
Published as a conference paper at ICLR 2023

MASKFUSION: FEATURE AUGMENTATION FOR CLICK-
THROUGH RATE PREDICTION VIA INPUT-ADAPTIVE
MASK FUSION

Chao Liao, Jianchao Tan, Jiyuan Jia, Yi Guo, Chengru Song
Kuaishou Technology
{liaochao, jianchaotan, jiajiyuan, guoyi03, songchengru}@kuaishou.com

ABSTRACT

Click-through rate (CTR) prediction plays important role in the advertisement,
recommendation, and retrieval applications. Given the feature set, how to fully
utilize the information from the feature set is an active topic in deep CTR model
designs. There are several existing deep CTR works focusing on feature interac-
tions, feature attentions, and so on. They attempt to capture high-order feature
interactions to enhance the generalization ability of deep CTR models. However,
these works either suffer from poor high-order feature interaction modeling using
DNN or ignore the balance between generalization and memorization during the
recommendation. To mitigate these problems, we propose an adaptive feature
fusion framework called MaskFusion, to additionally capture the explicit interac-
tions between the input feature and the existing deep part structure of deep CTR
models dynamically, besides the common feature interactions proposed in existing
works. MaskFusion is an instance-aware feature augmentation method, which
makes deep CTR models more personalized by assigning each feature with an
instance-adaptive mask and fusing each feature with each hidden state vector in the
deep part structure. MaskFusion can also be integrated into any existing deep CTR
models flexibly. MaskFusion achieves state-of-the-art (SOTA) performance on all
seven benchmarks deep CTR models with three public datasets.

1 INTRODUCTION

Click-through rate (CTR) prediction plays an important role in the field of personalized service.
Factorization Machine (FM) Rendle (2010) based models are common solutions in recommendation
systems. These methods transform the raw high-dimensional sparse features into low-dimensional
dense real-value vectors by embedding techniques, and then enumerate all the possible feature
interactions, thus avoiding sophisticated manual feature engineering.

Feature Interaction Layer

Deep NN

Embedding Layer

Output Unit

sparse input dense input

(a) Single tower

Feature Interaction Layer

Deep NN

Embedding Layer

Output Unit

sparse input dense input

(b) Dual tower

Figure 1: Deep learning based Click-Through Rate prediction architecture

Recently, deep CTR models, which incorporate explicit feature interactions module with Deep Neural
Networks (DNNs) together, have become a very active research field. As shown in Figure 1, according

Corresponding author is Jianchao Tan

1

Published as a conference paper at ICLR 2023

to the relative position of DNN and feature interaction layer, the existing deep CTR models can be
divided into single tower model and dual tower model Zhang et al. (2021). Single tower models, such
as Product-based Neural Networks (PNN) Qu et al. (2016), DLRM Naumov et al. (2019), and so on,
can capture the high-order feature interactions to a certain degree, due to their architecture complexity.
Dual tower models, such as Deep & Cross Network (DCN) Wang et al. (2017), xDeepfm Lian et al.
(2018), and so on, treat DNN as a complementary tool to the feature interactions layer.

Both these two types of deep CTR models utilize the feature interactions layer and the powerful
representation ability of DNN to automatically learn high-order feature interactions in explicit
and implicit ways, respectively. In fact, these complex structures are designed to address a major
challenge in recommendation: generalization performance of the CTR models Cheng et al. (2016).
For example, the CTR models with strong generalization performance can better explore some feature
combinations that have never appeared in historical information, thus recommending new items that
users may be interested in.

Currently, some works have attempted to further improve the generalization performance by address-
ing the problem that DNN is difficult to accurately capture higher-order feature interaction patterns Qu
et al. (2018); Rendle et al. (2020). GemNN Fei et al. (2021) introduces a gating mechanism between
DNN and the embedding layer of deep CTR models to learn bit-wise feature importance. Features
embedding will be fed into DNN after passing through a gating layer instead of being fed into DNN
directly. In this way, the DNN can learn more effective feature interaction. MaskNet Wang et al.
(2021b) proposed an instance-guided mask, which is generated according to the global information
of the instance, to dynamically enhance the informative elements of the hidden states vector by
introducing multiplicative operation into DNN. Although these methods optimize the input or hidden
states of the deep part in deep CTR models to a certain extent according to the global information
of each instance, they did not pay attention to another major challenge in recommendation: the
memorization ability of the CTR models Cheng et al. (2016). For example, the model can better use
the information available in historical data to make relevant recommendations that match user habits,
rather than making less relevant recommendations due to over-generalization.

To address the limitation of existing work, we proposed an input-adaptive feature augmentation
framework, named MaskFusion, which can incrementally bring non-trivial performance improve-
ments by incorporating various state-of-the-art deep CTR models flexibly and can be trained in an
end-to-end manner. Different from the existing methods, by proposing explicit fusion operations,
MaskFusion first enhances the memorization ability of the deep CTR models that previous SOTA
CTR models have not paid much attention to enhancing. Second, uses the Mask Controller to make a
better trade-off between generalization and memorization. Furthermore, incorporated with MaskFu-
sion, CTR models can make predictions for the input instance by using the instance-wise masks to
uniquely enhance each feature of this input instance so that the whole model becomes instance-level
personalized during both training and inference. We summarize the contributions below:

• We proposed an input-adaptive feature augmentation framework, named MaskFusion, which
can capture the interaction between feature embedding and the deep part structure of
deep CTR models adaptively and explicitly. MaskFusion framework is general enough to
incorporate with other functionalities like Residual Feature Augmentation in DCNv2 Wang
et al. (2021a) and Embedding Dimension Search Shen et al. (2020).

• Instance-aware Mask Controller was proposed to dynamically select the feature that needs
to be memorized better for prediction task, according to the characteristics and behaviors of
different input instances. Thus, can better balance memorization and generalization.

• Comprehensive experiments were conducted on 7 benchmarks over 3 real-world datasets,
the convincing results demonstrate the effectiveness and robustness of MaskFusion. Hyper-
parameters studies demonstrate that MaskFusion is a memory-friendly efficient framework
since it achieves better performance with fewer parameters and memories.

2 RELATED WORK

DNN begins to benefit recommendation systems because of its powerful feature representation ability.
Many works combine explicit feature interaction with DNN in deep CTR models. PNN Qu et al.
(2016) introduces a product layer between embedding and DNN to explicitly learn feature interaction.

2

Published as a conference paper at ICLR 2023

DeepFm Guo et al. (2017) combines the power of FM (wide part) for recommendation and DNN
(deep part) for feature learning. DLRM Naumov et al. (2019) designs a parallelism scheme for the
embedding tables to alleviate the limited memory problem. DCN Wang et al. (2017) proposed a
Cross Network to learn certain bounded-degree feature interactions explicitly and combined the
results of DNN and Cross Network to predict user behaviors. To improve the limited representation
ability of DCN in large-scale industrial settings, DCNv2 Wang et al. (2021a) further replaces the
cross vector in Cross Network with a cross matrix to make it more practical in large-scale industrial
settings. Similarly, xDeepfm Lian et al. (2018) also learns certain bounded-degree feature interactions
explicitly through the proposed Compressed Interaction Network (CIN). In addition to learning all
possible feature interactions, AutoFIS Liu et al. (2020) automatically searches for important feature
interactions in a continuous space to reduce computation costs and noises caused by excessive feature
interactions.

The above deep CTR models simply use DNN to automatically model high-order feature interactions,
while some other works introduce input-adaptive masks into the models to further augment feature
representations. MaskNet Wang et al. (2021b) performs element-wise product both on the feature
embedding and hidden states feature vectors in DNN by proposing an instance-guided mask to
highlight the important elements. Their intuition is that bringing multiplicative operation into deep
CTR models can capture complex feature interaction more efficiently. A similar idea is also proposed
in LHUC Swietojanski et al. (2016) in the audio field. Additionally, GemNN Fei et al. (2021) also
introduces gating mechanisms to highlight the bit-wise importance of feature embedding before it
was fed into DNN. There are some existing works adopted input-adaptive mask-based methods in
computer vision Woo et al. (2018); Guo et al. (2022) and natural language processing Dauphin et al.
(2017); Kang et al. (2020). VAN Guo et al. (2022) proposes the large kernel attention (LKA) to
simultaneously capture spatial and channel-wise long-range correlations adaptively. NMG Kang et al.
(2020) adopts a transformer-based policy network to produce task- and domain-adaptive masked
context for self-supervised training of language models. In contrast, although we also adopted the
mask mechanism, the motivation and the effect are significantly different from these previous works.
We apply the mask to augment the features in our proposed fusion layer for two reasons: First, better
balance the memorization ability brought by the Fusion Layer and the strong generalization ability
from the deep CTR model. Second, make additional explicit interactions between the masked features
and the DNN layers to improve the performance. In addition, MaskFusion can be simply integrated
into any state-of-the-art deep CTR models to make improvements, as demonstrated in our extensive
experiments, while previous methods did not verify whether their designs for DNN and embedding
layer are generally applicable to all existing deep CTR models.

3 METHOD

In this section, we will introduce the proposed framework MaskFusion in detail. We will first briefly
introduce the architecture of one common deep CTR model in Section 3.1; then illustrate each
component of MaskFusion in Section 3.2.

Feature Interaction

Layer

Deep NN Mask Controller

Mask
generator

Mask
generator

Instance
Normalization

Layer

Fusion

Mask
generator

Output Unit

sparse input dense input

Embedding Layer

softmax

(a) MaskFusion for single tower network

Feature Interaction

Layer

Deep NN Fusion

Output Unit

sparse input dense input

Embedding Layer

Mask Controller

Mask
generator

Mask
generator

Instance
Normalization

Layer

Mask
generator

softmax

(b) MaskFusion for dual tower network

Figure 2: Illustration of MaskFusion framework for common single and dual tower network. Note that
MaskFusion can be easily plugged into any existing network.

3

Published as a conference paper at ICLR 2023

3.1 DEEP RECOMMENDATION SYSTEM

As illustrated in Figure 1, deep CTR models can be divided into single tower models and dual tower
models according to the relative position of Feature Interaction Layer and Deep Neural Network.
Embedding Layer embeds the raw feature vectors into a low-dimensional real-value vector. Feature
Interaction Layer is responsible for capturing feature interactions explicitly (such as inner product,
outer product, CIN, CNN Liu et al. (2019), etc.) from the output of Embedding Layer. Deep Neural
Network is usually responsible for extracting higher-order feature interactions implicitly.

3.2 MASKFUSION

As illustrated in Figure 2, MaskFusion can be integrated with two types of models. MaskFusion
contains three main components, Mask Controller, Instance Normalization Layer, and Fusion layer.
To be specific, Fusion layer is mainly used to fuse each feature with each layer in the DNN part, so
that each layer of DNN can learn feature interaction explicitly. Mask Controller generates unique
masks for each instance through the Mask generator module to guide the Fusion layer, thus enabling
an adaptive feature fusion mechanism. Instance Normalization Layer module normalizes the features
that need to be fused with DNN layers. The details will be described in the following sections.

3.2.1 FUSION LAYER

We first introduce Fusion Layer to address the memorization problem which has been described in
Section 1. The Fusion Layer can enhance the network’s memorization, it explicitly fuses the features
into each layer of the DNN through the concatenate operation. In this way, different informative
features can be memorized better, since it will allow the features to explicitly participate in the
forward inference of the CTR models more directly, rather than unexplainable and complicated
transformations of features in the DNN. There are some alternatives to fusion operation, for example,
element-wise multiplication in MaskNet Wang et al. (2021b) and GemNN Fei et al. (2021), element-
wise addition, and so on. These alternatives cannot explicitly let features be fully exposed to the
forward-pass likes ours and have poor explainability for which features contribute more to the
prediction performance. Specifically, we fuse the embedding vectors E with each layer of DNN:

ht = Relu(Wtĥt−1 + bt) (1)

ĥt = Concate([E, Relu(Wtĥt−1 + bt)]) (2)

where E ∈ Rn·d, n and d denote the number of feature fields and the dimension of embedding
respectively. Wt,bt denote the weight and the bias of tth fully-connected layer in DNN respectively.
ht is the output of tth fully-connected layer and ĥt−1 is the input of tth fully-connected layer.

3.2.2 MASK CONTROLLER

The aforementioned Fusion Layer module was introduced to enhance memorization. However, the
design of only the Fusion Layer also brings two problems at the same time: First, it just utilizes the
same network structure and features to characterize all instances identically and ignores the diverse
properties among them. The input instances of the recommendation system in the real world always
have diverse convergence behaviors, as demonstrated in Zhao et al. (2021). Second, it only considers
enhancing the memorization of the model but does not avoid weakening the generalization of the
model. To tackle these problems, we propose to adopt an input-adaptive Mask Controller to generate
masks based on the global information of each instance and apply the masks to the features in the
Fusion Layer. This allows the network to autonomously learn which feature should be utilized better
in Fusion Layer according to the diverse properties across different instances during training. After
training, a larger mask value means that its corresponding feature in the Fusion Layer should be
memorized better and we can know which feature contributes more to the CTR prediction, which
makes the prediction with explicit explainability. We use this input-adaptive mask in Fusion Layer to
make the network adaptively balance the memorization ability and the generalization ability. To be
more specific, given an instance, the embedding vector of all fields feature, represented by E, will be
firstly multiplied with this generated unique mask before the fusion processing.

Since MaskFusion is a general framework, the mask generator can be composed of any suitable
structure, such as SENet Hu et al. (2018), self-attention Vaswani et al. (2017), MLP, and so on. Here,

4

Published as a conference paper at ICLR 2023

we simply use MLP as the mask generator for demonstration purposes and our main contribution lies
in designing this general and effective framework.

αk
t = MLPϕt

(E) (3)

where αk
t ∈ Rn = [αk

t,1, · · · , αk
t,n] is the mask of kth instance generated by the tth mask generator

and ϕt denotes the parameters of the tth mask generator. As illustrated in Fig 2, the total number of
mask generators, denoted as l, is equal to the number of layers in DNN.

For the deep part of deep CTR models, embeddings are processed by multiple layers of DNN explicitly,
by continuously combining each embedding with other embeddings layer by layer automatically.
Thus it can capture potential patterns of the sparse features and will enhance the generalization
ability of deep CTR models. After incorporating the Fusion Layer with deep CTR models, feature
embeddings are closer to the output layer of DNN and even can directly participate in prediction.
As a result, such design not only has a strong generalization ability but also has memorization
ability, similar to the wide part design in Cheng et al. (2016). For learning which feature ought to
be memorized better automatically and for the purpose of better training convergence, we choose to
apply softmax activation functions on all masks to get normalized masks:

mk
t,j =

exp(αk
t,j)∑l

t=1 exp(α
k
t,j)

, ∀j ∈ [1, n], ∀t ∈ [1, l] (4)

where mk
t ∈ Rn = [mk

t,1, · · · ,mk
t,n] is the mask generated by the tth mask generator from kth

instance. Then Eq.(2) will evolve to be:

ĥt = Concate([mk
tE, Relu(Wtĥt−1 + bt)]) (5)

The masks are feature-wisely multiplied with E, thus E ∈ Rn·d will be reshaped into E ∈ Rn×d and
E ∈ Rn×d will be reshaped back into E ∈ Rn·d again before the concatenation.

3.2.3 INSTANCE NORMALIZATION LAYER

We utilize masks to determine in which layer should the features be fused and how much they will
be fused. However, the effect of the mask may become offset by the re-scaling phenomenon. More

specially, mk
t,j · ekj can produce the same effect as

mk
t,j

ε · (ε · ekj), where ε denotes a real number, for
example, a scalar value of the weight in DNN.

To eliminate this re-scaling phenomenon, a natural method is to use normalization techniques. In
MaskFusion, each feature needs to be fused into the DNN first and then be adaptively selected by
the mask. The information on each dimension in each feature is very important here, we should
keep bit-wise information while eliminating the re-scaling. Batch Normalization (BN) and
Layer Normalization (LN) do not apply to this scenario, because the calculation of BN counts the
information of all instances in a mini-batch and the calculation of LN counts the information of all
features in an instance. To address this challenge, we apply Instance Normalization (IN) Ulyanov
et al. (2016) on each feature embedding and the IN operation on each feature will be calculated as:

IN(ekj) = γ ·
ekj − µj√
σ2
j + ϵ

+ β (6)

where µj and σj denote the mean and standard deviation of jth feature of kth instance. Usually, the
scale parameter γ and shift parameter β are set to be trainable to enhance the learning ability of the
IN layer. In this paper, we just utilize IN to eliminate the re-scaling phenomenon, so, γ and β are
fixed to 1 and 0 respectively.

End-to-End Training MaskFusion is a framework that can be trained in an end-to-end manner. The
optimization process is to minimize the objective loss function which is determined according to
different recommendation systems tasks, such as click-through-rate prediction (binary classification),
user behavior prediction (multi-class classification), and so on. The parameters of MaskFusion and
deep CTR models will be updated simultaneously by stochastic gradient descent optimization.

Finer Granularity version MaskFusion The dimension of the mask in Eq. (4) is equal to the
number of embedding vector outputs from the embedding layer, which means that each dimension in

5

Published as a conference paper at ICLR 2023

one feature will share the same mask value. We call it Adaptive Feature-wise MaskFusion (Adaptive
FwMF). However, in some complex scenes, a finer mask may be required. Thus we design a finer
granularity mask: Adaptive Dimension-wise MaskFusion (Adaptive DwMF). The mask generators in
Mask Controller will generate a mask m ∈ Rn·d. In this way, each dimension of each embedding
vector will own a unique mask value.

4 EXPERIMENTS

In this section, comprehensive experiments are conducted on 7 benchmark models to demonstrate the
effectiveness and robustness of the MaskFusion framework over 3 real-world datasets. Due to the
page limitation, we refer the readers to the Appendix for more results and analyses.

4.1 EXPERIMENT SETUP

Datasets. We evaluate the MaskFusion framework on three real-world commercial datasets: Criteo,
Terabyte, and Avazu. Due to the page limitation, more details on dataset processing are listed in the
Appendix A.

Evaluation Metrics. We conduct binary classification (i.e., Click-Through prediction) on the above
three datasets and adopt AUC and Logloss metrics to evaluate all models. Note that an improvement
of AUC at 0.001 level will be regarded as a considerable improvement, as also claimed in Zhu et al.
(2021); Wang et al. (2021b).

Baseline Models. We choose 7 baseline models: IPNN Qu et al. (2016), DeepFm Guo et al. (2017),
DCN Wang et al. (2017), xDeepFm Lian et al. (2018), Autoint+ Song et al. (2019), DCN V2 Wang
et al. (2021a) and DLRM Naumov et al. (2019). These deep CTR models have various feature
interaction layers as described in Section 3.1 and they can be divided into single-tower and dual-tower
models. We deploy MaskFusion to these baseline models to show its effectiveness.

4.2 PERFORMANCE COMPARISONS

Table 1 summarizes the overall performance of all models. It can be observed that: For all cases in
the table, when applying MaskFusion on baseline models, it consistently outperforms the original
baseline models over three datasets, no matter whether the model architecture is a single tower or
dual tower. It is worth noting that the gap of AUC between different baseline models is very small
(even at 0.0001 level), thus an improvement of AUC at 0.001 level can be considered significant,
as claimed in Zhu et al. (2021). Compare to the best baseline models DLRM, the relative AUC
improvement from DLRM with Adaptive FwMF on Criteo and Avazu is 0.11%, 0.41% respectively.
Especially, even on large-scale datasets Terabyte, which consists of 500 million instances, the DLRM
model with Adaptive FwMF still outperforms the baseline DLRM model by 0.19% in terms of AUC.
Adaptive DwMF realizes feature fusion with a finer-grained adaptive mask manner than Adaptive
FwMF. The experimental results show that Adaptive DwMF outperforms Adaptive FwMF for most
cases and indeed consistently outperforms overall baseline models.

Table 1: The comparisons of the baseline and two versions of MaskFusion (Feature-wise and Dimension-wise).

Model Criteo Terabyte Avazu Model TypeAUC↑ Logloss↓ AUC↑ Logloss↓ AUC↑ Logloss↓

DCN
Baseline 0.8046 0.4506 0.7964 0.4197 0.8053 0.3641

Dual TowerAdaptive FwMF 0.8075 0.4480 0.7976 0.4186 0.8144 0.3583
Adaptive DwMF 0.8085 0.4471 0.7985 0.4181 0.8167 0.3573

Autoint+
Baseline 0.8058 0.4496 0.7968 0.4205 0.8086 0.3621

Single TowerAdaptive FwMF 0.8073 0.4478 0.7983 0.4183 0.8141 0.3581
Adaptive DwMF 0.8089 0.4467 0.7989 0.4179 0.8174 0.3562

DLRM
Baseline 0.8085 0.4469 0.7977 0.4185 0.8145 0.3592

Single TowerAdaptive FwMF 0.8098 0.4459 0.7992 0.4174 0.8171 0.3570
Adaptive DwMF 0.8101 0.4456 0.7996 0.4171 0.8186 0.3555

6

Published as a conference paper at ICLR 2023

To summarize, both types of MaskFusion can surpass the baseline models in terms of AUC and
Logloss, which verifies the superiority and the robustness of the proposed framework, in terms of
consistently enhancing the deep CTR models with various features interaction manners and various
model architectures. The comparisons of another 4 benchmarks are in Table 6 of the Appendix B.

4.3 ABLATION STUDIES

To give a deeper understanding of the different components of MaskFusion, we perform the ablation
studies by gradually adding each component of MaskFusion onto baseline models: Fusion Layer:
All of the features will be fused to each layer of DNN directly. Feature-wise Mask: All of the
features will be multiplied by a mask β ∈ Rl×n before being fused to DNN. This mask is initialized
at the beginning of training instead of being generated by our mask controller, thus all instances will
share the same mask β. The mask will be updated during the training process. Adaptive: All of the
features will be multiplied by a mask before being fused to DNN and the mask will be generated by a
mask controller adaptively over the input instance.

The overall performance is shown in Table 2 and we have the following observations:

First, with only Fusion Layer added to the baseline, the performances on Criteo and Avazu are even
degraded (for DCN, it outperforms the baseline by 0.05% on Criteo in terms of AUC, but it is not
significant). On the Terabyte dataset, the performance is similar to the baseline. This phenomenon is
reasonable, the Fusion Layer is designed to explicitly enhance the network’s memorization ability to
remember feature combinations that have appeared in historical information (memorization is better).
But at the same time, this may also make the network more difficult to make a recommendation if the
input feature combinations have never appeared before (generalization may be worse).

Secondly, with both Fusion Layer and Feature-wise Mask added into the baseline, the performance
is slightly improved compared to the first case, which with only Fusion Layer in the baseline. This
demonstrates that the masked features did help solve the generalization problem, however, to a
certain degree. We further attribute the reason for small improvements in test AUC to the mask with
fixed values. Even though the mask value is updated according to the training data during training,
for a mini-batch, all instances in the batch still share the same mask, which is not optimal in CTR
prediction scenarios. In industrial scenarios, there are hundreds of millions of users, and each user
has different preferences, which also means that the CTR model needs to be more personalized.

Thirdly, with all components incorporated into the baseline, each instance has a unique instance-
dependent mask to determine which features should be memorized better for this instance in the
Fusion Layer. As expected, this option (called Adaptive FwMF) comprehensively significantly
improves all seven baselines on three datasets.

We show the ablations for another 4 benchmarks in the Appendix C, the observations are same.

Table 2: Ablation study. Based on the baseline (BL), Fusion (Fu), Feature-wise Mask (FwM), and Adaptive
(Ada) is gradually added for ablation studies. ↑ means higher is better and ↓ means lower is better.

Model Criteo Terabyte Avazu

BL Fu FwM Ada AUC↑ Logloss↓ AUC↑ Logloss↓ AUC↑ Logloss↓

DCN
✓ 0.8046 0.4506 0.7964 0.4197 0.8053 0.3641

✓ 0.8051 0.4503 0.7964 0.4196 0.8046 0.3650
✓ ✓ 0.8050 0.4503 0.7959 0.4199 0.8062 0.3639
✓ ✓ ✓ 0.8075 0.4480 0.7976 0.4186 0.8144 0.3583

Autoint+
✓ 0.8058 0.4496 0.7968 0.4205 0.8086 0.3621

✓ 0.8048 0.4505 0.7967 0.4194 0.8072 0.3631
✓ ✓ 0.8044 0.4509 0.7969 0.4191 0.8074 0.3630
✓ ✓ ✓ 0.8073 0.4478 0.7983 0.4183 0.8141 0.3581

DLRM
✓ 0.8085 0.4469 0.7977 0.4185 0.8145 0.3592

✓ 0.8080 0.4475 0.7980 0.4183 0.8085 0.3624
✓ ✓ 0.8086 0.4470 0.7983 0.4181 0.8104 0.3611
✓ ✓ ✓ 0.8098 0.4459 0.7992 0.4174 0.8171 0.3570

7

Published as a conference paper at ICLR 2023

4.4 THE NUMBER OF PARAMETERS AND THE LATENCY

We show the comparisons of the latency and the number of parameters between the baseline models
and the baseline models with MaskFusion from two perspectives in Table 3 and 4.

Table 3: The comparisons of the number of parameters and latency time while keeping the comparable amount
of parameters. †means the number of DNN layers is 3; ‡means the number of DNN layers is 2.

AUC on Criteo Params. (M) latency (ms)

DCN Baseline† 0.8042 540.72 0.15
DCN MaskFusion‡ 0.8085 541.52 0.20

Autoint+ Baseline† 0.8049 541.30 0.12
Autoint+ MaskFusion‡ 0.8087 541.41 0.15

DLRM Baseline† 0.8079 540.68. 0.06
DLRM MaskFusion‡ 0.8096 541.29 0.08

As shown in Table 3, MaskFusion only additionally introduces the number of the parameters by
0.1% or 0.2% w.r.t. baseline model, which is negligible. The latency indeed increases due to adding
extra parameters and skip-connections in the DNN part of the deep CTR Model, however, it is
cost-effective. For example, the latency of MaskFusion increased by 25% while outperforming the
baseline model Autoint+ by a significant 0.0038 in terms of AUC. However, compared with the
Autoint+ model, the latency of the previous baseline DCN model also increased by 25% while the
AUC decreases.

Table 4: The comparisons of the number of parameters and latency time while keeping the half amount of
parameters. †means the dimension of embedding is 16; ‡means the dimension of embedding is 8.

AUC on Criteo Params. (M) latency (ms)

DCN Baseline† 0.8053 540.72 0.153
DCN+MaskFusion‡ 0.8070 271.57 0.125

Autoint+ Baseline† 0.8058 541.41 0.127
Autoint+ +MaskFusion‡ 0.8067 271.03 0.131

DLRM Baseline† 0.8087 540.67. 0.064
DLRM+MaskFusion‡ 0.8081 271.69 0.078

It can be observed from Table 4 that if we reduce the embedding dimension from the original 16 to
8, the parameter size of three shrunk baseline models + MaskFusion will be 50% of the parameter
size of the original three baseline models. Meanwhile, they have comparable or even better AUC
and Latency than the three original baseline models. Furthermore, we propose a potential research
direction in Appendix I to combine MaskFusion with Embedding Dimension Reduction techniques
to further improve the efficiency of MaskFusion, and the preliminary experiments are promising.

In summary, MaskFusion is a cost-effective framework, the observations, analyses, and experiments
all show its potential of serving as a plugin to better balance the original baseline model’s performance
and efficiency, which can be a future exploration.

5 TEN INDEPENDENT EXPERIMENTS WITH DIFFERENT SEED

We have kindly considered the robustness of the performance improvements and have reported
the mean and standard deviation of AUC for 10 independent runs with different seeds on 3 strong
benchmarks in Table 5. The mean improvements range from 1.6e−3 to 3.9e−3, and the standard
deviations range from 9.8e−5 to 1.9e−4. The deviations are significantly smaller than the mean
improvements, which demonstrates our improvements are robustly significant. To improve the con-
vincing of the results, we provide the one-tailed independent sample t-test results of the experimental
group (Baseline + Adaptive DwMF in table) and the baseline group (Baseline in table) on these three
benchmarks. Before the t-test, we first check whether the experimental group and the baseline group
have the same variance by Levene’s test, if not, we will perform a t-test with the Welch t-test. We
can conclude that the p-values corresponding to the t-scores on the three benchmarks are all much

8

Published as a conference paper at ICLR 2023

Table 5: The mean and std. of AUC for 10 independent runs with different seeds on the Criteo dataset.

Model AUC Logloss Average Precision (AP) AUC t-score AUC p-value

DCN Baseline 0.80463 ± 2.0e−4 0.45067 ± 1.3e−4 0.6119 ± 6.3e−4

44.94 < 5e−4

Adaptive DwMF 0.80855 ± 1.9e−4 0.44709± 1.7e−4 0.6168 ± 4.7e−4

Autoint+ Baseline 0.8059 ± 1.1e−4 0.4496 ± 2.1e−4 0.6089 ± 7.0−4

35.33 < 5e−4

Adaptive DwMF 0.8089 ± 9.8e−5 0.4468 ± 2.5e−4 0.6166 ± 5.3e−4

DLRM Baseline 0.8086 ± 1.6e−4 0.4469 ± 1.1e−4 0.6164 ± 3.6e−4

22.91 < 5e−4

Adaptive DwMF 0.8101 ± 1.4e−4 0.4456 ± 2.1e−4 0.6202 ± 2.3e−4

lower than the statistical significance threshold of 0.01. Thus, we can reject the NULL hypothesis
and accept the alternative hypothesis that the experimental group outperforms the baseline group
with statistical significance for each of the three benchmarks. We performed t-tests for the other 4
remaining benchmark models in the Table 8 in the Appendix D.

6 ONLINE A/B TESTING

More than just passing industrial A/B testing, MaskFusion has been deployed in multiple industrial
scenarios and has achieved significant benefits for online products. It is worth mentioning that in
industrial scenarios, the models are often DNN-based models, so it is very suitable to use MaskFusion
to further improve performance. We take the A/B testing conducted on the display advertising system
as an example. The details of the experiments are as follows:

Baseline model There are a total of 150 features, including 115 user features, 18 item features, 8
combined features, and 9 dense features. The baseline model is a multi-task model, the raw features
and the interacted features will be fed into a shared bottom layer which consists of a one-layer MLP
with a hidden state size of 1024. The output of the shared bottom layer will be used as the input of 3
towers: IMP, PXR, and CTR, and each tower is an MLP network with the shape of [512, 256, 2].
IMP stands for impression rate, PXR stands for the rate of 3 seconds of viewing, and CTR is the
click-through rate. It should be noted that only the CTR tower needs to be deployed online, the IMP
tower and the PXR tower are used to expand the training dataset and assist in the training of the CTR
tower. Therefore, we apply MaskFusion on the CTR tower to improve its performance.

Performance Improvements In the offline testing, baseline+MaskFusion has a 0.003 significant
improvement in terms of AUC compared with the baseline model. In the A/B test, the baseline
model and the baseline+MaskFusion model will both use 10% traffic respectively, and we mainly
focus on the AUC and RPM (Revenue per Mille) metrics. During a month of A/B testing, the
baseline+MaskFusion outperforms the baseline with a significant 0.002 AUC improvement and
a 10.5% RPM improvement respectively. It is worth noting that the QPS (Queries per Second)
is used to evaluate the efficiency of the online model. In the extreme case testing, the QPS of
baseline+MaskFusion only dropped by 6.8% compared to the baseline model. Although this means
that we need to use 6.8% more machines to cover all traffic, the cost of the extra 6.8% machines is far
less than the 10.5% RPM. Our MaskFusion has been successfully deployed into this online product.

7 CONCLUSIONS

In this paper, we proposed an input-adaptive feature augmentation framework, MaskFusion, which
can be incorporated with any existing deep CTR models flexibly and enhances their performance
stably. In the MaskFusion framework, feature embedding will be multiplied by a mask and then
fused to the deep part of deep CTR models through the concatenation operation, so that the DNN can
explicitly learn the feature interactions, and the memorization ability of the deep CTR models will
also be enhanced effectively. We also proposed a Mask Controller to learn which feature should be
memorized better dynamically according to different input instances, thereby making a better trade-off
between memorization and generalization automatically. Experiments on 3 real-world datasets and 7
SOTA Deep CTR models demonstrate the effectiveness. Additionally, a latency comparison and a
hyper-parameters study show that MaskFusion has the potential to be a memory-friendly and efficient
framework since it can achieve better performance with fewer parameters. In the future, we will
further explore more efficient and effective dynamic feature augmentation framework designs.

9

Published as a conference paper at ICLR 2023

REFERENCES

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong,
Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In
Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS 2016, pp.
7–10, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450347952.
doi: 10.1145/2988450.2988454. URL https://doi.org/10.1145/2988450.2988454.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Hongliang Fei, Jingyuan Zhang, Xingxuan Zhou, Junhao Zhao, Xinyang Qi, and Ping Li. GemNN:
Gating-Enhanced Multi-Task Neural Networks with Feature Interaction Learning for CTR Predic-
tion, pp. 2166–2171. Association for Computing Machinery, New York, NY, USA, 2021. ISBN
9781450380379. URL https://doi.org/10.1145/3404835.3463116.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A factorization-
machine based neural network for ctr prediction. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, IJCAI’17, pp. 1725–1731. AAAI Press, 2017. ISBN
9780999241103.

Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, and Shi-Min Hu. Visual
attention network. arXiv preprint arXiv:2202.09741, 2022.

Yi Guo, Huan Yuan, Jianchao Tan, Zhangyang Wang, Sen Yang, and Ji Liu. Gdp: Stabilized neural
network pruning via gates with differentiable polarization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5239–5250, 2021.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Minki Kang, Moonsu Han, and Sung Ju Hwang. Neural mask generator: Learning to generate
adaptive word maskings for language model adaptation. arXiv preprint arXiv:2010.02705, 2020.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
Xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’18, pp. 1754–1763, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3220023. URL https://doi.org/10.1145/
3219819.3220023.

Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and Yuzhou Zhang. Feature
generation by convolutional neural network for click-through rate prediction. In The World
Wide Web Conference, WWW ’19, pp. 1119–1129, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450366748. doi: 10.1145/3308558.3313497. URL
https://doi.org/10.1145/3308558.3313497.

Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo
Li, and Yong Yu. AutoFIS: Automatic Feature Interaction Selection in Factorization Models for
Click-Through Rate Prediction, pp. 2636–2645. Association for Computing Machinery, 2020.
ISBN 9781450379984.

Xu Ma, Pengjie Wang, Hui Zhao, Shaoguo Liu, Chuhan Zhao, Wei Lin, Kuang-Chih Lee, Jian Xu,
and Bo Zheng. Towards a better tradeoff between effectiveness and efficiency in pre-ranking: A
learnable feature selection based approach. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2036–2040, 2021.

10

https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/3404835.3463116
https://doi.org/10.1145/3219819.3220023
https://doi.org/10.1145/3219819.3220023
https://doi.org/10.1145/3308558.3313497

Published as a conference paper at ICLR 2023

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman,
Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. Deep
learning recommendation model for personalization and recommendation systems. arXiv preprint
arXiv:1906.00091, 2019.

Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang. Product-based
neural networks for user response prediction. In 2016 IEEE 16th International Conference on
Data Mining (ICDM), pp. 1149–1154. IEEE, 2016.

Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo, Yong Yu, and
Xiuqiang He. Product-based neural networks for user response prediction over multi-field categori-
cal data. ACM Trans. Inf. Syst., 37(1), oct 2018. ISSN 1046-8188. doi: 10.1145/3233770. URL
https://doi.org/10.1145/3233770.

Steffen Rendle. Factorization machines. In 2010 IEEE International conference on data mining, pp.
995–1000. IEEE, 2010.

Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. Neural collaborative filtering vs.
matrix factorization revisited. In Fourteenth ACM Conference on Recommender Systems, RecSys
’20, pp. 240–248, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450375832. doi: 10.1145/3383313.3412488. URL https://doi.org/10.1145/3383313.3412488.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Jiayi Shen, Haotao Wang, Shupeng Gui, Jianchao Tan, Zhangyang Wang, and Ji Liu. Umec:
Unified model and embedding compression for efficient recommendation systems. In International
Conference on Learning Representations, 2020.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceedings
of the 28th ACM International Conference on Information and Knowledge Management, CIKM
’19, pp. 1161–1170, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450369763. doi: 10.1145/3357384.3357925. URL https://doi.org/10.1145/3357384.3357925.

Pawel Swietojanski, Jinyu Li, and Steve Renals. Learning hidden unit contributions for unsupervised
acoustic model adaptation. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
24(8):1450–1463, 2016.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.
cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, ADKDD’17, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450351942. doi: 10.1145/3124749.3124754. URL https:
//doi.org/10.1145/3124749.3124754.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the Web Conference 2021, pp. 1785–1797, 2021a. ISBN 9781450383127.

Zhiqiang Wang, Qingyun She, and Junlin Zhang. Masknet: Introducing feature-wise multiplication
to ctr ranking models by instance-guided mask. arXiv preprint arXiv:2102.07619, 2021b.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European conference on computer vision (ECCV), pp.
3–19, 2018.

11

https://doi.org/10.1145/3233770
https://doi.org/10.1145/3383313.3412488
https://doi.org/10.1145/3357384.3357925
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3124749.3124754
https://doi.org/10.1145/3124749.3124754

Published as a conference paper at ICLR 2023

Weinan Zhang, Jiarui Qin, Wei Guo, Ruiming Tang, and Xiuqiang He. Deep learning for click-through
rate estimation. arXiv preprint arXiv:2104.10584, 2021.

Xiangyu Zhao, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, and Chong Wang. Autoloss:
Automated loss function search in recommendations. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, KDD ’21, pp. 3959–3967, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN 9781450383325. doi: 10.1145/3447548.
3467208. URL https://doi.org/10.1145/3447548.3467208.

Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. Open Benchmarking for Click-
Through Rate Prediction, pp. 2759–2769. Association for Computing Machinery, New York, NY,
USA, 2021. ISBN 9781450384469. URL https://doi.org/10.1145/3459637.3482486.

A IMPLEMENTATION DETAILS

Datasets. For a fair comparison and reproducibility, we adopted the same processing of datasets
as in Naumov et al. (2019). Criteo consists of almost 45 million instances over 7 days of data and
each instance contains 13 numerical features and 26 categorical features. In experiments, the first 6
days’ data are used as a training set and the rest as the test set. Terabyte, a more challenging dataset,
consists of almost 500 million instances over 24 days of data, and each instance contains 13 numerical
features and 26 categorical features. In experiments, the first 23 days of data are used as a training
set and the last day of data as the test set. Avazu consists of almost 40 million instances and each
instance contains 23 numerical features. Note that, we remove the sample_id field since it is useless
for the prediction. The dataset is randomly split by 8:1:1 for training, validating, and testing.

Training hyper-parameters. For a fair comparison, the Deep CTR models integrated with the
MaskFusion framework will share the same settings as the baseline models. For numerical features,
all of them will be concatenated and transformed into a low dimensional, dense real-value vector by a
4-layers MLP, the number of neurons is [512, 256, 64, 16]. For categorical features, we will embed
them into a dense real-value vector with a fixed dimension of 16. For optimization, we utilize an
Adagrad optimizer Duchi et al. (2011) with a learning rate of 0.01, and the mini-batch size is 128.
The depth of DNN is 3 for all models and the number of neurons is [512, 256, 1]. We simply use the
MLP structure as the mask generator, and the structure of each mask generator is [512, 256]. All
experiments are conducted on one 2080Ti GPU.

B MORE COMPARISONS

We put the comparisons of the baseline model versus the baseline model with two versions of
MaskFusion in Table 6. The observations of performance improvements keep the same as in Table 1.

Table 6: The comparisons of the baseline and two versions of MaskFusion (Feature-wise and Dimension-wise).

Model Criteo Terabyte Avazu Model TypeAUC↑ Logloss↓ AUC↑ Logloss↓ AUC↑ Logloss↓

IPNN
Baseline 0.8073 0.4483 0.7974 0.4188 0.8118 0.3600

Single TowerAdaptive FwMF 0.8085 0.4472 0.7984 0.4180 0.8146 0.3581
Adaptive DwMF 0.8083 0.4475 0.7991 0.4176 0.8179 0.3564

DeepFm
Baseline 0.8042 0.4512 0.7953 0.4205 0.8091 0.3623

Single TowerAdaptive FwMF 0.8054 0.4500 0.7967 0.4194 0.8149 0.3579
Adaptive DwMF 0.8063 0.4493 0.7976 0.4187 0.8181 0.3562

xDeepFm
Baseline 0.8067 0.4489 0.7972 0.4190 0.8144 0.3584

Dual TowerAdaptive FwMF 0.8080 0.4477 0.7983 0.4181 0.8178 0.3506
Adaptive DwMF 0.8081 0.4475 0.7990 0.4180 0.8189 0.3559

DCN V2
Baseline 0.8084 0.4475 0.7981 0.4183 0.8082 0.3623

Dual TowerAdaptive FwMF 0.8098 0.4462 0.7991 0.4175 0.8143 0.3579
Adaptive DwMF 0.8091 0.4466 0.7990 0.4175 0.8175 0.3567

https://www.kaggle.com/c/criteo-display-ad-challenge
https://labs.criteo.com/2013/12/download-terabyte-click-logs/
http://www.kaggle.com/c/avazu-ctr-prediction

12

https://doi.org/10.1145/3447548.3467208
https://doi.org/10.1145/3459637.3482486

Published as a conference paper at ICLR 2023

B.1 ANALYSIS OF PERFORMANCE IMPROVEMENTS

As shown in Table 1 and Table 6, we can observe a phenomenon that MaskFusion can achieve more
significant orthogonal performance gains on those weaker baseline models compared to those stronger
baseline models for all 3 datasets. Since all these models have the same configurations for embedding
layers and DNN layers, we attribute this phenomenon to the fact that weaker models tend to have
a weaker capacity to model high-order feature interaction in their feature interaction layers and
vice versa. As a general feature augmentation framework, MaskFusion proposes an input-adaptive
mask-based dynamic interaction mechanism between the embedding layers and the DNN layers that
can enhance the feature embedding representation ability and also make up for their poor ability to
capture high-order feature interaction. Thus, the weaker the model is, the more performance gains
are introduced by MaskFusion.

Both the Criteo dataset and the Terabyte dataset have 39 features (26 sparse features and 13 dense
features), while the Avazu dataset has only 23 features and has fewer keys in each embedding table
than the former two datasets. It can be observed that the improvement of MaskFusion on Terabyte
and Criteo is smaller than that on the Avazu dataset. We attribute this phenomenon to the lack of
representation ability of the baseline model in the case of containing a small number of features.
After integrating the model with MaskFusion, which can augment these features and better capture
the high-order feature interactions, thus enhancing the representation ability of the original model.
Thus it leads to more significant orthogonal performance improvements for all 7 baseline models on
the Avazu dataset.

Furthermore, both of the above phenomena also corroborate with our statement in Section 4.4
that MaskFusion + baseline model with lower embedding dimensions can achieve comparable
performance to the original baseline model.

C MORE ABLATION STUDIES

As illustrated in Table 7, we conduct ablation studies on 4 additional baseline models, including
IPNN Qu et al. (2016), DeepFm Guo et al. (2017), xDeepFm Lian et al. (2018) and DCN V2 Wang
et al. (2021a). A similar conclusion can be drawn that each component of MaskFusion is indispensable
and we can achieve the best performance when combining all of them.

Table 7: More ablation study. Based on baseline (BL), Fusion (Fu), Feature-wise Mask (FwM), and Adaptive
(Ad) are gradually added for ablation studies. ↑ means higher is better, ↓ means lower is better.

Model Criteo Terabyte Avazu

BL Fu FwM Ad AUC↑ Logloss↓ AUC↑ Logloss↓ AUC↑ Logloss↓

IPNN
✓ 0.8073 0.4483 0.7974 0.4188 0.8118 0.3600

✓ 0.8075 0.4480 0.7978 0.4184 0.8086 0.3631
✓ ✓ 0.8080 0.4476 0.7976 0.4187 0.8116 0.3614
✓ ✓ ✓ 0.8085 0.4472 0.7984 0.4180 0.8146 0.3581

DeepFm
✓ 0.8042 0.4512 0.7953 0.4205 0.8091 0.3623

✓ 0.8042 0.4511 0.7955 0.4204 0.8083 0.3630
✓ ✓ 0.8044 0.4510 0.7954 0.4206 0.8100 0.3622
✓ ✓ ✓ 0.8054 0.4500 0.7967 0.4194 0.8149 0.3579

xDeepFm
✓ 0.8067 0.4489 0.7972 0.4190 0.8144 0.3584

✓ 0.8069 0.4487 0.7973 0.4190 0.8134 0.3595
✓ ✓ 0.8072 0.4484 0.7974 0.4186 0.8129 0.3607
✓ ✓ ✓ 0.8080 0.4477 0.7983 0.4181 0.8178 0.3506

DCNv2
✓ 0.8084 0.4475 0.7981 0.4183 0.8082 0.3623

✓ 0.8090 0.4467 0.7986 0.4177 0.8079 0.3630
✓ ✓ 0.8093 0.4464 0.7986 0.4178 0.8075 0.3632
✓ ✓ ✓ 0.8098 0.4462 0.7991 0.4175 0.8143 0.3579

13

Published as a conference paper at ICLR 2023

D MORE TEN INDEPENDENT EXPERIMENTS WITH DIFFERENT SEEDS

We conduct additional t-tests experiments on additional 4 models (IPNN, DeepFm, xDeepFm, and
DCNv2). We report the mean and standard deviation of AUC for 10 independent runs with different
seeds in Table 8. It can be observed that when applying our MaskFusion on these baseline models, it
indeed consistently outperforms the original baseline models over three datasets.

Table 8: The mean and std. of AUC for 10 independent runs with different seeds on the Criteo dataset.

Model AUC Logloss AP. AUC t-score AUC p-value

IPNN Baseline 0.8072 ± 2.7e−4 0.4485 ± 3.2e−4 0.6146 ± 6.6e−4

8.26 < 5e−4

Adaptive FwMF 0.8084 ±3.1e−4 0.4465 ± 2.8e−4 0.6163 ± 5.9e−4

DeepFm Baseline 0.8043 ± 2.0e−4 0.4516 ± 3.3e−4 0.6088 ± 4.4e−4

15.62 < 5e−4

Adaptive DwMF 0.8062 ± 2.8e−4 0.4494 ± 3.2e−4 0.6120 ± 2.5e−4

xDeepFm Baseline 0.8065 ± 3.7e−4 0.4493 ± 2.8e−4 0.6130 ± 6.9e−4

9.86 < 5e−4

Adaptive DwMF 0.8083 ± 3.6e−4 0.4475 ± 4.0e−4 0.6162 ± 4.7e−4

DCNv2 Baseline 0.8084 ± 2.1e−4 0.4478 ± 1.9e−4 0.6157 ± 5.1e−4

12.99 < 5e−4

Adaptive FwMF 0.8099 ± 2.5e−4 0.4463 ± 2.4e−4 0.6188 ± 4.6e−4

E COMPARE WITH OTHER INPUT-ADAPTIVE BASED MASK METHOD

MaskFusion is a general framework that can be integrated with any deep CTR models and achieve
non-trivial improvements. It is unnatural to compare it with specially designed input-adaptive mask-
based deep models such as MaskNet [Wang 2021b]. To alleviate the reviewer’s concerns, we humbly
yet firmly argue that proper experimentation should focus on whether the orthogonal non-trivial
performance improvements can be achieved by integrating MaskFusion with the deep CTR model
which adopts an input-adaptive mask mechanism, like MaskNet [Wang 2021b]. Therefore, we
conducted additional experiments on the recent input-adaptive mask-based baseline model MaskNet.
We reimplemented MaskNet, the number of MaskBlock is 5, the reduction ratio is 2, and the
architecture type is parallel. For a fair comparison, we trained it using the same hyperparameters and
dataset settings as claimed in Appendix A. The results on Criteo and Avazu are as follows:

We report the mean and standard deviation AUC, and Logloss of 10 independent runs with different
seeds. If applying our MaskFusion on MaskNet, the performance on Criteo and Avazu datasets can
be still further improved by non-trivial 0.18% and 0.25% in terms of AUC, which fully shows that
MaskFusion is a general and effective framework that can bring orthogonal non-trivial performance
improvement for deep CTR model robustly, even for input-adaptive mask-based models.

Table 9: The comparisons on MaskNet.

Model Criteo Avazu Model TypeAUC↑ Logloss↓ AUC↑ Logloss↓

MaskNet Baseline 0.8081 ±1.3e−4 0.4476 ±2.2e−4 0.8164 ±3.0e−4 0.3582 ±5.0e−4

Single Tower
Adaptive DwMF 0.8099 ±1.6e−4 0.4453 ±2.2e−4 0.8189 ±3.4e−4 0.3553 ±3.0e−4

F HYPER-PARAMETERS STUDIES

We study how the hyper-parameters impact the performance of DRS models integrated with MaskFu-
sion. We mainly focus on two hyper-parameters: the number of DNN layers and the dimension of the
embedding layer. In industrial scenarios, the former mainly affects the inference speed of Deep CTR
models, while the latter mainly affects the saving memory of Deep CTR models.

Number of DNN Layers. The complexity of the DNN model will increase as the number of layers
increases. From Figure 3 to 5, we can observe: For the baseline model, the performance will increase
with the depth of DNN and then will degrade because of overfitting. However, the performance of the
models incorporated with Adaptive DwMF has smoother improvements as the DNN depth increases.

14

Published as a conference paper at ICLR 2023

Meanwhile, the models incorporated with Adaptive DwMF always outperform the baseline as the
number of layers increases. This phenomenon demonstrates the effectiveness and robustness of the
MaskFusion framework.

1 2 3 4
number of DNN layers

A
U

C

0.8052 0.8055
0.8049 0.8033

0.8079 0.8087 0.8085
0.8079

Adaptive DwMF
Baseline

(a) Autoint+

1 2 3 4
number of DNN layers

A
U

C

0.8032

0.8043 0.8042

0.8045

0.8075 0.8084 0.8085
0.8081

Adaptive DwMF
Baseline

(b) DCN

1 2 3 4
number of DNN layers

A
U

C

0.8077
0.8082

0.8079 0.8079

0.8092
0.8096 0.8093

0.8091

Adaptive DwMF
Baseline

(c) DLRM

Figure 3: The performance comparison in terms of the number of DNN layers on the Criteo dataset.

1 2 3 4
number of DNN layers

A
U

C

0.7974

0.7958
0.7964

0.7954

0.7988 0.7986
0.7991 0.7990

Adaptive DwMF
Baseline

(a) Autoint+

1 2 3 4
number of DNN layers

A
U

C

0.7944

0.7957 0.7959

0.7957

0.7980 0.7980
0.7984 0.7986

Adaptive DwMF
Baseline

(b) DCN

1 2 3 4
number of DNN layers

A
U

C

0.7967
0.7973

0.7978
0.7971

0.7992 0.7992 0.7993 0.7994

Adaptive DwMF
Baseline

(c) DLRM

Figure 4: The performance comparison in terms of the number of layers on Terabyte dataset

1 2 3 4
number of DNN layers

A
U

C

0.8084
0.8089 0.8070

0.8058

0.8178

0.8176 0.8173

0.8172

Adaptive DwMF
Baseline

(a) Autoint+

1 2 3 4
number of DNN layers

A
U

C

0.8054 0.8049 0.8049 0.8048

0.8157
0.8167 0.8171

0.8158

Adaptive DwMF
Baseline

(b) DCN

1 2 3 4
number of DNN layers

A
U

C

0.8122
0.8140

0.8154
0.8145

0.8169 0.8188 0.8188 0.8192

Adaptive DwMF
Baseline

(c) DLRM

Figure 5: The performance comparison in terms of the number of layers on the Avazu dataset

Dimension of embedding layer. Figure 6 to 8 show the impact of the dimension of embedding
layer. The performances of all three baseline models with the larger dimension will increase at
the beginning. However, except for DLRM, the performance of DCN and Autoint+ will degrade
when the dimension becomes larger than 16 and 24 respectively. For models incorporated with
Adaptive DwMF, their performances not only consistently outperform the corresponding baseline
models but also are continuously improved as the dimension increases from 8 to 32. We attribute
this phenomenon to MaskFusion making full use of the low-dimensional dense representation of
features: the dynamic interaction mechanism between feature embeddings and DNN structure can
enable better embedding table training.

To summarize, MaskFusion shows its effectiveness and robustness over the different hyper-parameters
settings. Especially, from the results of Figure 3, we can observe that the models incorporated with

15

Published as a conference paper at ICLR 2023

8 16 24 32
dimensions of embedding layer

A
U

C

0.8011

0.8058 0.8038 0.8039

0.8067

0.8089
0.8093

0.8093

Adaptive DwMF
Baseline

(a) Autoint+

8 16 24 32
dimensions of embedding layer

A
U

C

0.8037
0.8053

0.8049 0.8053

0.8070
0.8085

0.8089
0.8090

Adaptive DwMF
Baseline

(b) DCN

8 16 24 32
dimensions of embedding layer

A
U

C 0.8069

0.8087
0.8091

0.80960.8081

0.8101 0.8106 0.8108

Adaptive DwMF
Baseline

(c) DLRM

Figure 6: The performance comparison in terms of the embedding layer dimensions on the Criteo dataset.

8 16 24 32
dimensions of embedding layer

A
U

C

0.7934

0.7968
0.7956 0.7955

0.7971

0.7989
0.7994 0.7998

Adaptive DwMF
Baseline

(a) Autoint+

8 16 24 32
dimensions of embedding layer

A
U

C

0.7952

0.7964 0.7966 0.7964

0.7973

0.7985 0.7985 0.7989

Adaptive DwMF
Baseline

(b) DCN

8 16 24 32
dimensions of embedding layer

A
U

C

0.7949

0.7970

0.7987 0.79900.7968

0.7996 0.8003 0.8004

Adaptive DwMF
Baseline

(c) DLRM

Figure 7: The performance comparison in terms of the embedding layer dimensions on Terabyte dataset

8 16 24 32
dimensions of embedding layer

A
U

C

0.8049

0.8086

0.8055 0.8063

0.8133

0.8174

0.8203
0.8191

Adaptive DwMF
Baseline

(a) Autoint+

8 16 24 32
dimensions of embedding layer

A
U

C

0.8043

0.8053

0.8051 0.8053

0.8135

0.8167
0.8192 0.8197

Adaptive DwMF
Baseline

(b) DCN

8 16 24 32
dimensions of embedding layer

A
U

C

0.8112

0.8145
0.8163

0.81900.8151

0.8186
0.8209 0.8209

Adaptive DwMF
Baseline

(c) DLRM

Figure 8: The performance comparison in terms of the embedding layer dimensions on Avazu dataset

MaskFusion under shallower DNN or smaller embedding dimensions scenario can outperform the
baseline models that have deeper DNN or larger embedding dimensions setting. For example,
DLRM incorporated with Adaptive DwMF with the embedding dimension value 8 can still
outperform the baseline model with the embedding dimension 32 by a non-trivial improvement:
0.06%. This means that the MaskFusion framework can also be a memory-friendly framework.
Numerical features in commercial recommendation systems inevitably lead to huge embedding tables,
if the embeddings can be represented only by an 8-dimensional vector, it will save 75% memory
consumption compared to a 32-dimensional embedding representation.

From Figure 4 to Figure 8, we can draw similar conclusions. For the baseline model, increasing
the model complexity (increasing the number of layers of the DNN or increasing the dimension
of the DNN) does not always bring performance improvements to the model; however, there is a
smoother improvement in the performance of the model incorporated with MaskFusion as the model
complexity increases. This phenomenon is more obvious in Terabyte, which is a much larger dataset
than Criteo and Avazu.

16

Published as a conference paper at ICLR 2023

As we know, on very large datasets, larger models tend to perform better, however, the baseline
models in Figure 4 and Figure 7 do not have a similar phenomenon. We argue the reasons as follows:
Simply increasing the network depth may increase the generalization ability of the network. However,
the CTR prediction of recommendation scenarios not only requires a strong generalization ability but
also needs to be able to make personalized recommendations according to different users’ behavior
Cheng et al. (2016); Wang et al. (2021b). This requires the model to take into account both
memorization and generalization capabilities, the MaskFusion framework can bring the "input-
adaptive" attribute to the model, allowing the model to automatically balance generalization
and memorization ability.

G FUSION LAYER FOR MEMORIZATION AND GENERALIZATION

From Section. 4.3, we can conclude: The Fusion Layer is designed to explicitly enhance the network
memorization ability to remember feature combinations that have appeared in historical information
(memorization is better). But at the same time, this may also make the network more difficult to
recommend based on feature combinations that have never appeared before (generalization may be
worse). Here, to better support our claim, we provide the training loss and test loss of the baseline
model and the baseline model integrated with the Fusion Layer during the training process. As shown
in Table. 10, with only the Fusion layer added to the baseline, the training loss is significantly reduced
compared to the baseline model (memorization ability on training data is better). However, there
are no corresponding reductions for testing loss (generalization ability on test data is not improved,
sometimes worse).

Table 10: The training loss and test loss of the baseline model with and without the Fusion Layer.

Criteo training loss Criteo test loss

DCN Baseline 0.4451 0.4506
DCN+Fusion Layer 0.4439 0.4503

Autoint Baseline 0.4447 0.4496
Autoint+Fusion Layer 0.4443 0.4505

DLRM Baseline 0.4434 0.4469
DLRM+Fusion Layer 0.4425 0.4475

H MASKFUSION UNDERSTANDING

The features can interact with the deep part of the deep CTR model dynamically under our MaskFusion
framework. Such design will enhance the memorization ability of deep CTR models since the closer
the feature is to the output layer, the more directly it can participate in the prediction task Cheng et al.
(2016). Here we will show whether the MaskFusion framework captures the feature that needs to be
memorized. As shown in Figure 9, Instance A, Instance B, and Instance C are randomly sampled from
the dataset, and the mask values for each instance in each layer of DNN are recorded. For instance A,
MaskFusion believes that most of the features should be fused to the first and second layers of DNN,
instead of the last layer. For instance B, MaskFusion believes that most features should be fused to
the last layer instead of the first and second layers. For instance C, most of its features are fused in the
first and last layers of the DNN. These different mask values patterns for three different instances can
indicate that our MaskFusion framework has successfully learned to choose different best positions
where the same features of different instances should be fused, according to the characteristics of
different instances, which also indeed dynamically make a trade-off between the generalization and
memorization for different instances.

17

Published as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Index of feature field

1s
t l

ay
er

2n
d

la
ye

r
3r

d
la

ye
r

Va
lu

e
of

 m
as

k

0.0

0.2

0.4

0.6

0.8

1.0

(a) Distribution of mask values for instance A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Index of feature field

1s
t l

ay
er

2n
d

la
ye

r
3r

d
la

ye
r

Va
lu

e
of

 m
as

k

0.0

0.2

0.4

0.6

0.8

1.0

(b) Distribution of mask values for instance B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Index of feature field

1s
t l

ay
er

2n
d

la
ye

r
3r

d
la

ye
r

Va
lu

e
of

 m
as

k

0.0

0.2

0.4

0.6

0.8

1.0

(c) Distribution of mask values for instance C

Figure 9: The mask value distribution of three instances learned on the Terabyte dataset by DLRM integrated
with Mask Fusion.

I FUNCTIONALITIES EXTENSION

I.1 MASKFUSION MEETS EMBEDDING DIMENSION REDUCTION.

As a general and easy-to-integrate framework, MaskFusion can be combined with many other
methods, such as feature selection Ma et al. (2021); Shen et al. (2020), feature dimension search Shen
et al. (2020), etc. Without losing generalization, we use embedding dimensions reduction to prune
the dimensions of the fused features and reduce the inference latency time. Deep-learning-based CTR
prediction can be formulated by the following function:

y = f(W;E) (7)

where W denotes the parameters of the Deep CTR model and E ∈ Rn·d denotes the embedding
vectors (E also denotes the feature embedding which will be fused to the deep part of the Deep CTR
model), n is feature number and d is feature dimension. As shown in Figure 10, to reduce the size of
the Deep CTR model, we can prune the dimension of fused feature E by inserting a gate g:

y = f(W;g ·E) (8)

where g ∈ Rn·d.

Since we want to reduce the dimension without affecting the model performance, we only remove
the corresponding dimension from the feature when g is exactly 0. Therefore, it is an optimization

18

Published as a conference paper at ICLR 2023

Feature Interaction

Layer

Deep NN Mask Controller

Mask
generator

Mask
generator

IN Layer

Fusion

Mask
generator

Output Unit

sparse input dense input

Embedding Layer

softmax

Figure 10: Embedding dimension reduction by inserting smoothed-L0 gate in the MaskFusion framework.

Table 11: The comparisons between the baseline models and SmoothL0 FwMF models. (sparsity: reduce-ratio
of parameter number of fused features)

Model Criteo Avazu
AUC↑ Logloss↓ sparsity AUC↑ Logloss↓ sparsity

IPNN Baseline 0.8073 0.4483 -/- 0.8118 0.3600 -/-
SmoothL0 FwMF 0.8084 0.4474 39% 0.8143 0.3585 16%

DeepFm Baseline 0.8042 0.4512 -/- 0.8091 0.3623 -/-
SmoothL0 FwMF 0.8055 0.4499 14% 0.8132 0.3587 62%

xDeepFm Baseline 0.8067 0.4489 -/- 0.8144 0.3584 -/-
SmoothL0 FwMF 0.8079 0.4479 16% 0.8171 0.3523 30%

DCN Baseline 0.8046 0.4506 -/- 0.8053 0.3641 -/-
SmoothL0 FwMF 0.8073 0.4482 58% 0.8144 0.3584 56%

Autoint+ Baseline 0.8058 0.4496 -/- 0.8086 0.3621 -/-
SmoothL0 FwMF 0.8072 0.4484 39% 0.8125 0.3594 54%

DLRM Baseline 0.8085 0.4469 -/- 0.8145 0.3592 -/-
SmoothL0 FwMF 0.8097 0.4461 51% 0.8170 0.3575 27%

problem with the ℓ0 constraint. GDP Guo et al. (2021) introduces a smoothed-L0 function to prune
the channel of the CNN network. Similarly, we introduce this smoothed-L0 gate function to prune
the dimension of the embedding:

y = f(W; g(x) ·E) (9)

g(x) =
x2

x2 + ϵ
(10)

where ϵ is a small positive number, x ∈ Rn·d. During the training process, the corresponding
dimension where g(x) becomes exactly 0 will be pruned from this feature. We present experimental
results of applying embedding dimension reduction within the MaskFusion framework in Table 11.
In experiments, the parameter x in the gate function will be updated by SGD Robbins & Monro
(1951) optimizer with the momentum parameter 0.9 and the learning rate 0.006. The ϵ is initialized
to 0.1 and will decay by a factor of 0.999, the minimum value is 0.0005. From Table 11, we can
conclude: after inserting feature dimension reduction in MaskFusion, Smooth-L0 FwMF consistently
outperforms all baseline models with fewer feature dimensions.

19

Published as a conference paper at ICLR 2023

Table 12: The comparisons between the baseline models and DCNv2-type FwMF models.

Model Criteo Avazu
AUC↑ Logloss↓ AUC↑ Logloss↓

DCN Baseline 0.8046 0.4506 0.8053 0.3641
DCNv2-type DwMF 0.8090 0.4468 0.8134 0.3610

Autoint+ Baseline 0.8058 0.4496 0.8086 0.3621
DCNv2-type DwMF 0.8089 0.4467 0.8124 0.3592

DLRM Baseline 0.8085 0.4469 0.8145 0.3592
DCNv2-type DwMF 0.8096 0.4461 0.8171 0.3563

IPNN Baseline 0.8073 0.4483 0.8118 0.3600
DCNv2-type DwMF 0.8086 0.4474 0.8157 0.3578

DeepFm Baseline 0.8042 0.4512 0.8091 0.3623
DCNv2-type DwMF 0.8061 0.4497 0.8165 0.3586

xDeepFm Baseline 0.8067 0.4489 0.8144 0.3584
DCNv2-type DwMF 0.8079 0.4479 0.8191 0.3551

I.2 MASKFUSION MEETS DCNV2-TYPE MASK CONTROLLER.

MaskFusion is not limited to a specific augmentation way, besides the aforementioned MLP, it
welcomes any other methods to generate masks to augment features. Here, we use DCNv2 as the Mask
Controller for illustration. The core of DCNv2 can be expressed by El+1 = E0 ⊙ (WEl + b) +El,
where El+1 denotes the augmented feature, WEl + b denotes the mask. So, it can be regarded as
a feature augmentation method with a residual signal. From Table 12 we can observe: If using a
different augmentation method (DCNv2) as the Mask Controller, MaskFusion can still achieve better
performance than baselines.

20

	Introduction
	Related Work
	Method
	Deep Recommendation System
	MaskFusion
	Fusion Layer
	Mask Controller
	Instance Normalization Layer

	Experiments
	Experiment Setup
	Performance Comparisons
	Ablation Studies
	The Number of Parameters and the Latency

	Ten Independent Experiments with different seed
	Online A/B testing
	Conclusions
	Implementation Details
	More Comparisons
	Analysis of Performance Improvements

	More Ablation Studies
	More Ten Independent Experiments with different seeds
	Compare with other input-adaptive based Mask Method
	Hyper-parameters Studies
	Fusion Layer for Memorization and Generalization
	MaskFusion Understanding
	Functionalities Extension
	MaskFusion meets Embedding Dimension Reduction.
	MaskFusion meets DCNv2-type Mask Controller.

