Impact of Noise on Calibration and Generalisation of Neural Networks

Martin Ferianc“' Ondrej Bohdal “> Timothy Hospedales?>® Miguel Rodrigues '

Abstract

Noise injection and data augmentation strategies
have been effective for enhancing the generali-
sation and robustness of neural networks (NNs).
Certain types of noise such as label smoothing and
MixUp have also been shown to improve calibra-
tion. Since noise can be added in various stages
of the NN’s training, it motivates the question of
when and where the noise is the most effective.
We study a variety of noise types to determine how
much they improve calibration and generalisation,
and under what conditions. More specifically we
evaluate various noise-injection strategies in both
in-distribution (ID) and out-of-distribution (OOD)
scenarios. The findings highlight that activation
noise was the most transferable and effective in
improving generalisation, while input augmenta-
tion noise was prominent in improving calibration
on OOD but not necessarily ID data.

1. Introduction

Noise injection methods have emerged as a promising
approach to enhance the generalisation of neural net-
works (NNs) (Srivastava et al., 2014; Neelakantan et al.,
2017). Given the importance of noise for Bayesian NNs
(BNNs) (Gal & Ghahramani, 2016; Blundell et al., 2015;
Welling & Teh, 2011), we hypothesise that noise injections
during training of standard NNs can also positively impact
their calibration. Calibration refers to the alignment of pre-
diction’s accuracy to their confidence (Guo et al., 2017).

Examples of noise injection approaches include dropout (Sri-
vastava et al., 2014; Gal & Ghahramani, 2016), label smooth-
ing (Szegedy et al., 2016), MixUp (Zhang et al., 2018),
Gaussian noise (Blundell et al., 2015), shrinking and per-

“Equal contribution 'Department of Electronic and Electrical
Engineering, University College London 2School of Informatics,
University of Edinburgh *Samsung AI Center, Cambridge. Cor-
respondence to: Martin Ferianc <martin.ferianc.19 @ucl.ac.uk>,
Ondrej Bohdal <ondrej.bohdal @ed.ac.uk>.

Published at the ICML 2023 Workshop on Spurious Correlations,
Invariance, and Stability. Honolulu, Hawaii, USA. Copyright 2023
by the author(s).

turbing NN weights (Ash & Adams, 2020), and gradient
noise (Neelakantan et al., 2017). By introducing noise dur-
ing the training, these methods encourage active exploration
of the parameter space and can be applied to various compo-
nents of the network, including the input, targets, activations,
gradients and the model itself. In this paper, we aim to pro-
vide a fair comparison of noise injection methods during
training and investigate their impact on both calibration
and generalisation of NNs in a computer vision classifica-
tion setting. We ensure fairness of the comparison through
dedicated hyperparameter optimization per noise type and
we examine the transferability of found hyperparameters
from one dataset or architecture to another. To robustly
evaluate both generalisation and calibration we consider
testing the methods on both test in-distribution (ID) and
out-of-distribution (OOD) data.

The key takeaways from our work are: 1) Activation noise,
especially dropout (Srivastava et al., 2014), improves gener-
alisation and marginally also calibration across architectures
and datasets. 2) Input augmentation, MixUp (Zhang et al.,
2018), improves calibration and generalisation on OOD data
but not necessarily ID data. 3) Model noise and gradient
noise improve generalisation and calibration, but only to a
smaller extent than input or activation noise.

2. Related Work

Standard NNs were shown to lack calibration (Guo et al.,
2017), motivating the need for approaches focusing on train-
ing NNs such that their confidence matches their accuracy.
Bayesian NNs (BNNs) (Blundell et al., 2015; Gal & Ghahra-
mani, 2016; Welling & Teh, 2011) and NN ensembles (Lak-
shminarayanan et al., 2017) are popular approaches for ob-
taining well-calibrated models, but they are computationally
expensive as they require random sampling and multiple
forward passes during test time. Alternative methods have
been proposed without increasing computational complex-
ity, particularly during training. They include different loss
functions (Kumar et al., 2018; Mukhoti et al., 2020; Bo-
hdal et al., 2021) and temperature scaling (Guo et al., 2017).
However, these approaches have their own limitations and
may not be suitable for all scenarios. On the other hand,
most noise injections are applicable to any NN architecture
and any task.

For input noise injection, commonly used are MixUp
and Output Diversified Sampling (ODS) methods.
MixUp (Zhang et al., 2018) linearly interpolates between
two samples and their labels, while ODS (Tashiro et al.,
2020) augments the input to diversify predictions and
was used in the context of adversarial examples but not
calibration. MixUp has been shown to improve calibration
and generalisation (Zhang et al., 2022), but its transferability
between datasets and architectures has not been explored.
Additionally, we investigate naive Gaussian and uniform
noise injection, which adds Gaussian or uniform noise to
the input during training. In terms of target noise injection,
label smoothing (Pereyra et al., 2017) and MixUp (Zhang
et al., 2018) label interpolation are frequently used. Label
smoothing replaces hard targets with soft targets and has
already been shown to improve calibration, but not on OOD
data (Miiller et al., 2019). Activation noise injections
include Dropout, Gaussian and uniform noise injections.
Dropout (Srivastava et al., 2014) randomly sets activations
to zero. Gaussian noise injection (Blundell et al., 2015;
Camuto et al., 2020; Alemi et al., 2017; Yu et al., 2021)
adds Gaussian noise to the activations, while uniform noise
injection adds uniform noise. In BNNs, these injections are
applied both during training and evaluation, whereas in this
work we only apply noise during training. Furthermore,
gradient noise has been shown to improve generalisation
through adding annealed Gaussian noise to the gradients
during training (Neelakantan et al., 2017; Welling & Teh,
2011). However, it was not benchmarked on calibration,
especially without ensembling weights at different training
time-steps. Finally for model noise injection, recently
Gaussian noise injection via shrinking and perturbing
weights (Ash & Adams, 2020) at a given epoch frequency
was shown to improve retraining generalisation, but
calibration on ID or OOD data was not considered.

To the best of our knowledge, the noise injections have
been studied 1) separately (Zhang et al., 2022; Miiller et al.,
2019), 2) orthogonally for generalisation and calibration on
ID or OOD data, and 3) without a unified hyperparameter
(HP) optimization protocol. This research aims to start the
conversation into a comprehensive analysis of the noise in-
jection methods and their relationship to generalisation and
calibration, across datasets and NN architectures, providing
valuable insights into their effectiveness and practicality.

3. Methodology

This study focuses on training a NN with noise perturbations
to investigate their impact on NN’s accuracy and calibra-
tion, identifying which perturbations are helpful and when.
The noises are divided between input, target, activation,
gradient and model, and their deployment during training
is outlined in Algorithm 1 via blue lines. The probability

Algorithm 1 Training of Neural Network with Noise

Require: Training dataset D = {(2°,4*)}Z |, B batches,
learning rate n, number of epochs 7', weights 6, opera-
tion g(-, #), hidden states h°, hidden depth D, activation
f(-), probability of applying noise to a batch p

1: Initialize # randomly
2: fort =1to T do
3: forb=1to Bdo

4: Randomly select (2%, y°) from D

5: Sample e ~ U(0,1) {Ife < p}

6: Input noise: Modify z°

7 Target noise: Modify 1/°

8 fori=1to D do

9 hb = g(hb_,,0) {Where h} = 2%}

10: Activation noise: Modify h? before activation
1 hy = f(h?)

12: end for

13: Compute predicted output §* = g(hY%, 0)
14: Compute loss £(7%, ") and gradients VoL
15: Gradient noise: Modify VL

16: Update weights: 0 <— 6 —nVyL

17: end for

18: ift mod frequency = 0 and ¢t < 0.757 then
19: Model noise: Modify 6

20: end if

21: end for

22: return 0

of applying each noise to a batch out of B batches is de-
termined by the HP p € [0, 1], except model noise, which
was applied with a selected frequency during the 7' training
epochs. The noises have associated HPs and tuning ranges.

Input noise: The input noise consisted of 2 naive vari-
ants and 2 variants which tapped into predictions or the
targets to compute the noise. The two naive variants con-
sisted of adding Gaussian or uniformly sampled noise n ~
U(—0o,0);n ~ N(0,0) added to inputs = with standard
deviation o € [le~*, 1e~!]. We considered ODS (Tashiro
et al., 2020) with respect to € € [le™*,1e7!] and tem-
perature T € [0.5,5.0], and MixUp (Zhang et al., 2018)
with @ € [0,1] which also modified the targets accord-
ingly. Target noise: In addition to MixUp we consid-
ered a static noise introduced to the labels y in the form
of label smoothing (Miiller et al., 2019) with the smooth-
ing factor I € [0,0.25]. Activation noise: The hidden
states prior to applying the activation function, {R?}2
where D is the depth of the net, could be disturbed by 3
types of activation noise: additive Gaussian or Uniform
n ~ U(—o,0);n ~ N(0,0) with 0 € [le=* 1e7}] as
a tunable HP or multiplicative Dropout (Srivastava et al.,
2014) that incorporates a dropout rate d € [0, 1]. The activa-
tion noise was used prior to an activation f(-) for all linear

or convolutional operations g(-, §) but not in the output layer.
Gradient noise: The noise applied to the gradients VL fol-
lowed (Neelakantan et al., 2017) with the step size € [0, 1]
and the annealing factor y € [0, 1]. Model noise: Lastly the
model noise follows the idea of shrinking and perturbing
the weights 6 (Ash & Adams, 2020) with a shrink factor
u € [0.0,1.0] and standard deviation o € [0.0, le~3] with
frequency of perturbing every frequency € [0, 80] epochs,
except the last 25% of training epochs.

4. Experiments

Settings We first tune the learning rate and L2 regularisa-
tion of a no-noise network which are reused when tuning the
HPs of each noise injection method on three different com-
binations: ResNet-18 paired with CIFAR-10 or CIFAR-100
and a fully connected (FC) network paired with SVHN. The
tuning is performed using 1/4 of the training budget over
the course of one day, using model-based Tree-structured
Parzen Estimator method (Bergstra et al., 2011). With these
settings we are able to evaluate about 40 configurations se-
lected using Bayesian Optimization. Our protocol allows us
to optimize the performance of each noise injection method
and provide fair comparison. Full experimental details are
in Appendix A, including a summary of the identified HPs.

To assess the effectiveness of the noise injection methods,
we measure their performance using three metrics: Error
[, %], Expected Calibration Error (ECE) (Guo et al., 2017)
[, %], and Negative Log-Likelihood (NLL) [|] that we re-
port in Appendix B. These metrics provide insights into
the accuracy and its match with the confidence of the NNs’
predictions. We evaluate the performance on both the ID
test set and an augmented OOD set that includes an av-
erage over visual corruptions across 19 categories and 5
severities (Hendrycks & Dietterich, 2019). These corrup-
tions include, for example, adding snow or fog to the image,
changing the brightness or saturation of the image or blur-
ring the image. We conduct experiments on a series of
deployment scenarios where 1) the tuned HPs are directly
used on the tuned dataset and architecture, 2) the architec-
ture is changed but the HPs are kept, 3) the HPs come from a
different source dataset. The results presented are averaged
across 3 seeds and the best results are in bold.

4.1. Analysis

Tuned Hyperparameters In this scenario, we evaluate
the performance of the noise injection methods when the
HPs are tuned specifically for the dataset and architecture.
The results for these experiments are in Tables 1 and 2, and
they show that activation and input augmentation noises
are prominent in improving the accuracy and calibration
of the networks across the datasets. Dropout was the most
effective for improving ID generalisation in CIFAR-10 and

CIFAR-100, while MixUp was the most effective for SVHN.
Uniform activation worked the best for improving ID cali-
bration in CIFAR-10 and CIFAR-100, whereas ODS was the
best in SVHN. The strong result obtained by ODS on SVHN
shows that adversarial attack techniques may be useful also
for other uses-cases, including calibration. Interestingly,
some of the improvements carried to OOD data, for exam-
ple, where the error on SVHN or CIFAR-100 was the lowest
with MixUp or dropout. However, when considering calibra-
tion on OOD data, MixUp was dominant for CIFAR-10 and
CIFAR-100. On average, dropout improved generalisation
and MixUp improved calibration when considering both ID
and OOD data. The naive Gaussian and uniform input noise
perturbations did not bring significant improvements.

Architecture Transfer In this scenario, we assess the
performance of the noise injection methods when the HPs
are transferred to a different architecture while keeping the
dataset constant. We conduct experiments using SVHN with
ResNet-18 with HPs tuned on an FC network. Furthermore,
we use HPs tuned for ResNet-18 for both CIFAR-10 and
CIFAR-100 and we change the architecture to WideResNet-
18. The results are presented in Tables 3 and 4. Considering
the performance on ID data, we see that dropout reduced
error across architectures and also improved calibration.
Contrary to the improvements seen on SVHN when using
FC, MixUp did not reduce the error when using ResNet-
18 and it even recorded worse performance on OOD data
than no noise at all. Switching focus to OOD data, model
perturbation moderately improved calibration for CIFAR-
100, while activations had a negative impact and led to worse
calibration. Even though WideResNet-18 and ResNet-18 are
relatively similar, transferring hyperparameters for example
for MixUp in CIFAR-100, did not prove efficient as seen in
calibration on OOD data which became worse than not using
any noise at all. In summary, activation noises, most notably
dropout, performed well on improving generalisation on
both ID and OOD data and moderately on calibration on ID
data. However, no method was able to consistently improve
calibration on OOD data after the architecture was changed.

Dataset Transfer Under these settings, we investigate the
transferability of hyperparameters by evaluating the noise
injection methods on the same architectures but using differ-
ent datasets. Specifically, we evaluate SVHN with ResNet-
18 and HPs from CIFAR-100/ResNet-18, CIFAR-10 with
ResNet-18 and CIFAR-100/ResNet-18 HPs, and CIFAR-
100 with ResNet-18 but with CIFAR-10/ResNet-18 HPs.
The results are shown in Tables 5 and 6. For all SVHN,
CIFAR-10, CIFAR-100, the most significant error improve-
ments across ID or OOD data were achieved using dropout
and Gaussian noise. Interestingly, the activation Gaussian
noise was able to improve calibration on both ID and OOD
data on CIFAR-100, but not on the other datasets. MixUp

Table 1. Error [}, %] comparison on in-distribution (ID) and out-of- Table 2. ECE [|, %] comparison on in-distribution (ID) and out-of-

distribution (OOD) test sets and with tuned hyperparameters.

distribution (OOD) test sets and with tuned hyperparameters.

NOISE TYPE SVHN CIFAR-10 CIFAR-100 NOISE TYPE SVHN CIFAR-10 CIFAR-100
1D [e10))) 1D 00D 1D 00D 1D (e10))} 1D (e10))} 1D (e10))}

No NOISE 17.1+01 20.8+00 10.8+02 33.9x05 37.9x05 59.5+02 No NOISE 15.5+01 18.3+00 5.4+01 12.7+02 16.9+05 15.2+03
INPUT GAUSSIAN 17.4+01 21.0x00 11.1x01 34.1xo1 37.9x06 59.5+03 INPUT GAUSSIAN 15.8+01 18.5+0.1 5.3+02 12.8+04 16.9+05 15.3x01
INPUT UNIFORM 17.2+02 20.9+01 11.2+00 33.9x04 37.9x03 59.5+03 INPUT UNIFORM 15.6+02 18.4+02 5.5+01 12.8+04 17.3x01 15.3x01
INPUT ODS 15.2+02 18.7x02 10.9+03 31.6+04 38.0x04 58.2+03 INPUT ODS 4.6-+0.1 5.6+0.1 5.6+01 11.8+03 16.6+05 15.0+0.
INPUT-TARGET MIXUP 13.9+01 17.5+0.1 9.8+00 28.0+02 38.4+02 58.3+02 INPUT-TARGET MIXUP 9.4+0.1 9.9+01 11.0+02 11.3x02 16.0+02 13.8+03
LABEL SMOOTHING 16.5+02 20.1+0a1 11.5+01 33.8+02 38.6+06 60.5+05 LABEL SMOOTHING 15.0401 14.1+01 10.1x01 11.5+01 28.8+11 20.3+0s8
ACTIVATION GAUSSIAN 17.2+02 20.8+02 9.0+02 31.4+05 34.9+01 58.1+02 ACTIVATION GAUSSIAN ~ 15.54+02 18.3+0.1 4.2402 149407 11.6+05 23.3+0s8
ACTIVATION UNIFORM 17.0+02 20.7+02 8.9+01 31.8+0s5 34.6+03 57.8+02 ACTIVATION UNIFORM 15.4+02 18.3+02 3.8+01 15.8+05 9.9+02 20.6+02
ACTIVATION DROPOUT 14.6+00 18.0+0.0 8.7+03 30.9+06 31.4+03 56.6+03 ACTIVATION DROPOUT 6.5+02 7.8+0.1 5.3+03 13.4x05 12.2+03 25.8+00
GRADIENT 172401 21.0+0a1 11.3+03 33.9+02 38.1+03 59.9+02 GRADIENT 15.6+01 18.5+0.1 5.4+01 13.0+01 16.4+05 14.8+0.
MODEL 16.4+0.1 20.1+0a1 10.8+01 33.6+04 38.1+03 59.8+00 MODEL 13. 7402 16.3+0.1 53+01 127405 15.4+02 14.4402

Table 3. Error [, %] comparison on in-distribution (ID) and out-of- Table 4. ECE [|,, %] comparison on in-distribution (ID) and out-of-

distribution (OOD) test sets and with changed architecture.

distribution (OOD) test sets and with changed architecture.

NOISE TYPE SVHN CIFAR-10 CIFAR-100 NOISE TYPE SVHN CIFAR-10 CIFAR-100
ID [e]0))] ID [e]0))] ID [e]0))] 1D [e]0))] 1D 00D ID 00D

No NOISE 5.2+401 9.4+01 14.9+00 38.2+02 37.4+05 61.4+04 No NoISE 4.1+01 7.2+00 7.3+01 11.9+03 18.2+03 15.5+01
INPUT GAUSSIAN 5.240.1 9.4x00 14.7+03 38.0402 37.4+04 61.3103 INPUT GAUSSIAN 4. 1400 7.240.0 7.dx01 11.8+03 17.9402 15.4+03
INPUT UNIFORM 5.2+401 9.5+01 14.7+04 383+02 37.3+04 61.4%03 INPUT UNIFORM 4.1+00 7.2+401 7.1403 12.0+05 18.3+03 15.3+03
INPUT ODS 19.8+77 25.6481 14.5t01 36.1x01 36.9+06 60.2:+0.4 INPUT ODS 6.7+15 9.1+422 71400 11400 17.8+03 15.4+05
INPUT-TARGET MIXUP 53401 13.1x0s5 11.8+03 31.5+03 36.5+05 59.5+06 INPUT-TARGET MIXUP 10.2+05 9.9+05 12.6+03 11.7+01 18.9+04 18.1x05
LABEL SMOOTHING 5.1+01 9.3+02 152403 37.7+x01 36.8+03 60.9+01 LABEL SMOOTHING 21.2400 20.2+00 12.0+03 11.6+01 29.0+03 19.5+03
ACTIVATION GAUSSIAN 5.3+01 9.5+01 12.0+01 35.7+05 43.2+08 66.0+07 ACTIVATION GAUSSIAN 4.2+00 7.2+401 5.6401 11.7+04 10.5+t08 222411
ACTIVATION UNIFORM 5.2+401 9.5+01 129402 37.9+07 36.9+03 61.0+03 ACTIVATION UNIFORM 4.2+401 7.2+401 6.5+01 12.3x0s8 8.6:£04 19.1x12
ACTIVATION DROPOUT 4.2:+0.1 8.0+01 11.1+02 33.2x05 32.1+03 58.3+06 ACTIVATION DROPOUT 3.6+00 6.6:£0.1 7.0402 11.1+03 9.2403 22.3x06
GRADIENT 5.5+00 10.0+02 15.0+01 37.9+04 37.3x03 61.2+05 GRADIENT 4.2+401 7.5+01 7.3+00 11.3x04 17707 15.3+03
MODEL 4.4x00 8.5+00 14.7+04 38.1+01 36.5+02 61.1x00 MoODEL 3.4+00 6.1+0.1 6.9+02 11.8+04 15.7+04 14.6:+04

Table 5. Error [, %] comparison on in-distribution (ID) and out-of- Table 6. ECE [|., %] comparison on in-distribution (ID) and out-of-

distribution (OOD) test sets and with changed dataset.

distribution (OOD) test sets and with changed dataset.

NOISE TYPE SVHN CIFAR-10 CIFAR-100 NOISE TYPE SVHN CIFAR-10 CIFAR-100
D [e]0))] D [e]0))] D [e]0))] ID 00D ID 00D ID 00D

No NOISE 5.3+02 9.5+01 11.6x03 33.6+03 38.2+02 59.8x01 No NoISE 4.2x02 7.2+01 4400 149+10 17.1x02 14.9+03
INPUT GAUSSIAN 5.2+00 9.5+01 11.6x02 33.4+02 38.2+t02 59.7+02 INPUT GAUSSIAN 4.1x01 7.2+01 4.6+02 15.1x12 16.7x01 15.2x0.
INPUT UNIFORM 5.1x01 9.4+01 11.2+03 34.0+04 38.2+02 59.9+00 INPUT UNIFORM 4.1x01 7.2+00 5.5x01 12.5x04 17.2x02 15.1x01
INPUT ODS 5.2+02 9.3+01 11.5+01 32.4+0s 37.5t01 56.8+02 INPUT ODS 4.2x01 7.1x01 4.7+02 14.8+14 16300 14.8+0.
INPUT-TARGET MIXUP S5.1+01 11.6+03 10.9+01 28.2+05 38.0+03 58.7+0. INPUT-TARGET MIXUP 6.6+0.6 6.8+05 6.5+0.1 8.9+04 16.9x05 14.4+04
LABEL SMOOTHING 5.2+01 9.4+01 11.3+03 34.2+03 37.3+00 58.7+0.1 LABEL SMOOTHING 15.9+01 15.2x01 19.0x03 14.4x03 25.7x01 19.7x03
ACTIVATION GAUSSIAN 5.2+02 9.3+02 10.4+03 31.4+03 35.5+02 57.8+0.1 ACTIVATION GAUSSIAN 4.2x01 7.2+0.1 5.5x01 18.5x0s 9.3+03 12.9x04
ACTIVATION UNIFORM 5.2+0.1 9.4x00 13.6+04 37.0+06 35.6+03 57.8+00 ACTIVATION UNIFORM 4.2+01 7.1x01 4.6x03 12.6x04 8.6+01 13.0+03
ACTIVATION DROPOUT 4.1x00 7.9+0.0 9.4x01 30.0+09 32.1+03 56.6+04 ACTIVATION DROPOUT 3.6+00 6.5+00 5.6+01 19.3x07 9.9+02 20.8+07
GRADIENT 6.1+02 10.9+02 11.8+03 33.4+02 38.2+02 61.0+02 GRADIENT 4.7+0.1 8.2+02 4.7+02 14.9x06 12.8203 13.3x02
MODEL 4.4+0. 8.64+0.1 12.0+02 33.8+02 38.2+02 59.6+0.1 MODEL 3.3+0. 5.7+0.1 4.8+01 15.1x0s5 16.8202 15.0+02

has demonstrated varying results, for example on SVHN
or CIFAR-10 the calibration on ID data was worse than
not using any noise at all, while in CIFAR-100 there was a
marginal improvement. Nevertheless on OOD data MixUp
was able to improve calibration across all datasets.

Summary The effectiveness of noise injections varies
with the dataset and architecture. Nevertheless, especially
in the tuned regime, certain settings of different noises im-
proved both generalisation and calibration. Activation noise
injections demonstrated promising results for error reduc-
tion across ID data, while input augmentations seemed to be
the most effective for OOD data. Dropout was the most ef-
fective in improving error on ID or OOD data, and it proved
to be transferable across architectures and datasets. MixUp
was the best in improving the performance on OOD data in
terms of calibration and accuracy, but not necessarily on the
ID data. Interestingly, hidden in its mediocrity, model noise
was able to marginally improve accuracy and calibration
across majority of considered scenarios. Additional evalu-
ation in terms of NLL, in Appendix B, has shown MixUp,

dropout and model perturbations to be the most effective.

5. Discussion and Conclusions

Our study explored the impact of various noise injection
strategies on the calibration and generalisation of NNs. We
identified activation noise to be the most effective and trans-
ferable for improving generalisation, while input augmen-
tation noise notably enhanced calibration on OOD data.
Despite sole focus on computer vision classification, our
research underlines the potential of noise injection as a ben-
eficial tool for boosting NN generalisation and calibration.

Acknowledgements

Martin Ferianc was sponsored through a scholarship from
the Institute of Communications and Connected Systems at
UCL. Ondrej Bohdal was supported by the EPSRC Centre
for Doctoral Training in Data Science, funded by the UK
Engineering and Physical Sciences Research Council (grant
EP/L016427/1) and the University of Edinburgh.

References

Alemi, A. A., Fischer, L., Dillon, J. V., and Murphy, K. Deep
variational information bottleneck. /CLR, 2017.

Ash, J. and Adams, R. P. On warm-starting neural network
training. In NeurIPS, 2020.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algo-
rithms for hyper-parameter optimization. In NIPS, 2011.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural network. In /CML, 2015.

Bohdal, O., Yang, Y., and Hospedales, T. Meta-calibration:
Learning of model calibration using differentiable ex-
pected calibration error. In ICML UDL Workshop, 2021.

Camuto, A., Willetts, M., Simsekli, U., Roberts, S. J., and
Holmes, C. C. Explicit regularisation in gaussian noise
injections. In NeurlIPS, 2020.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning.
In ICML, 2016.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In ICML, 2017.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and perturba-
tions. In ICLR, 2019.

Kumar, A., Sarawagi, S., and Jain, U. Trainable calibration
measures for neural networks from kernel mean embed-
dings. In ICML, 2018.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In NeurIPS, 2017.

Loshchilov, 1. and Hutter, F. Sgdr: Stochastic gradient
descent with warm restarts. In /ICLR, 2017.

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P.,
and Dokania, P. Calibrating deep neural networks using
focal loss. In NeurIPS, 2020.

Miiller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? In NeurIPS, 2019.

Neelakantan, A., Vilnis, L., Le, Q. V., Kaiser, L., Kurach, K.,
Sutskever, 1., and Martens, J. Adding gradient noise im-
proves learning for very deep networks. In OpenReview,
2017.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., and Hin-
ton, G. Regularizing neural networks by penalizing con-
fident output distributions. In ICLR Workshop, 2017.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. JMLR, 2014.

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In CVPR, 2016.

Tashiro, Y., Song, Y., and Ermon, S. Diversity can be
transferred: Output diversification for white-and black-
box attacks. In NeurIPS, 2020.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In ICML, 2011.

Yu, T., Yang, Y., Li, D., Hospedales, T., and Xiang, T.
Simple and effective stochastic neural networks. In AAAI,
2021.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In ICLR,
2018.

Zhang, L., Deng, Z., Kawaguchi, K., and Zou, J. When and
how mixup improves calibration. In /ICML, 2022.

Table 7. NLL []] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets with tuned hyperparameters.

Table 8. NLL [|] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets with changed architecture.

NOISE TYPE SVHN CIFAR-10 CIFAR-100 NOISE TYPE SVHN CIFAR-10 CIFAR-100
D 00D D 00D 1D 00D D 00D D 00D 1D 00D

No NoOISE 2.1x0.0 2.4x0.0 0.4+0.0 1.2+0.0 1.9+0.0 2.9+0.0 No NoOISE 0.3x0.0 0.6+00 0.5+0.0 1.2+0.0 1.8+0.0 3.0x0.0
INPUT GAUSSIAN 2.1x00 2.4+00 0.4+0.0 1.2+0.0 1.9+0.0 2.9+0.0 INPUT GAUSSIAN 0.3+00 0.6+00 0.5+0.0 1.2+0.0 1.8+0.0 2.9+0.0
INPUT UNIFORM 2.1x0.0 2.4x0.0 0.4+0.0 1.2+00 1.9+0.0 2.9+0.0 INPUT UNIFORM 0.3x00 0.600 0.5+0.0 1.3x00 1.80.0 2.9+00
INPUT ODS 0.6+0.0 0.7+00 0.4+0.0 1.1+0.0 1.9x0.0 2.8+0.0 INPUT ODS 0.8+03 1.1+03 0.5+0.0 1.2+0.0 1.8+0.0 2.9+0.0
INPUT-TARGET MIXUP 0.5+00 0.7+00 0.440.0 0.9+0.0 1.8x0.0 2.7+00 INPUT-TARGET MIXUP 0.3+00 0.5+00 0.5+0.0 1.0:00 1.7x00 2.8+00
LABEL SMOOTHING 0.7x0.0 0.8+0.0 0.5+0.0 1.1+0.0 2.1x0.0 3.1x00 LABEL SMOOTHING 0.4+0.0 0.5+00 0.6x0.0 1.2+0.0 2.0+0.0 3.1x00
ACTIVATION GAUSSIAN 2. 1400 2.4400 0.3+0.0 1.1+00 1.4x00 2.8+0.1 ACTIVATION GAUSSIAN 0.3+00 0.6+0.0 0.410.0 1.2+00 1.6x0.0 3.3+00
ACTIVATION UNIFORM 2.1x0.0 2.4x0.0 0.3+0.0 1.2+0.0 1.4x0.0 2.8+0.0 ACTIVATION UNIFORM 0.3+0.0 0.6+00 0.4+0.0 1.2+0.0 1.4x0.0 2.9+01
ACTIVATION DROPOUT 0.6+0.0 0.7+00 0.340.0 1.1+0.0 1.3+00 2.9+0.0 ACTIVATION DROPOUT 0.3x00 0.6:+00 0.400 L.1x0.0 1.2x00 2.8+00
GRADIENT 2.1x0.0 2.5+0.0 0.4x0.0 1.2+0.0 1.9+0.0 2.9+0.0 GRADIENT 0.3+0.0 0.6+0.0 0.5+0.0 1.2x00 1.8x0.0 2.9+00
MODEL 1.5+0.0 1.7+0.0 0.4+0.0 1.2+0.0 1.8x0.0 2.9x00 MODEL 0.2+00 0.4:+00 0.5+0.0 1.2+0.0 1.7+0.0 2.9x00

A. Experimental Settings Details

We used stochastic gradient descent with momentum 0.9 to
train all the networks. The learning rate n = [le — 4, le — 1]
together with L2 regularisation A = [le—7, le—1] were ini-
tially tuned and then reused for each noise injection method.
We used cosine annealing learning rate schedule without
restarts (Loshchilov & Hutter, 2017) for all experiments.
For each dataset, we only used normalization without any
further data augmentations. We used gradient norm clipping
of 5.0 to stabilise the training. The batch size was set to
256 for all experiments. 10% of the training data was used
as the validation set to select the best model. The tuning
was performed with 1 seed and the winning hyperparame-
ters were retrained 3 times with different seeds. The final
results are reported as the average of the 3 runs. We used
cross-entropy loss for all the experiments. In all cases we
trained the networks for 200 epochs.

We used a fully connected network with 4 hidden layers
of 150 units followed by ReLU activations and ResNet-18
with [32, 64, 128, 256] channels in 4 stages with [2, 2, 2,
2] blocks with strides [1, 2, 2, 2]. For WideResNet-18 we
used the same channel, stride and block configuration as
for ResNet-18, but with the Bottleneck block, expansion
factor 4, base width 32, base width multiplier 2 and a single
group. Both residual architectures use batch normalisation
and ReLU activations. We used the default PyTorch weight
initialization for all layers. We used 10 bins to measure ECE
and a small € of 1e~® which was added to the output softmax
probabilities to avoid NaNs. The found hyperparameters for
each dataset-architecture pair are in Table 10. The descrip-
tions of the hyperparameters as well as the search ranges
are provided in Section 3.

B. Negative Log-Likelihood

We provide additional Tables 7, 8 and 9 that report the
Negative Log-Likelihood for the different experiments that
we have conducted. Comparing the NLL results to the
previously collected results on the error and calibration error,
there are subtle differences. In Table 7 the NLL for SVHN is

Table 9. NLL [|] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets with changed dataset.

NOISE TYPE SVHN CIFAR-10 CIFAR-100
D 00D D 00D 1D 00D

No NOISE 0.3x0.0 0.6+00 0.4x0.0 1.2+0.0 1.9+0.0 2.9+0.0
INPUT GAUSSIAN 0.3+00 0.6+0.0 0.4+0.0 1.2+0.0 1.9+0.0 2.9+0.0
INPUT UNIFORM 0.3x0.0 0.6+0.0 0.4x0.0 1.2+0.0 1.9+00 2.9+0.0
INPUT ODS 0.3+00 0.6+00 0.4+0.0 1.1+0.0 1.8+0.0 2.7+00
INPUT-TARGET MIXUP 0.2x00 0.4x00 0.4+0.0 0.9+0.0 1.8x0.0 2.7x00
LABEL SMOOTHING 0.3+0.0 0.5+00 0.6+0.0 1.2+0.0 2.0+0.0 3.0x0.0
ACTIVATION GAUSSIAN 0.3+00 0.6+0.0 0.4+0.0 1.2+00 1.6x0.0 2.7+00
ACTIVATION UNIFORM 0.3+0.0 0.6+0.0 0.4x0.0 1.2+0.0 1.5+0.0 2.7+0.0
ACTIVATION DROPOUT 0.3+00 0.6:+0.0 0.3+0.0 13201 1.2+00 2.7+01
GRADIENT 0.4+0.0 0.7+00 0.4x0.0 1.2+0.0 1.8+0.0 2.9+0.0
MODEL 0.2+00 0.4:00 0.4+0.0 1.2+0.0 1.9+0.0 2.9+0.0

the lowest for MixUp and not ODS for ID and OOD data as
suggested by ECE. Furthermore, we can see in Table 8 that
when we change the architecture, the model perturbation
achieved the lowest NLL on both ID and OOD data for
SVHN, while the dropout activation was the best in terms
of the error. Dropout retained the lowest NLL in CIFAR-
100 and CIFAR-10 on ID data. Looking at Table 9 that
reports results with the changed dataset, surprisingly model
perturbation was the most dominant in NLL on SVHN, in
contrast again to dropout as suggested by the error. Even
though for CIFAR-10 the calibration on ID data was the
lowest without using any noise, dropout was able to improve
the NLL over no noise settings. In summary and contrast
to the previous results, in NLL improvements dropout was
perceived as the most effective together with MixUp and
model perturbations.

Table 10. Found hyperparameters on SVHN, CIFAR-10 and CIFAR-100 datasets.

NOISE TYPE HYPERPARAMETER SVHN CIFAR-10 CIFAR-100
NO NOISE LEARNING RATE 0.042 0.0082 0.060
L2 1.3e-07 0.029 0.0031
INPUT GAUSSIAN o 0.0029 0.00011 0.00061
P 0.56 0.83 0.78
INPUT UNIFORM o 0.00086 0.0038 0.0013
D 0.28 0.63 0.61
INPUT ODS T 1.37 0.85 2.26
n 0.047 0.0056 0.00080
P 0.96 0.066 0.67
INPUT-TARGET MIxUpP « 0.99 0.55 0.56
P 0.91 0.72 0.69
LABEL SMOOTHING l 0.24 0.11 0.18
P 0.99 0.65 0.96
ACTIVATION GAUSSIAN o 0.0035 0.0064 0.099
D 1.0 0.54 0.47
ACTIVATION UNIFORM o 0.0014 0.014 0.058
p 0.02 0.70 0.63
ACTIVATION DROPOUT d 0.16 0.31 0.26
P 0.78 0.55 0.75
GRADIENT n 0.020 0.26 0.32
~ 0.63 0.99 0.99
P 0.0083 0.19 0.021
MODEL w 0.32 0.75 0.57
o 9.7E-05 0.00087 0.00016
FREQUENCY 52 28 12

