
LogicPro: Logical Reasoning Enhanced with Program Examples

Anonymous ACL submission

Abstract

In this paper, we present a novel approach,001
called LogicPro, to enhance Logic reasoning002
through Program examples to improve multiple003
complex reasoning tasks simultaneously. We004
do this effectively by simply utilizing widely005
available algorithmic problems and their code006
solutions. First, we constructed diverse input007
test samples based on algorithmic questions008
and code solutions. Then, we designed dif-009
ferent logic reasoning questions based on the010
algorithmic problems and test samples. Finally,011
combining the intermediate variable outputs012
of the code solutions and the logic reasoning013
questions, we obtain the final reasoning path014
through a large language model. Based on this,015
we are able to construct very rich SFT data.016
At the same time, we construct a diverse and017
scalable dataset of logical reasoning evalua-018
tion by treating each algorithmic question as019
a reasoning rule. As a result, our approach020
achieves significant improvements on multiple021
models for BBH dataset (20+ subsets), GSM8K022
and HellSwag datasets, and significantly out-023
performs a wide range of existing logical rea-024
soning datasets. In addition, our eval data dis-025
tinguishes well between existing models and026
brings new challenges to the model.027

1 Introduction028

All men are mortal.029

Socrates is a man.030

Therefore, Socrates is mortal.031

In logic, Aristotle’s syllogism is often used to032

explain deductive reasoning. In addition to de-033

ductive reasoning, logical reasoning includes other034

common forms, such as inductive reasoning, ab-035

ductive reasoning, and analogical reasoning, which036

constitute the basic types of logical reasoning in037

the objective world. Recently, the rapid develop-038

ment of large language models has demonstrated039

powerful natural language processing capabilities.040

Logical reasoning, as a unique aspect of human041

cognition, is one of the key factors in measuring 042

the generalized intelligence of these models. How 043

to improve the models’ ability in complex reason- 044

ing is directly related to their potential application 045

in various fields. 046

For large language models, constructing rele- 047

vant training datasets is the key to improving the 048

logical reasoning ability of the models. Existing 049

studies have conducted supervised training by col- 050

lecting and constructing a variety of data, including 051

but not limited to: Realistic logical reasoning (e.g. 052

LOGIQA (Mill, 2013), AR-LSAT (Zhong et al., 053

2021), RECLOR (Yu et al., 2020)), synthetic Logi- 054

cal Reasoning (e.g. EntailmentBank (Dalvi et al., 055

2021), RuleBERT (Saeed et al., 2021), Adversarial 056

NLI (Nie et al., 2020)), Mathematical Reasoning 057

(e.g. GSM8K (Cobbe et al., 2021), AQUA-RAT 058

(Ling et al., 2017), MATH (Hendrycks et al.)), and 059

Common-Sense Reasoning (e.g. CommonsenseQA 060

(Talmor et al., 2019), MedMCQA (Pal et al., 2022), 061

OpenBookQA (Mihaylov et al., 2018)). Although 062

these data improve the logical reasoning ability of 063

the model to some extent, there are still many prob- 064

lems. Realistic logical reasoning data are limited 065

in data size in the objective world and costly to col- 066

lect. Synthetic logical reasoning data are typically 067

constructed using a limited set of individual rea- 068

soning rules and patterns. Although these rules can 069

be combined in numerous ways, they lack overall 070

diversity and are prone to overfitting to a specific 071

reasoning model. This limitation makes it chal- 072

lenging to improve logical reasoning abilities in 073

out-of-domain scenarios. And some gaps remain 074

between the two domains of mathematical reason- 075

ing and logical reasoning, although mathematical 076

reasoning can assist in enhancing logical ability, 077

the help it brings is limited and the enhancement 078

is unstable. Knowledge-based reasoning data is 079

mainly based on knowledge from different disci- 080

plines and domains, which is of limited help to 081

complex logical reasoning ability. 082

1

For the test data, the eval benchmarks for logi-083

cal reasoning are overall at the same pace as the084

training data, and researchers will provide the cor-085

responding eval sets while constructing the logical086

reasoning training dataset. The above mentioned087

LOGIQA (Mill, 2013), AR-LSAT-TEST (Wang088

et al., 2022), RECLOR-DEV (Yu et al., 2020) and089

ConTRoL (Liu et al., 2021), TaxiNLI (Joshi et al.,090

2020), and NaN-NLI (Truong et al., 2022) and091

other test datasets are from the real world and092

have sufficiently complex patterns of reasoning,093

but are limited and scarce. HELP (Yanaka et al.,094

2019), TaxiNLI (Joshi et al., 2020), RuleTaker-dev095

(Clark et al., 2021) and ProofWriter-dev (Tafjord096

et al., 2021) are synthetic data, which are large and097

scalable, but with a more homogeneous reasoning098

model. Teng et al. (2023) also summarizes some099

of the above mentioned eval datasets in terms of100

target types of multiple choice, natural language101

reasoning and True-or-False. In addition, given102

the early date of construction of these benchmarks,103

there may be leakage issues for evaluating large104

language models based on extensive crawling of105

the Internet corpus. BBH (Suzgun et al., 2023) se-106

lected 23 most challenging tasks from BIG-Bench107

(Suzgun et al., 2023), which cover general-purpose108

languages. tasks, which cover general-purpose lan-109

guage comprehension, arithmetic and algorithmic110

reasoning, and logical reasoning. This dataset has a111

sufficiently diverse range of reasoning patterns, but112

its small data size and the need for manual labeling113

make it difficult to scale. In contrast, mathematical114

reasoning and intellectual reasoning serve more as115

auxiliary observation dimensions. Existing bench-116

marks can already do a good job of evaluating the117

reasoning ability of existing large models. How-118

ever, there are no benchmarks that can do all three119

at the same time: diversity of reasoning rules, large120

enough data size, and scalability.121

On the whole, it is difficult for both the training122

set and the evaluation set to achieve the three points123

of diversity of reasoning rules, large enough data124

volume and scalability at the same time. Consider-125

ing that code data can well enhance the reasoning126

ability of large models (Zhang et al., 2024), and127

inspired by (Hua et al., 2024), training with "con-128

crete" reasoning data has the ability of generaliza-129

tion, which can improve abstract reasoning, while130

training with abstract data is difficult to generalize131

to concrete reasoning problems. Therefore, we con-132

sider using widely available algorithmic questions133

and their code data to construct concrete logical 134

reasoning questions from abstract code data. This 135

approach not only further improves the reasoning 136

ability of the model (compared to pure code data), 137

but also simultaneously satisfies the three require- 138

ments of diverse reasoning rules, large data volume 139

and scalability. 140

In this paper, we propose a method to enhance 141

logical reasoning using algorithmic questions and 142

their code. First, we use an open-source model 143

(Llama3-70B-chat) to construct the inputs of multi- 144

ple test samples based on algorithmic questions and 145

their Python code. Then, we consider the inputs 146

of the test samples and algorithmic questions, and 147

obtain algorithmic questions based on the inputs of 148

different samples as logical reasoning questions by 149

rewriting the model. Subsequently, we consider the 150

test sample input and the code solution to construct 151

the code solution based on the current sample and 152

obtain the final result as the standard answer for the 153

logical reasoning question. Immediately after that, 154

we rewrite the code using the current sample from 155

the previous step and run the rewritten code so that 156

it outputs the values of the important intermediate 157

variables. Finally, combining the outputs of the 158

questions and the intermediate variables, we obtain 159

the final reasoning path. Based on this approach, 160

we constructed a training set and a test set for each 161

algorithmic topic. It can be found that the data 162

constructed by our approach can achieve the three 163

points of diversity of reasoning rules, sufficiently 164

large data size and scalability at the same time. 165

2 Approach 166

The whole of our method is divided into five steps 167

as shown in the figure 1. Through these steps, we 168

are able to generate logical reasoning questions 169

and answer pairs containing reasoning processes 170

from algorithmic problem questions and code. And 171

divide them into supervised training dataset and 172

evaluation dataset. 173

2.1 Step 1: Constructing Test Sample Inputs 174

In the first step, our inputs are LeetCode algorithm 175

questions and corresponding Python code solutions. 176

As shown in the figure 2, we provide the algorith- 177

mic questions and Python code to the large open 178

source model and ask the model to construct 30 179

test sample inputs at a time in a specific format. 180

Specifically, we set the temperature to 0.7, perform 181

multiple inference, extract test sample inputs from 182

2

STEP 5

STEP 5

STEP 3

STEP 1

You are climbing a staircase.
It takes "n" steps to reach the
top. Each time you can either
climb "1" or "2" steps.
In how many distinct ways
can you climb to the top?

LC 70: Climbing Stairs

STEP 1

Title: Staircase Climbing Possibilities

Q: Imagine you are climbing a staircase
with 17 steps. You can climb either 1 or 2
steps at a time. How many distinct ways
can you climb to the top of the staircase,
considering all possible combinations of
1-step and 2-step climbs?

Logical Reasoning Problem

STEP 2

STEP 2

STEP 3

LogicPro

Python

Solution

Test Example Code

Test Sample Input

STEP 4

 Code With Print

FINAL
ANSWER

Initializing variables: a = 1 - previous step, b = 2 - current step\n ... \nIteration 3 : a = 1 - previous step, b = 2
...
Iteration 17 : a = 987 - previous step, b = 1597 - current step
	 Updating variables: a = 1597 - new previous step, b = 2584 - new
Final result: b = 2584 - the number of ways to climb 17 stairs; \nThe number of ways to climb 17 stairs is: 2584

INPUT:

Title: Staircase Climbing Possibilities

Q: Imagine...

To solve this problem, we can use a dynamic approach ...

- Initial values: a = 1, b = 2 - ways to climb 1 and 2 stairs, respectively.

- Iteration 3: Updating the values to a = 2 (ways to climb 2 stairs), and b = 3 (ways to
climb 3 stairs)....

- Iteration 17: Updating the values to a = 1597 and b = 2584

Therefore, the answer is 2584.

TARGET:

Algorithmic
Problem

Figure 1: An overview of LogicPro

Step 1: Construct Test Sample Inputs

I have an algorithmic problem and its python code, please help me

construct thirty different test sample inputs.

1. The constructed test sample inputs need to fulfill the requirements

of the algorithmic problem and be compatible with the provided

Python code.

2. Please enclose the constructed test sample inputs in the following

python format; please enclose each test sample input individually.


```python


# Test sample input 1


``` ...

3. Ensure that all test samples are unique and as diverse as possible

based on the topic and python code.

...

Figure 2: Constructing Test Sample Inputs

the results of the multiple inference, and integrate183

these sample inputs to form the final test sample.184

In conjunction with the example in the figure 1,185

we input a question description similar to the one186

in LeetCode for Climbing Stairs 1, along with the187

corresponding Python question solution. Based on188

these two points, the model will give possible test189

sample inputs, e.g. n = 17.190

2.2 Step 2: Constructing Logical Reasoning191

Problems192

For the second step, our inputs are LeetCode algo-193

rithmic questions and one of the constructed test194

sample inputs. As hinted in the figure 3, we ask the195

model to fuse the test sample input into the algo-196

1https://leetcode.com/problems/
climbing-stairs/description/

Step 2: Construct Logical Reasoning Problem

I have an algorithmic question and a corresponding test input; please
rewrite the algorithmic question as a text-only logical reasoning question
based on the test input.

Instructions:
1. Please incorporate the test input into the description ...
2. Please first give the name of this logical reasoning ...

Reference case I:
- algorithmic question: Given a sequence containing only (,), {{, }}, [,], <,
>, complete the rest of the sequence, making sure that all the
parentheses are properly closed and in the right order.
- test input: "< > (([[({{ }}) [< >]]"

Text-Only logical reasoning question：

Title: Correctly close a Dyck-n word.

Q: Complete the rest of the sequence, making sure that the parentheses
are closed properly. Input: < > (([[({{ }}) [< >]]

Reference case II:
....
Refer to the above example of rewriting an algorithmic question into a
text-only logical reasoning question based on test input:

Figure 3: Constructing Logical Reasoning Problems

rithmic question description. Also, we provide a 197

rewrite sample of the close a Dyck-n word task as a 198

reference case in the context of the prompt. Specif- 199

ically in Figure 1, the model rewrites the Climbing 200

Stairs algorithmic question as a concrete logical 201

reasoning problem based on the test sample input 202

(n = 17). 203

3

https://leetcode.com/problems/climbing-stairs/description/
https://leetcode.com/problems/climbing-stairs/description/

Step 3: Construct Text Example Code

I have a piece of Python code and a test case input. Please
provide the modified code that can directly run this test
sample based on the original Python code.

	 - Please ensure that the generated code can be executed
directly.

	 - Please ensure that after running the code, the output
result of the algorithm is returned through the variable
`result`.

Figure 4: Constructing Test Sample Code

2.3 Step 3: Constructing Test Sample Code204

In the third step, our inputs are the Python code205

solution and one of the constructed test sample206

inputs. As in the prompt in Figure 4, we ask the207

model to rewrite the Python code solution to fit the208

constructed test sample input. For example, for the209

Climbing Stairs problem in Figure 1, the rewritten210

code can be run directly at n = 17 and output the211

final result (stairs = 2584)212

In particular, we will run the code here and col-213

lect standardized answers for different questions as214

a reference for subsequent training and evaluation215

sets.216

2.4 Step 4: Rewriting the Code to Print217

Intermediate Variables218

Step 4: Rewriting the Code to Print Intermediate Variable

Please modify the following code so that it prints out important

variables and their detailed descriptions related to the algorithm

at appropriate places.

1. Important variables refer to those critical for understanding

the algorithm's logic, ...

2. Ensure that the printed information includes not only the

names of the variables ...

3. Ensure that the printed information is closely related to the

algorithm logic ...

Figure 5: Rewriting the Code to Print Intermediate Vari-
ables

In step 4, our input is the test sample code con-219

structed in step 3. The model rewrites the original220

test sample code according to the prompt shown221

in the figure 5 so that it can print out important222

intermediate variable values. For example, for the223

Climbing Stairs problem in Fig 1, the rewritten224

code should output the values of a and b for each225

iteration step and their corresponding descriptions.226

Considering that the length of intermediate steps227

varies from one algorithmic problem to another,228

some problems may print out very long intermedi-229

ate variables. For this reason, we set up two sets230

of prompts to improve the test sample code and231

filter the variable printouts according to the result232

length. For the case that the token length of both 233

sets of printout results is within 4096, we choose 234

the set with longer printout results. While for the 235

questions with excessively long printout results, we 236

choose the set with shorter printout results. 237

2.5 Step 5: Constructing the Final Answer 238

Step 5: Construct The Final Answer

There is a logical reasoning question and the intermediate

variable output of its code solution. Please answer this logical

reasoning question based on the intermediate variable output of

the code.

Instructions:

1. Refer to the code's intermediate variable outputs. ...

2. ...

...

Reference case:

- Logical reasoning question:

Title: Correctly close a Dyck-n word

Q: Complete the rest of the sequence, making sure that the

parentheses are closed properly. Input: < > (([[({{ }}) [< >]]

- Code intermediate variables:

```

Initial stack: []

Initial result: < > ( ( [ [ ( {{ }} ) [ < > ] ]

Stack updated: ['<']

...

Result updated: < > ( ( [ [ ( {{ }} ) [ < > ] ]]))

Final result: < > ( ( [ [ ( {{ }} ) [ < > ] ]))

- Logical Reasoning Question Answer:

```

We should process each input one by one and keep track of the

stack configuration.

0: empty stack

1: < ; stack: <

...

15:] ; stack: (([...

So the answer is])).


```

Figure 6: Constructing the Final Answer

In step 5, we input the logical reasoning problem 239

constructed in step 2 and the intermediate variable 240

output constructed in step 4. As shown in Fig. 241

6, we ask the model to refer to the intermediate 242

variable outputs to assist the larger model in better 243

logical reasoning. For the Climbing Stairs problem 244

in Fig. 1, a more accurate and logical reasoning 245

step can be given after considering the answers 246

from the intermediate variable output. 247

2.6 Dataset 248

Based on the above process, we constructed the 249

training set (LogicPro-Train) and the evaluation 250

set (LogicPro-Eval) respectively. After completing 251

Step 3, we filter and divide them according to cer- 252

tain rules. Specifically, we extract 5 input samples 253

from the test samples of each algorithm question as 254

4



the test set (10740). The rest of the samples will be255

extracted with an upper limit of 30 as the training256

set (70286). For the test set, we will run the test257

sample code directly after step 3 and use the result258

as the standard answer. For the training set, the259

subsequent processing steps are performed.260

Overall, our method has advantages in the com-261

plexity of reasoning rules and data size. Based on262

our construction method, we can expand the pos-263

sible test sample inputs without limit. In Table 5264

of Appendix B.1, we compare LogicPro with other265

datasets. Only our dataset provides sufficient data266

size while ensuring that the reasoning rules are267

sufficiently complex.268

3 Experiments269

3.1 Evaluation Setup270

3.1.1 Train Datasets271

In order to verify the effectiveness of the LogicPro272

training set, we collected a collection of generic273

and logic supervised fine-tuning data from open-274

source sources. The generic data were mainly from275

OpenHermes-2.5 (Teknium, 2023). We first ex-276

tracted all the alpaca data from OpenHermes, and277

then randomly sampled from the rest of the data to278

bring the total number of data up to 100k. The log-279

ical data was then taken from several open source280

logical reasoning datasets (Mill, 2013; Zhong et al.,281

2021; Yu et al., 2020; Dalvi et al., 2021; Nie et al.,282

2020; Ling et al., 2017; Talmor et al., 2019; Pal283

et al., 2022). We randomly selected 100,000 pieces284

of data as logic data. Given that many existing285

logic question datasets lack reasoning processes, di-286

rectly using them for hybrid training may not effec-287

tively validate the usefulness of the new LogicPro288

data. Therefore, we used Llama-3-70B-Instruct289

to rewrite the collected data to construct the final290

logical reasoning dataset. The above generalized291

and logical data were mixed to generate SFT data292

(as Gen_Logic) for training the baseline model.293

Subsequently, we mixed the constructed LogicPro294

training data to verify its effectiveness.295

To further validate the effectiveness of LogicPro-296

Train, we categorized the open source reasoning297

data into four dimensions for in-depth compari-298

son. The first dimension is real-world logical rea-299

soning data, including the larger LOGIQA (Mill,300

2013), RECLOR (Yu et al., 2020) and AR-LSAT301

(Wang et al., 2022). The second dimension is syn-302

thetic data, including ProofWriter (Tafjord et al.,303

2021), RuleBERT (Saeed et al., 2021) and Rule-304

Taker (Clark et al., 2021). The third dimension is 305

mathematical reasoning data, including MAWPS 306

(Koncel-Kedziorski et al., 2016), GSM8K (Cobbe 307

et al., 2021), ASDIV (Miao et al., 2020), SVAMP 308

(Patel et al., 2021) and AQUA -RAT (Ling et al., 309

2017). The fourth dimension is knowledge reason- 310

ing, covering openbookqa, strategyqa, tatqa, and 311

pubmedqa. here we split the reasoning data in more 312

detail than the more diverse logic data above, and 313

use the unsampled full set of data for comparative 314

verification. 315

3.1.2 Eval Datasets 316

We evaluated the model on BBH(Suzgun et al., 317

2023), GSM8K(Cobbe et al., 2021), and Hell- 318

Swag(Zellers et al., 2019). BBH serves as a core 319

benchmark for evaluating the logical reasoning abil- 320

ity of the model, and contains 23 challenging rea- 321

soning tasks. The task types are rich enough to 322

serve as Out of Domain evaluation criteria. These 323

task types cover natural language quizzes and mul- 324

tiple choice questions. However, given the wide 325

variety of subsets of the BBH, it is difficult to 326

effectively reflect the logical reasoning ability of 327

the model by looking at multiple subset averages 328

of the BBH alone. (While subsets of certain do- 329

mains may have improved, one or two subsets may 330

have significantly declined, resulting in no signifi- 331

cant improvement in the BBH average.) Therefore, 332

we extracted four representative BBH subsets for 333

comparative analysis. We use BOOL, CASUAL, 334

SORT, and TRACKING to denote the data sub- 335

sets of BBH: boolean expressions, causal judgment, 336

word sorting, and tracking shuffled object, respec- 337

tively. GSM8K is used to assist in observing the 338

mathematical reasoning ability of the model. 339

Specifically, all of our evaluation experiments 340

were conducted in the form of zero-shot CoTs. 341

3.1.3 Metrics 342

On all evaluation tasks, we report the accuracy of 343

the predicted answers. For GSM8K, we obtain the 344

results by rule extraction and compute the corre- 345

sponding metrics by exact matching. For BBH and 346

HellSwag, we use an internal scoring model for 347

evaluation. The inputs to this model are standard 348

answers and modeled responses, and the output is 349

a score (0 or 1). 350

In the LogicPro-Eval evaluation, we also utilize 351

the scoring model to calculate the metrics 352

5



Base Model SFT Data BOOL CAUSAL SORT TRACKING BBH GSM8K HellSwag Average

GPT-4 - 95.0 67.7 73.0 96.5 74.9 94.2 86.0 83.9

ChatGPT - 87.5 64.67 52.5 70.0 50.25 65.28 76.0 66.6

Qwen1.5-7B Gen_Logic 80.5 53.3 38.0 31.5 44.8 65.28 54.5 50.4
w. LogicPro 84.5 54.5 48.0 36.0 45.7 65.51 61.3 55.0

Llama-2-7B Gen_Logic 71.5 54.5 22.5 30.5 36.6 27.2 51.5 42.0
w. LogicPro 74.0 52.1 10.0 32.5 36.3 30.1 52.8 41.1

Llama-3-8B Gen_Logic 65.5 56.9 26.5 41.5 47.2 65.5 54.8 51.1
w. LogicPro 66.5 57.5 77.0 53.5 50.3 68.8 59.0 61.8

Yi-1.5-9B Gen_Logic 77.5 52.1 53.0 42.5 52.5 74.4 73.0 60.7
w. LogicPro 80.0 52.1 56.5 41.5 53.2 77.3 79.0 62.8

llama-2-13B Gen_Logic 58.0 55.7 38.5 37.0 40.4 43.0 45.5 45.4
w. LogicPro 58.0 56.9 48.0 35.5 41.9 45.7 49.0 47.9

Qwen1.5-14B Gen_Logic 87.5 62.3 58.2 52.0 52.4 70.3 70.5 64.7
w. LogicPro 84.0 62.9 62.7 53.0 53.3 72.8 71.5 65.7

Table 1: Results for LogicPro-Train on Different Models.

3.2 Baslines353

For Proprietary Models, we show results from354

SoTA LLMs such as OpenAI’s GPT-4 and Chat-355

GPT (gpt-3.5-turbo). For Open-Source Models,356

our models include Qwen1.5 (7B-13B), Llama3-357

8B, Llama2 (7B-13B), and Yi-9B. All of our experi-358

ments are trained on base models without SFT. The359

relevant training parameter settings are detailed in360

the Appendix.361

Model LogicPro-Eval

GPT-4 0.4629

Qwen1.5-7B-Chat 0.2864
Llama-3-8B-Instruct 0.2776

Qwen1.5-14B-Chat 0.2759

Llama3-70B-Instruct 0.3762
Qwen1.5-72B-Chat 0.3161

Table 2: Results on LogicPro-Eval; Zero-hot CoT eval-
uation

3.3 Main Results362

3.4 LogicPro on Different Models363

Table 1 shows the results of LogicPro-Train on364

different pedestal models. Overall, our model365

achieves significant improvement on almost all366

pedestal models except Llama2-7B. the average367

BBH improves steadily by 1-2 percentage points.368

On the SORT subset, almost all models gained369

significant boosts, with Llama3-8B improving by 370

50 percentage points. As an auxiliary observation 371

for mathematical reasoning, GSM8K shows that 372

all models improved after LogicPro training, which 373

reveals to some extent the intrinsic connection be- 374

tween different reasoning tasks. 375

3.5 LogicPro vs. Different Data 376

Table 3 shows the results of comparing LogicPro 377

with other logical inference data. Overall, Log- 378

icPro outperforms all other inference data. On 379

the BBH average, the TRACKING subset, and 380

GSM8K, LogicPro’s results are slightly lower than 381

the mathematical inference data. However, on the 382

other three subsets, LogicPro significantly outper- 383

forms the mathematical reasoning data. Consider- 384

ing the diversity and complexity of logical reason- 385

ing, while mathematical data can enhance logical 386

reasoning, logical reasoning needs more data with 387

more diversity like LogicPro. 388

3.6 LogicPro-Eval 389

Table 2 shows the results of three open-source mod- 390

els and one closed-source model on LogicPro-Eval. 391

Overall, LogicPro-Eval shows significant differ- 392

ences between models of different sizes, with GPT- 393

4 performing significantly ahead.The Llama series 394

of models outperforms the Qwen1.5 series of mod- 395

els in general. However, the results of Qwen1.5-7B 396

and Qwen1.5-14B are not as expected, although 397

considering the overall poor performance of the 398

Qwen1.5 series on LogicPro-Eval, there is no sig- 399

6



Logic Data BOOL CAUSAL SORT TRACKING BBH GSM8K HellSwag Average

- 80.5 53.3 38.0 31.5 44.8 65.28 54.5 50.4

Realistic Logical 79.5 49.1 41.0 32.5 45.7 65.8 58.3 53.1
Synthetic Logical 83.0 52.1 34.5 31.5 45.0 66.0 48.3 51.5

Mathematical 80.0 47.3 39.0 36.5 45.8 66.1 60.0 53.5
Knowledge Reasoning 80.0 52.1 36.5 30.5 44.7 65.7 56.0 52.2

LogicPro 84.5 54.5 48.0 36.0 45.7 65.51 61.3 55.0

Table 3: Results on LogicPro-Train vs. Different Logic Data. Base Model: Qwen1.5-7B. Baseline Data: Gen_Logic.

nificant difference between the 14B model and the400

72B model, which suggests that the LogicPro-Eval401

correlation capability is a much-needed improve-402

ment for the Qwen1.5 series as a whole .403

In addition, all open-source models as well as404

GPT-4 did not reach 50% accuracy on LogicPro-405

Eval (GPT-4 had more than 70% accuracy on406

BBH), which suggests that LogicPro-Eval poses a407

completely new challenge for existing models.408

4 Analaysis409

4.1 Ablation Study410

SFT Data BBH GSM8K HellSwag

general_10w 34.5 65.59 58.3
Gen_Logic 44.8 65.28 54.5

w. code 44.6 65.43 56.75
w. code*30 45.0 65.78 55.25

w. LogicPro_IO 45.0 66.51 58.25
w. LogicPro_COT 43.1 63.82 59.75
w. LogicPro_Final 45.7 65.51 61.3

Table 4: Results of ablation study on different SFT
data. general_10w: Collected 10w general sft data;
Gen_Logic: general_10w mixed 10w open source col-
lection of logic data. w. denotes the mixing of different
data based on Gen_Logic. Base Model: Qwen1.5-7B.

We performed a detailed ablation analysis of411

LogicPro-Train on Qwen 1.7-7B. First, we com-412

pared the results using generic 100k data, generic413

100k mixed with logical 100k data, respectively.414

In addition, the code data itself is considered to415

enhance the inference of the model. To demon-416

strate that our LogicPro-Train data improves log-417

ical reasoning more compared to raw code. We418

transformed the raw code data into code quiz data419

and performed the same hybrid training to vali-420

date it. Meanwhile, in order to exclude the effect421

of training data volume, we oversampled the code 422

data (2360*30) to make it close to LogicPro-Train’s 423

data volume (70286) and performed comparative 424

training. The results in Table 4 show that our data 425

significantly outperforms the code data itself on 426

the logical reasoning task. Finally, we investigated 427

the effect of different answer formats, comparing 428

the results via intermediate code variables with 429

the results of direct input-output (IO) and CoT 430

rewriting using Llama3-70B-Instruct. The results 431

show that LogicPro-Train (intermediate variable 432

construction) outperforms direct rewriting. 433

4.2 Analysis of LogicPro-Eval 434

In the results table in Chapter 3.6, it can be seen 435

that LogicPro-Eval is able to distinguish existing 436

models very well. However, beyond the ability 437

to distinguish between different models, how can 438

LogicPro-Eval provide better feedback on the rea- 439

soning ability of a model? Unlike BBH, which 440

has only 27 subsets, LogicPro-Eval has more than 441

2,600 rules, making it difficult to analyze them one 442

by one. Therefore consider finding some dimen- 443

sions to categorize from the original algorithmic 444

questions. 445

First, regarding the difficulty of the code ques- 446

tions, as shown in the leftmost subplot of Figure 447

7, it can be seen that overall, the accuracy of the 448

model on LogicPro-Eval decreases as the difficulty 449

of the code questions increases. This reveals a po- 450

tential correlation between code abstraction logic 451

and LogicPro construction data. 452

Second, regarding the input type of the code 453

questions, as shown in the middle subplot of Fig. 454

7, it can be seen that overall, there is no signifi- 455

cant difference in the effect between different input 456

types. 457

Then, regarding the time complexity of the code 458

questions, as shown in the subplot on the right side 459

of Figure 7, LogicPro-Eval has a weak associa- 460

7



Figure 7: LogicPro-Eval results at different levels of difficulty/input type/time complexity

Figure 8: LogicPro-Eval results at different knowledge points

tion with time complexity. The model as a whole461

performs poorly on problems with high time com-462

plexity (e.g., O(n2)). This may be due to the fact463

that the output length of questions with high time464

complexity tends to be longer, which leads to a465

decrease in the effectiveness of questions with high466

complexity.467

Finally, regarding the knowledge points involved468

in the code questions, LogicPro-Eval is somewhat469

related to the knowledge points as shown in Fig-470

ure 8. The overall results in the first few columns471

are better than in the latter columns. However, the472

modeling is also not done well in the dynamic pro-473

gramming problem, which humans are not very474

good at either475

Inevitably, the effects of the four dimensions of476

difficulty, input type, time complexity, and knowl-477

edge point may be coupled. However, effective478

observation of the dimensions can to some extent479

help us better recognize the model’s capability and 480

further improve the model. 481

5 Conclusion 482

In this paper, we present LogicPro, which enhances 483

logical reasoning through code cases. With this ap- 484

proach, we can construct datasets that combine 485

the triple points of complexity of reasoning rules, 486

large volume, and scalability, and extend them into 487

LogicPro-Train and LogicPro-Test datasets. The 488

training dataset can bring significant improvements 489

on models of various sizes and origins. The testing 490

dataset can effectively differentiate between exist- 491

ing models, while also bringing new challenges in 492

logical reasoning to the models. 493

Limitations 494

Our approach explores a novel way of augmenting 495

reasoning or constructing reasoning data. However, 496

8



in step 5, we rely only on rewrites of open-source497

models, which can sometimes be problematic. For498

example, the model may say "from intermediate499

variables" and then give the final answer directly500

from the code print as if it were cheating, instead of501

reasoning step by step. We tried several approaches502

and found that this phenomenon cannot be avoided.503

However, we noticed that in all the cases we tried,504

GPT-4 always did this step well. However, consid-505

ering the API cost associated with the large amount506

of data, we did not choose to use GPT-4 for the507

rewriting of step 5. This may be an important limi-508

tation facing the current dataset.509

Ethics Statement510

This study is based on data from 2360 algorithmic511

questions on the fully open-source LeetCode plat-512

form. All data are from publicly available sources513

and do not involve any personal privacy informa-514

tion. Our study strictly adheres to the terms of use515

and privacy policies of the platforms from which516

the data was sourced. We ensure that the rights517

of all users and platform regulations are respected518

during data collection and processing. Through519

the use of publicly available data, we aim to ad-520

vance academic research and education, and pro-521

mote progress in the field of algorithms and com-522

puter science523

References524

Wenhu Chen, Xueguang Ma, Xinyi Wang, and525
William W Cohen. 2022. Program of thoughts526
prompting: Disentangling computation from reason-527
ing for numerical reasoning tasks. arXiv preprint528
arXiv:2211.12588.529

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021.530
Transformers as soft reasoners over language. In Pro-531
ceedings of the Twenty-Ninth International Confer-532
ence on International Joint Conferences on Artificial533
Intelligence, pages 3882–3890.534

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,535
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias536
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro537
Nakano, et al. 2021. Training verifiers to solve math538
word problems. arXiv preprint arXiv:2110.14168.539

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan540
Xie, Hannah Smith, Leighanna Pipatanangkura, and541
Peter Clark. 2021. Explaining answers with entail-542
ment trees. In Proceedings of the 2021 Conference543
on Empirical Methods in Natural Language Process-544
ing, pages 7358–7370.545

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, 546
Minlie Huang, Nan Duan, Weizhu Chen, et al. 547
2023. Tora: A tool-integrated reasoning agent 548
for mathematical problem solving. arXiv preprint 549
arXiv:2309.17452. 550

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 551
Arora, Steven Basart, Eric Tang, Dawn Song, and 552
Jacob Steinhardt. Measuring mathematical problem 553
solving with the math dataset. Sort, 2(4):0–6. 554

Wenyue Hua, Kaijie Zhu, Lingyao Li, Lizhou Fan, 555
Shuhang Lin, Mingyu Jin, Haochen Xue, Zelong 556
Li, JinDong Wang, and Yongfeng Zhang. 2024. Dis- 557
entangling logic: The role of context in large lan- 558
guage model reasoning capabilities. arXiv preprint 559
arXiv:2406.02787. 560

Pratik Joshi, Somak Aditya, Aalok Sathe, and Mono- 561
jit Choudhury. 2020. Taxinli: Taking a ride up the 562
nlu hill. In Proceedings of the 24th Conference on 563
Computational Natural Language Learning, pages 564
41–55. 565

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate 566
Kushman, and Hannaneh Hajishirzi. 2016. Mawps: 567
A math word problem repository. In Proceedings of 568
the 2016 conference of the north american chapter of 569
the association for computational linguistics: human 570
language technologies, pages 1152–1157. 571

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio 572
Savarese, and Steven C. H. Hoi. 2022. Coderl: Mas- 573
tering code generation through pretrained models and 574
deep reinforcement learning. 575

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 576
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 577
John Schulman, Ilya Sutskever, and Karl Cobbe. 578
2023. Let’s verify step by step. arXiv preprint 579
arXiv:2305.20050. 580

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun- 581
som. 2017. Program induction by rationale genera- 582
tion: Learning to solve and explain algebraic word 583
problems. In Proceedings of the 55th Annual Meet- 584
ing of the Association for Computational Linguistics 585
(Volume 1: Long Papers), pages 158–167. 586

Hanmeng Liu, Leyang Cui, Jian Liu, and Yue Zhang. 587
2021. Natural language inference in context- 588
investigating contextual reasoning over long texts. 589
In Proceedings of the AAAI Conference on Artificial 590
Intelligence, volume 35, pages 13388–13396. 591

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan 592
Duan, Ming Zhou, and Yue Zhang. 2023a. Logiqa 593
2.0—an improved dataset for logical reasoning in 594
natural language understanding. IEEE/ACM Trans- 595
actions on Audio, Speech, and Language Processing. 596

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji 597
Zhou, and Yue Zhang. 2023b. Evaluating the logical 598
reasoning ability of chatgpt and gpt-4. arXiv preprint 599
arXiv:2304.03439. 600

9

http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2207.01780
http://arxiv.org/abs/2207.01780


Hanmeng liu, Zhiyang Teng, Ruoxi Ning, Jian Liu, Qiji601
Zhou, and Yue Zhang. 2023. Glore: Evaluating logi-602
cal reasoning of large language models.603

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.604
2020. A diverse corpus for evaluating and developing605
english math word problem solvers. In Proceedings606
of the 58th Annual Meeting of the Association for607
Computational Linguistics, pages 975–984.608

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish609
Sabharwal. 2018. Can a suit of armor conduct elec-610
tricity? a new dataset for open book question answer-611
ing. In Conference on Empirical Methods in Natural612
Language Processing.613

John Stuart Mill. 2013. A system of Logic, Ratiocina-614
tive and Inductive: Being a Connected View of the615
Principles of Evidence, and the Methods of Scientific616
Investigation. Harper and Brothers, Publishers.617

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,618
Jason Weston, and Douwe Kiela. 2020. Adversarial619
NLI: A new benchmark for natural language under-620
standing. In Proceedings of the 58th Annual Meet-621
ing of the Association for Computational Linguistics,622
pages 4885–4901, Online. Association for Computa-623
tional Linguistics.624

Ankit Pal, Logesh Kumar Umapathi, and Malaikan-625
nan Sankarasubbu. 2022. Medmcqa: A large-scale626
multi-subject multi-choice dataset for medical do-627
main question answering. In Conference on health,628
inference, and learning, pages 248–260. PMLR.629

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev,630
and Jimmy Ba. 2023. Openwebmath: An open631
dataset of high-quality mathematical web text.632

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.633
2021. Are nlp models really able to solve simple634
math word problems? In Proceedings of the 2021635
Conference of the North American Chapter of the636
Association for Computational Linguistics: Human637
Language Technologies. Association for Computa-638
tional Linguistics.639

Mohammed Saeed, Naser Ahmadi, Preslav Nakov, and640
Paolo Papotti. 2021. Rulebert: Teaching soft rules to641
pre-trained language models. In Proceedings of the642
2021 Conference on Empirical Methods in Natural643
Language Processing, pages 1460–1476.644

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,645
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and646
Daya Guo. 2024. Deepseekmath: Pushing the limits647
of mathematical reasoning in open language models.648
arXiv preprint arXiv:2402.03300.649

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,650
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,651
Adam R Brown, Adam Santoro, Aditya Gupta,652
Adrià Garriga-Alonso, et al. 2022. Beyond the653
imitation game: Quantifying and extrapolating the654
capabilities of language models. arXiv preprint655
arXiv:2206.04615.656

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 657
bastian Gehrmann, Yi Tay, Hyung Won Chung, 658
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny 659
Zhou, et al. 2023. Challenging big-bench tasks and 660
whether chain-of-thought can solve them. In Find- 661
ings of the Association for Computational Linguistics: 662
ACL 2023, pages 13003–13051. 663

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 664
bastian Gehrmann, Yi Tay, Hyung Won Chung, 665
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny 666
Zhou, , and Jason Wei. 2022. Challenging big-bench 667
tasks and whether chain-of-thought can solve them. 668
arXiv preprint arXiv:2210.09261. 669

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021. 670
Proofwriter: Generating implications, proofs, and 671
abductive statements over natural language. In Find- 672
ings of the Association for Computational Linguistics: 673
ACL-IJCNLP 2021, pages 3621–3634. 674

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 675
Jonathan Berant. 2019. Commonsenseqa: A question 676
answering challenge targeting commonsense knowl- 677
edge. In Proceedings of NAACL-HLT, pages 4149– 678
4158. 679

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas 680
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew 681
Poulton, Viktor Kerkez, and Robert Stojnic. 2022. 682
Galactica: A large language model for science. 683

Teknium. 2023. Openhermes 2.5: An open dataset of 684
synthetic data for generalist llm assistants. 685

Zhiyang Teng, Ruoxi Ning, Jian Liu, Qiji Zhou, Yue 686
Zhang, et al. 2023. Glore: Evaluating logical rea- 687
soning of large language models. arXiv preprint 688
arXiv:2310.09107. 689

Thinh Hung Truong, Julia Otmakhova, Timothy Bald- 690
win, Trevor Cohn, Jey Han Lau, and Karin Verspoor. 691
2022. Not another negation benchmark: The nan-nli 692
test suite for sub-clausal negation. In Proceedings of 693
the 2nd Conference of the Asia-Pacific Chapter of the 694
Association for Computational Linguistics and the 695
12th International Joint Conference on Natural Lan- 696
guage Processing (Volume 1: Long Papers), pages 697
883–894. 698

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, 699
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 700
2023a. Plan-and-solve prompting: Improving zero- 701
shot chain-of-thought reasoning by large language 702
models. 703

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai 704
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui. 705
2023b. Math-shepherd: A label-free step-by-step 706
verifier for llms in mathematical reasoning. arXiv 707
preprint arXiv:2312.08935. 708

Siyuan Wang, Zhongkun Liu, Wanjun Zhong, Ming 709
Zhou, Zhongyu Wei, Zhumin Chen, and Nan Duan. 710
2022. From lsat: The progress and challenges of 711
complex reasoning. IEEE/ACM Transactions on Au- 712
dio, Speech, and Language Processing. 713

10

http://arxiv.org/abs/2310.09107
http://arxiv.org/abs/2310.09107
http://arxiv.org/abs/2310.09107
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
http://arxiv.org/abs/2310.06786
http://arxiv.org/abs/2310.06786
http://arxiv.org/abs/2310.06786
http://arxiv.org/abs/2211.09085
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091


Siyuan Wang, Zhongyu Wei, Yejin Choi, and Xiang Ren.714
2024. Can llms reason with rules? logic scaffolding715
for stress-testing and improving llms. arXiv preprint716
arXiv:2402.11442.717

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten718
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,719
et al. 2022. Chain-of-thought prompting elicits rea-720
soning in large language models. Advances in neural721
information processing systems, 35:24824–24837.722

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,723
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and724
Xiaodan Liang. 2024. Deepseek-prover: Advancing725
theorem proving in llms through large-scale synthetic726
data.727

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-728
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-729
han Bos. 2019. Help: A dataset for identifying short-730
comings of neural models in monotonicity reasoning.731
In Proceedings of the Eighth Joint Conference on732
Lexical and Computational Semantics (* SEM 2019),733
pages 250–255.734

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak735
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.736
React: Synergizing reasoning and acting in language737
models. arXiv preprint arXiv:2210.03629.738

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi739
Feng. 2020. Reclor: A reading comprehension740
dataset requiring logical reasoning. arXiv preprint741
arXiv:2002.04326.742

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,743
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,744
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen745
Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.746
2024. Advancing llm reasoning generalists with pref-747
erence trees.748

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-749
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.750
2023. Mammoth: Building math generalist models751
through hybrid instruction tuning. arXiv preprint752
arXiv:2309.05653.753

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali754
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a755
machine really finish your sentence? In Proceedings756
of the 57th Annual Meeting of the Association for757
Computational Linguistics, pages 4791–4800.758

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang,759
Lichang Chen, William Yang Wang, and Linda Ruth760
Petzold. 2024. Unveiling the impact of coding data761
instruction fine-tuning on large language models rea-762
soning. arXiv e-prints, pages arXiv–2405.763

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,764
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and765
Nan Duan. 2021. Ar-lsat: Investigating analytical766
reasoning of text.767

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng 768
Chen, Wayne Xin Zhao, Jing Sha, Zhichao Sheng, 769
Shijin Wang, and Ji-Rong Wen. 2024. Jiuzhang3. 770
0: Efficiently improving mathematical reasoning by 771
training small data synthesis models. arXiv preprint 772
arXiv:2405.14365. 773

A Related work 774

A.1 Reasoning of LLMs 775

Reasoning, which servers as a fundamental ability 776

of LLMs, determines the strength to solve complex 777

real-world problems. Enhancing the reasoning abil- 778

ity of LLMs can mainly be divided into two ways. 779

Improve Reasoning of LLMs by Prompting. 780

The reasoning ability of LLMs can be significantly 781

stimulated by giving them different prompts, such 782

as Chain-of-Thought(Wei et al., 2022), Plan-and- 783

Solve(Wang et al., 2023a), etc. It is also possible to 784

assist the model in reasoning by providing it with 785

some external tools(Yao et al., 2022; Chen et al., 786

2022; Gou et al., 2023). These methods do not 787

require parameter modification on LLMs, but do 788

some control during LLM’s reasoning to get a more 789

reliable reasoning process and a better final result. 790

Improve Reasoning of LLMs by Training. 791

Continuing pre-training provides a means to en- 792

hance the internal reasoning ability of LLMs from 793

a knowledge perspective(Taylor et al., 2022; Paster 794

et al., 2023). The ability of reasoning could be 795

further enhanced by fine-tuning with instruction 796

pairs related reasoning(Yue et al., 2023; Yuan et al., 797

2024). Reinforcement learning with two types of re- 798

ward models: Outcome Reward Model (ORM)(Le 799

et al., 2022; Shao et al., 2024) and Process Reward 800

Model (PRM)(Lightman et al., 2023; Wang et al., 801

2023b), have also been used to improve the model’s 802

reasoning accuracy at various granularity. In addi- 803

tion, synthesised data from LLMs(Xin et al., 2024; 804

Zhou et al., 2024) demonstrates the possibility of 805

improving reasoning of LLMs themselves. 806

A.2 Logic Reasoning of LLMs 807

Logical reasoning epitomizes the art of deducing 808

new insights from existing knowledge by adhering 809

to specific principles and laws. This process does 810

not necessitate a robust knowledge base. Instead, it 811

emphasizes the precision and meticulousness with 812

which conclusions are inferred from one piece of 813

information to another. 814

Training Data of Logic Reasoning. There are 815

various open-source available datasets for different 816

types of logical reasoning tasks. LogiQA2.0(Liu 817

11

http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2404.02078
http://arxiv.org/abs/2404.02078
http://arxiv.org/abs/2404.02078
http://arxiv.org/abs/2104.06598
http://arxiv.org/abs/2104.06598
http://arxiv.org/abs/2104.06598


et al., 2023a) is a complex logical reasoning dataset818

built from Chinese Civil Service Exam questions.819

ReClor(Yu et al., 2020), a dataset built on standard-820

ized graduate admission examinations, contains821

reading comprehension tasks requiring logical rea-822

soning. ULogic(Wang et al., 2024) is logical rea-823

soning dataset constructed from diverse inferential824

rules, which could improve various commonsense825

reasoning tasks.826

Evaluation of Logic Reasoning. LogiEval(Liu827

et al., 2023b) and GLoRE(liu et al., 2023) com-828

bines several logical reasoning datasets, evaluating829

the logical reasoning of LLMs from multiple di-830

mensions. Big-Bench Hard(Suzgun et al., 2022;831

Srivastava et al., 2022) is a diverse evaluation set832

that incorporates logical reasoning tasks such as833

logical deduction and logical fallacy detection.834

B Data835

B.1 Data Comparison836

As shown in Fig. 5, we compare four types of data837

with LogicPro in terms of three dimensions: data838

size, data source and reasoning rule complexity.839

The results show that our method performs well in840

terms of data size, reasoning rule complexity and841

scalability.842

C Prompts843

12



Dataset Size Synthetic Complexity Level of Reasoning Rules

Realistic Logical Reasoning

LOGIQA 8,678 not complex (China Civil Service Exam)
RECLOR 6,138 not complex (GMAT and LSAT)

FOLIO 1,435 not medium (First-order logic)
DEER 1200 not complex (Inductive reasoning)
E-KAR 1155 - complex (Analogical Reasoning)

Synthetic Logical Reasoning

ProofWriter 20,192 yes Simple ( Entailment Tree)
PrOntoQA - yes Simple ( First-Order Logic)
RuleTaker 27363 yes Simple
RuleBERT 310,000 yes Simple

Clutrr 53,518 yes Simple

Mathematical Reasoning

GSM8K 8,792 not complex (Multi-step math reasoning)
AQUA-RAT 100,000 - complex (Math reasoning with NL rationale)

ASDiv 2,305 not complex (Multi-step math reasoning)
SVAMP 1,000 not complex (Multi-step math reasoning)

Commonsense Reasoning

CommonsenseQA 12,247 - medium (ConceptNet)
OpenBookQA 5,957 - medium (Open-book knowledges)

LogicPro (our) 81,026 yes complex (Logic from Code)

Table 5: Comparison of four types of datasets and LogicPro.

13



Step 1: Construct Test Sample Inputs

I have an algorithmic problem and its python code, please help me construct thirty different test sample inputs.


1. The constructed test sample inputs need to fulfill the requirements of the algorithmic problem and be compatible with the provided

Python code.


2. Please enclose the constructed test sample inputs in the following python format; please enclose each test sample input individually.


```python


Test sample input 1

Your input here


```


```python


Test sample input 2

Your input here


```


...

```python


Test sample input 30

Your input here


```


3. Ensure that all test samples are unique and as diverse as possible based on the topic and Python code.


4. Consider various aspects of the input type to ensure diversity, such as:


- Range of values: Include small, medium, and large values, as well as edge cases.


- Special cases: Consider cases like empty input, maximum allowed input size, or inputs that might cause edge conditions.


- Pattern variations: If the input is a sequence, vary the sequence patterns (e.g., sorted, reverse-sorted, random order).


- Combining elements: If the input is a composite data structure (e.g., array of strings), combine different types of elements.


5. Generate inputs with varying difficulty levels (low, medium, high) considering the problem statement and the provided Python code:


- Low difficulty: Simple and straightforward inputs that cover basic scenarios.


- Medium difficulty: Moderately complex inputs that include more diverse and realistic scenarios.


- High difficulty: Complex inputs that test edge cases and challenging conditions.


6. Ensure that all test samples adhere to the constraints provided in the problem description.


7. Provide only the input for the test samples, do not include the output.

Algorithmic Questions Title:

{algorithmic_problems}

python solution:

{python_solution}

Figure 9: Step 1: Constructing Test Sample Inputs

14



Step 2: Construct Logical Reasoning Problem

I have an algorithmic question and a corresponding test input; please rewrite the algorithmic question as a text-only logical reasoning question
based on the test input.

Instructions:
1. Please incorporate the test input into the description of the algorithm question;
2. Please first give the name of this logical reasoning task; then give the question that contains the test input.

Reference case I:
- algorithmic question: Given a sequence containing only (, ), {{, }}, [, ], <, >, complete the rest of the sequence, making sure that all the
parentheses are properly closed and in the right order.
- test input: "< > ( ( [ [ ( {{ }} ) [ < > ] ]"

- text-only logical reasoning question：

Title: Correctly close a Dyck-n word.

Q: Complete the rest of the sequence, making sure that the parentheses are closed properly. Input: < > ( ( [ [ ( {{ }} ) [ < > ] ]

Reference case II:
- algorithmic question: You are given an integer array `cards` of length `4`. You have four cards, each containing a number in the range `[1, 9]`.
You should arrange the numbers on these cards in a mathematical expression using the operators `['+', '-', '*', '/']` and the parentheses `'('` and `')'`
to get the value 24. You are restricted with the following rules: * The division operator `'/'` represents real division, not integer division.
- test input: "[4, 1, 8, 7]"

- text-only logical reasoning question：

Title: Achieve the Target Value

Q: You are presented with four cards, each bearing a number within the range of 1 to 9. Using the numbers on these cards, form a mathematical
expression by arranging them with the operators `+`, `-`, `*`, and `/`, as well as parentheses `(` and `)`, such that the resulting value of the
expression is 24. Note the following rules:
- Division operator `/` represents real division, not integer division.
- Each operation must be performed between two numbers (no unary operations).
- Numbers cannot be concatenated to form multi-digit numbers.
Given the cards with numbers [4, 1, 8, 7], determine if it is possible to form an expression that evaluates to 24.
Can you find such an expression, or prove that it cannot be done?

Refer to the above example of rewriting an algorithmic question into a text-only logical reasoning question based on test input:
- algorithmic question: {algorithmic_question}
- test input: {test_sample_input}

- text-only logical reasoning question:

Figure 10: Step 2: Constructing Logical Reasoning Problems

Step 3: Construct Text Example Code

I have a piece of Python code and a test case input. Please provide the modified code that can directly run this test sample
based on the original Python code.

- Please ensure that the generated code can be executed directly.

- Please ensure that after running the code, the output result of the algorithm is returned through the variable `result`.

Test case input:
{test_sample_input}

python code:

{python_solution}

Figure 11: Step 3: Constructing Test Sample Code

15



Step 4: Rewriting the Code to Print Intermediate Variable

Please modify the following code so that it prints out important variables and their detailed descriptions related to the algorithm

at appropriate places.


1. Important variables refer to those critical for understanding the algorithm's logic, such as loop counters, function inputs and

outputs, key condition judgments, and variables indicating state changes.


2. Ensure that the printed information includes not only the names of the variables but also their roles and meanings within the

algorithm, to better understand the execution process of the code.


3. Ensure that the printed information is closely related to the algorithm logic and does not include irrelevant content (such as

code errors and exceptions).


4. Ensure that the printed information is detailed enough.

python code:

{test_example_code}

Figure 12: Step 4: Rewriting the Code to Print Intermediate Variables

16



Step 5: Construct The Final Answer

There is a logical reasoning question and the intermediate variable output of its code solution. Please answer this logical

reasoning question based on the intermediate variable output of the code.

Instructions:

1. Refer to the code's intermediate variable outputs. Use the information provided to help you answer the logical reasoning

questions.

2. First, outline your approach to solving the logical reasoning task. Then, provide the exact reasoning process step by step.

3. Do not use code to solve this logical reasoning problem. Instead, use the provided intermediate variable outputs to guide

your answer.

4. Do not mention “intermediate variables” in your answer. Focus on solving the logical reasoning question directly.

5. Avoid phrases like “From the intermediate variables” in the answer. Just use them(intermediate variables) to help you

answer the logical reasoning question.

Reference case:

- Logical reasoning question:

Title: Correctly close a Dyck-n word

Q: Complete the rest of the sequence, making sure that the parentheses are closed properly. Input: < > ( ( [ [ ( {{ }} ) [ < > ] ]

- Code intermediate variables:

```

Initial stack: []

Initial result: < > (([[({{ }}) [< >]]

Stack updated: ['<']

...

Stack updated: ['(', '(', '[']

Result updated: < > (([[({{ }}) [< >]]]

Result updated: < > (([[({{ }}) [< >]]])

Result updated: < > (([[({{ }}) [< >]]]))

Final result: < > (([[({{ }}) [< >]]))

```

- Logical Reasoning Question Answer:

```

We should process each input one by one and keep track of the stack configuration.

0: empty stack

1: < ; stack: <

...

15:] ; stack: (([

Now, we have reached the end. The final stack is "((["

We will need to pop out "[", "(", "(" one by one in that order.

So, we need "]", ")", ")". So the answer is])).

```

Refer to the above case to give a solution to a logical reasoning question:

- Logical reasoning question:

{logic_reasoning_problem}

- Code intermediate variables:

```

{code_print}

```

Figure 13: Step 5: Constructing the Final Answer

17


