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Abstract

Last-mile delivery (LMD) systems increasingly
face dynamic customer demands that introduce
uncertainty and lead to unstable delivery routes,
reducing efficiency and placing cognitive bur-
dens on couriers. To address this, we propose
R3S2Route, a Robust Regularizer-enhanced RL-
based Smooth and Stable Routing Algorithm
that learns courier-friendly policies under state
uncertainty. Our method adopts an actor-critic
reinforcement learning framework and incorpo-
rates a robustness regularizer to penalize pol-
icy sensitivity to input perturbations. We for-
mally define route smoothness and stability as
courier-friendliness metrics, and integrate them
into the learning framework to produce routing
policies that are both geometrically intuitive and
keep spatial-temporal consistent. Experimental
results demonstrate that R3S2Route achieves up
to 59.68% improvement in route smoothness and
14.29% in route stability, while maintaining low
travel distances and time-window violation rates,
outperforming several baselines in dynamic deliv-
ery environments.

1. Introduction
The last-mile delivery (LMD) problem focuses on optimiz-
ing the delivery sequence in the final stage of the supply
chain, where goods are transported from distribution centers
to end customers by couriers (Boysen et al., 2021). This
stage is widely considered the most complex and costly seg-
ment of the delivery process (Macioszek, 2018). With the
development of IoT technologies and e-commerce platforms,
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delivery companies are providing increasingly flexible ser-
vices, allowing customers to choose preferred delivery times
and locations, monitor real-time package status, request
door-to-door pickup services, and adjust delivery/pickup
options in real time (Wanganoo & Patil, 2020).

Though the increased service flexibility enhances customer
experience and satisfaction, it also introduces greater un-
certainty to LMD, posing significant challenges for robust
delivery route planning and effective human-in-the-loop exe-
cution. For example, customers using services like Amazon
Prime frequently change their delivery preferences, which
drives the logistics system to dynamically re-optimize routes.
The frequent route changes without considering route sta-
bility introduce cognitive burdens on couriers, reducing ac-
ceptance of system instructions and diminishing the overall
efficiency of the delivery process.

However, robust route planning that explicitly considers
courier-friendly decision execution remains challenging and
underexplored. Most existing approaches focus on compu-
tational efficiency, robustness to dynamic factors and uncer-
tain predictions, and fair workload or monetary incentive to
couriers utilizing exact optimization techniques (Lysgaard
et al., 2004; Gauvin et al., 2014), heuristic and metaheuristic
methods (Pisinger & Ropke, 2007; Li & Li, 2020; Matl et al.,
2018), and learning-based algorithms (Nazari et al., 2018;
Pan & Liu, 2023). Without dedicated design, merely incor-
porating courier-friendliness metrics into these methods fails
to achieve simultaneous optimization of courier-friendliness
and robustness due to their inherently conflicting objectives.
Robust optimization methods typically aim to optimize for
worst-case scenarios, often resulting in aggressive uncer-
tain variables estimation during re-routing. As a result, the
newly generated routes may differ significantly from previ-
ous ones. In contrast, courier-friendliness emphasizes route
stability and alignment with human preferences—such as
minimizing zigzag patterns. Moreover, courier-friendliness
metrics such as route stability and smoothness are often non-
linear, non-differentiable, and difficult to formalize. This
makes it challenging to incorporate them into traditional
gradient-based or optimization frameworks.

To address the aforementioned challenges, we propose a
reinforcement learning (RL)-based robust LMD framework
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that incorporates courier-friendliness into robust route plan-
ning under state uncertainty. Our framework is designed
to handle both environmental uncertainties and route con-
straints in a unified manner. Specifically, we formally define
two key metrics—route stability and route smoothness—to
quantify courier-friendliness. Unlike traditional optimiza-
tion methods, our RL-based approach is not limited by the
nonlinearity or non-differentiability of these metrics. By
carefully designing the reward function and optimization al-
gorithm within the RL framework, we avoid the limitations
of linear combination-based multi-objective optimization,
which often fails to balance conflicting objectives effectively.
Our main contributions are as follows:

(1) To the best of our knowledge, we are the first to for-
mulate the robust courier-friendly last-mile delivery (LMD)
problem under prediction error and dynamic environments
as a robust reinforcement learning problem under state un-
certainty. Via a proper design of agent, state, action, reward
and robust policy, we set the goal of the problem as produc-
ing robust courier-friendly routing policy in terms of route
smoothness and stability.

(2) We design a Robust Regularizer-enhanced RL-based
Smooth and Stable Routing Algorithm (R3S2Route) to learn
smooth and stable routing policies resilient to dynamic de-
livery uncertainties. It adopts an actor-critic framework and
a robustness regularizer that constrains policy sensitivity to
input perturbations.

(3) We run experiments to demonstrate the effectiveness
of R3S2Route. Experiments show that our proposed algo-
rithm performs better in terms of route smoothness and
stability while maintaining low travel distance and time win-
dow violation rates. Specifically, compared to Tabu Search,
R3S2Route increases route smoothness by 31.61% and im-
proves route stability by 6.67%; compared to RL-based
baseline, R3S2Route increases route smoothness by 59.68%
and improves route stability by 14.29%.

2. Related Work
Last-mile delivery problem is traditionally modeled as a
Vehicle Routing Problem (VRP), which aims to determine
optimal route to minimize travel cost and service time. Clas-
sical solutions include exact optimization methods, heuris-
tics, and metaheuristics. Exact optimization methods are of-
ten restricted to small-scale applications due to the NP-hard
nature of VRP (Kumar & Panneerselvam, 2012). Heuris-
tics and metaheuristics offer scalable solutions but do not
guarantee global optimality (Breedam, 2001).

Reinforcement Learning (RL) has emerged as a powerful
paradigm for solving VRP. RL formulates the VRP as a
sequential decision-making process, where an agent learns
to make optimal routing decisions by interacting with the

environment. Early works introduce a pointer network
trained via policy gradient methods to construct routes in-
crementally (Bello et al., 2017; Nazari et al., 2018). Recent
advances leverage deep RL techniques, such as Deep Q-
Learning (DQN) (Pan & Liu, 2023; Cai et al., 2024) and
Proximal Policy Optimization (PPO) (Ara et al., 2023; Foa
et al., 2022), to improve scalability and solution quality.
Moreover,, Graph Neural Networks (GNN) have been inte-
grated with deep RL to capture spatial and structural rela-
tionships in routing graphs, enhancing the representation of
customer locations and vehicle paths (Tien & Qi-lee, 2022).
While RL-based methods demonstrate adaptability and scal-
ability, they often lack robustness to real-time disruptions
and fail to account for courier-centric considerations such
as route smoothness and stability.

The emerging field of robust RL provides a promising op-
portunity to address these limitations. It extends traditional
RL by optimizing policies that are resilient to model uncer-
tainties, adversarial perturbations, and environmental shifts
(Moos et al., 2022). One foundational approach is Minmax
Optimization, where the agent maximizes its reward while
accounting for worst-case environmental shifts (Li et al.,
2019). This concept extends to Adversarial Training, which
perturbs state transitions during learning to harden policies
against unexpected changes (Pinto et al., 2017). Addition-
ally, Distributionally Robust Optimization (DRO) aims to
maintain policy stability by considering worst-case distri-
butions within uncertainty sets (Lin et al., 2022). This is
further refined by Wasserstein robust RL, which leverages
the Wasserstein distance to model uncertainty in transition
dynamics and rewards (Abdullah et al., 2019). Moreover,
Policy Regularization Techniques directly penalize policies
that are overly sensitive to environmental changes (Zhang
et al., 2021). Our proposed framework leverages robust
RL principles by applying a robust policy regularizer to
enhance route stability under real-time updates, address-
ing both environmental unpredictability and courier-centric
requirements.

3. Method
In this section, we address the problem of real-time robust
and courier-friendly last-mile delivery route optimization in
a dynamic environment. We formulate it as a Reinforcement
Learning (RL) problem. To solve this problem, we propose
a framework that combines a multi-objective reward and a
robust policy regularizer to enhance both route smoothness
and stability.

3.1. Preliminary: Reinforcement Learning

An RL problem is typically modeled as a Markov Decision
Process (MDP), defined by the tuple (S,A,P,R, γ), where
S is the set of states, A is the set of actions, P(s′|s, a) is
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the transition probability function, describing the likelihood
of moving to state s′ after taking action a in state s,R(s, a)
is the reward function, specifying the immediate reward
received after executing action a in state s, and γ ∈ (0, 1) is
the discount factor, balancing immediate and future rewards.
At each time step t, the agent observes the current state st,
selects an action at according to its policy π(at|st), receives
a reward rt = R(st, at), and transitions to a new state st+1

according to the state transition probability P(·|st, at). The
policy π is defined as a mapping π : S → ∆(A), where
∆(A) denotes the set of probability distributions over the
action space A. The objective of the agent is to learn a
policy π that maximizes the expected cumulative discounted
reward, i.e. maxπ V

π, where V π = Eπ[
∑∞

t=0 γ
trt]. An

optimal policy π∗ is defined as π∗ = argmaxπ V
π .

3.2. Problem Statement

We consider the problem of real-time robust and courier-
friendly last-mile delivery route optimization. The goal is
to find a robust and optimal policy that optimizes courier-
centric factors—specifically, route smoothness and sta-
bility—with traditional efficiency metrics, including total
travel distance and time window violation rate. Meanwhile,
the policy should be robust to uncertainties caused by de-
mand modifications, time window adjustments, new delivery
requests, and cancellations.

We represent the geographic structure of the delivery area as
a graph. We divide a day into T equal-length time intervals,
defined by discrete time points t = 0, 1, . . . , T , where each
interval spans the period [t, t+ 1). At the beginning of the
day t = 0, the courier is assigned an initial set of delivery
requests and constructs an initial corresponding delivery
route. When the courier completes a delivery, the system
updates the demand of the served customer. Meanwhile, the
customers may introduce real-time updates into the system,
including customer demand changes, time window adjust-
ments, new delivery requests, and cancellations. At each
time point t > 0, the courier observes the updated set of
requests and recalculates the delivery route accordingly.

3.3. RL-based Robust and Courier-Friendly Last-Mile
Delivery Problem Formulation

We formulate the Robust and Courier-Friendly Last-Mile
Delivery Problem (RCF-LMDP) as a RL problem G =
(S,A,P,R, γ). We model the courier as a decision-making
agent responsible for calculating delivery routes in a dy-
namic environment. The definitions of the state, action,
state transition, executed route, courier-friendly metrics, re-
ward function, state-robust policy, and goal are introduced
as follows.

State st: The state at time t is st = {loctcourier, q
t, cust} ∈

S , where loctcourier denotes the current location of the courier,

qt ∈ [0, Q] represents the remaining capacity of the de-
livery vehicle, where Q is the maximum capacity, and
cust = {cus1,t, cus2,t, . . . , cusI,t} is the set of uncom-
pleted delivery requests, where i ∈ [1, I] is the index
of customers who have not yet been served. Each de-
livery request cusi,t ∈ cust is represented as cusi,t =
{loci, di,t, T i,t

s , T i,t
e }, where loci indicates the customer’s

location, di,t is the customer demand, and [T i,t
s , T i,t

e ] de-
notes the time window during which the delivery must be
completed.

Action at: At each time point t, the action at corresponds to
a delivery route calculated by the courier to serve the current
set of uncompleted requests. Specially, the route is defined
as at = (n0, n1, . . . , nI), where n0 denotes the courier’s
current position, each ni for i > 0 represents a customer
location selected from the active request set cust, and I is
the total number of unserved customers. Unlike classical
formulations where the action space is limited to selecting
a single next customer, our framework defines the action
as a route. This is because generating a route at each deci-
sion point allows the model to reason globally about route
quality, capturing long-term trade-offs in efficiency, route
smoothness, route stability, and time window compliance,
rather than making purely myopic decisions.

State Transition P: At time t, the courier executes ac-
tion at by traversing the sequence of nodes and fulfilling
customer requests. The MDP state transition is driven by
two types of changes: (1) intrinsic changes resulting from
customer behaviors (e.g., demand modifications, time win-
dow adjustments, new delivery requests, or cancellations),
and (2) exogenous changes caused by the courier’s actions,
such as completing deliveries and moving between loca-
tions. When no intrinsic changes occur, the state transition
involves only updates to the courier’s location, removal of
served requests, and adjustment of the remaining vehicle
capacity. Otherwise, customer-driven updates additionally
modify the request set, affecting the next state st+1. There-
fore, to avoid unnecessary and redundant computation, we
only allow the agent to compute a new action when intrinsic
changes occur.

Executed Route āt: Due to the dynamic nature of customer-
driven intrinsic changes, a new action at is recomputed each
time such changes occur. However, since such changes may
interrupt the execution of the current route, only a prefix of
each planned route is typically executed before the route is
replaced. The executed route up to time t, denoted by āt, is
thus defined as the concatenation of the actually traversed
segments of all previously planned actions:

āt = concat(prefix(aτ1), prefix(aτ2), . . . , prefix(aτk))

where τ1, τ2, . . . , τk < t are the time steps at which intrinsic
changes triggered route replanning, and prefix(aτi) denotes
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(a) Low Smoothness:
sharp turns and zigzag
patterns

(b) High Smoothness:
larger turning angles and
smoother paths

Figure 1. Illustration of Route Smoothness

the portion of the route that was actually executed before the
next change occurred. A special case is that prefix(at) = at
at time t. Therefore, āT is the ultimate executed route.

Courier-Friendly Metrics (1): Route Smoothness. To
capture how geometrically intuitive and cognitively man-
ageable a delivery route is for human couriers, we propose
to use route smoothness. This metric reflects the geometric
continuity of a delivery route and is designed to reduce sharp
turns and zigzag patterns, which are known to increase navi-
gation complexity and mental fatigue for couriers. Given a
route a = (n0, n1, . . . , nI), we measure the smoothness of
the route as the average turning angle:

rs(a) =
1

I − 1
(

I−1∑
i=1

|ωi|),

where each angle ωi is formed by the triplet
(ni−1, ni, ni+1). To illustrate how this metric is computed,
consider a set of customers {1, 2, 3, 4}. Given a route
over the customer set, a(a) = (depot, 1, 2, 3, 4, depot), as
shown in Figure 1a, the route smoothness is calculated
by summing the turning angles at node 1, 2, 3 and 4.
Given an alternative route over the same customer set,
a(b) = (depot, 1, 2, 4, 3, depot), as illustrated in Figure 1b,
the corresponding turning angles highlighted in red demon-
strate how different route orderings influence smoothness at
the same node. As evident from the comparison, smoother
routes (Figure 1b) exhibit gentler turning angles, while
less smooth routes (Figure 1a) involve abrupt directional
changes.

In our formulation, a larger average turning angle indicates a
smoother and more intuitive path. Therefore, a higher value
of rs corresponds to a more courier-friendly route, promot-
ing navigational ease and route adherence. First, smooth
routes reduce the cognitive load on couriers by providing
more consistent and predictable directional flow, which is
easier to follow using spatial memory or simple visual cues.
Second, they require fewer micro-decisions at intersections

or forks, minimizing hesitation or navigation errors. Third,
smoother paths are more likely to align with the courier’s
own heuristics or intuitions about “good routes,” thereby in-
creasing the likelihood of adherence to algorithm-generated
plans. In contrast, routes with excessive zigzagging or sharp
turns can feel counterintuitive or mentally taxing, encourag-
ing deviation and reducing overall compliance.

Reward functionR: Our goal is to find a delivery route that
achieves an effective long-term trade-off among operational
efficiency, route quality, and customer satisfaction. To this
end, we define the episode-level reward functionR(s, a) as
a weighted sum of the route distance rd, route smoothness
rs and time-window violation rate following the route rv,
i.e.,

R(s, a) = αrs(āT )− βrd(āT )− γrv(s, āT ),

where s ∈ S and for any route a = (n0, n1, . . . , nI),

rd(a) =

I−1∑
i=0

dist(ni, ni+1),

dist(ni, ni+1) is the distance between customers ni and
ni+1.

rv(s, a) =
1

I

I∑
i=1

I
[
tiarr > T i

e ∨ tiarr < T i
s

]
is the proportion of deliveries violating time window con-
straints, where tiarr denotes the arrival time at customer ni,
[T i

s , T
i
e ] is the corresponding valid time window, and the

indicator function I[·] equals 1 if the time window is vi-
olated and 0 otherwise. The non-negative coefficients α,
β, and γ control the relative importance of route distance,
smoothness, and violation rate. By maximizing the total
discounted rewards, the agent is encouraged to generate
routes that are not only short in distance but also geometri-
cally smooth and temporally feasible, effectively balancing
efficiency, courier-friendliness, and service quality. Rein-
forcement learning provides a flexible and unified frame-
work for multi-objective optimization, where non-linear and
non-differentiable criteria can be jointly optimized through
reward shaping.

(a) Low Stability
(similarity = 1

7
):

significant changes after
updates

(b) High Stability
(similarity = 3

7
): minimal

route modifications after
updates

Figure 2. Illustration of Route Stability
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Courier-Friendly Metric (2): Route Stability. While
route smoothness focuses on quantifying zigzag patterns,
route stability captures the spatial-temporal consistency of
planned paths in dynamic environments. Frequent changes
in routing decisions—especially in response to real-time
customer updates—can increase couriers’ cognitive burden,
and reduce adherence to system-generated routes. To pro-
mote trust and usability, it is desirable for updated routes to
remain as consistent as possible with prior routes.

Formally, given two executed routes āt = (n0, n1, . . . , nI)
and āt′ = (n′0, n

′
1, . . . , n

′
I), we define the route stability

stab(a, a′) as the Jaccard similarity between the directed
edge sets:

stab(āt, āt′) =
|E ∩ E′|
|E ∪ E′|

,

where E = {< ni, ni+1 >| 0 ≤ i < I} ∪ {< nI , n0 >},
< ni, ni+1 > is an edge connecting ni and ni+1, and E′

is defined analogously for a′. A higher value of stab(a, a′)
indicates a larger overlap between these two routes a and
a′, reflecting a more stable and courier-friendly routing de-
cision. In Figure 2, gray nodes represent existing customers,
and the red node indicates a newly arriving customer. The
route before the newly arriving request is shown with gray
dashed lines, while the updated route is shown with red
solid lines. As illustrated, more stable routes (Figure 2b)
involve minimal deviations from the original plan, whereas
less stable routes (Figure 2a) exhibit substantial changes in
response to the new request. This metric is particularly rele-
vant in real-time delivery scenarios where customer requests
evolve frequently. By preserving route structure as much as
possible across updates, stability promotes easier execution
and greater system reliability.

State-Robust Policy: A routing policy π is said to be state-
robust with respect to a perturbation set ∆ if for any state
s ∈ S, and any admissible perturbation δ ∈ ∆, the routing
decision produced by π(s + δ) remains close to π(s) in
terms of some distance function. That is,

∀s ∈ S, ∀δ ∈ ∆, d (π(s), π(s+ δ)) ≤ ϵ,

where d(·, ·) denotes a distance between routes and ϵ > 0
is a robustness tolerance. This definition endows the policy
with an intrinsic robustness to state uncertainty: as long as
the state perturbations remain within the admissible set ∆,
the resulting routing decisions will not deviate significantly
from those computed under nominal conditions or accurate
state information. For example, the policy will be robust to
small shifts in customer time windows, certain fluctuations
in predicted demand, or localized cancellations.

Connecting State Robustness and Route Stability: We
further observe that this state-robustness definition closely
aligns with our goal of achieving high route stability during
dynamic re-routing. In both cases, the central objective is to

prevent small fluctuations in customer-related information
from inducing large, disruptive changes in routing behavior.
By learning a policy that reacts smoothly to bounded input
uncertainty, we implicitly promote spatial-temporal consis-
tency in delivery routes, which is an essential property for
maintaining courier trust and operational efficiency in real-
time last-mile logistics. In the context of last-mile delivery,
such a state-robust policy induces a form of stable routing.
Thus, by utilizing state-robust RL training techniques, we
expect to obtain a robust and courier-friendly (mainly stable)
routing policy.

Goal: The goal of our robust last-mile delivery routing prob-
lem is to find an optimal policy π∗ that maximizes the ex-
pected route-level reward while enforcing state-robustness:

max
π

E[R(st, at) | at ∼ π(st)] (1)

s.t. ∀s ∈ S, ∀δ ∈ ∆, d (π(s), π(s+ δ)) ≤ ϵ

where ∆ and ϵ are predefined perturbation set and robustness
threshold. We will introduce our algorithm that solving this
optimization problem in the next section.

Algorithm 1 : Robust Regularizer-enhanced RL-based
Smooth and Stable routing algorithm (R3S2Route)

1: Input ψ,∆, η. Initialize θ, ϕ.
2: for episode i = 1, 2, . . . , 30000 do
3: Initialize empty executed route: ā← [ ].
4: Observe s0, sample a0 ∼ πθ(· | s0).
5: for time t = 0, 1, . . . , T − 1 do
6: if customer-driven updates occur then
7: Update executed route: ā← ā∥prefix(at).
8: Observe st+1, sample at+1 ∼ πθ(· | st+1).
9: else

10: Continue previous route: at+1 = at.
11: end if
12: end for
13: Update executed route: ā← ā∥prefix(aT ).
14: Observe rewardR(s, ā).
15: Update critic: ϕ← ϕ− η∇ϕL

Critic(ϕ).
16: Update actor: θ ← θ + η∇θL

Actor(θ).
17: end for
18: Output θ, ϕ.

4. Robust Regularizer-enhanced RL-based
Smooth and Stable Routing Algorithm

Traditional robust reinforcement learning often adopts a min-
max optimization framework, where the policy is trained
to perform well under worst-case realizations of environ-
mental uncertainty. While this formulation offers strong
theoretical guarantees, it typically leads to overly conserva-
tive policies that may sacrifice average-case performance
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for robustness. Moreover, the adversarial training required
in max-min setups is often unstable and computationally
expensive, especially in high-dimensional or real-time de-
cision problems like last-mile delivery. In contrast, incor-
porating robustness as a regularization term into the objec-
tive offers a more flexible and efficient alternative. This
approach allows us to balance robustness with other perfor-
mance metrics (e.g., smoothness, distance) through tunable
coefficients. Regularization-based methods are generally
easier to implement, more stable during training, and better
suited for scenarios where bounded uncertainty is present
but full adversarial modeling is either intractable or unnec-
essary. Additionally, they often lead to policies that are less
conservative and more adaptable in practical settings.

Therefore, we propose a Robust Regularizer-enhanced RL-
based Smooth and Stable routing algorithm (R3S2Route) to
solve problem (1) and train robust policies. We adopt an
actor-critic reinforcement learning framework in R3S2Route.
The actor, parameterized by θ, represents a stochastic policy
πθ(a|s) that outputs routing decisions given the current state.
The critic, parameterized by ϕ, estimates the value function
Vϕ(s), which serves as a baseline for advantage estimation
during policy updates. Both the actor and critic can be
approximated using neural networks. The critic is trained by
minimizing the mean-squared error between the predicted
value and a Monte Carlo or TD return target:

LCritic(ϕ) = Est

[(
Vϕ(st)− V̂t

)2
]
,

where V̂t may be computed using a TD target V̂t = rt +
γVϕ(st+1), or an n-step return.

Robust Regularized Policy Optimization: Policy learning
is performed using the standard Proximal Policy Optimiza-
tion (PPO) objective, augmented with a robustness regular-
izer to enhance the policy’s robustness to state uncertainty.
Specifically, the actor is trained to maximize the following
regularized objective:

LActor(θ) = Et

[
log πθ(at|st)Ât − ψKL[πold(·|st), πθ(·|st)]

]
− λEst,δ∼∆ [KL (πθ(·|st), πθ(·|st + δ))]

where: Ât = V̂t − Vϕ(st) is the advantage function esti-
mated using the critic Vϕ(st); δ is a sampled perturbation
from the uncertainty set ∆; KL(·, ·) denotes the KL di-
vergence; λ is a hyperparameter controlling the robustness-
accuracy trade-off. The robustness regularizer (the last term)
penalizes the policy if its output distribution is overly sen-
sitive to small changes in the input state. It effectively
enforces a Lipschitz-like continuity in the learned policy,
reducing behavioral variance in response to minor environ-
mental shifts. In doing so, the learned policy becomes both
robust to input noise and more temporally stable in dynamic

environments. The actor and critic networks are updated
alternately using stochastic gradient ascent and descent, re-
spectively.

Neural Network Designs: We use a 1D convolutional
layer to generate continuous customer state embeddings
for customer-related features such as locations, delivery de-
mand, and time window. To represent the courier’s status,
including its position and remaining capacity, we employ
an LSTM (Long Short-Term Memory) module that captures
temporal dependencies and outputs a memory embedding.
These state and memory embeddings are then fused through
an attention mechanism, which computes the selection prob-
abilities over all possible next customer nodes. To ensure
feasibility, we apply a masking operation that prevents selec-
tion of already-served customers. This architecture enables
the model to capture both spatial and temporal patterns es-
sential for robust route planning in a dynamic environment.

Pseudo-code Description: The proposed algorithm is
shown in Algorithm 1. In line 1, the PPO coefficient ψ,
the perturbation set ∆, and the learning rate η are given.
The actor network parameters θ and the critic network pa-
rameters ϕ are initialized. At time t = 0, in lines 3 and 4,
we initialize an empty executed route, observe the initial
state s0, and plan an initial route a0. At each time point t,
if customer-driven updates, such as demand changes, time
window adjustments, new delivery requests, and cancella-
tions, occur, in line 7, we firstly concatenate the actually
traversed segments of current action at into the executed
route ā. Then we observe the new state st+1 and plan a
new route at+1 as shown in line 8. If the only changes in
the state are due to the completion of scheduled deliveries,
we retain the current route without replanning, as indicated
in line 10. Finally, we complete the executed route, and
then compute the episode-level reward as shown in lines
13 and 14. Lines 15 and 16 are to update the actor and
the critic. This mechanism promotes route stability and re-
duces unnecessary changes, improving the practicality and
interpretability of the resulting delivery plans.

5. Experiments
The objective of our experiments is to validate the follow-
ing hypotheses for R3S2Route: (1) The integration of a
smoothness-aware component into the reward function im-
proves route smoothness. (2) The application of a KL-
divergence-based robust policy regularizer enhances route
stability. (3) R3S2Route maintains low travel cost and time-
window violation rates while significantly improving route
smoothness and stability.

5.1. Experimental Setup

We compare our model with the following baselines:
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• Tabu Search (TS) (Li & Li, 2020): This is a metaheuristic
optimization algorithm that guides local search beyond lo-
cal optima by using memory-based strategies. It employs
a tabu list to avoid cycling and encourages exploration of
the solution space, making it effective for solving complex
combinatorial problems.

• RL-SVRP (Iklassov et al., 2023): This is a Reinforcement
Learning framework for solving vehicle routing problems
with stochastic customer demands and travel costs.

Performance is measured using multiple evaluation metrics:

• Distance rd: This metric measures the total distance trav-
eled by a courier to complete all assigned delivery tasks.
A shorter total distance indicates greater operational effi-
ciency.

• Smoothness rs: This metric quantifies the average angle
between route segments. Higher smoothness indicate less
sharp turns and zigzag patterns.

• Stability stab: This metric calculates the Jaccard similar-
ity between the sets of directed edges in the routes before
and after customer-driven updates. Higher stability indi-
cates greater consistency between routes in response to
dynamic changes.

• Time-window violation rate rv: This metric counts
the proportion of deliveries violating time-window con-
straints. A lower time-window violation rate indicates
improved adherence to delivery time constraints.

We construct synthetic datasets to emulate dynamic last-
mile delivery scenarios within a predefined two-dimensional
service area. Customer locations are sampled from a con-
tinuous uniform distribution U(0, 1)2, representing their
geographic coordinates. Each customer is assigned a
service demand drawn from a discrete uniform distribu-
tion U{1, 2, . . . , 10}, and a time window [T i

s , T
i
e ], where

T i
s ∼ U{0, 1, . . . , 7} and T i

e = T i
s + 1.

To simulate operational uncertainty and evolving customer
behavior, we develop a dynamic delivery simulation en-
vironment in TensorFlow. At regular intervals during the
simulation, a single customer-driven event is introduced.
Each event is sampled from one of the following types: (1)
modifying the demand of existing customers, (2) modifying
the time window of existing customers, (3) introducing new
delivery requests, or (4) canceling existing requests. For de-
mand or time window modifications, 50% of the customers
are randomly selected, and their values are resampled using
the original distributions. For adding new requests, 10% of
the total number of customers are created using the same
generation process as in the initial dataset. These are treated
as entirely new customers, independent of the existing set.
For cancellations, 10% of existing requests are randomly
selected and removed by setting their demand to zero and
masking them from the routing process. This design enables
controlled injection of dynamic events while preserving the

stochastic and real-time characteristics of last-mile delivery.

We implement our method and baselines with Tensorflow
1.4.0 in Python 3.6 environment and train it with 503GiB
memory and AMD EPYC 9254 24-Core Processor (CPU).
Our proposed R3S2Route builds upon the baseline RL-
SVRP (Iklassov et al., 2023). We augment it by integrating
additional objectives for route smoothness and time-window
violation rate, along with a robust policy regularizer. The
coefficients of the reward function α, β, and γ for efficiency,
route smoothness, and time-window violation rate are set
to 10, 3, and 10, respectively. The coefficient for the robust
policy regularizer λ is set to 10.

5.2. Overall Performance

As shown in Table 1 and Figure 3, the proposed R3S2Route
framework demonstrates superior performance in balancing
courier-centric and efficiency-centric objectives compared
to TS. Specifically, R3S2Route reduces the total travel dis-
tance by 53.67%, increases route smoothness by 31.61%,
improves route stability following customer-driven updates
by 6.67%, and lowers the time-window violation rate by
3.64%.

Furthermore, when compared to RL-SVRP, R3S2Route
achieves higher route smoothness and stability while main-
taining a lower time-window violation rate. Specifically,
it improves route smoothness by 59.68%, increases route
stability following customer-driven updates by 14.29%, and
reduces the time-window violation rate by 5.36%. Although
R3S2Route incurs a slightly higher travel distance relative
to RL-SVRP, this is an expected outcome given its objective
to strike a balanced trade-off among multiple performance
criteria.

Method rd ↓ rs ↑ stab ↑ rv ↓
TS 8.85 ± 0.32 39.36 ± 0.42 0.60 ± 0.10 0.55 ± 0.01
RL-SVRP 0.65 ± 0.25 32.44 ± 0.68 0.56 ± 0.10 0.56 ± 0.00
R3S2Route 4.10 ± 0.38 51.80 ± 1.54 0.64 ± 0.08 0.53 ± 0.02

Table 1. Overall Performance

5.3. Ablation Study

5.3.1. THE EFFECT OF THE SMOOTHNESS OBJECTIVE

As illustrated in Table 2 and Figure 4, the inclusion of the
smoothness objective in the R3S2Route framework signifi-
cantly enhances route quality, particularly in terms of route
smoothness and stability. Compared to the variant with-
out the smoothness objective (i.e., w/o SM), R3S2Route
achieves a 59.53% increase in route smoothness, an 18.52%
improvement in route stability following customer-driven
updates, and a 5.36% reduction in the time-window viola-
tion rate. Although R3S2Route incurs a higher total travel
distance than its smoothness-excluded counterpart, this out-
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Figure 3. Overall Performance

Figure 4. The Effect of the Smoothness Objective

come aligns with the design goal of balancing multiple ob-
jectives while prioritizing smoother and more stable routing
solutions.

Method rd ↓ rs ↑ stab ↑ rv ↓
R3S2Route 4.10 ± 0.38 51.80 ± 1.54 0.64 ± 0.08 0.53 ± 0.02
w/o SM 0.76 ± 0.43 32.47 ± 0.77 0.54 ± 0.09 0.56 ± 0.01

Table 2. The Effect of the Smoothness Objective

5.3.2. THE EFFECT OF THE ROBUST POLICY
REGULARIZER

As shown in Table 3 and Figure 5, the robust policy regu-
larizer in R3S2Route plays a crucial role in enhancing the
adaptability and consistency of routing decisions in a dy-
namic environment. Compared to the variant without the
robust policy regularizer (w/o RO), R3S2Route achieves a

Figure 5. The Effect of the Robust Policy Regularizer

21.15% reduction in total travel distance and a substantial
60.00% increase in route stability following customer-driven
updates. Although the improvement in route smoothness is
modest (2.17%), the robust policy regularizer contributes
primarily to preserving structural consistency across route
updates. The slightly higher time-window violation rate
observed in R3S2Route is an anticipated trade-off, reflect-
ing the framework’s emphasis on maintaining stable and
efficient routes under uncertainty, rather than narrowly opti-
mizing for punctuality alone.

Method rd ↓ rs ↑ stab ↑ rv ↓
R3S2Route 4.10 ± 0.38 51.80 ± 1.54 0.64 ± 0.08 0.53 ± 0.02
w/o RO 5.20 ± 0.58 50.70 ± 0.54 0.40 ± 0.03 0.36 ± 0.01

Table 3. The Effect of the Robust Policy Regularizer

6. Conclusion
In this paper, we propose R3S2Route, a robust reinforcement
learning framework for smooth and stable route planning
in dynamic last-mile delivery scenarios. By incorporating a
smoothness-aware objective and a KL-divergence–based ro-
bust policy regularizer into the learning process, R3S2Route
optimizes courier-centric factors with traditional efficiency
metrics. Our formulation captures the challenges of real-
time customer-driven updates and demonstrates how robust
policies can improve route consistency and practical deploy-
ability. Experimental results show that R3S2Route outper-
forms baseline methods in both operational efficiency and
route quality. This work highlights the importance of inte-
grating robustness and courier-centric design in intelligent
transportation systems. Future work will explore multi-
agent extensions and real-world deployment with richer
operational constraints such as traffic and parcel types.
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