjects using an
encoding model. For instance, consider Harry Potter dataset with n==8 participants, the first step is to
subsample—the data with n participants into all possible combinations of s participants for all s € [2,8§]
(e.g. 2,3,4,5,6, 7, 8 for n=8). In the second step, for each subsample, select a random participant as
the target that we attempt to predict from the remaining s — 1 participants (e.g., predict 1 subject from 1
(other) subject, 1 from 2 subjects, ..., 1 from 8, to obtain a mean score for each voxel in that subsample.
In the third step, extrapolate to infinitely many humans and thus to obtain the highest possible (most

2021

x is each subsample’s number of participants, v is each subsample’s correlation score and vy and 7 are
the fitted parameters. This fitting was performed for each voxel independently with 100 bootstraps each to
estimate the variance where each bootstrap draws x and v with replacement. The final ceiling value was the
median of the per-voxel ceilings vg.

conservative) estimate, as suggested by [Schrimpf et al.

, fit the equation v = vy x (1 — 67%) where

Normalized brain alignment. The neural model predictivity values were normalized by their respective
subject estimated cross-subject prediction accuracies, as proposed by |[Schrimpf et al| (2021). The final
measure of a model’s performance (‘normalized brain alignment’ or ‘score’) on a dataset is thus Pearson’s
correlation between model predictions and neural recordings divided by the estimated ceiling and averaged
across voxel locations and participants.

13
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5.2 Metrics for Brain Decoding Models

Brain decoding methods are evaluated using popular metrics like pairwise and rank accuracy (Pereira et al.|
2018; [Sun et al., 2019; 2020; (Oota et al.l |2022¢). Other metrics used for brain decoding evaluation include
R? score, mean squared error, and using Representational Similarity Matrix (Cichy et al.l [2019} [2021]).

Pairwise accuracy. is computed as follows. The first step is to predict all the test stimulus vector
representations using a trained decoder model. Let S = [So, S1, --,S,], S = [S’o, Sy, ,5’n} denote the
“true” (stimuli-derived) and predicted stimulus representations for n test instances resp. Given a pair (i, j)
such that 0 < i,7 < n, score is 1 if corr(S;,5;) + corr(S;,9;) > corr(S:,9;) + corr(S;,5:), else 0. Here, corr
denotes the Pearson correlation. Figure |§| (right) illustrates the computation of Pairwise Accuracy for the
case where sample ¢ and j correspond to the brain activations for text stimuli “apartment” and “building”
respectively. Final pairwise matching accuracy per participant is the average of scores across all pairs of test
instances.

Rank accuracy. is computed as follows. First, we compare each decoded vector to all the “true” stimuli-
derived semantic vectors and rank them by their correlation. The classification performance reflects the rank
r of the stimuli-derived vector for the correct word or picture stimuli: 1 — #”LS;;T}CSH The final accuracy
value for each participant is the average rank accuracy across all instances.

6 Brain Encoding

Encoding is the learning of the mapping from the stimulus domain to the neural activation. The quest in
brain encoding is for “reverse engineering” the algorithms that the brain uses for sensation, perception, and
higher-level cognition. The foundational approach to constructing a brain encoder, illustrated in Figure
adopts a general brain alignment strategy previously implemented in several notable studies (Jain & Huth)
2018; ' Toneva & Wehbel 2019; |Aw & Toneva, |2023; (Oota et al.,|2024b). This method predicts fMRI recordings
at every voxel for each participant, utilizing DNN representations that mirror the participant’s engagement
in tasks such as reading or listening.

Building on this foundation, the recent advancements in neuroimaging technologies have enhanced our ability
to closely approximate how the brain responds to different stimuli, thereby deepening our understanding of
the brain’s information processing mechanisms. Concurrently, advancements in deep neural network (DNN)
models have led to the development of highly efficient models across different modalities, including language,
vision, speech, and multimodal interactions. These models have set new benchmarks in performance for a
wide range of applications. Leveraging cutting-edge neuroimaging techniques and DNN models, this section
offers a comprehensive review of the task settings for brain encoding and thelatest achievements in under-
standing language processing, visual object recognition, auditory perception, and multimodal processing in
the brain.

In the discussion on encoding task settings, we present stimulus downsampling, TR alignment, and voxelwise
encoding models. In linguistic brain encoding, we explore recent breakthroughs in applied Natural Language
Processing (NLP) that facilitate the reverse engineering of the language function of the brain. In the realm
of vision brain encoding, pioneering results have been achieved in reverse engineering the function of the
ventral visual stream for object recognition, thanks to the advancements and impressive successes of deep
Convolutional Neural Networks (CNNs) and Vision Transformers. Additionally, we present the latest insights
into auditory and multimodal brain encoding. This systematic approach informs the organization of this
section. Overall, Figure [10] classifies the encoding literature along various stimulus domains such as vision,
auditory, multimodal, and language and the corresponding tasks in each domain. Finally, Table[d]summarizes
various encoding models proposed in the literature related to textual, audio, visual, and multimodal stimuli.

6.1 Encoding Task Settings

Stimulus downsampling. In the context of narrative story reading or listening, the rate of fMRI data
acquisition was lower than the rate at which the text stimulus was presented to the subjects, several words
fall under the same TR in a single acquisition. Hence, previous studies match the stimulus acquisition rate to
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Figure 10: Categorization of Brain Encoding Studies

fMRI data recording by downsampling the stimulus features using a 3-lobed Lanczos filter (Huth et al.,|2016}
[Jain & Huth| [2018} [Toneva & Wehbe| [2019; [Antonello et al.l 2021} [Oota et all [2024D). After downsampling,
word-embeddings corresponding to each TR are obtained.

For the naturalistic audio, (Vaidya et al.,[2022; |/Antonello et al., [2024)) windowed the stimulus waveform with
a sliding window of size 16 s and stride 100ms before feeding it into the model. Further, the features are
downsampled as previously described, using Lanczos interpolation, to match with sampling rate of fMRI
recordings.

Similarly for the naturalistic videos, the rate of fMRI data acquisition (TR = 2 seconds) in the shortclips
dataset (Huth et all 2022) is lower than the rate at which the stimulus was presented to the subjects
(15 frames per second), 30 frames of a video were viewed under the same TR for a single fMRI acquisi-
tion (Popham et al| 2021). This helps synchronization between the stimulus presentation rate and fMRI
data recording, which we then leverage to train our encoding models.

fMRI Time Repetition (TR) alignment. To account for the slowness of the hemodynamic response, in
general, previous studies model the HRF using a finite response filter (FIR) per voxel and for each subject
separately with a delay of 8 to 12 secs (Jain & Huth| [2018} [Toneva & Wehbe| 2019} [Popham et al., 2021}
[Oota et all 2024b; |Antonello et al., [2024). Table |3 summarizes current brain encoding studies with a fixed
HRF delay.
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Figure 11: Scheme for Brain Encoding (top): this approach learns a function to predict the fMRI recordings
at every voxel of each participant using the model representations that correspond to the same text read
or listened by the participant. Ridge regression vs. Banded ridge regression (bottom) plot was adapted
from|la Tour et al| (2022). Each color (or band) represents a different feature space.

MEG preprocessing and alignment. The minimal processing steps described in |Gwilliams et al.| (2023)
are as follows. On raw MEG data and for each subject separately, using MNE-Pythor’| defaults parameters,
the following steps should be executed:

e bandpass filtered the MEG data between 0.5 and 30.0 Hz,
o temporally-decimated the data 10x

o segmented these continuous signals between -200 ms and 600 ms after word onset (note: this con-
tinuous signals varies for phoneme onset)

e applied a baseline correction between -200 ms and 0 ms, and

o clipped the MEG data between fifth and ninety-fifth percentile of the data across channels.

In contrast to the fMRI recordings, MEG recordings have much higher time resolution. Epoching and
downsampling MEG data can result in aligned word-level or phoneme-level brain recordings (Gwilliams
let all 2023} [Toneva et all, 2020} [Oota et al.l [2023b).

Shttps://mne.tools/stable/index.html
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6.2 Voxelwise Encoding Model

The main goal of the voxel-wise encoding model is to predict brain responses associated with each brain
voxel given a stimulus. To estimate the brain alignment of a DNN model of stimulus representations via
training standard voxel-wise encoding models Deniz et al| (2019); Toneva & Wehbe| (2019). Specifically,
for each voxel and participant, prior studies train fMRI encoding model using ridge regression to predict
the fMRI recording associated with this voxel as a function of the stimulus representations obtained from
DNN models. To simultaneously accommodate different feature spaces, which may necessitate varying levels
of regularization, [Nunez-Elizalde et al|(2019) proposed voxel-wise encoding model that utilize an advanced
form of ridge regression. This method, known as banded ridge regression, introduces individual regularization
parameters for each feature space, as illustrated in Figure [TI] Before doing the ridge regression or banded
ridge regression, we first z-scored each feature channel separately for training and testing. This was done to
match the features to the fMRI responses, which were also z-scored for training and testing. Formally, at
the time step (t), we encode the stimuli as X; € RV*P and brain region voxels Y; € RV*V | where N is the
number of training examples, D denotes the dimension of the concatenation of delayed TRs, and V' denotes
the number of voxels. To find the optimal regularization parameter for each feature space, we use a range
of regularization parameters that is explored using cross-validation.

To automate the voxelwise encoding pipeline, several popular libraries have recently been introduced to per-
form voxelwise brain encoding: (1) Voxelwise tutorials El and (2) Himalayaﬂ These libraries are specifically
designed for fMRI encoding models.

6.3 Interpreting brain recordings through the robustness of DNN model representations

In this section, we discuss four popular robustness methods to interpret the contribution of stimulus repre-
sentations obtained from DNN models to brain alignment.

Variance partitioning. Variance partitioning quantifies the unique contribution of different stimulus
features to BOLD responses. For variance partitioning (Lescroart} 2017} Deniz et al) 2019; [Vaidya et al.
2022), set theory is used to calculate the common variance (as the intersection of various combinations of
feature spaces) and the unique variance (as the set difference for each individual feature space), as shown
in Figure (a). Overall, the total variance explained by each model is computed as the unique variance
explained by each model and the shared variance across models. This variance partition approach was
computed separately for each voxel, then averaged across ROIs and across subjects.

6https://github.com/gallantlab/voxelwise_ tutorials
Thttps://github.com/gallantlab/himalaya
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Table 3: Summary of Brain Encoding Studies with HRF delays. Here, |S| denotes number of participants.
These are studies on English text using fMRI activations.

Authors Stimulus Representations||S| Dataset Delays
Jain et al.] (2020) LSTM 6 |Moth-Radio-Hour |8secs (4 TRs)
Jain & Huth| (2018) LSTM 6 |Moth-Radio-Hour |8secs (4 TRs)
Caucheteux et al(2021)|GPT-2 345|Narratives 7.5secs (5 TRs)

Reddy & Wehbe| (2021) |Syntax Parsers, BERT 8 |Harry-Potter 8secs (4 TRs)
Merlin & Toneval (2022) [GPT2 8 |Harry-Potter 8secs (4 TRs)
Aw & Toneva) (2023) BART, LongT5, LED 8 |Harry-Potter 8secs (4TRs)
Antonello et al.|(2021) |100 Language Models 7 |Moth-Radio-Hor 8secs (4 TRs)
Oota et al.| (2024b) BERT and Probing Tasks 18 |Narratives 21st-Year|9secs (6 TRs)

Oota et al.| (2023d)

BERT, GPT-2, Wav2Vec2.0 | 6 |Moth-radio-hour 12secs (6 TRs)

Indirect approach. An indirect approach first relates model representations to the human brain, followed
by an independent examination of the related model to some task performance or behavioral output. For
instance, |Schrimpf et al.| (2021)) tests the computations of a language model that may underlie human
language understanding. This is accomplished by an independent examination of the relationship between
the models’ ability to predict an upcoming word and their brain predictivity. Similarly, |(Goldstein et al.
(2022) provides empirical evidence that both the human brain and language model engage in continuous
next-word prediction before word onset.

Residual approach. In contrast to indirect approach, the approach proposed in [Toneva et al.| (2022al)
can directly estimate the impact of a specific feature on the alignment between the model and the brain
recordings by observing the difference in alignment before and after the specific feature is computationally
removed from the model representations. This method use to remove the linear contribution of a feature to
a model’s representation is one way to implement such a direct approach, as shown in Figure (b). This
is why residual approach also refer to as direct. Another method was investigated by previous work [Oota
et al.| (2024b); Dong & Toneva| (2023) and was shown to yield very similar results.

Other direct approaches have also been proposed in the literature. Most notably, work by [Ramakrishnan
& Deniz| (2021)) studies the impact of removing information related to word embeddings directly from brain
responses on a downstream task. Conceptually, the results obtained from this approach and ours should be
similar because the feature is completely removed from either the brain alignment input, target, or both and
thus cannot further impact the observed alignment.

Stacked regression. The stacked regression approach, proposed by [Lin et al| (2023)), follows a two-level
pipeline. The first level consists of different linear regressors, each using a different stimulus feature space as
input. At the second level, the parameters a; are learned for a convex combination of first level predictors.
Overall, the entire stacked model is estimated separately at each voxel. This method is useful when building
different encoding models where input feature spaces are correlated (e.g., visual and semantic features of
natural images) and for demonstrating the importance of each feature space in predicting a voxel’s response.

6.4 Linguistic Encoding
6.4.1 Alignment Between Pretrained Language Models (LMs) and Brains

Previous works have investigated the alignment between pretrained language models and brain recordings
of people comprehending language. |Huth et al.| (2016) have been able to identify brain ROIs (Regions of
Interest) that respond to words that have a similar meaning and have thus built a “semantic atlas” of how
the human brain organizes language. Many studies have shown accurate results in mapping brain activity
using neural distributed word embeddings for linguistic stimuli (Anderson et al.||2017a}; |Pereira et al., |2018;
Oota et all 2018; [Nishida & Nishimoto, [2018; |Sun et al., |2019). Unlike earlier models, where each word
is represented as an independent vector in an embedding space, [Jain & Huth| (2018) built encoding models
using rich contextual representations derived from an LSTM language model in a story listening task. With
these contextual representations, demonstrated dissociation in brain activation — auditory cortex (AC) and
Broca’s area in shorter context whereas left Temporo-Parietal junction (TPJ) in longer context. [Hollenstein
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Table 4: Summary of Representative Brain Encoding Studies. In this table, |S|
participants in each dataset.

represents the number of

Authors Dataset| Lang. |Stimulus Representations |S| |Dataset
Type
Jain & Huth), [mb fMRI English | LSTM 6 Subset Moth Radio Hour
Toneva & Wehbe, 2019) |fMRI, English | ELMo, BERT, Transformer-XL 9 Story understanding
MEG
Toneva et al., [2020) MEG English | BERT 9 Question-Answering
Schrimpf et al., [2021 fMRI, English |43 language models (e.g. GloVe, ELMo,| 20 [Neural architecture of lan-
ECoG BERT, GPT-2, XLNET) guage
(Gauthier & Levyl, 2019) |fMRI English | BERT, finetuned NLP tasks (Sentiment, 7 Imagine a situation with the
Natural language inference), Scrambling noun
language model
Deniz et al.} |2019) fMRI English | GloVe 9 Subset Moth Radio Hour
Jain et al.} |2020) fMRI English | LSTM 6 Subset Moth Radio Hour
Caucheteux et al.}[2021) [ f/MRI English | GPT-2, Basic syntax features 345 | Narratives
Antonello et al.I, 2021 fMRI English | GloVe, BERT, GPT-2, Machine Transla- 6 Moth Radio Hour
tion, POS tasks
Reddy & Wehbel, 2021 fMRI English | Constituency, Basic syntax features and 8 Harry Potter
BERT
(Goldstein et al.l, 2022) fMRI English | GloVe, GPT-2 next word, pre-onset, post- 8 ECoG
] onset word surprise
ﬁ Oota et al.} 2022b fMRI English | BERT and GLUE tasks 82 | Pereira & Narratives
Oota et al.| 20224 fMRI English [ ESN, LSTM, ELMo, Longformer 82 | Narratives
Merlin & Toneval [2022 fMRI English | BERT, Next word prediction, multi-word 8 Harry Potter
semantics, scrambling model
(Toneva et al.l, 2022a fMRI, English | ELMo, BERT, Context Residuals 8 Harry Potter
MEG
Aw & Toneval, 2023 fMRI English | BART, Longformer, Long-T5, BigBird, 8 Passive reading
and corresponding Booksum models as
well
Zhang et al.l, 2022b fMRI English, | Node Count 19, 12| Zhang
Chinese
(Oota et al.l, 2023a, fMRI English | Constituency, Dependency trees, Basic| 82 |Narratives
syntax features and BERT
Oota et al., |2023b) MEG English | Basic syntax features, GloVe and BERT 8 MEG-MASC
Tuckute et al.[2024) fMRI English | BERT-Large, GPT-2 XL 12 |Reading Sentences
Kauf et al., |2024b)) fMRI English | BERT-Large, GPT-2 XL 12 |Pereira
Singh et al., 2023 fMRI English | BERT-Large, GPT-2 XL, Text Perturba- 5 Pereira
tions
Wang et al.} m fMRI - 21 downstream vision tasks 4 BOLD 5000
= | (Kubilius et al.}[2019) fMRI - CNN models AlexNet, ResNet, DenseNet 7 Algonauts
5 Dwivedi et al., |2021) fMRI - 21 downstream vision tasks 4 BOLD 5000
> [(Khosla & Wehbe| [2022) [fMRI - CNN models AlexNet 4 BOLD 5000
Conwell et al., |2023) fMRI - CNN models AlexNet 4 |BOLD 5000
Millet et al., 2022) fMRI English | Wav2Vec2.0 345 | Narratives
Vaidya et al., [2022) fMRI English | APC, AST, Wav2Vec2.0, and HuBERT 7 Moth Radio Hour
° Tuckute et al.| 2023 fMRI English |19 Speech Models (e.g. DeepSpeech, 19 |Passive listening
st Wav2Vec2.0, VQ-VAE)
é Oota et al.l, 2023c fMRI English |5 basic and 25 deep learning based speech 6 Moth Radio Hour
models (Tera, CPC, APC, Wav2Vec2.0,
HuBERT, DistilHuBERT, Data2Vec
Oota et al.} [2023d) fMRI English | Wav2Vec2.0 and SUPERB tasks 82 | Narratives
_ | (Dong & Toneva, |2023) fMRI English | Merlo Reseve 5 Neuromod
£ | (Popham et al.} 2021 fMRI English 985D Semantic Vector 5 Moth Radio Hour & Short
3 Movie Clips
% Oota et al* 2022¢ fMRI English | CLIP, Visual BERT, LXMERT, CNNs and | 5, 82 |Periera & Narratives
= BERT
2:’ Lu et al., |2022) fMRI English | BriVL 5 Pereira & Short Movie Clips
Tang et al.} 2024 fMRI English | BridgeTower 5 Moth Radio Hour & Short
Movie Clips
fMRI English | BERT, GPT-2, LLaMa 5 |Moth Radio Hour & Short
Movie Clips

(2019) presents the first multimodal framework for evaluating six types of word embeddings (Word2Vec,

WordNet2Vec (Bartusiak et all, 2019)), GloVe, fastText, ELMo, and BERT) on 15 datasets, including eye-

tracking, EEG and fMRI signals recorded during language processing. With the recent advances in contextual
representations in NLP, few studies incorporated them in relating sentence embeddings with brain activity

patterns (Sun et al 2020; |Gauthier & Levyl [2019} [Jat et al.| 2020).
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Figure 13: (a) Alignment of representations between deep learning systems and human brains
. (b) For instance, a narrative story provided to both the Language model as well as human
participants. For the Language model, we extract its representations for every word in the text. For the
human participants, we record their brain activity using fMRI. Next, we train a linear function that uses the
extracted Language model representations to predict human brain activity. Finally, we test this function on
unseen data, and evaluate its accuracy as the amount of “brain alignment” (Toneva & Wehbe, 2019). These
two images are sourced from Cogsci-22 tutorial slides |Oota et al|(2022d).
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Figure 14: The strongest alignment with high-level language brain regions has consistently been observed
in the middle layers. Left: Performance of BERT encoding model for all hidden layers as the amount of
context provided to the network is increased (Toneva & Wehbe, [2019). Right: fMRI encoding score (averaged
across time and channels) of 6 representative transformers varying in tasks (CLM vs MLM) and depth (4-12
layers) (Caucheteux & King} [2020)). The left Figure is adapted from|Toneva & Wehbe| (2019) and the right
Figure is adapted from|Caucheteuz & King (2020).

More recently, researchers have begun to study the alignment of language regions of the brain with the
layers of language models (broadly following the method described in Figure and found that the best
alignment was achieved in the middle layers of these models (Jain & Huthl 2018; [Toneva & Wehbe, 2019;
[Caucheteux & King), [2020)), as shown in Figure [Toneva & Wehbe! (2019) study how representations
of various Transformer models differ across layer depth, context length, and attention type. The results
demonstrated that across several larger NLP models, middle layers of language models are well aligned with
brain language regions. |Schrimpf et al. (2021) examined the relationship between 43 diverse state-of-the-
art language models. They also studied the behavioral signatures of human language processing in the
form of self-paced reading times and a range of linguistic functions assessed via standard engineering tasks
from NLP. They found that Transformer-based models perform better than RNNs or word-level embedding
models. Larger-capacity models perform better than smaller models. Models initialized with random weights
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(prior to training) perform surprisingly similarly in neural predictivity compared to final trained models,
suggesting that network architecture contributes as much or more than experience dependent learning to a
model’s match to the brain. |Antonello et al.| (2021) proposed a “language representation embedding space”
and demonstrated the effectiveness of the features from this embedding in predicting fMRI responses to
linguistic stimuli. Very recent work by (Antonello et al.l [2024)) tested whether larger open-source models,
such as those from the text-based model (OPT and LLaMA) families, are better at predicting brain responses
recorded using fMRI. The results demonstrate that encoding performance improvements scale well with both
model size and dataset size, and large datasets will no doubt be necessary in producing useful encoding
models.

6.4.2 Disentangling the Syntax and Semantics

The representations of transformer models like BERT and GPT-2 have been shown to linearly map onto brain
activity during language comprehension. Several studies have attempted to disentangle the contributions
of different types of information from word representations to the alignment between brain recordings and
language models (Lopopolo et all [2017; Wang et al., |2020; [Caucheteux et al. [2021; |Reddy & Wehbe,
2021; |Zhang et al., [2022a; Toneva et al. [2022a; |Oota et al., [2023a). Wang et al.| (2020) proposed a two-
channel variational autoencoder model to dissociate sentences into semantic and syntactic representations
and separately associate them with brain imaging data to find feature-correlated brain regions. Similarly,
Zhang et al.| (2022a)) separated different syntactic features from pretrained BERT representations, to explore
the potential for distinct syntactic and semantic processing language regions in the brain. Compared to
lexical word representations, word syntactic features (parts-of-speech, named entities) and word-relation
features (semantic roles, dependencies) are distributed across brain networks instead of a local brain region.
The previous two studies could not conclude whether all or any of these representations effectively drive the
linear mapping between language models (LMs) and the brain. (Toneva et al.| (2022al) presented an approach
to disentangle supra-word meaning from lexical meaning in language models and showed that supra-word
meaning is predictive of fMRI recordings in two language regions (anterior and posterior temporal lobes).
Similar to the approach presented in|Toneva et al.|(2022a),|Oota et al.[(2023b) disentangle the past and future
context meaning from word meaning in language models and showed that past context is crucial in obtaining
significant results while predicting MEG brain recordings. |Caucheteux et al.|(2021) proposed a taxonomy
to factorize the high-dimensional activations of language models into four combinatorial classes: lexical,
compositional, syntactic, and semantic representations. They found that (1) Compositional representations
recruit a more widespread cortical network than lexical ones and encompass the bilateral temporal, parietal,
and prefrontal cortices. (2) Contrary to previous claims, syntax and semantics are not associated with
separated modules, but, instead, appear to share a common and distributed neural substrate.

While previous works studied syntactic processing as captured through complexity measures (syntactic sur-
prisal, node count, word length, and word frequency) (Zhang et al.l |2020; 2022a)), very few have studied the
syntactic representations themselves (Caucheteux et al.| 2021} [Reddy & Wehbe| [2021}; |Oota et al., |2023a)).
Studying syntactic representations using fMRI is difficult because (1) representing syntactic structure in
an embedding space is a non-trivial computational problem, and (2) the fMRI signal is noisy. To overcome
these limitations, [Reddy & Wehbe| (2021)) proposed syntactic structure embeddings that encode the syntactic
information inherent in the natural text that subjects read in the scanner. The results reveal that syntactic
structure-based features explain additional variance in the brain activity of various parts of the language
system, even after controlling for complexity metrics that capture the processing load. Toneva et al.| (2022b)
further examined whether the representations obtained from a language model align with different language
processing regions in a similar or different way. While [Reddy & Wehbe| (2021)) focused on constituency pars-
ing mainly including incremental top-down parsing, |Oota et al. (2023al) leverage dependency information
more systematically by learning the dependency representations using graph convolutional networks, using
the four step recipe as illustrated in Figure [I5] The results reveal that constituency tree structure is better
encoded in language regions such as bilateral temporal cortex (ATL and PTL) and MFG, while dependency
structure is better encoded in AG and PCC language regions.

While previous studies focused on narrative English language stories and have shown that several brain
regions are involved in building the hierarchical syntactic structure, a recent study in (Zhang et al., 2022b)
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Figure 15: Four steps proposed in (Oota et al) [2023a): (1) fMRI acquisition, (2) Syntactic parsing, (3)
Regression model training, and (4) Predictive power analysis of the three embeddings methods. This Figure
is adapted from |Oota et al.| (2023a).

analyzes the neural basis of such structures between two diverse languages: Chinese and English. The results
demonstrate that the brain may use different parsing strategies for different language structures to reduce
the cognitive load.

6.4.3 NLP Tasks and Linguistic Properties in LMs and Brains

Understanding the reasons behind the observed similarities between language comprehension in language
models and brains can lead to more insights into both systems. Further, it is unclear what type of information
in the finetuned language models leads to high encoding accuracy. It is unclear whether and how the two
systems align in their information processing pipeline. Recent work (Schwartz et al., 2019; |Schrimpf et al.|
2021} [Kumar et al.l [2022} |Goldstein et al., 2022} [Aw & Toneval, [2023; [Merlin & Toneval, 2022} [Oota et al.|
2022by} [2024b; [Sun & Moens, 2023} |Sun et al., |2023; |[Loong Aw et al., 2023|) addressed this question either by
tuning the pretrained language model on downstream NLP tasks or inducing the brain relevant information
into the language model.

Several researchers have suggested that one contributor to the alignment is the LM’s ability to predict the
next word, with a positive relationship between next-word prediction ability and brain alignment across
LMs (Schrimpt et al |2021; |Goldstein et al.| [2022). However, more recent work shows no simple relationship
exists, and language modeling loss is not a perfect predictor of brain alignment (Pasquiou et al.l [2022;
Antonello et al., [2021)). Schwartz et al.| (2019)) finetuned pretrained BERT model to predict brain activity
and found that finetuned BERT has modified language representations to better encode the information that
is relevant for the prediction of brain activity. Rather than finetuning BERT model on brain data, [Oota
et al.| (2022b) finetuned BERT model on 10 GLUE (General Language Understanding Evaluation) (Wang
et al.l |2018|) tasks to check whether task supervision leads to better encoding models to account for the
brain’s language representation. |Oota et al.| (2022b)) found that using a finetuned BERT on downstream NLP
tasks led to improved brain predictions. The results reveal that reading fMRI was best explained by Co-
reference Resolution, NER (Named Entity Recognition), shallow syntax parsing; and listening fMRI was best
explained by paraphrasing, summarization, NLI. Since full finetuning generally updates the entire parameter
space of the model which has been proven to distort the pretrained features (Kumar et all [2022), [Sun &
Moens (2023) explore prompt-tuning that generates representations which better account for the brain’s
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Figure 16: Comparison of brain recordings with language models trained on web corpora (Left) and language
models trained on book stories (Right) (Aw & Toneval 2023). This Figure is redrawn from |Aw & Toneva
(2025).

language representations than finetuning. They find that prompt-tuning on tasks dealing with fine-grained
concept meaning including Word Sense Disambiguation and Co-reference Resolution yields representations
that are better at neural decoding than tuning on other tasks with both finetuning and prompt-tuning.
Further, Sun et al.| (2023)) extended similar prompt-tuning to bridge the gap between human brain and
supervised DNN representations of the Chinese language. With the recent success of instruction-tuned large
language models, Loong Aw et al.| (2023]) investigated the effect of instruction-tuning on large language models
and alignment with the human brain’s language representations. The results demonstrate that instruction-
tuning of large language models (LLMs) improves both world knowledge representations and brain alignment,
suggesting that mechanisms that encode world knowledge in LLMs also improve representational alignment
to the human brain.

To investigate whether large language models with longer context are learning a deeper understanding of
the text, |Aw & Toneval (2023)) used four pretrained large language models (BART, Longformer Encoder
Decoder, BigBird, and LongT5) and also trained them to improve their narrative understanding, using the
method detailed in Figure [I6] They find that the improvements in brain alignment are larger for character
names than for other discourse features, which indicates that these models are learning important narrative
elements. However, it is not understood whether language models with the prediction of the next word
are necessary for the observed brain alignment or simply sufficient, and whether there are other shared
mechanisms or information that is similarly important. |Merlin & Toneva, (2022) proposed two perturbations
to pretrained language models that, when used together, can control for the effects of next word prediction
and word-level semantics on the alignment with brain recordings. Specifically, they found that improvements
in alignment with brain recordings in two language processing regions—Inferior Frontal Gyrus (IFG) and
Angular Gyrus (AG)—-are due to next word prediction and word-level semantics. However, what linguistic
information actually underlies the observed alignment between brains and language models was not clear.
Recently, |[Oota et al.| (2024b) tested the effect of a range of linguistic properties (surface, syntactic and
semantic) and found that the elimination of each linguistic property results in a significant decrease in
brain alignment across all layers of BERT. Further, syntactic properties are more responsible and have the
largest effect on the trend of brain alignment across model layers. To further understand what aspects
of linguistic stimuli contribute to ANN-to-brain similarity, [Kauf et al.| (2024b)) systematically manipulated
the stimuli (i.e., perturbed sentences’ word order, removed different subsets of words, or replaced sentences
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with other sentences of varying semantic similarity) and found that lexical semantic content rather than
the sentence’s syntactic form is primarily responsible for the DNN-to-brain similarity. Similar to studies on
pretrained models and brain similarity, |AlKhamissi et al.| (2024)) investigated the reasons for the similarity
of untrained language models and brain alignment by performing mechanistic interpretability of the models.
By isolating components of the Transformer architecture (GPT-2 XL), they found that tokenization strategy
and multihead attention are the two major components driving this better brain alignment.

Previous studies (Oota et al., |2024b; Kauf et al., [2024b)) on brain alignment with language models have
shown mixed results, with some finding that syntactic tasks are more responsible and others emphasizing
lexical semantic content. To explore this further, Kauf et al| (2024a) investigated the extent to which
language comprehension relies on syntactic versus semantic cues by manipulating the grammaticality and
meaningfulness of linguistic inputs. Their findings support a strong reliance on syntactic processing rather
than shallow, semantics-based processing in the language network.

6.4.4 Key Takeaways
e Alignment with Language Models:

1. Language models initialized with random weights (untrained models), the representations in-
duced by architectural priors can exhibit reasonable alignment to brain data.

2. Across several language models (like ELMo and Transformers), the middle layers of language
models align well with brain language regions.

3. Encoding performance improvements scale well with both model size and dataset size, indicating
that large datasets will be essential for producing effective encoding models.

e Semantic and Syntactic Processing:

1. Word syntactic and relation features are distributed across brain networks, unlike lexical word
representations, which are localized to specific brain regions.

2. Contrary to previous claims in , syntax and semantics are not associated with separate mod-
ules but instead share common brain language regions and are distributed across the language
network.

e Contextual Representations:

1. Brain regions like the auditory cortex and Broca’s area are involved in processing shorter con-
texts, while regions like the left temporo-parietal junction handle longer contexts.

2. Contextual representations from language models improve the prediction of brain activity com-
pared to traditional word embeddings.

3. Long past contexts enable better encoding than future or short-scale present contexts.

e« Reasons for DNN-to-Brain similarity

1. For untrained language models, mechanistic interpretability of models by isolating critical com-
ponents of the Transformer architecture reveals that tokenization strategy and multihead at-
tention are the two major components driving brain alignment.

2. For pretrained language models, representational interpretability of models reveals that syntac-
tic properties have the largest effect on the trend of brain alignment across model layers.

3. Strong reliance of syntactic properties rather than semantic-based processing in the language
network.

6.5 Auditory Encoding

To study auditory processing in the human brain, earlier studies focused on using hand-constructed features
such as a number of phonemes, MFCC (Mel Frequency Cepstral Coefficients), spectrotemporal modulations
for auditory brain encoding (de Heer et all 2017). These basic acoustic features are part of a standard
model of primary auditory cortex responses to sound encoding (Norman-Haignere & McDermott, 2018;
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Figure 17: Brain prediction using self-supervised speech model: Data2Vec. The plot shows that speech-based
models better predict early auditory cortex (Oota et al.| [2023c).

Venezia et al., 2019, |Mesgarani et al., |2014). In several other studies, speech stimuli have predominantly
been represented as text transcriptions (Huth et all 2016)), or basic features like phoneme rate and the
sum of squared FFT (Fast Fourier Transform) coefficients have been employed when constructing encoding
models (Pandey et all 2022)). However, text transcription-based methods ignore the raw audio-sensory
information completely. The basic speech feature engineering method misses the benefits of transfer learning
from rigorously pretrained speech deep learning (DL) models. The benefits of using pretrained speech
models include: (i) efficient contextual speech representations, (ii) enhanced accuracy and (iii) flexibility in
fine-tuning.

6.5.1 Alignment Between Pretrained Speech Models and Brains

Recently, several researchers have used popular deep learning models such as APC (Chung et al. 2020),
Wav2Vec2.0 (Baevski et al., [2020), HuBERT (Hsu et all |2021)), and Data2Vec (Baevski et al., 2022)) for
encoding speech stimuli. |Millet et al.| (2022)) used a self-supervised learning model, Wav2Vec2.0, to learn
latent representations of the speech waveform similar to human brain. They find that the functional hierarchy
of its transformer layers aligns with the cortical hierarchy of speech in the brain and reveals the whole-
brain organisation of speech processing with unprecedented clarity. This means that the first transformer
layers map onto the low-level auditory cortices (Al and A2), the deeper layers map onto brain regions
associated with higher-level processes (e.g. STS and IFG). [Vaidya et al.| (2022)) present the first systematic
study to bridge the gap between recent four self-supervised speech representation methods (APC, Wav2Vec,
Wav2Vec2.0, and HUuBERT) and computational models of the human auditory system. Similar to (Millet
et al., [2022)), they find that self-supervised speech models are the best models of auditory areas. Lower
layers best modeled low-level areas, and upper-middle layers were most predictive of phonetic and semantic
areas, while layer representations follow the accepted hierarchy of speech processing. [Tuckute et al.| (2023))
analyzed 19 different speech models and found that some audio models derived in engineering contexts (model
applications ranging from speech recognition and speech enhancement to audio captioning and audio source
separation) produce poor predictions of auditory cortical responses, many task-optimized audio speech deep
learning models outpredict a standard spectrotemporal model of the auditory cortex and exhibit hierarchical
layer-region correspondence with auditory cortex. Further,|Oota et al.[(2023c]) extended this analysis to more
such deep learning based speech models (30 self-supervised speech models). They found that both language
and auditory brain areas, are best aligned with intermediate layers in deep learning models. As shown in
Figure[I7} they also found that speech models better predict early auditory cortex than late language regions.
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Figure 18: The pretrained Wav2Vec2.0 model and finetuned to eight different downstream speech tasks and
their brain alignment (Oota et al., |2023d)).

Although pretrained speech models can understand broad aspects of speech in general, the implications of
finetuning speech pretrained models for various speech-processing tasks for speech encoding in the brain,
remain underexplored.

6.5.2 Underlying Speech Properties in Speech Models and Brains

Understanding the reasons behind the observed similarities between speech processing in speech models and
brains can lead to more insights into both systems. Recent work |Oota et al.| (2023d)) has found that using a
finetuned Wav2Vec2.0 leads to improved brain alignment. In particular, as shown in Figure Oota et al.
(2023d)) build neural speech taskonomy models for brain encoding and aim to find speech-processing tasks
that have the most explanatory capability of brain activation during naturalistic story listening experiments.
They find that task-specific (Automated Speech Recognition (ASR), Entity Recognition (ER), Speaker Iden-
tification (SID) and Intent Classification (IC)) speech representations lead to a significant improvement in
brain alignment compared to the pretrained Wav2Vec2.0 model for specific brain regions. Finetuning on
ER, SID and IC leads to the best alignment for the early auditory cortex; finetuning on ASR. provides the
best encoding for the auditory associative cortex and language regions. Further, the layer-wise analysis of
the effect of each speech task on the alignment with whole brain activity shows that the ASR task is better
aligned in middle layers. Similar to language model fine-tuning with brain data in|[Schwartz et al.| (2019), |Li
et al.| (2024)) fine-tuned a pretrained Wav2Vec2.0 model with brain recordings and and found that this in-
duced process modified the language representations, improving the model’s performance on downstream
tasks from the SUPERB benchmark.

To understand what types of information these language models truly predict in the brain, a very recent
study by |Oota et al.| (2024a) proposes a direct approach by removing a wide range of low-level features from
model representations and examining the effect on alignment with both text and speech models. This study
reveals that in context of brain reading or listening, both text-based and speech-based models show high
brain alignment with late language regions, but speech models trails behind text models. In early visual and
auditory regions, both models exhibit high degree of normalized brain alignment. Specifically, text models
alignment with late language regions due to brain-relevant semantics, while speech models alignment due
to low-level stimulus features. Conversely, text models alignment with early auditory regions mostly due to
low-level textual features, while speech models alignment is only partially explained by these features. These
findings conclude that speech-based language lack important brain-relevant semantics.
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6.5.3 Key Takeaways
o Alignment with Speech Models:

1. The functional hierarchy of Transformer layers aligns with the cortical hierarchy of speech
processing in the brain.

2. The lower layers map onto primary auditory areas, while the deeper layers are more predictive
of phonetic and semantic information processing.

e Task-specific speech models lead to improved brain alignment:

1. Speech tasks such as emotion recognition (ER), speaker identification (SID), and intent classi-
fication (IC) lead to the best alignment in the early auditory cortex.

2. Fine-tuning on automatic speech recognition (ASR) provides the best alignment in the auditory
association cortex and language regions.

e Speech-based language models lack brain relevant semantics:

1. Speech models are useful for modeling early listening: investigate them to learn more about the
auditory cortex (AC).

2. Text models are useful for modeling late language in both listening and reading.

6.6 Visual Encoding

6.6.1 Alignment Between Vision Models and Brains

Similar to language, in vision, early models focused on independent models of visual processing (object
classification) using CNNs (Yamins et al [2014). |[Eickenberg et al|(2017) use CNNs as candidate models to
model human brain activity during the viewing of natural images by constructing predictive models based
on their different CNN layers and BOLD fMRI activations. They find that there are similarities between
the computations of convolutional networks and cognitive vision at the beginning and at the end of the
ventral stream object-recognition process. |Cichy et al.[(2016)) further investigate the stages of human visual
processing in both time (MEG recordings) and space (fMRI recordings). By comparing these findings with
representations derived from deep neural networks (DNNs), the authors demonstrate that DNNs effectively
encapsulate the sequential stages of human visual processing. This encompasses the progression from early
visual areas towards the specialized pathways of the dorsal and ventral streams, highlighting the DNN’s
capacity to mirror complex neural processes in both time and space. Despite the effectiveness of CNNs, it is
difficult to draw specific inferences about neural information processing using CNN-derived representations
from a generic object-classification CNN. Hence, Wang et al.| (2019) built encoding models with individual
feature spaces obtained from 21 computer vision tasks. One of the main findings is that features from 3D
tasks, compared to those from 2D tasks, predict a distinct part of visual cortex. Recent efforts in visual
encoding models, particularly self-supervised models (instance-prototype contrastive learning), operate by
taking multiple samples over an image and projecting these through a deep convolutional neural network into
a low-dimensional embeddings space (Konkle & Alvarez, [2022). The results show that these self-supervised
models achieve parity with the category-supervised models in accounting for the structure of brain responses.
Since the human visual system uses two parallel pathways for spatial processing and object recognition, while
computer vision systems (CNNs) typically use a single pathway, |Choi et al|(2024) developed a dual-stream
vision model to mimic human vision. This model uses two branches of CNNs to replicate the dorsal and
ventral cortical pathways, aligning with the brain’s pathways and suggesting that distinct responses are
driven more by visual attention and object recognition goals than by retinal input selectivity.

In a recent study by Matsuyama et al.|(2023) on enhancing the precision of models for visual brain encoding,
the research focused on two primary questions: (1) How does changing the size of the fMRI training dataset
affect prediction accuracy? (2) How does the prediction accuracy across the visual cortex change with the
size of the parameters in the vision models? The findings indicate that prediction accuracy improves with
increased training sample size, adhering to a scaling law. Similarly, increasing the parameter size of the
vision models also leads to improved prediction accuracy, following the same scaling law.
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6.6.2 Vision Tasks and Brains

How can we push deeper CNN models to capture brain processing more stringently? Continued architec-
tural optimization on ImageNet alone no longer seems like a viable option. Instead of feed-forward deep
CNN models, using shallow recurrence enabled better capture of temporal dynamics in the visual encoding
models (Kubilius et al., [2019; [Schrimpf et al., [2020). [Kubilius et al.| (2019) proposed a shallow recurrent
anatomical network, CORnet, that follows neuro-anatomy more closely than standard CNNs, and achieved
the state-of-the-art results on the Brain-score benchmark (Schrimpf et al., [2020). It has four computational
areas, conceptualized as analogous to the ventral visual areas V1, V2, V4, and IT, and a linear category
decoder that maps from the population of neurons in the model’s last visual area to its behavioral choices.

6.6.3 Key Takeaways

e Alignment with Vision Models: The functional hierarchy of CNN layers aligns with the cortical
hierarchy of visual processing in the brain.

o Task-specific speech models lead to improved brain alignment: Encoding models using
feature spaces from 21 computer vision tasks found that features from 3D tasks predict a distinct
part of the visual cortex compared to those from 2D tasks.

e Brain-Score: A composite of multiple neural and behavioral benchmarks is used to score any
artificial neural network (ANN) based on its similarity to the brain’s mechanisms for core object
recognition El

6.7 Multimodal Brain Encoding

Recently Transformer-based multimodal models, which combine pairs of modalities such as language-vision,
language-audio, and language-audio-vision, have emerged, offering rich aligned representations compared
to single-modality models (i.e. text-only, audio-only or vision-only). Specifically, multimodal Transformers
such as CLIP, LXMERT, and VisaulBERT take both image and text stimuli as input and output a joint
visio-linguistic representations. Since the human brain perceives the environment using information from
multiple modalities, examining the alignment between language and visual representations in the brain by
training encoding models on fMRI responses, while extracting joint representations from multimodal models,
can offer insights into the relationship between the two modalities.

Single modality stimulus. Here, participants engage in single modality stimuli, such as watching images
or silent videos. Many brain encoding studies have focused on single modality stimuli, while representations
are extracted from multimodal models (Oota et al., 2022e; [Wang et al., |2022a; Tang et al., 2024]). |Ootal
et al| (2022e) experimented with multimodal models like CLIP, LXMERT, and VisualBERT and found
Visual BERT better predict neural responses than vision-only models such as CNNs and Image Transformers.
Similarly, (Wang et al., 2022a) find that multimodal models like CLIP better predict neural responses in
the visual cortex than previous vision-only models like CNNs. This is attributed to the fact that high-level
human visual representations encompass semantics and the relational structure of the visual world beyond
object identity (Gauthier et al., |2003)). Recently, Tang et al.|(2024) investigated a multimodal Transformer
as the encoder architecture to extract the aligned concept representations for narrative stories and movies
to model fMRI responses to naturalistic stories and movies, respectively. Since language and vision rely
on similar concept representations, the authors perform a cross-modal experiment in which how well the
language encoding models can predict movie-fMRI responses from narrative story features (story — movie)
and how well the vision encoding models can predict narrative story-fMRI responses from movie features
(movie — story). Overall, the authors find that cross-modality performance was higher for features extracted
from multimodal transformers than for linearly aligned features extracted from unimodal transformers.

Multimodality stimulus. Here, participants engage with multi-modal stimuli (e.g., watching movies that
include audio). Recent studies have built encoding models where multi-modal stimulus representations are
extracted using Transformer-based multi-modal models (Dong & Toneva, [2023; [Nakagi et al 2024). |Dong

Shttps://www.brain-score.org/
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& Toneval (2023) present a systematic approach to probe multimodal video Transformer model by leveraging
neuro-scientific evidence of multimodal information processing in the brain. The authors find that interme-
diate layers of a multimodal video transformer are better at predicting multimodal brain activity than other
layers, indicating that the intermediate layers encode the most brain-related properties of the video stimuli.
A recent study by (Nakagi et al., |2024)), which used fMRI during the viewing of 8.3 hours of video content,
and discovered distinct brain regions associated with different semantic levels, highlighting the significance of
modeling various levels of semantic content simultaneously. The video material was meticulously annotated
in five distinct semantic categories—speech, object, story, summary, and time/place—employing advanced
large language models to derive latent representations. These representations were then used to predict
fMRI brain activity across the various semantic categories. The authors discovered that the lack of unique
variance for Summary and TimePlace is a notable insight, suggesting that merely incorporating these types
of information into encoding analyses may not adequately capture higher-level semantic representations in
the brain.

6.7.1 Key Takeaways

o Multimodal Integration: Incorporating linguistic information with other modalities (like vision
and auditory) can enhance understanding of how the brain processes complex stimuli.

e Cross-modal vs. Jointly pretrained models: Both cross-modal and jointly pretrained multi-
modal models demonstrate significantly improved brain alignment with language regions and visual
regions when analyzed against unimodal video data.

e Single modality vs. Multimodality stimulus: Many brain encoding studies have experimented
with subjects engaged with single modality stimulus, leaving the full potential of these models in
true multi-modal scenarios still unclear.

7 Brain Decoding

Brain decoding aims to map neural activations back to the stimulus domain, allowing us to interpret what
a person is seeing, hearing, or thinking based on their brain activity, as illustrated in Figure This
process is crucial for developing brain-computer interfaces and advancing our understanding of cognitive
neuroscience. Unlike brain encoding, which focuses on predicting brain activity from stimuli, brain decoding
involves reconstructing the original stimuli from observed neural signals (Glaser et al.| 2020)).

7.1 Problem Formulation

Brain decoding involves learning the mapping between brain activations and stimuli. Early approaches
focused on pixel-level mappings using models such as Autoencoders (AEs) and Variational Autoencoders
(VAEs), which captured detailed information but often lacked semantic richness. With the advent of large-
scale generative models, the focus has shifted to conditional generation, where brain activity representations
are used to condition pretrained generative models like generative adversarial networks (GANSs), diffusion
models, and GPTs. This shift has enhanced the fidelity and meaningfulness of decoded stimuli, enabling
more sophisticated and accurate brain decoding systems.

7.2 Data Prepossessing

Similar to brain encoding, we utilized several key steps in the data preprocessing phase to ensure robust
and accurate brain decoding. Initially, we performed standard preprocessing of the fMRI data, including
motion correction, spatial normalization, and smoothing, to mitigate noise and artifacts inherent in the raw
recordings.

We utilized paired data from previous sections, consisting of fMRI, Stimuli pairs. This paired data approach
ensures that the neural activity is directly aligned with the corresponding stimuli, facilitating more accurate
decoding. Following this, we extracted Regions of Interest (ROIs) based on prior neuroanatomical knowledge
or functional localization tasks, ensuring that the most informative voxels were selected for subsequent
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analysis. ROIs focus the analysis on specific brain areas known to be involved in processing the stimuli,
reducing the dimensionality and improving the signal-to-noise ratio of the data.

7.3 Decoder Architectures

Pixel-level reconstruction. Initially, brain decoding was framed as a problem of learning an exact map-
ping between brain activations and stimuli, often using end-to-end models like Autoencoders (AEs) (Bank
et al., 2023; Beliy et al.l |2019) and Variational Autoencoders (VAEs) (Kingma & Welling, 2013 Han et al.,
2019). These approaches focused on pixel-level mappings, which, while capturing detailed information, were
often not semantically meaningful. Early decoding studies employed ridge regression models trained on the
most informative voxels or cortex-specific voxels (Pereira et al.| 2018} |Sun et al.l |2019; |Oota et al., [2022c)),
with some using fully connected layers (Beliy et al.,|2019)) or multi-layered perceptrons (Sun et al.,2019). In
some studies where decoding was modeled as multi-class classification, Gaussian Naive Bayes (Singh et al.|
2007, [Just et all 2010) and SVMs (Thirion et al., |2006) were also used. However, despite their ability
to recover some detailed information (such as color, shape and location), these methods often fell short of
capturing the highly complex non-linear semantic information between the stimulus and the neural responses.

Semantic reconstruction. As large-scale generative models evolved, the problem formulation shifted to-
wards conditional generation. In this setup, a representation of brain activity is first obtained and then used
as a condition for pretrained generative models, such as GANs (Du et al., 2020; Beliy et al. |2019; Fang et al.,
2020)), diffusion models (Chen et al.| 2023; [Takagi & Nishimotol 2022; [Scotti et al., 2024), and GPTs (Tang
et al.| [2023)). This approach emphasizes learning semantic information, effectively capturing high-level infor-
mation but sometimes lacking fine detail. Conditional generation models leverage vast amounts of pretrained
knowledge, allowing them to generate high-quality outputs conditioned on the brain activity representations.
This shift has significantly enhanced the fidelity and meaningfulness of the decoded stimuli, paving the way
for more sophisticated and accurate brain decoding systems.

Trade-off between pixel-level and semantic-level reconstruction. End-to-end methods in brain
decoding excel at capturing detailed information such as color, shape, and location due to their direct
mapping approach from brain activations to stimuli. These models, often implemented as autoencoders
or VAEs, learn a comprehensive transformation that preserves fine-grained details present in the input
data. The reconstruction loss functions used during training penalize deviations from the original stimuli,
encouraging the model to maintain low-level features like edges and textures.

In contrast, conditional generation frameworks involve a two-stage process where a high-level representation
is first extracted from brain activity and then used to condition a pretrained generative model. While this
approach leverages powerful generative models like GANs and diffusion models, which are adept at producing
realistic and semantically coherent outputs, it tends to abstract away precise pixel-level details in favor of
capturing broader semantic information. Consequently, end-to-end methods are particularly suited for tasks
requiring detailed reconstructions, whereas conditional generation frameworks excel in generating high-level,
semantically accurate representations.

Hybrid approaches. Hybrid approaches in brain decoding aim to combine the strengths of both end-to-
end methods and conditional generation frameworks to achieve detailed and semantically rich reconstructions.
By integrating the direct mapping capabilities of end-to-end models with the high-level semantic generation
of conditional frameworks (Scotti et al., 2024} |[Ferrante et al., 2024; |Wang et al.l |2024), these approaches can
capture fine-grained details while maintaining semantic coherence. Typically, a hybrid approach might first
use an end-to-end model to capture detailed low-level features from brain activations and then employ a con-
ditional generative model to refine and enhance these features, ensuring that the final output is both accurate
and meaningful. This dual-stage process allows for the preservation of essential details such as color and
shape while benefiting from the contextual understanding provided by advanced generative models. Hybrid
approaches therefore offer a promising avenue for improving the fidelity and applicability of brain decoding
technologies, bridging the gap between detailed reconstruction and high-level semantic interpretation.
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Figure 19: Scheme for Brain Decoding. Left: Image decoder (Smith| [2013), Right: Language Decoder (Wang

et al.,|2019). The left Figure is adapted from and the right Figure is adapted from|Wang et al.
2019).

7.4 Impact of Large Models on Brain Decoding

Representation learning. Representation learning has been a crucial step in the evolution of brain
decoding. Two primary approaches have been particularly influential: masked autoencoders and contrastive
learning.

Masked autoencoders play a vital role in learning low-rank representations by reconstructing
missing parts of the input data. In the context of brain decoding, these models are often used for pretraining
by masking out some brain voxels and attempting to reconstruct them, thereby learning the underlying
representations (Chen et al. [2023} 2024} [Sun et al.| 2024)). These fMRI representations are then utilized as
conditions for downstream conditional generation models, enhancing their ability to produce detailed and
accurate reconstructions compared with linear models.

Contrastive learning (Khosla et all 2020)) has emerged as a powerful technique for representation learning
by maximizing the similarity between related data points while minimizing the similarity between unrelated
ones. This approach has been instrumental in aligning brain activity with corresponding stimuli in a shared
embedding space, facilitating more accurate and semantically meaningful decoding. One of the most notable
applications of contrastive learning in brain decoding is the CLIP model (Radford et al |2021)). CLIP aligns
text and images in a shared embedding space, greatly enhancing the decoding of visual stimuli. These
models decode brain activity into text descriptions that are then used to generate corresponding images,
effectively bridging the gap between linguistic and visual representations. In brain decoding, researchers often
align fMRI embeddings with CLIP-based embedding spaces, allowing for more precise and semantically rich
reconstructions of visual stimuli from brain data |Chen et al| (2024)); [Scotti et al.| (2024).

Large language models (LLMs). LLMs, particularly models in the GPT series (Brown et al. [2020),
have revolutionized language decoding. These models are capable of generating coherent and contextually
appropriate text based on brain activity patterns. For instance, instead of merely decoding vector represen-
tations of stimuli, recent studies have leveraged LLMs to reconstruct entire sentences or continuous language
from fMRI data |Tang et al. (2023)); |Zhao et al.| (2024). This shift from vector-based decoding to full text
generation has significantly enhanced the semantic richness and contextual accuracy of the decoded output.
The ability of LLMs to model complex language structures and generate text conditioned on neural data has
opened new avenues for understanding how the brain processes language, providing practical applications in
areas such as communication aids for individuals with speech impairments.

Diffusion models (Stable Diffusion). Diffusion models (Ho et all, [2020), particularly those like Stable
Diffusion, have been pivotal in generating high-fidelity images from brain activity. These models leverage the
noise-to-signal transformation process to produce detailed and semantically rich visual outputs. By condi-
tioning these models on brain activity data, researchers have achieved remarkable success in reconstructing
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Figure 20: Categorization of Brain Decoding Studies

Table 5: Summary of Representative Brain Decoding Studies. Here, |S| represents the number of participants
in each dataset.

Authors Dataset| Lang. |Stimulus Representations |S| | Dataset
Type

Pereira et al., 2018 fMRI English | Word2Vec, GloVe, BERT 17 | Pereira
& | (Wang et al., |2020) fMRI English | BERT, RoBERTa 6 |Pereira
;13 Oota et al., [2022c) fMRI English | GloVe, BERT, RoBERTa 17 | Pereira

Tang et al.} [2023 fMRI English | GPT, finetuned GPT on Reddit com-| 7 |Moth Radio Hour

ments and autobiographical stories

Beliy et al.l, fMRI End-to-End Encoder-Decoder, Decoder-| 5 |[Generic Object Decoding,
= Encoder, AlexNet ViM-1
z Takagi & Nishimoto} |2022) |fMRI Latent Diffusion Model, CLIP 4 |NSD
> [ (Ozcelik & VanRullen| [2023) [fMRI VDVAE, Latent Diffusion Model 7 |NSD

Chen et al., |2024) fMRI Latent Diffusion Model, CLIP 3 |HCP fMRI-Video-Dataset
;% Défossez et al.I, MEG, |English | MEL Spectrogram, Wav2Vec2.0 169 | MEG-MASC
IS EEG
< [(Gwilliams et al., [2023) MEG English | Phonemes 7 | MEG-MASC

Denk et al., [2023 fMRI English | Music 5 | Music Genre fMRI

images that closely resemble the original stimuli (Scotti et al.| [2024; Takagi & Nishimoto, 2022} |Chen et al.,
[2023; 2024} |Ozcelik & VanRullen|, 2023} |Takagi & Nishimoto| [2023). The high resolution and fidelity of
the generated images represent a significant improvement over previous methods, which often struggled to
capture fine details and semantic accuracy simultaneously.

Brain decoding applications. Figure summarizes the literature on decoding solutions proposed in
vision, auditory, and language domains. Table [5| aggregates the brain decoding literature along different
stimulus domains such as textual, visual, and audio. The most common setting is to perform decoding to a
vector representation using a stimuli of a single mode (visual, text or audio).

7.5 Linguistic Decoding

Initial brain decoding experiments studied the recovery of simple concrete nouns and verbs from fMRI brain
activity (Nishimoto et al.) 2011) where the subject watches either a picture or a word. [Sun et al.| (2019)
used several sentence representation models to associate brain activities with sentence stimulus, and found
InferSent to perform the best. More work has focused on decoding the text passages instead of individual
words (Wehbe et al. 2014). Some studies have focused on multimodal stimuli based decoding where the
goal is still to decode the text representation vector. For example, Pereira et al.|(2018) trained the decoder
on imaging data of individual concepts, and showed that it can decode semantic vector representations from
imaging data of sentences about a wide variety of both concrete and abstract topics from two separate
datasets. Further, [Oota et al) (2022c) propose two novel brain decoding setups: (1) multi-view decoding
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(MVD) and (2) cross-view decoding (CVD). In MVD, the goal is to build an MV decoder to take brain
recordings for any view as input and predict the concept. In CVD, the goal is to train a model that takes brain
recordings for one view as input and decodes a semantic vector representation of another view. Specifically,
they study practically useful CVD tasks like image captioning, image tagging, keyword extraction, and
sentence formation.

To understand application of Transformer models for decoding better, |Gauthier & Levy| (2019) finetuned a
pretrained BERT on a variety of Natural Language Understanding (NLU) tasks to find tasks that lead to
improvements in brain-decoding performance. They find that tasks that produce syntax-light representations
(representations extracted from a language model trained on randomly shuffled words from corpus samples,
thereby eliminating all first-order cues to syntactic structure) yield significant improvements in brain decoding
performance.

With the recent development of large language models, rather than decoding stimuli vector representations,
some studies have attempted to reconstruct words (Affolter et al., 2020)), and continuous language (Tang

2023) from fMRI brain activity.

7.6 Auditory Decoding

With the recent advancements of self-supervised speech models and generative AI models, recent studies
have largely targeted reconstructing speech/music from brain recordings (Défossez et al.l [2023; Denk et al.|
[2023} [Senda et al., [2024)). As shown in Figure [21] [Défossez et al.| (2023) proposed a CLIP-MEG pipeline
to align MEG activity onto pretrained speech embeddings and generate speech from a stream of MEG
signals. Unlike other methods which are experimented with on narrative speech, Denk et al.| (2023) introduce
a method for reconstructing music from fMRI brain activity, as shown in Figure Specifically, they
proposed a Brain2Music pipeline where the first step involves using fMRI data to predict MuLan™®si
embeddings (Huang et al.} [2022), which are then passed to MusicLM (Agostinelli et al.,2023), is conditioned
to generate the music reconstruction, resembling the original music stimulus.

7.7 Visual Decoding

A number of methods have been proposed for reconstructing a visual stimulus from brain recordings. Here, we
initially address image reconstruction from brain recordings, followed by a discussion on video reconstruction.
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Figure 23: Image reconstruction from fMRI using Stable Diffusion. Left: (Takagi & Nishimotol [2023),
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7.7.1 Image Reconstruction

Before the success of recent generative Al models, researchers have used deep-learning models and algorithms,
including generative adversarial networks (GANSs) and self-supervised learning models trained on a large
number of naturalistic images (Du et al., [2020; Beliy et al., |2019; [Fang et al.l 2020} |Gaziv et al., [2022;
2022D)). For instance, Beliy et al|(2019) designed a separable autoencoder that enables self-supervised
learning in fMRI and images to increase training data. Mind Reader encoded fMRI signals
into a pre-aligned vision-language latent space and used StyleGAN2 (Karras et al., 2020)) for image generation.
These methods generate more plausible and semantically meaningful images. Several other studies focused
on reconstructing personal imagined experiences (Berezutskaya et al., [2020)) or application-based decoding
like using brain activity scanned during a picture-based mechanical engineering task to predict individuals’
physics/engineering exam results (Cetron et all [2019) and reflecting whether current thoughts are detailed,
correspond to the past or future, are verbal or in images (Smallwood & Schooler; 2015)).

With the recent success of CLIP and Diffusion models, deep generative models have been gaining attention
to generate high-resolution images with high semantic fidelity (Takagi & Nishimoto| [2023; |Chen et al., [2023;
[Scotti et al.,|2024; Benchetrit et al.,2023;[Song et al.l [2023]). (Takagi & Nishimoto} 2023 proposed a method
for image reconstruction from fMRI using Stable Diffusion (Rombach et al., [2022), as shown in Figure[23]left).
Their approach involves decoding brain activities to text descriptions and converting them to natural images
using Stable Diffusion. Based on a similar philosophy, using a Stable Diffusion model as a generative prior
and the pretrained fMRI features as conditions, (Chen et all |2023)) reconstructed high-fidelity images with
high semantic correspondence to the groundtruth stimuli, as shown in Figure [23|right). (Scotti et al.,[2024)
proposed a MindEye that can map fMRI brain activity to any high dimensional multimodal latent space, like
CLIP image space, enabling image reconstruction using generative models that accept embeddings from this
latent space. Different from previous studies, BrainCLIP framework was introduced by 2023) to
align fMRI patterns with different modalities (especially from visual and textual modalities) through cross-
modal contrastive loss. All these studies have been limited to 2D visual representations. A recent work

2023)) aims to extend the scope of fMRI decoding to 3D representations. Specifically, (2023)

introduce Recon3DMind, a groundbreaking task focused on reconstructing 3D visuals from fMRI signals.

Lastly, recent image reconstruction studies have focused on other non-invasive brain recordings such as
MEG and EEG rather than fMRI signals. (Benchetrit et al., 2023)) proposed a CLIP-MEG pipeline to
align MEG activity onto pretrained visual embeddings and generate images from a stream of MEG signals.
Similarly, (Song et al., [2023) proposed a CLIP-EEG pipeline to align these two modalities (image and EEG
encoders to extract features from paired image stimuli and EEG responses) by constraining their similarity.
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7.7.2 Video Reconstruction

Unlike static natural images, human visual cortex can process a continuous, diverse flow of scenes, motions,
and objects. To recover dynamic visual experience, the challenge lies in the nature of fMRI, which measures
blood oxygenation level dependent (BOLD) signals and captures snapshots of brain activity every few sec-
onds. Similar to image reconstruction works, |(Chen et al.| (2024) present MinD-Video, a two-module pipeline
(i.e. CLIP module followed by latent stable diffusion) designed to bridge the gap between image and video
brain decoding.

7.8 Key Takeaways

o Contrastive learning models like CLIP are popular for aligning stimuli and brain data
(fMRI/MEG/EEG) into a common embedding space. This alignment is useful for retrieving or
reconstructing the original stimulus from brain data.

e Most decoding studies have focused on the reconstruction of stimuli such as images, videos, text,
music, and speech rather than on decoding a subject’s imagination. This area remains largely
unexplored and would be necessary to achieve an actual mind reading label.

e Unlike brain encoding models, the interpretability of decoding models remains unexplored due to
the use of more complex approaches for reconstruction. Addressing this gap is a necessary step to
further examine AT models and gain deeper insights into brain functioning.

8 Conclusion, Limitations, and Future Trends

In this paper, we surveyed important naturalistic brain datasets, stimulus representations, brain encoding,
and brain decoding methods across different modalities. A glimpse of how deep learning solutions throw light
on putative brain computations is given. We hope that this systematic organization of recent ideas proposed
in the field of cognitive computational neuroscience provides a comprehensive summary to researchers in
both the AI and neuroscience communities. Insights gained from recent studies in brain encoding and
decoding have significant implications for the fields of AI engineering, neuroscience, and the interpretability
of models—some with immediate effects, others with long-term impact.

AT engineering. The recent brain encoding studies most immediately fit in with the neuro-Al research
direction that specifically investigates the relationship between representations in the brain and representa-
tions learned by powerful neural network models. This direction has gained recent traction, especially in the
domain of language, vision, and speech processing, thanks to advancements in language models (Schrimpf
et al., 2021; |Goldstein et al.l [2022), vision models (Schrimpf et al., 2020) and speech models (Tuckute et al.
2023} |Oota et al., 2023c|). Furthermore, several recent works most immediately contribute to this line of
research by understanding the reasons for the observed similarity in more depth (Merlin & Toneval [2022;
Oota et al.| |2024b; [Kauf et al.| 2024b; [Sarch et al., 2024; (Oota et al.l [2024al). Overall, these studies pro-
vide valuable insights for selecting features, enhancing transfer learning, and aiding in the creation of Al
architectures that are cognitively plausible.

Computational modeling in neuroscience. Researchers have started viewing language models as useful
model organisms for human language processing (Toneval, 2021) since they implement a language system in
a way that may be very different from the human brain but may nonetheless offer insights into the linguistic
tasks and computational processes that are sufficient or insufficient to solve them (McCloskey} [1991; Baroni),
2020). These brain encoding studies enable cognitive neuroscientists to have more control over using language
models as model organisms of language processing. This approach can also be extended to visual and speech
processing, where models in these domains serve as analogous organisms for investigation.

Model interpretability. In the long-term, we aspire for these studies on brain encoding and decoding
to enhance another research direction that utilizes brain signals to interpret the information processed by
neural network models (Toneva & Wehbe, [2019; [Aw & Toneva, [2023; |Wang et al., [2019; [Sarch et al., |2024)).
Ultimately, our goal is to comprehend the essential and adequate underlying characteristics that result in a
meaningful correlation between brain recordings and deep neural network models.
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8.1 Future Trends

Some of the future areas of work in this field are as follows.

Bridging the Gap: Enhancing Deep Neural Network Models for Deeper Insights into Auditory,
Language and Visual Processing While significant progress has been made in understanding text-based
models, understanding the similarity in information processing between visual, speech, and multimodal
models versus natural brain systems remains an open area. For instance, Oota et al. (2024a) demonstrate
that speech-based language models lack brain relevant semantics in language regions. Therefore, enhancing
speech-based language models to align more closely with text-based models could provide valuable insights
into language and auditory processing, given that speech is the most ancient form of human language. This
suggests a promising direction for future research, aiming to bridge the gap between artificial intelligence
models and the complex, multifaceted processes of human cognition.

Advancing Multimodal Decoding: The Next Leap in Deep Learning Accuracy Decoding actual
multimodal stimuli has become increasingly feasible due to recent advancements in deep learning models
dedicated to generation tasks (Rombach et all |2022; [Singer et al.l |2022)). However, there is still a significant
need for further research to enhance the accuracy of these models. This involves not only refining the
algorithms and architectures used but also improving the quality and diversity of the datasets on which
these models are trained. Advancements in computational power, algorithmic efficiency, and innovative
training methodologies are critical for pushing the boundaries of what is possible in multimodal decoding,
aiming to achieve more precise, reliable, and nuanced interpretations of complex stimuli.

Mapping the Mind: The Effects of Brain Damage on Cognitive Capabilities We need a deeper
understanding of the degree to which damage to different regions of the human brain could lead to the
degradation of selective cognitive skills. This exploration requires detailed mapping of cognitive functions
to specific brain areas, taking into account the brain’s complex network of connections. Studies should
investigate not only the immediate effects of brain damage on cognitive skills but also the brain’s capacity
for reorganization and compensation over time. Ultimately, the goal is to translate these research findings into
practical applications, such as more effective cognitive rehabilitation techniques and assistive technologies to
improve the quality of life for individuals with brain injuries.

Towards Human-Like Understanding in ANNs: Integrating Self-Supervised Learning and
Brain-Inspired Architectures How can we train artificial neural networks in novel self-supervised ways
such that they compose word meanings or comprehend images and speech like a human brain? Can we
model the hierarchical and modular organization of the brain in neural network architectures? This involves
creating networks that reflect the brain’s organization, from low-level feature detection to high-level seman-
tic processing, allowing for the integration of information across different modalities. Moreover, how might
we integrate dynamic learning strategies, such as curriculum learning, which progressively introduces more
intricate tasks to the model? This method emulates how humans naturally progress from understanding
straightforward to more complex ideas over time.

Bridging the Language Gap in Brain-NLP Research: The Need for Multilingual Exploration
An important part of brain-NLP research relies on brain recordings collected from individuals who speak
English as their primary language. Additionally, these studies utilize experimental stimuli that are presented
in the English language. As a result, all current neuro-Al studies predominantly leverages language models
and neural models that have been trained extensively on English text data and brain responses elicited by
text or speech in English. However, it is essential to acknowledge the potential variability in our study
outcomes when extrapolated to languages other than English. The intricate interplay between language-
specific nuances and neural responses may introduce distinctions in the results. Therefore, it becomes
imperative for future research endeavors to delve into this aspect further and investigate how these factors
might influence the generalizability of our findings across diverse linguistic contexts.

In addition to the current advancements, there are several potential avenues for future exploration at the
intersection of neuroscience and artificial intelligence. One such direction involves leveraging an enhanced
understanding of neuroscience to propose modifications to existing artificial neural network architectures,
to enhance their robustness and accuracy. Furthermore, an intriguing area for further investigation lies in
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understanding the brain activity of multilingual, multi-scriptal individuals when processing stimuli in their
second language (L2) or script. It remains unclear whether observed brain activity reflects the processing of
L2 or the active suppression of their first language (L1) while focusing on L2. This ambiguity underscores
the need for further research, particularly in the realm of multilingual multimodal stimuli, to elucidate the
underlying mechanisms at play. We hope that this survey motivates research along the above directions.
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