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Abstract

Current deep-learning models for object recognition are known to be heavily biased
toward texture. In contrast, human visual systems are known to be biased toward
shape and structure. What could be the design principles in human visual systems
that led to this difference? How could we introduce more shape bias into the deep
learning models? In this paper, we report that sparse coding, a ubiquitous principle
in the brain, can in itself introduce shape bias into the network. We found that
enforcing the sparse coding constraint using a non-differential Top-K operation
can lead to the emergence of structural encoding in neurons in convolutional neural
networks, resulting in a smooth decomposition of objects into parts and subparts
and endowing the networks with shape bias. We demonstrated this emergence of
shape bias and its functional benefits for different network structures with various
datasets. For object recognition convolutional neural networks, the shape bias
leads to greater robustness against style and pattern change distraction. For the
image synthesis generative adversary networks, the emerged shape bias leads to
more coherent and decomposable structures in the synthesized images. Ablation
studies suggest that sparse codes tend to encode structures, whereas the more
distributed codes tend to favor texture. Our code is host at the github repository:
https://topk-shape-bias.github.io/

1 Introduction

Sparse and efficient coding is a well-known design principle in the sensory systems of the brain [3, 31].
Recent neurophysiological findings based on calcium imaging found that neurons in the superficial
layer of the macaque primary visual cortex (V1) exhibit even a higher degree of lifetime sparsity
and population sparsity in their responses than previously expected. Only 4–6 out of roughly 1000
neurons would respond strongly to any given natural image [37]. Conversely, a neuron typically
responded strongly to only 0.4% of the randomly selected natural scene images. This high degree of
response sparsity is commensurated with the observation that many V1 neurons are strongly tuned
to more complex local patterns in a global context rather than just oriented bars and gratings [36].
On the other hand, over 90% of these neurons did exhibit statistically significant orientation tuning,
though mostly with much weaker responses. This finding is reminiscent of an earlier study that
found similarly sparse encoding of multi-modal concepts in the hippocampus [32]. This leads to the
hypothesis that neurons can potentially serve both as a super-sparse specialist code with their strong
responses, encoding specific prototypes and concepts, and as a more distributed code, serving as the
classical sparse basis functions for encoding images with much weaker responses. The specialist
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code is related to the idea of prototype code, the usefulness of which has been explored in deep
learning for serving as memory priors [24] in image generation, for representing structural visual
concepts [38, 39], or for constraining parsimonious networks [26] for object recognition.

In computer vision community, recent studies found that Convolutional Neural Networks (CNNs)
trained for object recognition rely heavily on texture information [11]. This texture bias leads to
misclassification when objects possess similar textures but different shapes [2]. In contrast, human
visual systems exhibit a strong ’shape bias’ in that we rely primarily on shape and structures over
texture for object recognition and categorization [20]. For instance, a human observer would see a
spherical object as a ball, regardless of its texture patterns or material make-up [34]. This poses an
interesting question: What is the design feature in the human vision systems that lead to the shape
bias in perception?

Figure 1: Shape bias of our sparse CNNs versus standard CNNs and SOTA transformer-based
networks in comparison to the shape bias of human subjects, as evaluated on benchmark dataset [10]
across 16 classes. The red dotted line shows the frontier of transformer-based networks with the
best shape bias. The greed dotted line shows that sparse CNNs push the frontier of the shape bias
boundary toward humans.

In this paper, we explore whether the constraint of the high degree of strong-response sparsity
in biological neural networks can induce shape bias in neural networks. Sparsity, particularly in
overcomplete representations, is known to encourage the formation of neurons encoding more specific
patterns [30]. Here, we hypothesize that these learned specific patterns contain more shape and
structure information, thus sparsifying the neuronal activation could induce shape bias in neuronal
representation. To test this hypothesis, we impose a sparsity mechanism by keeping the Top K
absolute response of neuronal activation at each channel in one or multiple layers of the network,
and zeroing out the less significant activation with K is a sparsity parameter that we can adjust for
systematic evaluation.

We found that this sparsity mechanism can indeed introduce more shape bias in the network. In
fact, simply introducing the Top-K operation during inference in the pre-trained CNNs such as
AlexNet [19] or VGG16 [33] can already push the frontier of the shape bias benchmark created by
[10] (as shown in Figure 1). Additional training of these networks with the Top-K operation in place
further enhances the shape bias in these object recognition networks. Furthermore, we found that the
Top-K mechanism also improves the shape and structural bias in image synthesis networks. In the
few-shot image synthesis task, we show that the Top-K operation can make objects in the synthesized
images more distinct and coherent.

To understand why Top-K operation can induce these effects, we analyzed the information encoded in
Top-K and non-Top-K responses using the texture synthesis paradigm and found that Top-K responses
tend to encode structural parts, whereas non-Top-K responses contribute primarily to texture and
color encoding, even in the higher layers of the networks. Our finding suggests that sparse coding is
important not just for making neural representation more efficient and saving metabolic energy but
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also for contributing to the explicit encoding of shape and structure information in neurons for image
analysis and synthesis, which might allow the system to analyze and understand 3D scenes in a more
structurally oriented part-based manner [4], making object recognition more robust.

2 Related Works

Shape Bias v.s. Texture Bias There has been considerable debate over the intrinsic biases of
Convolutional Neural Networks (CNNs). [11] conducted a pivotal study demonstrating that these
models tend to rely heavily on texture information for object recognition, leading to misclassifications
when objects have similar textures but distinct shapes. In addition, it has also been shown that using
the texture information alone are sufficient to achieve object classification [6]. This texture bias
contrasts markedly with human visual perception, which exhibits a strong preference for shape over
texture – a phenomenon known as ’shape bias’[20]. Humans tend to categorize and recognize objects
primarily based on their shape, a factor that remains consistent across various viewing conditions and
despite changes in texture [34]. These studies collectively form the foundation upon which our work
builds, as we aim to bridge the gap in shape bias between computer vision systems and human visual
systems.

Improving Shape Bias of Vision Models Following the identification of texture bias in CNNs
by [11], numerous studies sought to improve models’ shape bias for better generalization. Training
methods have been developed to make models more shape-biased, improving out-of-distribution
generalization. Some approaches, like [11], involved training with stylized images to disconnect
texture information from the class label. Such approach posed computational challenges and didn’t
scale well. Others, like [15], used human-like data augmentation to mitigate the problem, while [23]
proposed shape-guided augmentation, generating different styles on different sides of an image’s
boundary. However, these techniques all rely on data augmentation. Our focus is on architectural
improvements for shape bias, similar to [1] which created a texture-biased model by reducing the
CNN model’s receptive field size. We propose using sparsity operations to enhance shape bias of
CNNs. Furthermore, [7] proposes to scale up the transformer model into 22 billion parameters and
show a near human shape bias evaluation results. We, on the other hand, are not comparing with their
network since we focus on CNNs which requires less computation and doesn’t require huge data to
learn. We demonstrate in the supplementary that the same sparsity constraint could also be beneficial
to the ViT family as well, hinting the generalizability of our findings.

Robustness In Deep Learning Robustness in deep learning literature typically refers to robustness
against the adversarial attack suggested by [35] which showed that minuscule perturbations to images,
imperceptible to the human eye, can drastically alter a deep learning model’s predictions. Subsequent
research [14, 21] corroborated with these findings, showing that deep neural networks (DNNs) are
vulnerable to both artificially-induced adversarial attacks and naturally occurring, non-adversarial
corruptions. However, the robustness we are mentioning in this paper is about the robustness against
confusing textures that are misaligned with the correct object class, as illustrated by the cue-conflict
datasets provided by [11]. Although sparsity has been shown to be effective against the adversarial
attack [25], explicit usage of Top-K in shape bias has not been explored.

3 Method

3.1 Spatial Top-K Operation in CNN

Sparse Top-K Layer We implement the sparse coding principle by applying a Top-K operation
which keeps the most significant K responses in each channel across all spatial locations in a
particular layer. Specifically, for a internal representation tensor X 2 Rc�h�w, Top-K layer produces
XTop_K := Top_K(X, K), where the XTop_K is defined as:

XTop_K[i; j; k] :=

�
X[i; j; k]; if abs(X[i; j; k]) � Rank(abs(X[i; :; :]))[K]

0; otherwise
(1)

Equation 1 specifies how each entry of a feature tensor X 2 Rc�h�w would be transformed inside
the Top-K layer. The zero-out operation in Equation 1 suggests that the gradient w.r.t. any non Top-K
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value, as well as the gradients that chain with it in the previous layers will become zero. However,
our analysis later suggests that the network can still learn and get optimized, leading to improved
dynamic spatial Top-K selection.

Sparse Top-K With Mean Replacement To determine the relative importance of the Top-K values
or the Top K positions in the Top-K operation, we create an alternative scheme in which all the
Top-K responses in a channel are replaced by the mean of the Top-K responses in the channel
Top_K_Mean_Rplas de�ned below:

XTop_K_Mean_Rpl[i ; j ; k] :=

(
1
n

P
j;k 2f Top-Kgn

X[i ; j ; k]; if abs(X[i ; j ; k]) � Rank(abs(X[i ; :; :]))[K]
0; otherwise

This Top_K_Mean_Rploperation reduces the communication rate between layers by 1000 times.
We study the impact of this operation on object performance in an object recognition network (See
section 4.3 for the results) and to determine which type of information (values versus positions) is
essential for inducing the shape bias.

3.2 Visualizing the Top-K code using Texture Synthesis

We used a texture synthesis approach [9] with ablation of Top-K responses to explore the information
contained in the Top-K responses in a particular layer using the following method.

Suppose a programF (�) denotes a pre-trained VGG16 network with a number of parameters N [33]
andTS : Rh� w � 3 � N ! Rh� w � 3 denotes the texture synthesis program from [9] where an input
imageI is iteratively optimized by gradient descent to best match the target imageT's internal
activation when passing throughF (T). We detail the operations insideTS below. Denote the internal
representation at each layeri of the VGG16 network when passing an input imageI throughF (�) as
X i (I ), and suppose there existL layers in the VGG16 network. We update the imageI as follows:

I  I � lr �
�

@
@I

P L
i [Gr (X i (I )) � Gr (X i (T))]

�

,whereGr (�) : Rh� w � c ! Rc� c denotes the function that computes gram matrix of a feature
tensor, i.e.Gr (X i (I )) = X i (I )T X i (I ). We adopt LBFGS [28] with initial learning rate 1.0 and 100
optimization steps in all our experiments with the texture synthesis program.

Utilizing the above texture synthesis programTS(�; VGG16), we can obtain the synthesis results in
Sw/o Top-K by manipulating the internal representation of VGG16 such that we only use the non-Top-K
responses to compute the Gram matrix when forming the Gram matrix optimization objectives.
This effectively computes a synthesis such that it only matches with the internal non-Top-K neural
response. For a given target imageT, this leads toSw/o Top-K:

Sw/o Top-K = TS(T; ZeroOutInternalTopK(VGG16) )

, which would show the information encoded by non-Top-K responses. Next, we include the Top-K
�ring neurons when computing the Gram matrix to getSw/ Top-K:

Sw/ Top-K = TS(T; IdentifyFunction(VGG16) )

. Comparing these two results will allow us assess the information contained in the Top-K responses.

3.3 Visualizing the Top-K neurons via Reconstruction

Similar to section 3.2, we provide further visualization of the information Top-K neurons encode by
iteratively optimizing an image to match the internal Top-K activation directly. Mathematically, we
rede�ne our optimization objective in section 3.2:

I  I � lr �
�

@
@I

P L
i [X i (I ) � Maski � X i (T)]

�

, whereMaski a controllable mask for each layeri . There are three types of mask we used in the
experiments:f Top-K_Mask; non_Top-K_Mask; Identity_Mask g. Top-K_Maskselects only the
Top-K �red neurons while keeps the rest of the neurons zero, whereasnon_Top-K_Maskonly selects
the opposite of theTop-K_MaskandIdentity_Mask preserves all neurons. By comparing these
three settings, one can easily tell the functional difference between Top-K and non Top-K �red
neurons (See results in Figure 3).
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3.4 Shape Bias Benchmark

To demonstrate our proposal that the Top-K responses are encoding the structural and shape informa-
tion, we silence the non-Top-K responses during inference when using pre-trained CNNs. To test
the networks' shape bias, we directly integrate our code into the benchmark provided by [10]. The
benchmark contains a cue-con�ict test which we use to evaluate the Top-K operation. The benchmark
also includes multiple widely adopted models with pre-trained checkpoints and human psychological
evaluations on the same cue-con�ict testing images.

4 Results

4.1 Top-K Neurons Encode Structural Information

To test the hypothesis that the shape information is mostly encoded among the Top-K signi�cant
responses, whereas the non-Top-K responses are encoding primarily textures, we used the method
described in Section 3.2 and compared the texture images synthesized with and without the Top-K
responses for the computation of the Gram matrix. Figure 2 compares the TS output obtained by
matching the early layers and the higher layers of the VGG16 network in the two conditions. One can
observe that ablation of the Top-K responses eliminated much of the structural information, resulting
in more texture images. We conclude from this experiment that (1) Top-K responses are encoding
structural parts information; (2) Non Top-K responses are primarily encoding texture information.

Figure 2: Texture Synthesis (TS) using [9]. i. shows the original image, ii. shows the TS results of
Sw/ Top-K with both Top-K and Non Top-K activation intact, iii. shows the TS resultsSw/o Top-K with
Top-K activation deleted before performing TS.

To provide further insights about the different information Top-K and non Top-K neurons are encoding,
we show another qualitative demonstration in Figure 3 where we optimize images that would excite
the Top-K neurons alone and the non Top-K neurons alone respectively (See full description in
Section 3.3).

Figure 3: Visualizing Top-K and non Top-K neurons through optimizing input images to match their
activation.

From Figure 3, it is clear that optimizing images to match the Top-K �red neurons yields high level
scene structures with details abstracted away while optimization efforts to match the non Top-K �red
neurons produce low level local textures of the target images. Together, we provide evidence to
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support our hypothesis that it is the strong �ring neurons in the convolutional neural networks that
provide structural information while the textures are encoded among the weakly activated neurons.
Next, we demonstrate that this phenomenon will result in improved shape bias in both analysis and
synthesis tasks.

4.2 Top-K Responses already have Shape Bias without Training

We test the Top-K activated CNNs with different degrees of sparsity on the shape bias Benchmark
proposed from [10]. This benchmark evaluates the shape bias by using a texture-shape cue con�ict
dataset where the texture of an image is replaced with the texture from other classes of images. It
de�nes the shape and texture bias in the following ways:

shape bias=
# of correct shape recognitions

# of correct recognitions

texture bias =
# of correct texture recognitions

# of correct recognitions

It has been shown in previous work [10, 11] that CNNs perform poorly on shape-based decision tests
whereas human subjects can make successful shape-based classi�cation on nearly all the evaluated
cases. This results in CNN models having relatively low shape bias scores while humans have close
to 1 shape bias score. Interestingly, it has been observed that Vision Transformers (ViT) model family
has attained signi�cant improvement in shape bias [10].

Figure 4: Overall shape bias of sparse CNNs, CNNs, Transformer and humans

Adding the Top-K operation to a simple pretrained such as AlexNet or VGG16 alone already can
already induced a signi�cant increase in shape bias, as shown in Fig.4. With the sparsity knob K
equal to 10% and 20%, the Top-K operation alone appears to achieve as much or more shape bias as
the state-of-the-art Vision Transformer models in the cue-con�ict dataset, leading further support to
the hypothesis that Top-K sparsity can lead to shape bias.

We plot the best of the Top-K sparsi�ed AlexNet and VGG16 for each evaluation of 16 object classes
in Fig.5. We can observe that sparsity constraint improve shape-biased decision-making for most of
the object classes, bringing the performance of the pre-trained model closer to human performance.
With the proper settings of sparsity, certain classes (e.g. the bottle and the clock category) could
attain human level performance in shape-biased scores.

However, we should note that the con�dence interval is quite large, indicating that the network
performs differently across the different classes. A closer look at shape bias for each class is shown
in Figure 5.

4.3 Top-K training induces Shape Bias in Recognition Networks

To evaluate the shape bias can be enhanced by training with Top-K operation, we trained ResNet-
18 [13] on different subsets of ImageNet dataset [8]. Each subset contains randomly selected 10
original categories from ImageNet,for all the training and evaluation. Every experiment is run three
times to obtain an error bar. During the evaluation, we employ AdaIn style-transfer using programs
adopted from [18] to transform the evaluation images into a texture-ablated form as shown in Figure 6.
The original texture of the image is replaced by styles of non-related images using style transform.
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