LogicPro: Logical Reasoning Enhanced with Program Examples

Anonymous ACL submission

Abstract

In this paper, we present a novel approach,
called LogicPro, to enhance Logic reasoning
through Program examples to improve multiple
complex reasoning tasks simultaneously. We
do this effectively by simply utilizing widely
available algorithmic problems and their code
solutions. First, we constructed diverse input
test samples based on algorithmic questions
and code solutions. Then, we designed dif-
ferent logic reasoning questions based on the
algorithmic problems and test samples. Finally,
combining the intermediate variable outputs
of the code solutions and the logic reasoning
questions, we obtain the final reasoning path
through a large language model. Based on this,
we are able to construct very rich SFT data.
At the same time, we construct a diverse and
scalable dataset of logical reasoning evalua-
tion by treating each algorithmic question as
a reasoning rule. As a result, our approach
achieves significant improvements on multiple
models for BBH dataset (20+ subsets), GSM8K
and HellSwag datasets, and significantly out-
performs a wide range of existing logical rea-
soning datasets. In addition, our eval data dis-
tinguishes well between existing models and
brings new challenges to the model.

1 Introduction

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

In logic, Aristotle’s syllogism is often used to
explain deductive reasoning. In addition to de-
ductive reasoning, logical reasoning includes other
common forms, such as inductive reasoning, ab-
ductive reasoning, and analogical reasoning, which
constitute the basic types of logical reasoning in
the objective world. Recently, the rapid develop-
ment of large language models has demonstrated
powerful natural language processing capabilities.
Logical reasoning, as a unique aspect of human

cognition, is one of the key factors in measuring
the generalized intelligence of these models. How
to improve the models’ ability in complex reason-
ing is directly related to their potential application
in various fields.

For large language models, constructing rele-
vant training datasets is the key to improving the
logical reasoning ability of the models. Existing
studies have conducted supervised training by col-
lecting and constructing a variety of data, including
but not limited to: Realistic logical reasoning (e.g.
LOGIQA (Mill, 2013), AR-LSAT (Zhong et al.,
2021), RECLOR (Yu et al., 2020)), synthetic Logi-
cal Reasoning (e.g. EntailmentBank (Dalvi et al.,
2021), RuleBERT (Saeed et al., 2021), Adversarial
NLI (Nie et al., 2020)), Mathematical Reasoning
(e.g. GSMSK (Cobbe et al., 2021), AQUA-RAT
(Ling et al., 2017), MATH (Hendrycks et al.)), and
Common-Sense Reasoning (e.g. CommonsenseQA
(Talmor et al., 2019), MedMCQA (Pal et al., 2022),
OpenBookQA (Mihaylov et al., 2018)). Although
these data improve the logical reasoning ability of
the model to some extent, there are still many prob-
lems. Realistic logical reasoning data are limited
in data size in the objective world and costly to col-
lect. Synthetic logical reasoning data are typically
constructed using a limited set of individual rea-
soning rules and patterns. Although these rules can
be combined in numerous ways, they lack overall
diversity and are prone to overfitting to a specific
reasoning model. This limitation makes it chal-
lenging to improve logical reasoning abilities in
out-of-domain scenarios. And some gaps remain
between the two domains of mathematical reason-
ing and logical reasoning, although mathematical
reasoning can assist in enhancing logical ability,
the help it brings is limited and the enhancement
is unstable. Knowledge-based reasoning data is
mainly based on knowledge from different disci-
plines and domains, which is of limited help to
complex logical reasoning ability.

For the test data, the eval benchmarks for logi-
cal reasoning are overall at the same pace as the
training data, and researchers will provide the cor-
responding eval sets while constructing the logical
reasoning training dataset. The above mentioned
LOGIQA (Mill, 2013), AR-LSAT-TEST (Wang
et al., 2022), RECLOR-DEYV (Yu et al., 2020) and
ConTRoL (Liu et al., 2021), TaxiNLI (Joshi et al.,
2020), and NaN-NLI (Truong et al., 2022) and
other test datasets are from the real world and
have sufficiently complex patterns of reasoning,
but are limited and scarce. HELP (Yanaka et al.,
2019), TaxiNLI (Joshi et al., 2020), RuleTaker-dev
(Clark et al., 2021) and ProofWriter-dev (Tafjord
et al., 2021) are synthetic data, which are large and
scalable, but with a more homogeneous reasoning
model. Teng et al. (2023) also summarizes some
of the above mentioned eval datasets in terms of
target types of multiple choice, natural language
reasoning and True-or-False. In addition, given
the early date of construction of these benchmarks,
there may be leakage issues for evaluating large
language models based on extensive crawling of
the Internet corpus. BBH (Suzgun et al., 2023) se-
lected 23 most challenging tasks from BIG-Bench
(Suzgun et al., 2023), which cover general-purpose
languages. tasks, which cover general-purpose lan-
guage comprehension, arithmetic and algorithmic
reasoning, and logical reasoning. This dataset has a
sufficiently diverse range of reasoning patterns, but
its small data size and the need for manual labeling
make it difficult to scale. In contrast, mathematical
reasoning and intellectual reasoning serve more as
auxiliary observation dimensions. Existing bench-
marks can already do a good job of evaluating the
reasoning ability of existing large models. How-
ever, there are no benchmarks that can do all three
at the same time: diversity of reasoning rules, large
enough data size, and scalability.

On the whole, it is difficult for both the training
set and the evaluation set to achieve the three points
of diversity of reasoning rules, large enough data
volume and scalability at the same time. Consider-
ing that code data can well enhance the reasoning
ability of large models (Zhang et al., 2024), and
inspired by (Hua et al., 2024), training with "con-
crete” reasoning data has the ability of generaliza-
tion, which can improve abstract reasoning, while
training with abstract data is difficult to generalize
to concrete reasoning problems. Therefore, we con-
sider using widely available algorithmic questions

and their code data to construct concrete logical
reasoning questions from abstract code data. This
approach not only further improves the reasoning
ability of the model (compared to pure code data),
but also simultaneously satisfies the three require-
ments of diverse reasoning rules, large data volume
and scalability.

In this paper, we propose a method to enhance
logical reasoning using algorithmic questions and
their code. First, we use an open-source model
(Llama3-70B-chat) to construct the inputs of multi-
ple test samples based on algorithmic questions and
their Python code. Then, we consider the inputs
of the test samples and algorithmic questions, and
obtain algorithmic questions based on the inputs of
different samples as logical reasoning questions by
rewriting the model. Subsequently, we consider the
test sample input and the code solution to construct
the code solution based on the current sample and
obtain the final result as the standard answer for the
logical reasoning question. Immediately after that,
we rewrite the code using the current sample from
the previous step and run the rewritten code so that
it outputs the values of the important intermediate
variables. Finally, combining the outputs of the
questions and the intermediate variables, we obtain
the final reasoning path. Based on this approach,
we constructed a training set and a test set for each
algorithmic topic. It can be found that the data
constructed by our approach can achieve the three
points of diversity of reasoning rules, sufficiently
large data size and scalability at the same time.

2 Approach

The whole of our method is divided into five steps
as shown in the figure 1. Through these steps, we
are able to generate logical reasoning questions
and answer pairs containing reasoning processes
from algorithmic problem questions and code. And
divide them into supervised training dataset and
evaluation dataset.

2.1 Step 1: Constructing Test Sample Inputs

In the first step, our inputs are LeetCode algorithm
questions and corresponding Python code solutions.
As shown in the figure 2, we provide the algorith-
mic questions and Python code to the large open
source model and ask the model to construct 30
test sample inputs at a time in a specific format.
Specifically, we set the temperature to 0.7, perform
multiple inference, extract test sample inputs from

(Aigarithmic
r----| Problem f----

YOU ARE CLIMBING A STAIRCASE.
IT TAKES "N" STEPS TO REACH THE
TOP. EACH TIME YOU CAN EITHER
CLIMB "1" OR "2" STEPS.

IN HOW MANY DISTINCT WAYS
CAN YOU CLIMB TO THE TOP?

STEP 2

STEPI‘.

1

. LC70: Climbing Stai

Python

Solution [----

STEP 1

STEP 3

TiTLE: STAIRCASE CLIMBING POSSIBILITIES
Q: IMAGINE YOU ARE CLIMBING A STAIRCASE
WITH lz STEPS. YOU CAN CLIMB EITHER 1 OR 2
STEPS AT A TIME. HOW MANY DISTINCT WAYS
CAN YOU CLIMB TO THE TOP OF THE STAIRCASE,
CONSIDERING ALL POSSIBLE COMBINATIONS OF
1-STEP AND 2-STEP CLIMBS?

INPUT:
TrTLE: STAIRCASE CLIMBING POSSIBILITIES
| Q: IMAGINE...

TARGET:

Tos

Figure 1: An overview of LogicPro

Step 1: Construct Test Sample Inputs

Thave an algorithmic problem and its python code, please help me
construct thirty different test sample inputs.

1. The constructed test sample inputs need to fulfill the requirements
of the algorithmic problem and be compatible with the provided
Python code.

2. Please enclose the constructed test sample inputs in the following
python format; please enclose each test sample input individually.
“python

Test sample input 1

3. Ensure that all test samples are unique and as diverse as possible
based on the topic and python code.

Figure 2: Constructing Test Sample Inputs

the results of the multiple inference, and integrate
these sample inputs to form the final test sample.

In conjunction with the example in the figure 1,
we input a question description similar to the one
in LeetCode for Climbing Stairs ', along with the
corresponding Python question solution. Based on
these two points, the model will give possible test
sample inputs, e.g. n = 17.

2.2 Step 2: Constructing Logical Reasoning
Problems

For the second step, our inputs are LeetCode algo-
rithmic questions and one of the constructed test
sample inputs. As hinted in the figure 3, we ask the
model to fuse the test sample input into the algo-

"https://leetcode.com/problems/
climbing-stairs/description/

Step 2: Construct Logical Reasoning Problem

| have an algorithmic question and a corresponding test input; please
rewrite the algorithmic question as a text-only logical reasoning question
based on the test input.

Instructions:

1. Please incorporate the test input into the description ...
2. Please first give the name of this logical reasoning ...

Reference case I:

- algorithmic question: Given a sequence containing only (,), {{, }}. [,]. <,
>, complete the rest of the sequence, making sure that all the
parentheses are properly closed and in the right order.

- testinput: "<> (([[({}) [<>]1]"

Text-Only logical reasoning question:

Title: Correctly close a Dyck-n word.

are closed properly. Input: <> (([[({) [<>1]

Reference case ll:

Refer to the above example of rewriting an algorithmic question into a
text-only logical reasoning question based on test input:

Figure 3: Constructing Logical Reasoning Problems

rithmic question description. Also, we provide a
rewrite sample of the close a Dyck-n word task as a
reference case in the context of the prompt. Specif-
ically in Figure 1, the model rewrites the Climbing
Stairs algorithmic question as a concrete logical
reasoning problem based on the test sample input
(n=17).

https://leetcode.com/problems/climbing-stairs/description/
https://leetcode.com/problems/climbing-stairs/description/

Step 3: Construct Text Example Code

T'have a piece of Python code and a test case input. Please
provide the modified code that can directly run this test
sample based on the original Python code.

- Please ensure that the generated code can be executed
directly.

- Please ensure that after running the code, the output
result of the algorithm is returned through the variable
‘result’.

Figure 4: Constructing Test Sample Code

2.3 Step 3: Constructing Test Sample Code

In the third step, our inputs are the Python code
solution and one of the constructed test sample
inputs. As in the prompt in Figure 4, we ask the
model to rewrite the Python code solution to fit the
constructed test sample input. For example, for the
Climbing Stairs problem in Figure 1, the rewritten
code can be run directly at n = 17 and output the
final result (stairs = 2584)

In particular, we will run the code here and col-
lect standardized answers for different questions as
a reference for subsequent training and evaluation
sets.

2.4 Step 4: Rewriting the Code to Print
Intermediate Variables

Step 4: Rewriting the Code to Print Intermediate Variable

Please modify the following code so that it prints out important
variables and their detailed descriptions related to the algorithm
at appropriate places.

1. Important variables refer to those critical for understanding
the algorithm's logic, ...

2. Ensure that the printed information includes not only the
names of the variables ...

3. Ensure that the printed information is closely related to the
algorithm logic ...

Figure 5: Rewriting the Code to Print Intermediate Vari-
ables

In step 4, our input is the test sample code con-
structed in step 3. The model rewrites the original
test sample code according to the prompt shown
in the figure 5 so that it can print out important
intermediate variable values. For example, for the
Climbing Stairs problem in Fig 1, the rewritten
code should output the values of a and b for each
iteration step and their corresponding descriptions.

Considering that the length of intermediate steps
varies from one algorithmic problem to another,
some problems may print out very long intermedi-
ate variables. For this reason, we set up two sets
of prompts to improve the test sample code and
filter the variable printouts according to the result

length. For the case that the token length of both
sets of printout results is within 4096, we choose
the set with longer printout results. While for the
questions with excessively long printout results, we
choose the set with shorter printout results.

2.5 Step 5: Constructing the Final Answer

Step 5: Construct The Final Answer

There is a logical reasoning question and the intermediate
variable output of its code solution. Please answer this logical
reasoning question based on the intermediate variable output of
the code.

Instructions:

1. Refer to the code's intermediate variable outputs. ...
o oo

Reference case:
- Logical reasoning question:
Title: Correctly close a Dyck-n word

Q: Complete the rest of the sequence, making sure that the
parentheses are closed properly. Input: <> (([[({{}})[<>]]
- Code intermediate variables:

Initial stack: []
Initial result: <> (([[({{}})[<>1]
Stack updated: ['<']

Result updated: <> (([L({{}}) [<>11D)
Final result: <> (([[({{}}) [<>1])
- Logical Reasoning Question Answer:

We should process each input one by one and keep track of the
stack configuration.

0: empty stack

1: <; stack: <

15:71; stack: (([...
So the answeris])).

Figure 6: Constructing the Final Answer

In step 5, we input the logical reasoning problem
constructed in step 2 and the intermediate variable
output constructed in step 4. As shown in Fig.
6, we ask the model to refer to the intermediate
variable outputs to assist the larger model in better
logical reasoning. For the Climbing Stairs problem
in Fig. 1, a more accurate and logical reasoning
step can be given after considering the answers
from the intermediate variable output.

2.6 Dataset

Based on the above process, we constructed the
training set (LogicPro-Train) and the evaluation
set (LogicPro-Eval) respectively. After completing
Step 3, we filter and divide them according to cer-
tain rules. Specifically, we extract 5 input samples
from the test samples of each algorithm question as

the test set (10740). The rest of the samples will be
extracted with an upper limit of 30 as the training
set (70286). For the test set, we will run the test
sample code directly after step 3 and use the result
as the standard answer. For the training set, the
subsequent processing steps are performed.

Overall, our method has advantages in the com-
plexity of reasoning rules and data size. Based on
our construction method, we can expand the pos-
sible test sample inputs without limit. In Table 5
of Appendix B.1, we compare LogicPro with other
datasets. Only our dataset provides sufficient data
size while ensuring that the reasoning rules are
sufficiently complex.

3 Experiments

3.1 Evaluation Setup
3.1.1 Train Datasets

In order to verify the effectiveness of the LogicPro
training set, we collected a collection of generic
and logic supervised fine-tuning data from open-
source sources. The generic data were mainly from
OpenHermes-2.5 (Teknium, 2023). We first ex-
tracted all the alpaca data from OpenHermes, and
then randomly sampled from the rest of the data to
bring the total number of data up to 100k. The log-
ical data was then taken from several open source
logical reasoning datasets (Mill, 2013; Zhong et al.,
2021; Yu et al., 2020; Dalvi et al., 2021; Nie et al.,
2020; Ling et al., 2017; Talmor et al., 2019; Pal
et al., 2022). We randomly selected 100,000 pieces
of data as logic data. Given that many existing
logic question datasets lack reasoning processes, di-
rectly using them for hybrid training may not effec-
tively validate the usefulness of the new LogicPro
data. Therefore, we used Llama-3-70B-Instruct
to rewrite the collected data to construct the final
logical reasoning dataset. The above generalized
and logical data were mixed to generate SFT data
(as Gen_Logic) for training the baseline model.
Subsequently, we mixed the constructed LogicPro
training data to verify its effectiveness.

To further validate the effectiveness of LogicPro-
Train, we categorized the open source reasoning
data into four dimensions for in-depth compari-
son. The first dimension is real-world logical rea-
soning data, including the larger LOGIQA (Mill,
2013), RECLOR (Yu et al., 2020) and AR-LSAT
(Wang et al., 2022). The second dimension is syn-
thetic data, including ProofWriter (Tafjord et al.,
2021), RuleBERT (Saeed et al., 2021) and Rule-

Taker (Clark et al., 2021). The third dimension is
mathematical reasoning data, including MAWPS
(Koncel-Kedziorski et al., 2016), GSM8K (Cobbe
et al., 2021), ASDIV (Miao et al., 2020), SVAMP
(Patel et al., 2021) and AQUA -RAT (Ling et al.,
2017). The fourth dimension is knowledge reason-
ing, covering openbookqa, strategyqa, tatqa, and
pubmedga. here we split the reasoning data in more
detail than the more diverse logic data above, and
use the unsampled full set of data for comparative
verification.

3.1.2 Eval Datasets

We evaluated the model on BBH(Suzgun et al.,
2023), GSM8K(Cobbe et al., 2021), and Hell-
Swag(Zellers et al., 2019). BBH serves as a core
benchmark for evaluating the logical reasoning abil-
ity of the model, and contains 23 challenging rea-
soning tasks. The task types are rich enough to
serve as Out of Domain evaluation criteria. These
task types cover natural language quizzes and mul-
tiple choice questions. However, given the wide
variety of subsets of the BBH, it is difficult to
effectively reflect the logical reasoning ability of
the model by looking at multiple subset averages
of the BBH alone. (While subsets of certain do-
mains may have improved, one or two subsets may
have significantly declined, resulting in no signifi-
cant improvement in the BBH average.) Therefore,
we extracted four representative BBH subsets for
comparative analysis. We use BOOL, CASUAL,
SORT, and TRACKING to denote the data sub-
sets of BBH: boolean expressions, causal judgment,
word sorting, and tracking shuffled object, respec-
tively. GSMS8K is used to assist in observing the
mathematical reasoning ability of the model.

Specifically, all of our evaluation experiments
were conducted in the form of zero-shot CoTs.

3.1.3 Maetrics

On all evaluation tasks, we report the accuracy of
the predicted answers. For GSMS8K, we obtain the
results by rule extraction and compute the corre-
sponding metrics by exact matching. For BBH and
HellSwag, we use an internal scoring model for
evaluation. The inputs to this model are standard
answers and modeled responses, and the output is
a score (0 or 1).

In the LogicPro-Eval evaluation, we also utilize
the scoring model to calculate the metrics

Base Model SFT Data BOOL CAUSAL SORT TRACKING BBH GSMS8K HellSwag Average
GPT-4 - 95.0 67.7 73.0 96.5 74.9 94.2 86.0 83.9
ChatGPT - 87.5 64.67 52.5 70.0 50.25 65.28 76.0 66.6
Qwenl.5-7B Gen_Logic 80.5 533 38.0 31.5 44.8 65.28 54.5 50.4
w. LogicPro 84.5 54.5 48.0 36.0 45.7 65.51 61.3 55.0
Llama-2-7B Gen_Logic 71.5 54.5 22.5 30.5 36.6 27.2 51.5 42.0
w. LogicPro 74.0 52.1 10.0 325 36.3 30.1 52.8 41.1
Llama-3-8B Gen_Logic 65.5 56.9 26.5 41.5 472 65.5 54.8 51.1
w. LogicPro 66.5 575 77.0 53.5 50.3 68.8 59.0 61.8
Yi-1.5-9B Gen_Logic 77.5 52.1 53.0 42.5 52.5 74.4 73.0 60.7
w. LogicPro 80.0 52.1 56.5 41.5 53.2 77.3 79.0 62.8
llama-2-13B Gen_Logic 58.0 55.7 38.5 37.0 404 43.0 45.5 454
w. LogicPro 58.0 56.9 48.0 355 41.9 45.7 49.0 47.9
Qwenl.5-14B Gen_Logic 87.5 62.3 58.2 52.0 52.4 70.3 70.5 64.7
w. LogicPro 84.0 62.9 62.7 53.0 53.3 72.8 71.5 65.7

Table 1: Results for LogicPro-Train on Different Models.

3.2 Baslines

For Proprietary Models, we show results from
SoTA LLMs such as OpenAl’'s GPT-4 and Chat-
GPT (gpt-3.5-turbo). For Open-Source Models,
our models include Qwen1.5 (7B-13B), Llama3-
8B, Llama2 (7B-13B), and Yi-9B. All of our experi-
ments are trained on base models without SFT. The
relevant training parameter settings are detailed in
the Appendix.

Model LogicPro-Eval
GPT-4 0.4629
Qwen1.5-7B-Chat 0.2864
Llama-3-8B-Instruct 0.2776
Qwen1.5-14B-Chat 0.2759
Llama3-70B-Instruct 0.3762
Qwenl.5-72B-Chat 0.3161

Table 2: Results on LogicPro-Eval; Zero-hot CoT eval-
uation

3.3 Main Results
3.4 LogicPro on Different Models

Table 1 shows the results of LogicPro-Train on
different pedestal models. Overall, our model
achieves significant improvement on almost all
pedestal models except Llama2-7B. the average
BBH improves steadily by 1-2 percentage points.
On the SORT subset, almost all models gained

significant boosts, with Llama3-8B improving by
50 percentage points. As an auxiliary observation
for mathematical reasoning, GSM8K shows that
all models improved after LogicPro training, which
reveals to some extent the intrinsic connection be-
tween different reasoning tasks.

3.5 LogicPro vs. Different Data

Table 3 shows the results of comparing LogicPro
with other logical inference data. Overall, Log-
icPro outperforms all other inference data. On
the BBH average, the TRACKING subset, and
GSMBS8K, LogicPro’s results are slightly lower than
the mathematical inference data. However, on the
other three subsets, LogicPro significantly outper-
forms the mathematical reasoning data. Consider-
ing the diversity and complexity of logical reason-
ing, while mathematical data can enhance logical
reasoning, logical reasoning needs more data with
more diversity like LogicPro.

3.6 LogicPro-Eval

Table 2 shows the results of three open-source mod-
els and one closed-source model on LogicPro-Eval.
Overall, LogicPro-Eval shows significant differ-
ences between models of different sizes, with GPT-
4 performing significantly ahead.The Llama series
of models outperforms the Qwen1.5 series of mod-
els in general. However, the results of Qwen1.5-7B
and Qwen1.5-14B are not as expected, although
considering the overall poor performance of the
Qwenl.5 series on LogicPro-Eval, there is no sig-

Logic Data BOOL CAUSAL SORT TRACKING BBH GSMSK HellSwag Average
- 80.5 533 38.0 31.5 448 65.28 54.5 50.4
Realistic Logical 79.5 49.1 41.0 325 45.7 65.8 58.3 53.1
Synthetic Logical 83.0 52.1 34.5 31.5 45.0 66.0 48.3 51.5
Mathematical 80.0 47.3 39.0 36.5 458 66.1 60.0 53.5
Knowledge Reasoning 80.0 52.1 36.5 30.5 44.7 65.7 56.0 52.2
LogicPro 84.5 54.5 48.0 36.0 457 65.51 61.3 55.0

Table 3: Results on LogicPro-Train vs. Different Logic Data. Base Model: Qwen1.5-7B. Baseline Data: Gen_Logic.

nificant difference between the 14B model and the
72B model, which suggests that the LogicPro-Eval
correlation capability is a much-needed improve-
ment for the Qwenl.5 series as a whole .

In addition, all open-source models as well as
GPT-4 did not reach 50% accuracy on LogicPro-
Eval (GPT-4 had more than 70% accuracy on
BBH), which suggests that LogicPro-Eval poses a
completely new challenge for existing models.

4 Analaysis
4.1 Ablation Study

SFT Data BBH GSMSK HellSwag
general_10w 34.5 65.59 58.3
Gen_Logic 44.8 65.28 54.5
w. code 44.6 65.43 56.75
w. code*30 450 65.78 55.25
w. LogicPro_10 45.0 66.51 58.25
w. LogicPro_COT 43.1 63.82 59.75
w. LogicPro_Final 45.7 65.51 61.3

Table 4: Results of ablation study on different SFT
data. general _10w: Collected 10w general sft data;
Gen_Logic: general_10w mixed 10w open source col-
lection of logic data. w. denotes the mixing of different
data based on Gen_Logic. Base Model: Qwen1.5-7B.

We performed a detailed ablation analysis of
LogicPro-Train on Qwen 1.7-7B. First, we com-
pared the results using generic 100k data, generic
100k mixed with logical 100k data, respectively.
In addition, the code data itself is considered to
enhance the inference of the model. To demon-
strate that our LogicPro-Train data improves log-
ical reasoning more compared to raw code. We
transformed the raw code data into code quiz data
and performed the same hybrid training to vali-
date it. Meanwhile, in order to exclude the effect

of training data volume, we oversampled the code
data (2360*30) to make it close to LogicPro-Train’s
data volume (70286) and performed comparative
training. The results in Table 4 show that our data
significantly outperforms the code data itself on
the logical reasoning task. Finally, we investigated
the effect of different answer formats, comparing
the results via intermediate code variables with
the results of direct input-output (I0) and CoT
rewriting using Llama3-70B-Instruct. The results
show that LogicPro-Train (intermediate variable
construction) outperforms direct rewriting.

4.2 Analysis of LogicPro-Eval

In the results table in Chapter 3.6, it can be seen
that LogicPro-Eval is able to distinguish existing
models very well. However, beyond the ability
to distinguish between different models, how can
LogicPro-Eval provide better feedback on the rea-
soning ability of a model? Unlike BBH, which
has only 27 subsets, LogicPro-Eval has more than
2,600 rules, making it difficult to analyze them one
by one. Therefore consider finding some dimen-
sions to categorize from the original algorithmic
questions.

First, regarding the difficulty of the code ques-
tions, as shown in the leftmost subplot of Figure
7, it can be seen that overall, the accuracy of the
model on LogicPro-Eval decreases as the difficulty
of the code questions increases. This reveals a po-
tential correlation between code abstraction logic
and LogicPro construction data.

Second, regarding the input type of the code
questions, as shown in the middle subplot of Fig.
7, it can be seen that overall, there is no signifi-
cant difference in the effect between different input
types.

Then, regarding the time complexity of the code
questions, as shown in the subplot on the right side
of Figure 7, LogicPro-Eval has a weak associa-

Difficulty. Input Type. Time Complexity.

60

50

IS
S

w
S

Accuracy (%)

20

104

Easy Medium Hard Integer Array String Matrix Tree Others o(n) o(1) o(logn) o(m*n) o(n"~2) Others

I Meta-Llama-3-8B-Instruct [Qwenl.5-7B-Chat [Meta-Llama-3-70B-Instruct I Qwenl.5-72B-Chat [gpt-4-turbo-2024-04-09

Figure 7: LogicPro-Eval results at different levels of difficulty/input type/time complexity

Knowledge Points.

50

40

w
=3

Accuracy (%)

N
=3

10 4

[Meta-Llama-3-8B-Instruct] Qwen1.5-7B-Chat

[Meta-Llama-3-70B-Instruct

.
AN
v

O
%
%,

I Qwenl.5-72B-Chat [gpt-4-turbo-2024-04-09

Figure 8: LogicPro-Eval results at different knowledge points

tion with time complexity. The model as a whole
performs poorly on problems with high time com-
plexity (e.g., O(n?)). This may be due to the fact
that the output length of questions with high time
complexity tends to be longer, which leads to a
decrease in the effectiveness of questions with high
complexity.

Finally, regarding the knowledge points involved
in the code questions, LogicPro-Eval is somewhat
related to the knowledge points as shown in Fig-
ure 8. The overall results in the first few columns
are better than in the latter columns. However, the
modeling is also not done well in the dynamic pro-
gramming problem, which humans are not very
good at either

Inevitably, the effects of the four dimensions of
difficulty, input type, time complexity, and knowl-
edge point may be coupled. However, effective
observation of the dimensions can to some extent

help us better recognize the model’s capability and
further improve the model.

5 Conclusion

In this paper, we present LogicPro, which enhances
logical reasoning through code cases. With this ap-
proach, we can construct datasets that combine
the triple points of complexity of reasoning rules,
large volume, and scalability, and extend them into
LogicPro-Train and LogicPro-Test datasets. The
training dataset can bring significant improvements
on models of various sizes and origins. The testing
dataset can effectively differentiate between exist-
ing models, while also bringing new challenges in
logical reasoning to the models.

Limitations

Our approach explores a novel way of augmenting
reasoning or constructing reasoning data. However,

in step 5, we rely only on rewrites of open-source
models, which can sometimes be problematic. For
example, the model may say "from intermediate
variables" and then give the final answer directly
from the code print as if it were cheating, instead of
reasoning step by step. We tried several approaches
and found that this phenomenon cannot be avoided.
However, we noticed that in all the cases we tried,
GPT-4 always did this step well. However, consid-
ering the API cost associated with the large amount
of data, we did not choose to use GPT-4 for the
rewriting of step 5. This may be an important limi-
tation facing the current dataset.

Ethics Statement

This study is based on data from 2360 algorithmic
questions on the fully open-source LeetCode plat-
form. All data are from publicly available sources
and do not involve any personal privacy informa-
tion. Our study strictly adheres to the terms of use
and privacy policies of the platforms from which
the data was sourced. We ensure that the rights
of all users and platform regulations are respected
during data collection and processing. Through
the use of publicly available data, we aim to ad-
vance academic research and education, and pro-
mote progress in the field of algorithms and com-
puter science

References

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021.
Transformers as soft reasoners over language. In Pro-
ceedings of the Twenty-Ninth International Confer-
ence on International Joint Conferences on Artificial

Intelligence, pages 3882-3890.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan
Xie, Hannah Smith, Leighanna Pipatanangkura, and
Peter Clark. 2021. Explaining answers with entail-
ment trees. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7358-7370.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al.
2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem
solving with the math dataset. Sort, 2(4):0-6.

Wenyue Hua, Kaijie Zhu, Lingyao Li, Lizhou Fan,
Shuhang Lin, Mingyu Jin, Haochen Xue, Zelong
Li, JinDong Wang, and Yongfeng Zhang. 2024. Dis-
entangling logic: The role of context in large lan-
guage model reasoning capabilities. arXiv preprint
arXiv:2406.02787.

Pratik Joshi, Somak Aditya, Aalok Sathe, and Mono-
jit Choudhury. 2020. Taxinli: Taking a ride up the
nlu hill. In Proceedings of the 24th Conference on
Computational Natural Language Learning, pages
41-55.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 conference of the north american chapter of
the association for computational linguistics: human
language technologies, pages 1152—-1157.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven C. H. Hoi. 2022. Coderl: Mas-
tering code generation through pretrained models and
deep reinforcement learning.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158—167.

Hanmeng Liu, Leyang Cui, Jian Liu, and Yue Zhang.
2021. Natural language inference in context-
investigating contextual reasoning over long texts.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13388-13396.

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan
Duan, Ming Zhou, and Yue Zhang. 2023a. Logiqa
2.0—an improved dataset for logical reasoning in
natural language understanding. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023b. Evaluating the logical
reasoning ability of chatgpt and gpt-4. arXiv preprint
arXiv:2304.03439.

http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2207.01780

Hanmeng liu, Zhiyang Teng, Ruoxi Ning, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023. Glore: Evaluating logi-
cal reasoning of large language models.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975-984.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

John Stuart Mill. 2013. A system of Logic, Ratiocina-
tive and Inductive: Being a Connected View of the
Principles of Evidence, and the Methods of Scientific
Investigation. Harper and Brothers, Publishers.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885—4901, Online. Association for Computa-
tional Linguistics.

Ankit Pal, Logesh Kumar Umapathi, and Malaikan-
nan Sankarasubbu. 2022. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical do-
main question answering. In Conference on health,
inference, and learning, pages 248-260. PMLR.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev,
and Jimmy Ba. 2023. Openwebmath: An open
dataset of high-quality mathematical web text.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics.

Mohammed Saeed, Naser Ahmadi, Preslav Nakov, and
Paolo Papotti. 2021. Rulebert: Teaching soft rules to
pre-trained language models. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1460-1476.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and
Daya Guo. 2024. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adria Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, et al. 2023. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 13003-13051.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, , and Jason Wei. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Find-

ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 3621-3634.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of NAACL-HLT, pages 4149—
4158.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science.

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist 1lm assistants.

Zhiyang Teng, Ruoxi Ning, Jian Liu, Qiji Zhou, Yue
Zhang, et al. 2023. Glore: Evaluating logical rea-
soning of large language models. arXiv preprint
arXiv:2310.09107.

Thinh Hung Truong, Julia Otmakhova, Timothy Bald-
win, Trevor Cohn, Jey Han Lau, and Karin Verspoor.
2022. Not another negation benchmark: The nan-nli
test suite for sub-clausal negation. In Proceedings of
the 2nd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
12th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
883-894.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.
2023b. Math-shepherd: A label-free step-by-step
verifier for llms in mathematical reasoning. arXiv
preprint arXiv:2312.08935.

Siyuan Wang, Zhongkun Liu, Wanjun Zhong, Ming
Zhou, Zhongyu Wei, Zhumin Chen, and Nan Duan.
2022. From Isat: The progress and challenges of
complex reasoning. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing.

http://arxiv.org/abs/2310.09107
http://arxiv.org/abs/2310.09107
http://arxiv.org/abs/2310.09107
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
http://arxiv.org/abs/2310.06786
http://arxiv.org/abs/2310.06786
http://arxiv.org/abs/2310.06786
http://arxiv.org/abs/2211.09085
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091

Siyuan Wang, Zhongyu Wei, Yejin Choi, and Xiang Ren.
2024. Can llms reason with rules? logic scaffolding
for stress-testing and improving llms. arXiv preprint
arXiv:2402.11442.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. 2024. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-
han Bos. 2019. Help: A dataset for identifying short-
comings of neural models in monotonicity reasoning.
In Proceedings of the Eighth Joint Conference on
Lexical and Computational Semantics (* SEM 2019),
pages 250-255.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi
Feng. 2020. Reclor: A reading comprehension
dataset requiring logical reasoning. arXiv preprint
arXiv:2002.04326.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen
Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
2024. Advancing llm reasoning generalists with pref-
erence trees.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791-4800.

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang,
Lichang Chen, William Yang Wang, and Linda Ruth
Petzold. 2024. Unveiling the impact of coding data
instruction fine-tuning on large language models rea-
soning. arXiv e-prints, pages arXiv—2405.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and
Nan Duan. 2021. Ar-lsat: Investigating analytical
reasoning of text.

11

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng
Chen, Wayne Xin Zhao, Jing Sha, Zhichao Sheng,
Shijin Wang, and Ji-Rong Wen. 2024. Jiuzhang3.
0: Efficiently improving mathematical reasoning by
training small data synthesis models. arXiv preprint
arXiv:2405.14365.

A Related work
A.1 Reasoning of LLMs

Reasoning, which servers as a fundamental ability
of LLMs, determines the strength to solve complex
real-world problems. Enhancing the reasoning abil-
ity of LLMs can mainly be divided into two ways.
Improve Reasoning of LLMs by Prompting.
The reasoning ability of LLMs can be significantly
stimulated by giving them different prompts, such
as Chain-of-Thought(Wei et al., 2022), Plan-and-
Solve(Wang et al., 2023a), etc. It is also possible to
assist the model in reasoning by providing it with
some external tools(Yao et al., 2022; Chen et al.,
2022; Gou et al., 2023). These methods do not
require parameter modification on LLMs, but do
some control during LLM’s reasoning to get a more
reliable reasoning process and a better final result.
Improve Reasoning of LLMs by Training.
Continuing pre-training provides a means to en-
hance the internal reasoning ability of LLMs from
a knowledge perspective(Taylor et al., 2022; Paster
et al., 2023). The ability of reasoning could be
further enhanced by fine-tuning with instruction
pairs related reasoning(Yue et al., 2023; Yuan et al.,
2024). Reinforcement learning with two types of re-
ward models: Outcome Reward Model (ORM)(Le
et al., 2022; Shao et al., 2024) and Process Reward
Model (PRM)(Lightman et al., 2023; Wang et al.,
2023b), have also been used to improve the model’s
reasoning accuracy at various granularity. In addi-
tion, synthesised data from LLMs(Xin et al., 2024;
Zhou et al., 2024) demonstrates the possibility of
improving reasoning of LLMs themselves.

A.2 Logic Reasoning of LLLMs

Logical reasoning epitomizes the art of deducing
new insights from existing knowledge by adhering
to specific principles and laws. This process does
not necessitate a robust knowledge base. Instead, it
emphasizes the precision and meticulousness with
which conclusions are inferred from one piece of
information to another.

Training Data of Logic Reasoning. There are
various open-source available datasets for different
types of logical reasoning tasks. LogiQA2.0(Liu

http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2404.02078
http://arxiv.org/abs/2404.02078
http://arxiv.org/abs/2404.02078
http://arxiv.org/abs/2104.06598
http://arxiv.org/abs/2104.06598
http://arxiv.org/abs/2104.06598

etal., 2023a) is a complex logical reasoning dataset
built from Chinese Civil Service Exam questions.
ReClor(Yu et al., 2020), a dataset built on standard-
ized graduate admission examinations, contains
reading comprehension tasks requiring logical rea-
soning. ULogic(Wang et al., 2024) is logical rea-
soning dataset constructed from diverse inferential
rules, which could improve various commonsense
reasoning tasks.

Evaluation of Logic Reasoning. LogiEval(Liu
et al., 2023b) and GLoRE(liu et al., 2023) com-
bines several logical reasoning datasets, evaluating
the logical reasoning of LLMs from multiple di-
mensions. Big-Bench Hard(Suzgun et al., 2022;
Srivastava et al., 2022) is a diverse evaluation set
that incorporates logical reasoning tasks such as
logical deduction and logical fallacy detection.

B Data

B.1 Data Comparison

As shown in Fig. 5, we compare four types of data
with LogicPro in terms of three dimensions: data
size, data source and reasoning rule complexity.
The results show that our method performs well in
terms of data size, reasoning rule complexity and
scalability.

C Prompts

12

Dataset Size Synthetic Complexity Level of Reasoning Rules
Realistic Logical Reasoning
LOGIQA 8,678 not complex (China Civil Service Exam)
RECLOR 6,138 not complex (GMAT and LSAT)
FOLIO 1,435 not medium (First-order logic)
DEER 1200 not complex (Inductive reasoning)
E-KAR 1155 - complex (Analogical Reasoning)
Synthetic Logical Reasoning
ProofWriter 20,192 yes Simple (Entailment Tree)
PrOntoQA - yes Simple (First-Order Logic)
RuleTaker 27363 yes Simple
RuleBERT 310,000 yes Simple
Clutrr 53,518 yes Simple
Mathematical Reasoning
GSMSK 8,792 not complex (Multi-step math reasoning)
AQUA-RAT 100,000 - complex (Math reasoning with NL rationale)
ASDiv 2,305 not complex (Multi-step math reasoning)
SVAMP 1,000 not complex (Multi-step math reasoning)
Commonsense Reasoning
CommonsenseQA 12,247 - medium (ConceptNet)
OpenBookQA 5,957 - medium (Open-book knowledges)
LogicPro (our) 81,026 yes complex (Logic from Code)

Table 5: Comparison of four types of datasets and LogicPro.

13

Step 1: Construct Test Sample Inputs

I'have an algorithmic problem and its python code, please help me construct thirty different test sample inputs.

1. The constructed test sample inputs need to fulfill the requirements of the algorithmic problem and be compatible with the provided
Python code.

2. Please enclose the constructed test sample inputs in the following python format; please enclose each test sample input individually.
“python

Test sample input 1

Your input here

“python
Test sample input 2
Your input here

~python
Test sample input 30
Your input here

3. Ensure that all test samples are unique and as diverse as possible based on the topic and Python code.

4. Consider various aspects of the input type to ensure diversity, such as:

- Range of values: Include small, medium, and large values, as well as edge cases.

- Special cases: Consider cases like empty input, maximum allowed input size, or inputs that might cause edge conditions.

- Pattern variations: If the input is a sequence, vary the sequence patterns (e.g., sorted, reverse-sorted, random order).

- Combining elements: If the input is a composite data structure (e.g., array of strings), combine different types of elements.
5. Generate inputs with varying difficulty levels (low, medium, high) considering the problem statement and the provided Python code:
- Low difficulty: Simple and straightforward inputs that cover basic scenarios.

- Medium difficulty: Moderately complex inputs that include more diverse and realistic scenarios.

- High difficulty: Complex inputs that test edge cases and challenging conditions.

6. Ensure that all test samples adhere to the constraints provided in the problem description.

7. Provide only the input for the test samples, do not include the output.

Algorithmic Questions Title:
{algorithmic_problems}

python solution:

{python_solution}

Figure 9: Step 1: Constructing Test Sample Inputs

14

Step 2: Construct Logical Reasoning Problem

| have an algorithmic question and a corresponding test input; please rewrite the algorithmic question as a text-only logical reasoning question
based on the test input.

Instructions:

1. Please incorporate the test input into the description of the algorithm question;
2. Please first give the name of this logical reasoning task; then give the question that contains the test input.

Reference case I:

- algorithmic question: Given a sequence containing only (,), {{, }}, [], <, >, complete the rest of the sequence, making sure that all the
parentheses are properly closed and in the right order.
-testinput: "< > (([[({}) [<>]]"

- text-only logical reasoning question:

Title: Correctly close a Dyck-n word.

Q: Complete the rest of the sequence, making sure that the parentheses are closed properly. Input: <> (([[({}})[<>]]

Reference case ll:

- algorithmic question: You are given an integer array "cards’ of length "4". You have four cards, each containing a number in the range '[1, 9]'.
You should arrange the numbers on these cards in a mathematical expression using the operators “['+, *-', ™', /" and the parentheses *'(" and *)"
to get the value 24. You are restricted with the following rules: * The division operator */" represents real division, not integer division.

- testinput: "[4, 1, 8, 7]"

- text-only logical reasoning question:

Title: Achieve the Target Value

Q: You are presented with four cards, each bearing a number within the range of 1 to 9. Using the numbers on these cards, form a mathematical
expression by arranging them with the operators "+, -, ***, and '/, as well as parentheses *(* and °)’, such that the resulting value of the
expression is 24. Note the following rules:

- Division operator */* represents real division, not integer division.

- Each operation must be performed between two numbers (no unary operations).

- Numbers cannot be concatenated to form multi-digit numbers.

Given the cards with numbers [4, 1, 8, 7], determine if it is possible to form an expression that evaluates to 24.

Can you find such an expression, or prove that it cannot be done?

Refer to the above example of rewriting an algorithmic question into a text-only logical reasoning question based on test input:

- algorithmic question: {algorithmic_question}
- test input: {test_sample_input}

- text-only logical reasoning question:

Figure 10: Step 2: Constructing Logical Reasoning Problems

Step 3: Construct Text Example Code

I'have a piece of Python code and a test case input. Please provide the modified code that can directly run this test sample
based on the original Python code.

- Please ensure that the generated code can be executed directly.

- Please ensure that after running the code, the output result of the algorithm is returned through the variable ‘result'.

Test case input:
{test_sample_input}

python code:

{python_solution}

Figure 11: Step 3: Constructing Test Sample Code

15

Step 4: Rewriting the Code to Print Intermediate Variable

Please modify the following code so that it prints out important variables and their detailed descriptions related to the algorithm
at appropriate places.

1. Important variables refer to those critical for understanding the algorithm's logic, such as loop counters, function inputs and
outputs, key condition judgments, and variables indicating state changes.

2. Ensure that the printed information includes not only the names of the variables but also their roles and meanings within the
algorithm, to better understand the execution process of the code.

3. Ensure that the printed information is closely related to the algorithm logic and does not include irrelevant content (such as
code errors and exceptions).

4. Ensure that the printed information is detailed enough.

python code:

{test_example_code}

Figure 12: Step 4: Rewriting the Code to Print Intermediate Variables

16

Step 5: Construct The Final Answer

There is a logical reasoning question and the intermediate variable output of its code solution. Please answer this logical
reasoning question based on the intermediate variable output of the code.

Instructions:

1. Refer to the code's intermediate variable outputs. Use the information provided to help you answer the logical reasoning
questions.

2. First, outline your approach to solving the logical reasoning task. Then, provide the exact reasoning process step by step.
3. Do not use code to solve this logical reasoning problem. Instead, use the provided intermediate variable outputs to guide
your answer.

4. Do not mention “intermediate variables” in your answer. Focus on solving the logical reasoning question directly.

5. Avoid phrases like “From the intermediate variables” in the answer. Just use them(intermediate variables) to help you
answer the logical reasoning question.

Reference case:

- Logical reasoning question:
Title: Correctly close a Dyck-n word

Q: Complete the rest of the sequence, making sure that the parentheses are closed properly. Input: <> (([[({{}) [<>]]
- Code intermediate variables:

Initial stack: []
Initial result: <> (([[({{}}) [<>1]]
Stack updated: ['<']

Stack updated: ['C, '(, '[']

Result updated: <> (([[({{}}) [<>11]
Result updated: <> (([[({{})[<>11D
Result updated: <> (([[({{}}) [<>11D)
Finalresult: <> (([[({{}})[<>]1])

- Logical Reasoning Question Answer:

We should process each input one by one and keep track of the stack configuration.
0: empty stack
1: <; stack: <

15:]; stack: (([
Now, we have reached the end. The final stack is "((["

We will need to pop out "[*, "(", "(" one by one in that order.
So, we need "]",)", ")". So the answeris])).

Refer to the above case to give a solution to a logical reasoning question:
- Logical reasoning question:

{logic_reasoning_problem}

- Code intermediate variables:

{code_print}

Figure 13: Step 5: Constructing the Final Answer

17

