
Enhancing Large Vision-Language Models with Ultra-Detailed Image
Caption Generation

Anonymous ACL submission

Abstract001

High-quality image captions are essential for002
improving modality alignment and visual un-003
derstanding in Large Vision-Language Mod-004
els (LVLMs). However, the scarcity of ultra-005
detailed image caption data limits further ad-006
vancements. This paper presents a system-007
atic pipeline for generating high-quality, ultra-008
detailed image captions, encompassing both009
pre-processing and post-processing stages. In010
the pre-processing stage, we classify and dedu-011
plicate images, extract visual information using012
expert tools, and leverage GPT-4o with struc-013
tured prompts to generate initial captions. To014
enhance comprehensiveness, we introduce an015
expansion strategy based on Large Language016
Models (LLMs), defining eight descriptive di-017
mensions to refine and extend captions, which018
serve as seed data for training a proprietary cap-019
tioner model. In the post-processing stage, we020
incorporate human error-correction annotations021
and an active learning-inspired approach to re-022
fine low-quality samples. Using high-quality023
corrected data, we apply Direct Preference Op-024
timization (DPO) and develop a critic-rewrite025
pipeline, training a sentence-level critic model026
to mitigate hallucinations. Experimental results027
demonstrate that our ultra-detailed captions sig-028
nificantly enhance LVLMs’ perception and cog-029
nitive abilities across multiple vision-language030
benchmarks.031

1 Introduction032

Large Vision-Language Models (LVLMs) (Bai033

et al., 2023; Chen et al., 2023a; Dai et al., 2023; Liu034

et al., 2023a; Luo et al., 2023; Ye et al., 2023; Chen035

et al., 2024a,b) have made significant progress in036

bridging the gap between language and vision, en-037

abling tasks such as visual question answering and038

vision-language reasoning. However, the effective-039

ness of these models heavily depends on the qual-040

ity of the image caption data used for pre-training.041

High-quality image captions are crucial for improv-042

ing modality alignment, enhancing the understand- 043

ing of visual content, and ensuring that models can 044

generalize effectively across diverse visual and lin- 045

guistic contexts. Unfortunately, the image caption 046

datasets currently available for training LVLMs 047

often lack the fine-grained details necessary to cap- 048

ture the complexity of images, particularly in terms 049

of object attributes, object relationships, and intri- 050

cate visual features. 051

The scarcity of ultra-detailed image caption data 052

has become a key bottleneck in advancing LVLMs 053

capabilities. Most existing caption datasets either 054

lack sufficient visual detail or fail to provide com- 055

prehensive, detailed descriptions of the objects, at- 056

tributes, and relationships within images (Chen 057

et al., 2023b; Lai et al., 2023; Fan et al., 2023). 058

As a result, LVLMs trained on such data may fail 059

to align vision and language accurately, leading to 060

suboptimal performance on tasks that require fine- 061

grained visual reasoning. To address this challenge, 062

this paper presents a comprehensive pipeline for 063

generating high-quality, ultra-detailed image cap- 064

tions. The pipeline includes both pre-processing 065

and post-processing stages, aimed at enhancing 066

the quality of the generated captions and ensuring 067

better alignment with the visual content. 068

In the pre-processing stage, we first classify 069

and deduplicate the image data to build a multi- 070

dimensional image dataset. We then leverage ad- 071

vanced visual expert tools (Zhang et al., 2023c; Liu 072

et al., 2023c; PaddlePaddle) to extract rich visual in- 073

formation from the images and effectively integrate 074

these visual information to generate high-quality 075

image captions by prompting GPT-4o (Hurst et al., 076

2024). To further improve the completeness of 077

the image caption data, we introduce an expansion 078

strategy based on LLMs. Specifically, we design 079

eight descriptive dimensions for the images, en- 080

abling the LLMs to expand and complement im- 081

age details from multiple perspectives, ensuring a 082

more holistic view. Building on the focus points ex- 083
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Figure 1: We compare the performance of our method with the advanced GPT-4o and Qwen2VL-7B in image
captioning. For better visualization, objects are marked in blue, spatial relations in green, and knowledge are
distinguished using yellow. The comparison clearly shows that our method captures finer details in the image more
precisely and provides richer semantic understanding, further enhancing the quality of the image descriptions.

panded by the LLMs, we further prompt GPT-4o to084

extend the image captions to generate high-quality085

seed data, which are then used to train a proprietary086

image captioner model.087

In the post-processing stage, we adopt an active-088

learning-like strategy to identify and correct bad089

samples generated by the model through human an-090

notation. Using this high-quality, human-corrected091

data, we apply the DPO (Rafailov et al., 2024)092

alignment strategy to further enhance the image093

captioner model’s performance. To make the most094

effective use of the human-corrected data, we also095

design a critic-rewrite pipeline. Specifically, we096

train a sentence-level critic model. For each cap-097

tion, we decompose it into a series of atomic factual098

sentences and use the critic model to generate eval-099

uative comments for each atomic sentence. Based100

on the original caption and the critic results for101

these atomic sentences, we rewrite the caption to102

further reduce hallucinations in the generated im-103

age descriptions. As shown in Figure 1, our method104

generates more accurate and comprehensive image105

captions across multiple dimensions compared to106

the advanced GPT-4o and the open-source model107

Qwen2VL-7B (Wang et al., 2024a).108

Experimental results demonstrate that the im- 109

age captions generated using our proposed pipeline 110

significantly enhance the performance of existing 111

LVLMs across various vision-language tasks and 112

achieving better alignment between visual content 113

and textual descriptions. In a nutshell, our contri- 114

butions are as follows: 115

• We propose a powerful and scalable method 116

for creating high-quality, ultra-detailed image 117

captions, which is critical for enhancing the 118

capabilities of LVLMs. Our method offers a 119

promising solution to the limitations of cur- 120

rent image caption datasets. 121

• We create a high-quality image caption dataset 122

using the data generation pipeline proposed in 123

this paper and validate its impact on enhanc- 124

ing the performance of LVLMs through data 125

ablation experiments. 126

• We further validate the effectiveness of the 127

proposed method in generating image cap- 128

tions through an image caption benchmark 129

and manual quality analysis experiments, 130

demonstrating enhanced caption performance 131

and reduced hallucinations. 132
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2 Related Work133

2.1 LVLMs for Image-Text Data134

Enhancement135

With the rapid development of Large Vision-136

Language Models (LVLMs) (Liu et al., 2023a;137

Luo et al., 2023; Ye et al., 2023; Zhang et al.,138

2023a,b; Zhu et al., 2023; Dai et al., 2023), research139

on image-text data enhancement has garnered in-140

creasing attention, focusing primarily on improv-141

ing caption quality and vision-language alignment142

(Fan et al., 2023; Lai et al., 2023; Nguyen et al.,143

2023). LaCLIP (Fan et al., 2023) and VeCLIP (Lai144

et al., 2023) utilize LLMs to rewrite captions but145

are limited by issues of hallucinations. Models146

such as GPT-4V (OpenAI, 2023) can directly gen-147

erate high-quality captions from images. Large-148

scale datasets like LAION (Schuhmann et al.,149

2021) and CC12M (Sharma et al., 2018), as well150

as synthetic caption generators like ShareGPT4V151

(Chen et al., 2023b), provide significant support152

for vision-language pretraining. DenseFusion (Li153

et al., 2024b) enhances caption quality by incor-154

porating multimodal information during the data155

generation phase but remains largely confined to156

the data preprocessing stage. Despite progress,157

challenges persist in enhancing caption quality and158

reducing hallucinations. Future work should aim to159

optimize vision-language alignment and improve160

grounding.161

2.2 Preference Optimization162

Preference Optimization (PO) (Meng et al., 2024;163

Hong et al., 2024; Azar et al., 2024) is a key164

technique for advancing Large Language Mod-165

els (LLMs) and Large Vision-Language Models166

(LVLMs). Methods like Reinforcement Learning167

from Human Feedback (RLHF) and Direct Prefer-168

ence Optimization (DPO) (Rafailov et al., 2024)169

use human preferences as reward signals to opti-170

mize model outputs, making them more aligned171

with human intent. In the multimodal domain, de-172

spite existing methods focusing on reducing hallu-173

cinations (Yu et al., 2023a, 2024), alignment opti-174

mization in complex image captioning scenarios175

remains challenging. To address this, Critic Mod-176

els such as LLaVA-Critic (Xiong et al., 2024) and177

Prometheus-Vision (Lee et al., 2024) have emerged.178

These models can evaluate both visual and textual179

nuances, offering new ways to optimize alignment180

in complex multimodal tasks beyond single-task181

assessments.182

3 Pre-processing Stage 183

3.1 Data Collection and Preparation 184

To create a high-quality dataset for precise vision- 185

language perception, we have carefully assembled 186

a diverse and multi-dimensional dataset with rich 187

visual semantics to support the training of accurate 188

and contextually aware image captioning models. 189

Data Sources. To maximize the diversity and 190

comprehensiveness of the data, we have collected 191

approximately 800K images from various sources, 192

including the COCO dataset (Lin et al., 2014) for 193

object detection, the SAM dataset (Kirillov et al., 194

2023) for image segmentation, and large-scale mul- 195

timodal datasets commonly used in the field, such 196

as Wukong (Gu et al., 2022), LAION (Schuhmann 197

et al., 2021), CC3M (Sharma et al., 2018) and SBU 198

(Ordonez et al., 2011). The data has been filtered 199

and cleaned to remove corrupted, missing samples, 200

and sensitive content. 201

Data Classification and Deduplication. To en- 202

sure data diversity and semantic richness, we de- 203

sign an image classification system with 7 primary 204

categories and 22 secondary categories (as shown 205

in appendix B.1) and finetune an image classifier 206

to automate the categorization process. We also 207

supplement underrepresented categories to balance 208

the distribution. Finally, we apply deduplication 209

based on image similarity, resulting in a dataset of 210

320K high-quality images. 211

3.2 Multimodal Information Fusion 212

Most LVLMs can generate image captions, but 213

their quality is not guaranteed. Designed for gen- 214

eral tasks, they often underperform in specialized 215

areas like OCR and object detection compared to 216

dedicated models. To address this, we develop a 217

multimodal fusion pipeline that integrates visual 218

information from specialized models with the ad- 219

vanced GPT-4o, to generate high-quality captions. 220

Extraction of auxiliary information. Due to 221

the rapid advancements in the field of computer 222

vision, many expert models in the visual domain 223

can provide effective visual auxiliary information 224

for image caption generation. We have carefully 225

selected the following models to extract this visual 226

auxiliary information: 227

• Object Label Information. We utilize 228

RAM++ (Zhang et al., 2023c) to extract object la- 229

bel information from images and filter the original 230

label vocabulary of RAM++ to remove labels that 231

are not conducive to object detection, such as verbs 232
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Figure 2: Overview of pre-processing stage pipeline. (a) We use advanced visual tools to extract detailed visual
information and integrate it into GPT-4o via structured prompts to generate initial image descriptions. (b) We
expand these descriptions using LLMs with eight defined dimensions (e.g., Scene Type, Object Properties, Spatial
Layout, Text Information) to enrich details. This process generates 320k high-quality image caption seed data.

(e.g., "running"), adjectives (e.g., "bright"), and233

some background nouns (e.g., "sky", "ground").234

• Location Information. We employ Ground-235

ingDINO (Liu et al., 2023c) to extract object detec-236

tion box information from images. By leveraging237

the object labels extracted by RAM++, Grounding238

DINO recognizes the positions of the correspond-239

ing objects in the image and provides the respective240

bounding box coordinates for detection.241

• Textual Information. We utilize PaddleOCR242

(PaddlePaddle) to extract textual information from243

images and filter out text with low confidence levels244

in the recognition results.245

• World Knowledge. In most datasets, such as246

Wukong, LAION, and CC3M, images typically247

contain a raw descriptions related to the world248

knowledge of the image. Although these descrip-249

tions are very brief and lack fine-grained visual250

details, they contain rich world knowledge about251

the image.252

3.3 Image Caption Expansion Strategy based253

LLMs254

In previous work, we prompt GPT-4o to gener-255

ate relatively accurate image captions by integrat-256

ing rich visual auxiliary information. However,257

considering that the generated captions may still258

overlook certain visual details, we introduce an 259

image caption expansion strategy based on Large 260

Language Models (LLMs) to further improve the 261

completeness and comprehensiveness of the cap- 262

tions. Specifically, we first design eight descriptive 263

dimensions for the images, enabling the LLMs to 264

expand and complement image details from mul- 265

tiple perspectives, ensuring a more holistic view. 266

Next, we input the image captions generated by 267

GPT-4o, along with these eight dimensions, into 268

the LLMs, allowing it to expand on the visual focus 269

areas based on the details in the caption. Building 270

on the focus areas identified by the LLMs, we fur- 271

ther prompt GPT-4o to extend the image descrip- 272

tions, effectively enhancing the completeness and 273

comprehensiveness of the generated captions. 274

3.4 Captioner Model Training 275

As shown in Figure 2, we first construct preliminary 276

image caption data by integrating visual auxiliary 277

information, and then employ an image caption 278

expansion strategy based on LLMs to effectively 279

enhance the completeness and comprehensiveness 280

of the generated captions. Through this approach, 281

we build approximately 320K high-quality image 282

caption seed data. To break free from the reliance 283

on costly proprietary models (such as GPT-4o) and 284
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achieve scalability in image caption data, we fine-285

tune a proprietary image captioner model using286

the Qwen2VL-7B (Wang et al., 2024a) model with287

the 320K high-quality seed dataset. The specific288

training details can be found in the appendix A.1.289

Through manual quality checks and image caption290

benchmark tests, our captioner model demonstrate291

performance comparable to GPT-4o, and even sur-292

passed it in certain aspects.293

4 Post-processing Stage294

Previous studies, such as RLAIF-V (Yu et al.,295

2024), use automated preference data generation to296

enhance model performance by scoring or modify-297

ing responses with a divide-and-conquer strategy298

and multimodal models. However, we find this299

unreliable for image captioning tasks. Even pow-300

erful models like GPT-4o struggle with common301

issues such as counting in crowded scenes, object302

localization, and occluded scenes. Using GPT-4o303

to score or modify captions in these cases can in-304

troduce biases and destabilize the optimization pro-305

cess. Therefore, we emphasize the importance of306

incorporating human error-correction in the post-307

processing stage. In this section, as shown in Figure308

3 we introduce human-corrected DPO alignment309

strategies and a critic-rewrite pipeline to improve310

the quality of image captions.311

4.1 Preference Optimization312

Human Error-correction Annotations. Based313

on the image captioner model trained in the pre-314

processing stage, we collect 200K diverse images315

using the image collection method outlined in Sec-316

tion 3.1 and generate image captions using the cap-317

tioner model in pre-processing stage. To better318

identify low-quality image caption samples and319

make more effective use of human annotation re-320

sources, we adopt an active-learning-like strategy321

to filter out bad samples. Specifically, we rely on322

existing open-source critic models (e.g., LLaVA-323

Critic (Xiong et al., 2024)) to provide preliminary324

scores for the image captions. Although the scores325

provided by current critic models may not perfectly326

reflect the quality of the captions, they offer a rough327

estimation of quality that helps us filter out bad328

samples. Ultimately, we select 70K low-scoring329

samples for human error correction and annotation.330

Through manual error correction, we obtain 70K331

high-quality image caption preference pairs. Us-332

ing these high-quality preference data, we apply333

DPO to further refine the image captioner model 334

obtained in the pre-processing stage. 335

Improving Direct Preference Optimization 336

(DPO). In our experiments, we observe that during 337

DPO, as shown in Equation 1, the reward values 338

for both chosen and rejected samples significantly 339

decreased, leading to severe mode collapse in the 340

model’s output, characterized by the generation 341

of large amounts of repetitive text. As the training 342

data size increased, issues such as repetitive text be- 343

came more frequent. We attribute this phenomenon 344

to the discriminative nature of the DPO loss, which 345

is essentially a classification loss. Relying solely 346

on this loss may cause the model to iterate in the 347

wrong optimization direction, thereby reducing its 348

generative capability. Inspired by InternVL2-8B- 349

MPO (Wang et al., 2024b), we introduce two aux- 350

iliary losses during the DPO process: normalized 351

SFT loss and BCO loss, as shown in Equations 2 352

and 3, to maintain the model’s generative ability 353

and ensure the stability of preference learning. 354

LDPO = − log σ

(
β log

πθ(yc|x)
π0(yc|x)

− β log
πθ(yr|x)
π0(yr|x)

)
,

(1)

355

LSFT = − log
πθ(yc|x)

|yc|
, (2) 356

LBCO = − log σ

(
β log

πθ(yc|x)
π0(yc|x)

− δ

)
357

− log σ

(
−
(
β log

πθ(yr|x)
π0(yr|x)

− δ

))
, (3) 358

L = α1LDPO + α2LSFT + α3LBCO, (4) 359

Where x represents the prompt, yc represents the 360

preference response after human error correction, 361

yr represents the original rejected response, β is 362

the KL penalty coefficient, and the policy model 363

πθ is initialized from model π0. δ represents the 364

reward shift, calculated as the moving average of 365

previous rewards to stabilize training. α1, α2 and 366

α3 represent the weights of each loss component. 367

As shown in Equation 4, by combining these two 368

auxiliary losses (normalized SFT loss and BCO 369

loss) with DPO, we effectively mitigate the issue 370

of both chosen and rejected sample reward values 371

decreasing simultaneously. Furthermore, the cap- 372

tioner model, after preference alignment, demon- 373

strates improved performance. Additional training 374

hyperparameters are provided in the appendix A.2. 375

4.2 Fine-Grained Critic Model Training 376

In previous work, we use a strategy similar to active 377

learning to mine challenging samples and collect 378
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Figure 3: Overview of post-processing stage pipeline.
(a) illustrates further preference optimization of the pre-
processed image captioner model. (b) shows training
of the fine-grained critic model. (c) depicts the critic-
rewrite pipeline.

70K high-quality human-corrected annotated data.379

Given that human-annotated data is both expensive380

and difficult to scale, we design a critic-rewrite381

pipeline to convert the human-corrected annota-382

tions into more granular sentence-level annotations,383

specifically for training a sentence-level critique384

model. By combining atomic sentence splitting385

and rewriting strategies, we further reduce halluci-386

nations in the image captions. In the following, we387

will provide a detailed explanation of this process.388

Coarse-grained Error Rationale Generation.389

We first input the human-corrected annotation data390

into GPT-4o and inform the GPT-4o which caption391

is correct and which is incorrect. This allows the392

GPT-4o to identify the differences between the two393

captions and generate a coarse-grained error ratio-394

nale for the incorrect caption. The prompt template395

is provided in the appendix C.396

Atomic Description Generation. To reduce the397

training difficulty of the critic model, we decom-398

pose the entire image caption into more granular399

atomic descriptions and perform critique evalua-400

tion at the atomic description level. Considering401

the contextual dependence in caption expressions,402

we ensure that each atomic description is as inde-403

pendent and specific as possible, while converting404

pronouns in the caption into explicit nouns to avoid405

ambiguity. Additionally, each atomic description406

should include as much relevant visual informa-407

tion as possible in a comprehensive manner. The408

prompt template is provided in the appendix C.409

Fine-grained Critic Data Generation and410

Critic Model Training. We input both the im-411

age and a single atomic description into GPT-4o,412

along with the collected coarse-grained error ratio- 413

nale as a prompt, guiding GPT-4o to generate the 414

evaluation process for that atomic description. To 415

make the evaluation process more precise and con- 416

trollable, we prompt GPT-4o to complete the task 417

step by step. Upon receiving the atomic descrip- 418

tion, GPT-4o first needs to identify which details 419

should be considered to evaluate all the visual infor- 420

mation. Then, for each detail that needs attention, 421

GPT-4o performs a comparison. Finally, GPT-4o 422

summarizes the evaluation results. The prompt 423

template is provided in the appendix C. In this pro- 424

cess, we collect approximately 120K high-quality 425

critic data and train a specialized sentence-level 426

critic model based on Qwen2VL-7B (Wang et al., 427

2024a). Training parameters and details are pro- 428

vided in the appendix A.3. 429

Rewrite of Captions. In the process described 430

above, we obtain a fine-grained critic content for 431

each atomic description. Subsequently, we input 432

both the original image caption and the critic con- 433

tent for each atomic description into a Large Lan- 434

guage Model (LLMs), prompting the model to 435

rewrite the high-quality image caption. The prompt 436

template is provided in the appendix C. 437

5 Experiments 438

Overview. In this section, we first introduce the 439

key implementation details of the experiment and 440

demonstrate that the high-quality ultra-detailed cap- 441

tions generated by our pipeline can effectively en- 442

hance the performance of LVLMs. Then, we con- 443

duct detailed ablation studies to validate the effec- 444

tiveness of our pipeline in improving the quality of 445

image captions. 446

5.1 Implementation Details 447

Model and Data Setting. We use LLaVA-1.5 448

(Liu et al., 2023b) and LLaVA-NEXT (Liu et al., 449

2024) to validate the effectiveness of the high- 450

quality, ultra-detailed captions generated by our 451

proposed pipeline in enhancing the capabilities of 452

Large Vision-Language Models(LVLMs). Specifi- 453

cally, we select CLIP-ViT-L/14-336 as the visual 454

encoder, combined with Vicuna-v1.5-7B (Chiang 455

et al., 2023) and LLaMA3-8B (AI@Meta, 2024) 456

as the large language models. In the context of 457

data, we meticulously select and collect approx- 458

imately 1.5M images from multiple datasets, in- 459

cluding COCO, LAION, CC3M, SBU, and SAM. 460

Through the systematic data generation process 461
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Table 1: Main Results. Comparisons with state-of-the-art approaches on 9 vision-language evaluation benchmarks,
including MME, MMB, MMBCN , MMVet, SEEDI , POPE, SQAI , GQA, and TextVQA. The results demonstrate
that the high-quality image caption data generated by our method can bring significant and consistent improvements
to Large Vision-Language Models (LVLMs). The best results are bold and the second-best are underlined.

Method LLM MMEP MMB MMBCN MMVet SEEDI POPE SQAI GQA TextVQA

Low-resolution Multimodal Large Language Models
InstructBLIP Vicuna-7B - 36.0 23.7 26.2 53.4 78.9 60.5 49.2 50.1
QwenVL Qwen-7B - 38.2 7.4 - - 56.3 67.1 59.3 63.8
QwenVL-Chat Qwen-7B 1487 60.6 56.7 - - - 67.2 57.5 61.5
mPLUG-Owl2 LLaMA2-7B 1450 64.5 60.3 36.5 - - 68.7 56.1 58.2
InternVL-Chat Vicuna-7B 1525 - - - - 86.4 - 62.9 57.0
LVIS-4V Vicuna-7B 1473 67.1 - 34.6 - 84.0 68.4 62.6 -
ShareGPT4V Vicuna-7B 1567 68.8 62.2 37.6 69.7 85.7 68.4 63.3 60.4
LLaVA-1.5 Vicuna-7B 1510 64.3 58.3 31.1 66.2 85.9 66.8 62.0 58.2
LLaVA-1.5(Ours) Vicuna-7B 1574 70.7 62.8 37.9 70.1 87.3 70.1 64.4 61.7
LLaVA-1.5 LLaMA3-8B 1553 72.8 - 34.9 69.2 85.0 72.3 63.8 -
LLaVA-1.5(Ours) LLaMA3-8B 1561 73.8 68.9 39.6 73.0 87.6 74.1 64.2 61.8

High-resolution Multimodal Large Language Models
LLaVA-NEXT Vicuna-7B 1519 67.4 60.6 43.9 70.2 86.5 70.1 64.2 64.9
LLaVA-NEXT(Ours) Vicuna-7B 1528 68.8 60.8 44.6 72.0 88.4 71.4 65.0 69.9
LLaVA-NEXT LLaMA3-8B 1591 72.6 69.0 42.1 72.7 86.8 73.4 64.8 65.0
LLaVA-NEXT(Ours) LLaMA3-8B 1596 74.4 69.8 42.8 75.0 88.4 78.7 65.6 71.0

proposed in this paper, we generate 1.5M high-462

quality image description data to validate the ef-463

fectiveness of our dataset. Our training strategy is464

divided into the following three stages: (1) Pre-465

alignment Stage: In this stage, we use the 1.5M466

high-quality captions generated by our proposed467

pipeline as training data. The visual encoder and468

the LLM are frozen, and only the MLP is trainable.469

(2) Pre-training Stage: In this stage, we continue470

to use the 1.5M high-quality captions from the pre-471

alignment stage as training data. For LLaVA-1.5,472

following the approach of SharGPT4V (Chen et al.,473

2023b), we make the last 12 layers of the visual474

encoder, the MLP, and the LLM trainable. For475

LLaVA-NeXT, following the settings in (Li et al.,476

2024a), we make the entire model trainable to fur-477

ther enhance its perceptual capabilities. (3) In-478

struction Finetuning Stage: In this stage, we fine-479

tune the LLaVA-1.5 and LLaVA-NeXT models us-480

ing the open-source LLaVA-mix-665K and LLaVA-481

NeXT-760K datasets, respectively. We make the482

MLP and the LLM trainable. The detailed training483

procedure is provided in the appendix A.4.484

Evaluation Benchmarks. We evaluate the485

model’s performance on 9 widely used visual486

understanding benchmarks, including MME (Fu487

et al., 2023), GQA (Hudson and Manning, 2019),488

TextVQA (Singh et al., 2019), SQA (Lu et al.,489

2022), MMBench (Liu et al., 2023d), MMBench-490

CN (Liu et al., 2023d), MM-Vet (Yu et al., 2023b),491

SEED (Li et al., 2023a), and POPE (Li et al.,492

2023b). These benchmarks cover a broad range493

of evaluation dimensions, such as visual reasoning, 494

scene understanding, and scientific reasoning. 495

5.2 Main Results 496

The main result as Table 1. The experimental 497

results indicate that the high-quality caption pre- 498

training data generated by our pipeline significantly 499

enhances the capabilities of LVLMs, demonstrating 500

clear advantages on most visual-language bench- 501

marks. Furthermore, compared to other image 502

captioning methods, such as ShareGPT4V, our 503

method provides more fine-grained and complex 504

image descriptions by integrating additional visual 505

auxiliary information. The introduction of a post- 506

processing mechanism further reduces hallucina- 507

tions in the captions, which contributes to improved 508

alignment of the visual and linguistic modalities. 509

Consequently, our method shows more pronounced 510

advantages in fine-grained image understanding 511

and hallucination benchmarks, such as TextVQA 512

(Singh et al., 2019), MM-Vet (Yu et al., 2023b), 513

and POPE (Li et al., 2023b). 514

5.3 Ablation Studies 515

To thoroughly validate the effectiveness of the pre- 516

processing and post-processing pipeline, we design 517

two different ablation experiments and used two 518

distinct standards for validation. 519

Caption Benchmark. Traditional image caption 520

evaluation metrics like CIDER (Vedantam et al., 521

2015), BLEU (Papineni et al., 2002), ROUGE-L 522

(Lin, 2004), and METEOR (Banerjee and Lavie, 523

7



Table 2: Results on the CompreCap Benchmark. During the pre-processing stage, our approach significantly
enhances the comprehensiveness of captions (measured by object and pixel coverage) compared to the baseline
(Note: The baseline refers to Qwen2VL-7B, which we use to finetune the image captioner model during the
pre-processing stage). During the post-processing stage, we can further eliminate hallucinations in the captions
(measured by object and relation scores). Our method even surpasses the advanced GPT4o in some dimensions.

Method Caption
Length(words)

object
coverage(%)

pixel
coverage(%)

object
score(0∼5)

relation
score(0∼5)

Baseline (Qwen2-VL-7B) 143.66 71.97 57.31 2.56 2.71
Pre-processing Captioner 153.84 74.37 63.01 2.79 2.73
+ DPO 174.06 75.76 63.14 2.81 2.73
+ DPO + Critic-rewrite 171.65 75.96 63.19 2.84 2.77

GPT-4o 108.20 72.78 57.54 2.58 2.93
Human 133.61 77.62 59.58 2.78 2.99

Table 3: Manual Quality Analysis. Statistics of the equivalence rate between the output captions of different method
and the reference captions, where ‘Overall’ represents the average equivalence rate across different dimensions.
During the pre-processing stage, our method significantly enhances the comprehensiveness of captions compared to
the baseline. Through the post-processing stage, we can further eliminate hallucinations in the captions.

Method Completeness(%) Hallucination(%) Text Quality(%) Overall(%)

Baseline (Qwen2-VL-7B) 27.0 52.5 98.3 59.3
Pre-processing Captioner 64.4 63.5 92.5 73.5
+ DPO 64.8 71.3 99.5 78.5
+ DPO + Critic-rewrite 68.6 73.0 97.8 79.8

2005) rely on n-gram techniques, which are sensi-524

tive to caption styles and don’t always reflect cap-525

tion quality. Pre-trained CLIP models also struggle526

with longer captions. In contrast, CompreCap (Lu527

et al., 2024) is a structured benchmark that eval-528

uates detailed image descriptions using a scene529

graph, focusing on object, attribute, and relation-530

ship matching. As shown in Table 2, we compare531

our method with advanced GPT-4o and human an-532

notators on the CompreCap dataset and conduct533

an ablation study. The results demonstrate that534

our method not only matches but also surpasses535

GPT-4o in some dimensions, approaching the per-536

formance of human annotators. Moreover, the in-537

corporation of pre-processing and post-processing538

significantly enhances the quality of generated cap-539

tions and overall performance on CompreCap.540

Manual Quality Analysis. To better validate541

the effectiveness of our caption generation pipeline,542

we introduce human evaluation to further assess543

the quality of the generated captions. Specifically,544

following the classification system proposed in Sec-545

tion 3.1, we select approximately 20 images from546

each category, forming an evaluation set of 411547

images in total. First, we use GPT-4o to gener-548

ate captions for all images in the evaluation set,549

which are then manually revised and supplemented550

to form reference captions. After the test model551

generates its captions, human quality inspectors 552

compare each test caption with the reference cap- 553

tion, evaluating them across three main dimensions: 554

completeness (whether the test caption omits any 555

details from the image), hallucination (whether 556

the test caption contains incorrect descriptions or 557

fabricated content), and text quality (whether the 558

test caption is grammatically correct, fluent, and 559

free of major expression issues). The inspectors 560

assess whether the test captions meet or exceed the 561

quality of the reference captions in these dimen- 562

sions. Finally, we calculate the equivalence rate, 563

and the test results are shown in Table 3. 564

6 Conclusion 565

We propose an effective pipeline for generating 566

high-quality, ultra-detailed image captions that sig- 567

nificantly improve the performance of LVLMs. 568

By integrating pre-processing and post-processing 569

stage, we enhance the accuracy and comprehen- 570

siveness of captions, addressing the limitations of 571

existing datasets. Our experiments show that these 572

high-quality captions boost LVLMs performance 573

across various vision-language tasks, achieving bet- 574

ter alignment between visual content and text. This 575

work provides a scalable solution for improving 576

LVLMs capabilities and lays the foundation for 577

future advancements in multimodal learning. 578
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Limitations579

Although the pipeline we proposed is capable of580

generating high-quality, ultra-detailed image cap-581

tion data, there are still some limitations. Future582

optimization directions mainly focus on two as-583

pects:584

First, modality expansion. Currently, our585

pipeline primarily focuses on generating and op-586

timizing captions for natural images. However,587

many methods and ideas have not yet been applied588

to other modalities, such as video data. Therefore,589

expanding the image caption generation pipeline590

to support more modalities will be a key area of591

future work.592

Second, optimization and iteration of the image593

captioning model. Through the pre-processing and594

post-processing pipelines, we have made progress595

in improving the quality of image caption data.596

However, optimizing the performance of the image597

captioning model remains a priority. The current598

caption generation process is relatively complex,599

requiring the construction of a long pipeline for sub-600

sequent data expansion, which complicates prac-601

tical deployment and application. In the future,602

we plan to integrate the different functions of the603

pipeline into a unified image captioning model, sim-604

plifying the entire process and making it more suit-605

able for real-world deployment and application.606
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A Training Setting Details.879

All training and inference experiments are con-880

ducted on 64 × Ascend 910b NPUs.881

A.1 Captioner Model Training Details882

We use the Qwen2VL-7B model and the pre-883

processed 320K high-quality seed dataset to fine-884

tune a proprietary image captioner model. The spe-885

cific experimental settings are presented in Table 4.886

Table 4: Hyperparameter Details for Training the Cap-
tioner Model

Hyperparameter Settings

DeepSpeed Stage 3
Warmup Ratio 0.03

Trainable Module LLM
Epoch 1

LR Schedule cosine
Learning Rate 1e-5

Image Resolution 1024
Batch Size 128
Cutoff Len 6144

887

A.2 Captioner Model DPO Training Details888

We use 70K human-corrected high-quality image889

caption preference pairs to perform DPO training890

on the pre-processing stage captioner model, fur-891

ther enhancing its capabilities. The specific hyper-892

parameter settings are shown in Table 5.893

A.3 Sentence-level Critic Model Training894

Details895

We use the Qwen2VL-7B model and 120K high-896

quality critic data to train a specialized sentence-897

level critic model. The specific experimental set-898

tings are presented in Table 6.899

A.4 LLaVA-1.5 and LLaVA-NEXT Training900

Details901

The main training implementation details are de-902

scribed in the primary paper. In this section, we903

present a detailed explanation of the experimental904

setup used to train LLaVA-1.5 and LLaVA-NeXT905

for evaluating our dataset, as shown in Table 7 and906

Table 8.907

Table 5: Hyperparameter Details for DPO Training of
the Captioner Model

Hyperparameter Settings

DeepSpeed Stage 3
Warmup Ratio 0.1

KL Penalty Coefficient β 0.1
Loss Weights α1, α2, α3 0.8, 1.0, 0.2

Trainable Module LLM
Epoch 1

LR Schedule cosine
Learning Rate 5e-6

Image Resolution 1024
Batch Size 64
Cutoff Len 6144

Table 6: Hyperparameter Details for Training the Critic
Model

Hyperparameter Settings

DeepSpeed Stage 3
Warmup Ratio 0.1

Trainable Module LLM
Epoch 1

LR Schedule cosine
Learning Rate 1e-5

Image Resolution 1024
Batch Size 64
Cutoff Len 6144

B Visualizations of Our Dataset 908

B.1 Image Classification Framework 909

To create a comprehensive and high-quality dataset 910

that encompasses diverse image categories and rich 911

visual semantics, we carefully curate and build 912

a multi-dimensional dataset consisting of 7 main 913

categories and 22 subcategories. During the pre- 914

processing stage, We classify and deduplicate to 915

select approximately 320K high-quality image sam- 916

ples, with the detailed category distribution shown 917

in Figure 4. 918

B.2 Case Analysis 919

In this section, to provide a more comprehensive 920

demonstration of the high-quality image captions 921

12



Table 7: Detailed Experimental Setup for LLaVA-1.5

Hyperparameter Pre-aligning Pre-training Instruction Tuning

Data 1.5M caption(Ours) 1.5M caption(Ours) LLaVA-mix-665K
Batch Size 256 256 128
Learning Rate 1e-3 2e-5(MLP, LLM), 2e-6(VE) 2e-5
LR Schedule cosine decay
LR Warmup Ratio 0.01
Weight Decay 0
Trainable Module MLP MLP, VE(last 12 layers), LLM MLP, LLM
Epoch 1
Optimizer AdamW
DeepSpeed stage 3

Table 8: Detailed Experimental Setup for LLaVA-NEXT

Hyperparameter Pre-aligning Pre-training Instruction Tuning

Data 1.5M caption(Ours) 1.5M caption(Ours) LLaVA-NeXT-760K
Batch Size 256 256 128
Learning Rate 1e-3 2e-5(MLP, LLM), 2e-6(VE) 2e-5
LR Schedule cosine decay
LR Warmup Ratio 0.01
Weight Decay 0
Trainable Module MLP MLP, VE, LLM MLP, LLM
Epoch 1
Optimizer AdamW
DeepSpeed stage 3

Figure 4: The category distribution of high-quality im-
age data during pre-processing stage.

generated by our pipeline, we offer additional ex-922

amples. Furthermore, to better showcase the perfor-923

mance of these high-quality captions across differ-924

ent ability dimensions, we employ different color925

annotations to highlight key elements. Specifi-926

cally, objects are marked in blue, spatial relations in 927

green, textual information in pink, and knowledge 928

are distinguished using yellow, which facilitates a 929

clearer presentation and understanding of the char- 930

acteristics of each dimension. 931

C Prompt Template 932
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Figure 5: The high-quality image caption data samples generated by our pipeline.
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Figure 6: The high-quality image caption data samples generated by our pipeline.
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Prompt for Generating Captions Through Multimodal Information Fusion

You are an experienced image description expert, skilled in extracting details from images and
transforming them into vivid and accurate written descriptions. Your task is to generate a detailed
and coherent description based on the image and the provided visual assistive information,
ensuring that all important elements of the image are covered. Please note that the visual assistive
information may not be complete, and you will need to supplement the missing details based on
visual clues from the image.

Requirements:
1. Object Appearance Description: Accurately describe the color, shape, quantity, size, function,
and state of the objects in the image.
2. Behavior and Action: Capture the state, actions, and results of the behaviors of the objects in
the image, describing both dynamic and static features.
3. Background and Environment: Describe the background environment, including the scene,
lighting, weather, location, environmental details, dynamic/static elements, and overall atmosphere.
4. Text Information: Identify text in the image, including its content and location. You can use the
provided OCR information to ensure it is accurately integrated into the description.

Visual Assistive Information:
Object Location Information: {Object Location Information}
Textual Information: {Textual Information}
Image World Knowledge: {Image World Knowledge}

Constraints:
1. Narrative Description: Please describe the image content in a coherent narrative format,
avoiding a list structure.
2. Accuracy and Completeness: Ensure the description is accurate and as complete as possible,
covering all important details.
3. Natural Flow: Keep the description natural and fluent, avoiding overly technical or mechanical
language.

Goal:
To generate a detailed, accurate, and coherent description that covers all important elements in
the image, including the appearance of objects, actions, background environment, and textual
information. The description should be clear and easy to understand, allowing readers to accurately
grasp the content of the image without actually seeing it.

Figure 7: Prompt for Generating Captions Through Multimodal Information Fusion.
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Prompt for Expanding Image Details base LLMs

You’re an excellent visual language assistant. You will receive an image description and some visual
auxiliary information. To further enhance the comprehensiveness of the image description, you
need to make reasonable speculations and further expansions based on the following dimensions.
Please tell me what details I need to focus on to describe the image more comprehensively based
on the original image description:

The multi-dimensional dimensions include:
1. Scene Type and Settings: including location, time, weather/light conditions, environment details,
dynamic/static elements, and atmosphere.
2. Spatial Layout and Relationships: including relative position, height/distance/level/angle/direc-
tion, arrangement, interaction and connection of objects, etc.
3. Object Properties and Features: including color, shape, material, size, function, status, etc.
4. Text and Symbol Information: including text/symbol content, position, font style and color,
language, meaning and function.
5. Emotion and Atmosphere: including emotional expression, atmosphere building, backstory, etc.
6. Temporal Context: including seasons, time periods, historical periods, weather conditions, day
and night alternation, etc.
7. Cultural and Social Background: including identifying elements such as geographical location,
historical background, religious beliefs, architectural styles, costumes and decorations, language
and writing, art and music, social customs, food culture and festivals.
8. Visual Style and Aesthetics: including color collocation, light and shadow effect, overall design
style, etc.

You need to dynamically select the dimensions you should pay attention to based on the specific
image information, that is, select the appropriate dimensions based on the image content, including
but not limited to the dimensions mentioned above. Note that the output needs to be presented in
the form of questions.

The following is an example:
{example}

Auxiliary Information:
Object Location Information: {Object Location Information}
Textual Information: {Textual Information}
Image World Knowledge: {Image World Knowledge}

Original image description:
{Original Image Description}

To describe this image more comprehensively, you need to pay attention to the following
details:

Figure 8: Prompt for Expanding Image Details base LLMs.
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Example of Expanding Image Details Using LLMs

Object Location Information:
cat[0.15, 0.42, 0.28, 0.85] dog[0.55, 0.36, 0.78, 0.91] sofa[0.12, 0.60, 0.90, 0.95]
window[0.00, 0.00, 1.00, 0.40] boy[0.40, 0.50, 0.55, 0.85] girl[0.60, 0.50, 0.75, 0.85]
Textual Information:
None
Original Image Description:
This image shows a family living room with a cat and a dog in the room, with the cat
lying on the sofa and the dog sitting on the carpet. There is a window in the room, from
which you can see some sunlight coming in, bringing a warm light to the room. A boy
and a girl sat on the ground, playing on the toys, looking happy. Some pillows are placed
on the sofa, some simple cutlery on the table, the TV is off, and the background is simple and warm.

To describe this image more comprehensively, you need to pay attention to the following
details:
1. Scene type and setting: Apart from sofas, dining tables and televisions, what other furniture or
objects are key elements of this picture? What are the materials or colors of these items? Are there
curtains installed outside the window?
2. Space layout and relationship: What is the layout between sofas, carpets, windows and other
items? How do boys and girls relate to the location of sofas, televisions and windows? Are you
close or far away from these items?
3. Object attributes and features: What is the color and material of the sofa? Is there anything
particularly conspicuous on the sofa, such as a pillow or blanket? What color is the hair of cats and
dogs? What is the color, shape and state of other items such as televisions, windows, dining tables,
etc.?
4. Behaviors and Events: What are the movements of boys and girls? Are they playing attentively,
talking, or exhibiting other behaviors (such as scrambling for toys)?
5. Cultural and social background: What may be the cultural background of the family from the
perspective of the home environment? Does the style of furniture and objects reflect a particular
social or cultural characteristic (e.g., modern minimalism or traditional decorative style)?

Figure 9: Example of Expanding Image Details Using LLMs.
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Prompt for Further Expanding the Image Descriptions based on LLMs Result

You are an experienced image description expert, skilled in extracting details from images and
transforming them into vivid, accurate text descriptions. Your task is to generate a detailed and
coherent description of the image based on the image, visual auxiliary information, the original
image description, and any additional details that require further attention. Ensure that all key
elements of the image are included.

Visual auxiliary information:
Object Location Information: {Object Location Information}
Textual Information: {Textual Information}
Image World Knowledge: {Image World Knowledge}

Original image description:
{Original Image Description}

You need to pay further attention to the following details:
{LLM-based Expansion Result}

Ensure that the final image description contains all the details mentioned above and meets
the following requirements:
1. Narrative description: Present the image content in a coherent, narrative format rather than as a
list.
2. Accuracy and Completeness: Ensure that the description is accurate and as complete as possible,
covering all of the aforementioned key details.
3. Naturally smooth: Maintain a natural and fluid description, avoiding overly technical or
mechanical language.
4. Clear and easy to understand: Make the description clear and easy to understand, allowing
readers to grasp the image’s content without actually seeing it.

Goal:
Generate a detailed, accurate, and coherent description that covers all important elements of the
image, including the appearance, behavior, background environment, and text information of
the objects. The description should be clear and easy to understand, enabling the reader to fully
comprehend the image’s content through text alone.

Figure 10: Prompt for Further Expanding the Image Descriptions based on LLMs Result.
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Prompt for Atomic Description Generation

You are an excellent visual language assistant. Please decompose the received image description
according to the following requirements, generating a series of atomic descriptions.

Requirements:
1. Each atomic fact sentence should focus on the main visual details and specific facts, excluding
non-visual information and subjective emotions.
2. The reference relationship in the atomic description must be clear, ensuring that each description
can independently point to the object in the image, avoiding ambiguity that leads to unclear
semantics.
3. Ensure that each atomic fact is as independent and specific as possible.

Image Description: {Image Description}

Figure 11: Prompt for Atomic Description Generation.

Prompt for Coarse-grained Error Rationale Generation

You are an excellent visual language assistant. You will receive an image and two text descriptions.
One of the descriptions is the standard text description that accurately reflects the content of
the image; the other description contains some inconsistencies with the image content. Please
carefully compare these two text descriptions, focusing on the following aspects: the color, shape,
quantity, size, function, and state of objects; the state, actions, and results of the objects’ behavior;
the details of the scene and environment; and the location and content of any text information.
Based on the comparison, please identify the key reasons for the discrepancies between the second
image description and the actual image content.

Human-corrected Image Description: {Human-corrected Image Description}
Original Image Description: {Original Image Description}

Figure 12: Prompt for Coarse-grained Error Rationale Generation.
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Prompt for Fine-grained Critic Data Generation

You are an excellent visual language assistant. You will receive an image and a sentence. Please
carefully check whether the sentence aligns with the image content, following the steps outlined
below:

Task Steps:
1. Analyze the sentence content: List all the key points that need verification, such as: object
quantity, color, positional relationships, status, interaction actions, textual information, etc. List all
the visual details that need to be checked.
2. Check each point: Verify each key point description and compare it with the image content one
by one. If discrepancies are found, explain in detail where the conflict lies, and clearly describe the
actual content in the image.
3. Summarize the reasoning: Summarize the results of the check, indicating which parts of the
sentence match or do not match the image content. Provide clear reasons for any inconsistencies,
and specify the true visual content in the image.

Notes:
1. Detailed comparison: Check each point against the image content carefully, making sure no
detail is overlooked.
2. Clear explanation: If the sentence matches the image content exactly, state this directly; if
inconsistencies are found, describe the conflict clearly and specifically.
3. Complex content: If the image content is complex, break down the check into bullet points to
ensure clarity and logical structure.
4. Proper language: Use clear, formal language to describe the issues found, providing adequate
justification.

Additional Tips:
Common errors in the sentence may include: {Coarse-grained Error Cause}
Sentence to be checked: {Atomic Sentence}

Figure 13: Prompt for Fine-grained Critic Data Generation.

Prompt for Rewrite of Captions

You are an excellent visual language assistant. You will receive an image and its original text
description. The description contains some inconsistencies with the image content. I will provide
you with a series of atomic sentences and their corresponding comments. Please rewrite the
original image description based on these atomic sentences and comments, ensuring that the new
description accurately reflects the image content.

Original Image Description: {Original Image Description}
Atomic Sentence and Critic: {Atomic Sentence and Critic}

Figure 14: Prompt for Rewrite of Captions.
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