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Abstract—Prolonged and frequent exposure to elevated blood
glucose levels (hyperglycemia) significantly increases the likeli-
hood of developing chronic complications, such as neuropathy,
nephropathy, and cardiovascular disease, along with acute symp-
toms like fatigue and blurry vision. While current technologies,
such as continuous subcutaneous insulin infusion (CSII) and con-
tinuous glucose monitors (CGMs), can forecast adverse events like
hypoglycemia and deliver small insulin doses to counteract hyper-
glycemia, progress in developing tailored AI-driven interventions
remains limited, which poses a barrier to optimal diabetes
care. To address this gap, we propose leveraging counterfactual
explanations that guide patients in making targeted adjustments
to their carbohydrate intake and insulin dosing to avoid abnormal
glucose levels. We introduce GlyMan4, a novel method that
generates counterfactual behavioral recommendations aimed at
helping patients and caregivers make small, informed changes
to prevent hyperglycemia, thus substantially reducing both its
frequency and duration. Additionally, GlyMan incorporates user
preferences into its intervention process and ensures more cus-
tomized and patient-centered guidance. We rigorously evaluated
GlyMan using real-world data from 21 type 1 diabetes (T1D)
patients using automated insulin delivery (AID) systems. Results
indicate that GlyMan surpasses existing methods, delivering
76.6% valid explanations and 86% effectiveness when assessed
against historical data.

Index Terms—Counterfactual explanations, Diabetes, Digital
health, Endocrinology, Explainable AI, Insulin pump, Wearable
sensors

I. INTRODUCTION

Postprandial hyperglycemia, defined as blood glucose levels
above 180 mg/dl (10 mmol/l) two hours after a meal, af-
fects 22% to 46% of non-critically ill hospitalized patients
[1]. Chronic hyperglycemia can lead to severe complications,
including retinopathy, kidney failure, neuropathy, and cardio-
vascular diseases [2]. Additionally, diabetes imposes a high
economic burden, with an average annual treatment cost of
$12,022 per patient and an estimated total cost of $412.9
billion in the U.S. in 2022 [3]. These costs can be mitigated
through behavioral modifications, such as maintaining a proper
diet [4] and adhering to optimal medication.

For individuals with type 1 diabetes (T1D), insulin therapy
is essential due to the body’s inability to produce insulin.
Managing optimal insulin dosing is complex and requires
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constant decisions regarding food intake and insulin ad-
ministration. Therefore, despite advancements in automated
insulin delivery (AID) systems, few T1D patients achieve
recommended glycemic targets. While AI offers potential to
improve glycemic control, its use in predicting and preventing
hyperglycemia and hypoglycemia in T1D patients on AID
systems remains limited. AI driven interventions to target
dysglycemia have potential to improve glycemic control and
reduce the burden of disease in patients with T1D [5], [6].

Explainable AI (XAI) presents an opportunity to design bet-
ter interventions by providing transparency in model decision-
making [7]. Traditional XAI techniques, such as LIME, TIME,
and SHAP, primarily focus on ranking important features.
Feature relevance has proved to be important in building trust
in a model that works with computer vision [8], time-series [9]
or even tabular data [10] but may lack actionable insight for
behavioral interventions. For instance, while understanding the
relevance of features in diabetic retinopathy prediction can be
useful in healthcare [9], practical interventions in digital health
require more precise and actionable information. Often, these
explanations are provided in view of low-level features that
are hardly understandable from a human perspective, which
undermines the main objective of XAI.

Counterfactual explanations (CFs) are more effective for
generating actionable insights, as they suggest the smallest fea-
ture changes needed to achieve a desired outcome. For exam-
ple, a CF might suggest preventing hyperglycemia by reducing
carbohydrate intake or delaying a meal until blood glucose
reaches a certain threshold. CFs can either be derived from
training data [11] or generated using adversarial techniques
[12]. Studies have demonstrated CFs’ potential in diabetes
management, improving fasting blood sugar, systolic blood
pressure, and other health metrics [13]. However, most CF
applications in diabetes research overlook patient preferences,
often leading to unrealistic or infeasible recommendations.

In this regard, our solution, GlyMan, stands out by incor-
porating stakeholders’ (e.g., patients, physicians) preferences,
such as feature importance, into the CF generation process.
This ensures that patients are playing a role in the interventions
by specifying certain behaviors should remain unchanged.
GlyMan’s key contributions include:

• A novel, model-agnostic, patient-centric algorithm that
generates CF-based interventions to prevent postprandial
hyperglycemia through behavior changes (e.g., adjusting
meal timing, carbohydrate intake, insulin dosage).

• Personalized interventions that respect individual prefer-
ences and constraints.

https://github.com/Arefeen06088/GlyMan


• Extensive testing using a real-world clinical dataset, with
competitive performance compared to existing methods
based on standard validation metrics.
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Fig. 1: Counterfactual XAI for hyperglycemia prevention.

II. GLYMAN DESIGN

Assume that D = {(X1,y1), (X2, y2), . . . , (Xn, yn)} be a
dataset of n instances that has longitudinal health observations
related to eating events and the corresponding health outcome
such as blood glucose level categories. Each instance Xi =
[xi

1, xi
2, . . . , xi

d] consists of d features including action-
able behavioral parameters (e.g., diet, medication) and non-
actionable parameters (e.g., age, gender, A1C). Considering c
possible classes for health outcome Y , where yi ∈ [1, c], a
probabilistic AI model or classifier f can be trained to map
the d-dimensional input features to the c classes and give us
their corresponding prediction probabilities f1, f2, . . . , fc:

f : Rd → [1, c]

For a test sample XT predicted to result in post-prandial
hyperglycemia (i.e., argmaxf(XT ) = hyperglycemia), Gly-
Man aims to create an effective intervention plan that guides
the patient in making informed behavioral adjustments to
prevent the predicted hyperglycemia, while also respecting
their personal preferences.

To generate such CFs, we have to satisfy several constrains
within an optimization process. For example, the CFs must
belong to the desired class, must not change too much from
the factuals and must reflect user preferences. We assume
that the stakeholder’s preferences for behavior changes are
represented in vector R(XT ) = {r1, . . . , rd}, where each
ri ∈ [0, 1] represents the relative importance of the i-th feature
for modification during intervention. Specifically, a value of
ri = 1 indicates that the stakeholders strongly favor modifying
the i-th feature, while ri = 0 implies no preference for
modification.

We formulate the CF generation process using a multi-
objective optimization problem as shown in Equation (1),
where the aforementioned requirements are formalized in the
first to third terms, respectively.

min
X∗

T

[
CE

(
fn(X

∗
T ),

−→n
)
+R⊙ |X∗

T −XT |+ d
(
X∗

T , X
)]

(1)
Here, CE(·) is the crossentropy loss between model’s

prediction on the CF and normoglycemia, d(·) is the distance
function.

To tackle the optimization problem (1) through adversarial
perturbation, we use an iterative process that modifies the
features of XT incrementally by δ. The adjustments are
guided by saliency scores, stakeholder preferences, and the
requirement to maintain realistic changes within bounds.

A primary goal of CF generation is to introduce minimal
changes to the original samples. Feature saliency measures
how altering a particular feature affects the model’s prediction
for the target class. Identifying the most salient feature during
each iteration allows GlyMan to determine which feature,
when adjusted, will have the greatest impact on shifting
the prediction toward the desired outcome. This is done by
computing the forward derivative of the model’s prediction
with respect to each feature.

For each modifiable feature in xmod, the saliency score
S(xT , y

′, i) is calculated by perturbing the feature value by
a small amount and observing the change in the model’s
prediction probability for the target class. This change is
captured through the forward derivative of the prediction with
respect to the feature,

S(xT , y
′, i) =

fn(x
∗i
T + δi)− fn(x

∗i
T )

δi
∀x∗i

T ∈ xmod (2)

By combining feature saliency with stakeholder preference
weights, a composite score is calculated to identify which
feature to adjust. Specifically, the combined score Ci for each
feature xi

T is obtained by adding the normalized saliency
score S(x∗

T , y
′, i) (scaled to the range [−1, 1]) to the sum of

the physician’s and user’s preference weights (wp and wu).
This score is then used to determine which feature should
be modified i.e., the feature with highest composite score is
selected for adjustment within the feature limits. Therefore,
the index of the feature to modify is

i′ = argmax
i

[
|S(x∗

T , y
′, i)′|+ (wp + wu)

]
Figure 2 explains the overall framework for GlyMan.

III. DATA

A. Data collection

A substantial dataset was collected from 100 T1D patients
treated at the endocrinology department of Mayo Clinic,
Phoenix between December 2023 and April 2024 (IRB #23-
003065). Each patient provided around 26 days of continuous
recordings in real-world settings, including CGM data from
Dexcom G6 Pro, insulin administration logs, carbohydrate
intake, and device mode settings (e.g., regular, sleep, exercise)



Fig. 2: Pipeline: The process begins with collecting data from T1D patients on AID technology, followed by data preprocessing
and classifier training. Afterward, GlyMan is initialized with the specified preference weights and iterations are run to generate
the counterfactual outcomes.

from Tandem T:SLIM X2 Pump. Of these, 21 randomly
selected patients (Age: 57.4 ± 16.2 years, 11 female, A1C:
5.0-8.2%, 20 White, 1 Hispanic) contributed data that was
processed further to develop and validate GlyMan.

B. Data Processing and Feature Extraction

1) Basal rates and device modes: The hourly basal rates
and device modes in the PDF files downloaded from Tandem
are extracted by cropping the informative areas and then using
an Optical Character Recognition (OCR) technique.

2) Time between meal and food bolus, ∆t: Improving ∆t
may play a key role in improving glycemic control. Following
prior research [14], we estimated ∆t from the timeseries data

3) Total bolus: The total bolus is the sum of all bolus intakes
taken between the time when the glucose level peaks (tmax)
and the time when either the meal or the first bolus was taken,
whichever occurred first, i.e., min(tmeal, tfb).

4) Total basal: Sum of all basal units taken between tmeal−
90 and tmeal falls under Total basal feature.

5) Pre-meal glucose level and slope: The CGM reading at
tmeal is the pre-meal blood glucose level. A linear trend-line
is fitted using glucose readings between tmeal − 30 and tmeal

to calculate the pre-meal slope.
6) Filtering out carb sizes: Patients often try to manage high

blood sugar by taking extra food boluses instead of correction
boluses. This can result in multiple carb intakes near the
primary meal. In such cases, we consider only the largest carb
size and ignore the others that occur between min(tmeal, tfb)
and tmax.

Finally, we have 1361 factual samples after data curation.
Two of them are depicted in Table I as examples.

IV. EXPERIMENTAL SETUP

A. Classifier Description

The fully-connected binary classifier for hyperglycemia
classification is of 3 layers with 64, 32 and 32 neurons,
respectively. Each layer has a relu activation and dropout rate
of 0.4. The model is trained using 85% factual samples for
400 epochs with a learning rate of 0.001.

B. Parameter Set

For preventing hyperglycemia, we set target class y′ =
normoglycemia, the corresponding prediction confidence (γ)
at 0.6, maximum iterations to N = 200 and consider Carb

size, Total bolus, ∆t, and Pre-meal BGL as the modifiable
features. Their corresponding perturbation size, δ values are 5
grams, 0.5 unit, 5 minutes, and 10 mg/dL, respectively.

C. Validation Metrics

We assess the CFs using some standard metrics found in
the literature:

Validity assesses whether the produced CFs genuinely be-
long to the desired class. High validity indicates the tech-
nique’s effectiveness in generating valid CF examples.

Nearest Neighbor Test (NN Test) validates the effectiveness
of the CFs by comparing them against historical data to
determine their likely outcomes (e.g., hyperglycemia or nor-
moglycemia) based on past similar instances. We implement
it using a k-nearest neighbor (k-NN) algorithm.

Proximity is the L2 norm distance between XT and XT
∗.

A low Proximity ensures we are making small change to
the factual sample by preserving the details and not over-
correcting the user.

Sparsity is the average number of feature changes per CF.
A low sparsity ensures better user understanding of the CFs.

Violations quantifies how frequently non-modifiable fea-
tures (e.g. age, gender, insulin etc.) are changed.

Plausibility estimates the fraction of explanations that fall
within the feature ranges derived from the data.

D. Simulator specifications

The simulator is an XGBoost model trained with real data to
validate the CFs. With a max-depth of 13, learning rate of 0.1,
100 estimators and 85% trainig data, the XGBoost simulator
achieves 80.14% accuracy.

V. RESULTS

A. Classifier Performance

The dense net classifier trained on the Mayo Clinic data
achieves 81% prediction accuracy and 80.4% F1-score. The
dataset is slightly imbalanced between the two classes.

B. Evaluating the counterfactuals

The summary in Table II outlines the quality of CFs gener-
ated by GlyMan and NICE [11]. GlyMan achieves an average
validity of 0.766, a proximity score of 0.327, 2.34 sparsity
and perfect violation and plausibility scores, meaning that it
does not modify features which are non-modifiable and all CFs



TABLE I: Examples of processed samples from the dataset.

Age Sex Ethnicity A1C Carb size Total bolus ∆t Mode Total basal Pre-meal BGL slope Pre-meal BGL Outcome
61 F White 6.7 20 7.57 -5 regular 2.475 2.943 129 normoglycemia
32 F Hispanic 5 35 5.83 15 regular 0.357 1.457 134 hyperglycemia

TABLE II: Evaluating the counterfactuals from GlyMan using validity, NN test, proximity, violations and plausibility.

Method Mayo Clinic Data
validity NN test proximity sparsity violations plausibility

GlyMan 0.766 0.859 0.327 2.34 0 1.0
NICE [11] 0.688 0.688 0.179 1.875 0.41 0.9

are produced within the original data manifold. However, in
terms of sparsity, GlyMan underperforms by modifying more
than two features per explanation on average. Additionally, the
high NN test score of 0.859 suggests that subjects achieved
normoglycemia in 86% of cases when encountering situations
similar to the generated CFs in real life. GlyMan outperforms
NICE in metrics like validity, NN test, violation counts and
plausibility. NICE has a better proximity rating because it
identifies CFs from the training data.

We perform several ablation studies to understand how
changing certain parameters of GlyMan impacts different as-
pects of the produced CFs. Reducing the number of modifiable
features leaves less flexibility for GlyMan to operate. In fact,
it gets harder to toggle the class by modifying a fewer number
of features. When GlyMan is given 4 modifiable features,
it can convert all the factual samples into CFs and achieve
100% conversion rate. However, as we reduce the number of
modifiable features to 1, average conversion rate drops to as
low as 41%. While the conversion rate drops, GlyMan still
ensures that the CFs produced are of high quality. Hence, the
validity remains close to 0.75 in spite of a dip in conversion
rate with just one modifiable feature. Figure 3 depicts the
aforementioned analysis.

Fig. 3: Monitoring the changes in validity when the number
of modifiable features is varied.

VI. CONCLUSION

We designed GlyMan to actively involve stakeholders in the
CF generation process, eliminate the need for an additional
generative model, and thereby reduce training complexity.
Built on real-world data from uncontrolled environments,
GlyMan generates valid, fair, realistic, and minimal CFs. We
evaluated and compared these CFs extensively using metrics
and methods from past studies. However, GlyMan is not
yet clinically validated and faces challenges such as high
computational overhead due to iterative processes. Moving
forward, we plan to address these limitations and trial GlyMan
with real patients in a clinical setting.
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