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ABSTRACT

In this paper, we study the necessity of federated learning (FL) for online linear
regression with decentralized data. Previous work proved that FL is unnecessary
for minimizing regret in full information setting, while we prove that it can be
necessary if only limited attributes of each instance are observed. We call this
problem online sparse linear regression with decentralized data (OSLR-DecD).
We propose a federated algorithm for OSLR-DecD, and prove a lower bound on
the regret of any noncooperative algorithm. In the case of d = o(M), the upper
bound on the regret of our algorithm is smaller than the lower bound, demonstrat-
ing the necessity of FL, in which M is the number of clients and d is the dimension
of data. When M = 1, we give the first lower bound on the regret and improve
previous upper bounds. We invent three new techniques including an any-time
federated online mirror descent with negative entropy regularization, a paradigm
for client-server collaboration with privacy protection, and a reduction from on-
line sparse linear regression to prediction with limited advice for establishing the
lower bound on the regret, some of which might be of independent interest.

1 INTRODUCTION

For many real-world applications involving sequential decision making, such as online recommenda-
tions (Zhou et al., 202 1)), real-time environmental protection (Hong & Chael 2022}, mobile keyboard
prediction (Hard et al., 2018 Ramaswamy et al., |2019)), the data is generated from geographically
dispersed edge devices (Goginenti et al., 2023} [Patel et al., [2023), such as phones, tablets, sensors
and so on. Due to the privacy constraint, the data must be stored on local devices and can not be
shared with others (McMahan et al., [2017; [Kairouz et al., [2021; |L1 et al., |2023)). The decentralized
essence of the data motivates us to formulate these sequential decision problems as online learning
with decentralized data. Assuming that there are M clients such as phones, tablets or sensors. At

eachround t = 1,2,..., T for each j = 1,..., M, the j-th client receives an instance xij ). Then a

learner chooses a linear hypothesis ft and outputs a prediction y(j = 1l ( (])). After that the learn-

er receives the true output y,g 7) | and suffers a loss ¢ (9; Y ), yt(j )) During the 7" rounds of interaction,

the learner aims to design an algorlthm that can minimize the following regret,

vw € R, Reg(w ZZ[ ( (j) ) —E(wagj),yt(j)ﬂ .

j=1t=1

In this paper, we consider online linear regression with decentralized data (OLR-DecD), in which
{(u,v) = (u — v)? is the square loss function.

A natural approach to solving OLR-DecD is to independently run a copy of an online learning algo-
rithm on the M clients, such as online gradient descent (Zinkevichl 2003). Such a noncooperative
algorithm naturally protects the privacy, but suffers a regret increasing linearly with M. Another ap-
proach is federated learning where clients coordinate with a server to learn models without the need
to share data. Federated learning has been used to train deep neural networks from decentralized
data (McMahan et al., 2017; |[Karimireddy et al., [2020; [Woodworth et al., [2020; |[Reddi et al.| 2021}
Wu et al.| [2022). However, a pessimistic result is that, the collaboration among clients is actually
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unnecessary for OLR-DecD in full information setting (Patel et al.,|2023)). In other words, federated
learning is unnecessary. An intuitive explanation for the pessimistic result is that, federated learning
can not provide more information on gradients for the noncooperative algorithm.

Patel et al| (2023) also demonstrated that federated learning may be necessary for OLR-DecD in
partial information setting, such as bandit feedback, motivating us considering the problem of online
linear regression with limited access to attributes, also called online spare linear regression (OSLR)
(Kalel 2014 [Foster et al., [2016; [Kale et al., 2017 [Ito et al., [2017; 2018)), in which the learner can
only use b, b < d, attributes of x; at most to make a prediction. OSLR naturally accommodates many
real-world constraints on online learning problems, such as capital, labor, computational resource,
privacy, and so forth (Cesa-Bianchi et al.l [2010; [Hazan & Koren, |2012; [Jain et al.| [2012; [Zolghadr
et al.,[2013). For example, in the task of medical diagnosis of a disease (Cesa-Bianchi et al.,|2010),
x4 should contain the results of a large number of medical tests. However, many patients can only
pay the cost for several medical tests. Thus x; must be sparse. We consider online sparse linear
regression with decentralized data (OSLR-DecD). To be specific, at each round ¢ = 1,2, ..., the

learner can only use b attributes of xﬁj ) to make the prediction gjt(j ), 7 =1,..., M. After receiving

y§j ), the learner can additionally observe (b' — b) attributes where b’ < d (Foster et al., 2016; |[Kale
et all 2017} Ito et al.l 2017). We usually compare the cumulative losses of the learner with any
b-sparse competitor with bounded norm, and define the regret as follows,

M T
vw e W, Reg(w) =YY {(@9) ) = (T - yﬁ”ﬂ , M

j=1t=1

where W, = {w € R? : |[wljo < b, ||w|2 < U} and U is a constant. It is natural to ask: Is federat-
ed learning necessary for OSLR-DecD? To answer the question, it is imperative to prove that there
is a federated algorithm whose regret is smaller than that of any noncooperative algorithm.

In this paper, we will answer the question affirmatively. To be specific, we first propose a better
algorithm for OSLR, which we called AMRO. Within federated learning framework, we propose a
federated AMRO for OSLR-DecD, called FedAMRO, and prove a lower bound on the regret of any
noncooperative algorithm. In the case of d = o(M ), the upper bound of our federated algorithm is
smaller than the lower bound, thereby answering the question affirmatively.

1.1 MAIN RESULTS
Our main results are summarized as follows.

(1) Upper bound on the regret of FedAMRO. For OSLR-DecD, the expected regret of FedAMRO
satisfies

Yw € W, E[Reg(w)}zé(Mm—i— I?E_—ZI))VMTIHN>’ 2)

in which N = (2) The dominated term is the second one that only depends on v/ M. Impor-
tantly, FedAMRO requires no prior knowledge of the time horizon 7.

(2) Lower bound on the regret of any noncooperative algorithm. In the case of b = 1, we prove
a Q(M+/dT/V') lower bound on the regret of any noncooperative algorithm. Compared with
the upper bound in , in the case of d = o(M), the upper bound is smaller than the lower
bound, demonstrating that federated learning is indeed necessary for OSLR-DecD.

(3) Lower and Upper bound on the regret for OSLR. For OSLR, i.e., M = 1, we give the first
Q(y/dT’/t") lower bound on the regret. Besides, AMRO achieves an expected regret as follows

Yw eW,, E[Reg(w) =0 <Z’ :I;\/Tln N) .

There is only a gap of order O(+/(d — b)/(¥/ — b)In N) between the upper bound and the
lower bound. Without additional assumptions, the best regret bound for OSLR up to now is

E[Reg(w)] = O (ﬁ\/T In N) (Foster et al., 2016). AMRO improves the previous regret

_d_

bound by nearly a factor of O (%

). Besides, AMRO also requires no prior value of T'.
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(4) Communication Complexity and Computational Complexity of FedAMRO. The per-round
communication complexity of FedAMRO is O (M d?) bits. The space complexity and per-round
time complexity of FedAMRO on each client is only O(d?), while it is O(M - N) on server.

1.2 TECHNICAL CONTRIBUTIONS

In designing AMRO and FedAMRO, and in proving the lower bound, we propose three new tech-
niques, some of which might be of independent interest.

The first one is an any-time online mirror descent (OMD) with negative entropy regularization.
AMRO and FedAMRO use the new OMD to update sampling probability. To be specific, we use
time-variant decision sets and learning rates in the OMD, thereby eliminating the need on the prior
value of T'. Our technique is more elegant than the standard doubling trick. The regret analysis is
also more technical than the well-known OMD with constant decision sets (Bubeck & Cesa-Bianchi,
[2012). The time-variant decision sets and regret analysis are also suitable for other variants of OMD,
such as optimistic OMD (Rakhlin & Sridharan|, [2013).

The second one is a new paradigm for cooperating among clients and server. Most of federated
learning algorithms transmit estimators of gradient from clients to server, while our algorithm trans-
mits statistics constructed from estimators of instance (the representation of each example). The
new information not only makes communication efficient, but also safeguards against data leakage.

The third one is a non-trivial reduction from OSLR to prediction with limited advice (Seldin et al.,
2014)) for establishing the first lower bound on the regret. By this lower bound, we further establish
the lower bound on the regret of any noncooperative algorithm for OSLR-DecD.

2 RELATED WORK

Most of previous work proposed federated learning algorithms for online learning with decentralized
data, but without demonstrating their necessity, such as federated online mirror descent
2021)), communication-efficient federated online gradient descent (Gogineni et al) 2023; [Kwon
et al., [2023)), decentralized federated online learning algorithm (Odeyomil, 2023)), communication-
efficient federated online multi-kernel learning algorithms (Shen et al.|[2021} |Ghari & Shen| 2022}
Hong & Chael [2022)). For distributed bandit convex optimization, Patel et al.|(2023) gave an incom-
plete answer on the necessity of federated learning, since they did not prove a lower bound on the
regret of any noncooperative algorithm. A recent study on online model selection with decentral-
ized data (OMS-DecD) demonstrated that collaboration is essential when clients face computational
constraints 2024). Although a federated online mirror descent has been proposed, it neces-
sitates the prior value of T'. We propose a new federated online mirror descent which does not require
the prior value of I'. The algorithms and results for OMS-DecD are not suitable for OSLR-DecD.
The problem that whether federated learning is necessary for OSLR-DecD is still open.

Another related but essentially different problem is distributed online convex optimization that aims
o minimize Res(¥ () = 3200, 3L, [0(766), ) — (w7l o0 foran i < [0
(Yan et al] 2013}, [Hosseini et all [2013} [Wan et al] [2024). However, such a goal is not suitable

for our problem as the decentralized nature of data and the privacy constraint. To be specific, it

is infeasible to evaluate ffi) on the other clients as the data from other clients are not visible for
ft(z), thereby computing Zj\il Zthl 14 ( ,t(,,) (xl(f]))ﬁ yﬁj)) is unfeasible. Besides, the ultimate goal
of online learning is to minimize the cumulative losses suffered along its run (Shalev-Shwartz [2012),
Le., Zi\; Zf:1 ¢ (,@IEJ >, y,(j])>. Although exploring the necessity of collaboration may be trivial in

distributed online convex optimization, but is indeed a non-trivial problem in OLR-DecD.

3 PRELIMINARIES AND PROBLEM SETTING

Notations Let {(x¢, )} (7| be a sequence of examples, where x, € X = {x € R : [|x> <

+o0} is an instance, |y;| < Y is the output, and [T] = {1,...,T}. For any vector a € RY, and
any S = {s1,52,...,5,} C [d], we define a[S] := (as,,as,, .-, as,). For any matrix A € R4,
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A[S, S]is a sub-matrix formed by the rows and columns indexed by S. Let N = (Z) and A y be the
N — 1 dimensional simplex. For a convex set {2 and a convex function ¢ defined on 2, the Bregman
divergence denoted by By (-, -), is defined as follows

Vu,v e Q, By(u,v)=1¢u)—(v) —(Vi(v),u—v).

Next we introduce the pessimistic result that federated learning is unnecessary for OLR-DecD in the
full information setting.

Theorem 1 (Informal result from Theorem 3.2 in (2023)). For distributed online con-
vex optimization (including online learning with decentralized data) with smooth losses functions
(including the square loss function), noncooperative online gradient descent is optimal.

To avoid the pessimistic result, we consider a type of partial information setting where only limited
attributes of each instance can be observed. We call this problem OSLR-DecD defined as follows.
Assuming that there are M clients. At any round ¢, each client j € [M] receives an instance xgj ),
The learner selects a subset of attributes denoted by xl(f) [St(j )] where Slfj ) ¢ [d] and \Sfj)\ <,
and makes a prediction g)ﬁ‘j) = ft(j)(xl(f ) [ng)}) where ft(j ) is a linear hypothesis. After that, the

learner observes yfj) and additional (b' — b) attributes of xl(g]). The loss suffered by the learner is

(g}ij ) ;/,547’))2. Since the learner only uses b attributes to make a prediction, we hope to develop an
algorithm that can compete with any b-sparse competitor, and define the regret in (I). Due to the
privacy constraint, clients can not transfer their raw data, but can share models, gradients or other

information without leakaging raw data. In this case of M/ = 1, OSLR-DecD is degenerated to the

well-defined OSLR (Foster et al, 2016}, [Kale et al.,[2017).

4 A BETTER ALGORITHM FOR OSLR

In this section, we propose an algorithm with a better regret bound for OSLR, which forms the foun-
dation of our federated algorithm in the following section. We first give a high-level explanation
on the algorithm. Recalling that we aim to learn the optimal parameter w* satisfying ||[w*||o < b.
An intuitive approach is to partition [d] into N disjoint subsets denoted by S;,7 € [N], in which
|S;| = b and each element in S; indexes the corresponding attributes of x;. Then our algorithm si-
multaneously learns the support set of w* and w*. To this end, our algorithm will learn a probability
distribution over the NN subsets, and the optimal hypothesis f;* parameterized by w; with support
set Sy, ¢ € [N]. It is obvious that w* € {w7], ..., wi }. Next we detail the algorithm.

At round ¢, our algorithm maintains /N hypotheses f; 1, ft 2, ..., ft,n and a probability distribution
p: € Ay. Foreach i € [N], f;; is parameterized by w, ; € R? and uses the attributes indexed by
S; to make a prediction, f; ;(x¢) = (W ;,%¢[S;]). Our algorithm randomly selects a hypothesis f; s,
following p;, observes the attributes indexed by Sy,, and outputs f; 1, (x;[Sr,])). Since the attributes
indexed by S;, ¢ # I, can not be fully observed, both £(f; ;(x.[S;])) and V ; := VU(f1.:(x[S:]))
are unknown. It is necessary to estimate the loss and the gradient, both with low variances.

In order to update p;, we define a new loss c; ; for evaluating the prediction performance of f; ;.
Unfolding the square loss function, ¢; ; and V; ; can be rewritten as follows

cei =L (fei(xe[Si)) we) — y7 = w/li (xex[ [, Si]) wei — 2pw, %, [Si, 3)
Vi =2 (xexq [, Si]) Wi, — 2:%4[Si],
in which we can estimate xtxtT and 2y;x; by constructing two independent estimators of x;, denoted
by x; and X;. To this end, our algorithm samples % elements from [d] \ Sy, with replacement. We

denote this sampled set B,. Our algorithm then repeats the same sampling process to obtain another
set, B;. Then x; and X; are defined as follows

Ttm =Tt,m — xt,mavm € Slﬁ

- ~ Ttm — 6t,m

Tpm =——2— 1 _5 + 6t m,Vm & Sy,,

b Plm € By meB, T T £ 51 4)
~ xtm_dtm

T =——2— 1 _5 +0tm,Vm & Sy,,

b Plm € By meB; b # 51
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in which é; ,,, € R will be defined later. Both X; and X; are unbiased estimators of x;. Besides, X;
is independent of x;, given d; € R<. Now the estimators of ¢t and Vy ; are defined by

Ct,i ZWL (%%, [Si, Si]) Wi — thZi(it +%¢)[S4], 5)
Vii =2 (%X, [Si, Si]) Wei — v (Re + %) [S].
Our algorithm updates the probability and the hypothesis following OMD framework,
. Bt .
pt+1:argmln<ct7p>+8¢t(papt)v At,N:{pGAN:piZJ\;aZE [N] )
PEA: N
Wii1, =argmin <@m—7w> + By, (W, W), W= {w ERY: |wlls < U} , ©6)
wew
4y} 1
=>» —pilnp;, i(w) = 2 i=1,..,N,
6lp) =3 pilnr ealw) = giIwl,

in which 3; € (0, 1] gives a lower bound on the sampling probability. We use the time-varying
decision subset A; n in OMD for the first time, making it possible to use a time-variant learning
rate 7; and eliminate the need for the prior information of 7'. By the Lagrangian multiplier method,
W¢41,; enjoys a closed form solution as follows,

:}

U
max {U, lwe; — )\t,i?t,i
However, the time-varying decision subsets make it difficult to solve p;4;1. To be specific, psy1
does not enjoy a closed form. We propose Algorithm I]for solving p¢;. Due to space limitations,
the details of Algorithm [I|are given in the supplementary materials.

. (Wt,i - /\t,i@t,z) . (7

Witl,i =

Algorithm 1 Solving py;

Input: ¢, n:, Be
Initialization: A = ()
Pt,i exp(*ﬁt,int)

1: Vi S [NL Pt41,i = Z;\]:1 Pt Cxp(*éf,,jnt)
2: A={i € [N],ptt1,: < %}and.ﬁlﬂ =[N]\ A

Algorithm 2 AMRO
Input: U,b,b', N = (%)
Initialization: f1; = 0,p1,; = +,Vi € [N]
1: Divide [d] into N subsets of size b, denoted by
1., SN
s fort=1,...,Tdo

3: while A # () do

_ Bt jca Pt eXP(*Et,jm)

: Sample I; € [N] following p:

2
3
4. 2t N—TAT ) 4. Output th~e prAediction (We,1,, %e[S1,])
5. Foreachi € A, piy1.i = % 5: Sample Bt~, B frqm [d]\ Slz independently
6: flag =0 ’ 6: Construct X; and %X following
7. forie A" do 7 for i € [N]do B
3: o pe,i exp(—&,imt) 8: Construct ¢; ; and V,; following
’ Pet1,i >jeAm Pt,j eXP(—5t,j77t)+|-A|‘Zt 9: end for
9: if pry1, < 2t then 10: Solve p+1 by Algorithm|[T]
10: A= AU{i} 11 Compute {w; 1 )i, following
11: flag = flag + 1 12: end for
12: end if
13: end for

14: A" =[N]\A

15: if flag == 0,then A = ()
16: end while

17: Return pi+1

We name this algorithm AMRO (Aggregating online Mirror descent and Resampling for OSLR) and
show the pseudo-code in Algorithm [2] Next we give more explanations on AMRO, and compare it
with previous algorithms.

(i) In , we define ¢;; = £ (f:(x¢[Si]),y:) — y7, while the algorithm in [Foster et al.| (2016)
defines ¢;; = £ (f1,i(x¢[Si]), y+). Subtracting y? from £ (f; ;(x¢[S;]), y+) avoids transmitting
yf to server in our federated algorithm for privacy protection.

(i) In (E]) previous algorithms use d; ,,, = 0 (Foster et al.| 2016} [Kale et al.,[2017} Tto et al.,[2017).
Our estimators exhibit low variance if é; ,, provides a good estimate of z; ,,, as demonstrated
in Lemma[I} The estimators will be used in our federated algorithm for privacy protection.
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Lemma 1. Foralli € [N] and x € X, suppose ||X[SZ]||§ < X2 Forallt € [T andi € [N], let

— 2d—-b —b
8elSulllz < X2, B i= === il = &Sl ®)
Then

E[&,] <UL, +2U%(UX +Y)°Ei + ¢4,

- 2
E |:HVt7’L
2

The expectation is taken on the elements in Bt and Bt.

] <AUPE}; +8(UX 4+ Y)* (2, + X7).

There are many approaches to define 6 ,,, such as

ZT<t,mESITUBTUBT Lr,m
Hr<t:meS;, UB,UB.}

Our estimators can adapt to certain benign environments. If §; ,,, provides a good estimate of z; ,,

€))

6t,m =

for all m € [d], such as (zm — 6p.m)° = = O35 db =27 ,,), then the second-order moments of

Ct,i and @t . are O(U 41X 4). In the worst case, that is, d; ,,, is not a good estimator of x; ,,, the
U4X4)

second-order moments are O( = b)2

5 A FEDERATED AMRO FOR OSLR-DEcD

In this section, we propose a federated AMRO within the federated learning framework (McMahan
2017)), which is highly non-trivial due to the following two challenges.

The first one is making communication efficient. For each j € [M], if the client maintains pgj ) and
t(fl), ces ft(%, then the client must transmit estimators of gradient and loss to server and receive a
global probability distribution and global models from server. The communication cost is O(M N)

bits. It is necessary to limit the communication cost to O(M - poly(d)) bits.

The second one is protecting the raw data of clients. Due to the communication constraint, it is
challenging to avoid transmitting estimators of gradient and loss to server and avoiding privacy
leakage simultaneously.

Next we give a high-level explanation on the algorithm. We propose two techniques for addressing
the challenges. The first one is decoupling prediction and updating. Specifically, clients make
predictions, while server aggregates information from clients and updates probability distributions
and hypotheses. Our algorithm independently samples a hypothesis for each client, and only sends
the selected hypotheses to clients, thereby achieving efficient communication. The second one is a
new paradigm for cooperating among clients and server. To be specific, we construct novel statistics
(not estimators of loss and gradient) that will be sent by clients. Benefit from our estimators of x; in
({@. we can enhance the privacy by incorporating random noises into the estimators.

5.1 PREDICTION ON CLIENTS

At each round ¢, our algorithm stores a probability distribution p; on server. For each j € [M],

server samples I, ( ) 19 and S ;) to the client. On the client, our

I(J
selects the attributes xgj ) [S 1(”} and outputs a prediction yt(] ) defined by

€ [N] following p;, and sends w

algorithm receives x(J )

g = = [0 <X§j)[51t<a‘>}> = <Wt71t<.7‘>,xgj)[51t(j>}>- (10

Following AMRO, our algorithm independently samples Btu ), B,E] ) from [N]\ S,), and observes

xgj ) [B’t(j )], xgj ) [Bt(j )]. Let Ber(c?)) be a Bernoulli distribution which outputs 1 with probability

(J)

o) ¢ (0,1). Foreachm € S 1), our algorithm independently samples 7,7, and 1/(3 ) following
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()

Ber(c()). Due to the privacy constraint, two estimators of xgj ) denoted by x;”/ and 5(? ) that are

slightly different from the estimators in (@), are defined as follows.

) () (4) ()
T 1) . x) — 0
vm € 5,4, xgjr)n = 7”?2 ) L Lo+ 55]%, 29 = 7“?- hm ‘Lo _y 5t(;7)m
t e T I
(7 ) (9
2, — 0} ) A0) _ Thm — Om )
Vm ¢ S, , &) =bm bmoqo o qstd) g Thim w4 g
ItJ t,m ]P’[m c B(])] mGBtJ t, t, P[m c B(J)} mGBtJ t,

D (%N and (%7 + %9) 1o server. Benefiting from the definition of

Ct in ll) the client does not transmit (y; g )) to server. Note that it is hard to reconstruct ;1/15‘7 ) from

: (J %) 5@
Xi - 0t

The client only sends %,

(’ )( @) 4 x(} )) as our algorithm does not transmit x serves as random noises added

on x ), making it hard to recovery (x\),y\)) from the information sent by the client, thereby

protecting the privacy. The total communication cost is only O(Md?) bits. Thus our algorithm
solves the two challenges. Besides, the computational complexity on each client is only O(d?).

5.2 FEDERATED UPDATING ON SERVER

After receiving the information from chents it is easy to construct estimator of loss, denoted by c(] )

and estimator of gradient, denoted by Vf > forall j € [M] on server. By (5 , we define
vie [N, &) =wi (37 &) T[S, S 1) wii = wl -y (7 + %) [1,
V) =2 (2 &) 7[5, 8] ) wes — ) (27 + %) 181

Then our algorithm averages the estimators and updates the probability and hypotheses as follows

Pi+1 :argmin<étap> +B¢t(p7pt)v chjz)v i = 7"'1N1
PEALN

(1)

e _ 1
Wip1,; = argmin <vt,i7w> +Bwt,i(pawt,i)a vt,i - M § vgl)a 1= 13 "'5N5
wew 1

in which Ay n, W, 1, and ¢ ; follow (@).

We name this algorithm FedAMRO (Federated AMRO) and give the pseudo-code in Algorithm
EL Previous work has proposed a federated online mirror descent, called FOMD-No-LU (Li et al.,
2024). There is a critical difference between FedAMRO and FOMD-No-LU. FedAMRO uses a time-
variant decision set A; ;, while FOMD-No-LU uses a constant decision set Ax. Thus, FOMD-
No-LU must know the prior information of 7', while FedAMRO does not. The regret analysis of
FedAMRO is also more technical.

6 MAIN RESULTS

6.1 UPPER BOUND ON THE REGRET OF AMRO

Theorem 2 (Regret Bound of AMRO). Let b/ > b+ 2, 3; = % O satisfy (@) and

In N
M= \/?7 N s A= v ; t=1,.,N,
- t =
\/ft N+ > Pm‘C?i \/1 + 21 IVeill3

where § = max{max,<;;c[n] é2,,0.01}. For any sequence of examples, the expected regret of

AMRO satisfies
Yw € W, E [Reg(w)]

T,17

In(NT)  (d— >U2X21H(NT)

=o | ,|us Z2 4 (UX +Y )T
Zzpt bt VY MCAE

t=1 i=1
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Algorithm 3 FedAMRO

Input: U,b,b', N = (%)
Initialization: f1; = 0,p1,; = +,Vi € [N]

1: Divide [d] into N subsets of size b, denoted by S1,. .., SN
2: fort=1,...,7T do

3: forj=1,...,M do

4: Server samples It(j) following py¢
S: Server sends .S, (;) and W, () to the client
t it

6: end for

7: for j = 1, ..., M in parallel do

8: Client selects x.”) (S, ]

t

9: Client computes 4\’ following

10: Client samples B’ and B
11: Client computes %'/ and %)
12: Client sends 7 (8T, 39 (%) + %9) to server
13: end for

14: Server solves p¢+1 by Algorithm|[T]
15: Server computes {WH_M}ZNzl following
16: end for

In the worst case, it must be

T N
=2 __ (d_b>2 4
Sy it =0 ((opxtT).

t=1 i=1

Then we obtain a O(4=2vTLL)  Table 1: Regret bounds of AMRO and previous algorithms.

VIin N
regret. In certain bgnign environmen-  Algorithm | Regret Bound | Assumption
t, if £,; = O(X?), then the regret 2 J—
is O(vVTBLYL)  In general, In N = Algl ()((17’47)2 T N) No
vVInN’" ’ 1,42
O(blnd). In the cases of b = r or Alg2 O(d=b3Ts poly(iog 1) Yes
b = d — r where r is independent of 183 O(z5VT) Yes
d,thenln N = O(Ind). Table[l]sum- ~ AMRO O(£=LVT - %) No

marizes the regret bounds of AMRO
and three previous algorithms, including Algl (Foster et al., |2016), the first algorithm in Ito et al.
(2017) named Alg2, and the second algorithm in Kale et al.| (2017) named Alg3. Alg2 and Alg3
adopt additional assumptions for achieving a O(poly(d)) computational complexity.

6.2 UPPER BOUND ON THE REGRET OF FEDAMRO

Theorem 3 (Regret Bound of FedAMRO). Assuming that maxy, x ., /(f(x),y) < C. Let b’ >
b+2 B =10;€ (%, 1) forall j € [M], 5;]') satisfy @, and

m
B vin N N = U
"= V&InN +a-t’ b \/CX2 + 2u3U2 X4 4 QGuetDX2C |y
1 M 160

in which
8
4 M ’
4d — b — 3b )
v—b T Ty
For any sequence of examples, the expected regret of FedAMRO satisfies
VYw €Wy, E[Reg(w)]

a =

(C _ Y2)2 N 2M§U4X4 + ,LL2U2XQC + (c=y??

2
& =4(C-Y?+ (mUX)? +2mUXY)", m=

_71)2
=0 (M(d_b)zUQX2 In(NT) + MUX\/(UX +Y)2T +

U2X2(d—b)2, In(NT)
- r )

M —b)? In N
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The dominated term is O(2=4 /M Tw). If we independently run AMRO on each client, then

b'—b VIin N
the regret bound is O( gi,:%M VT %) FedAMRO enjoys a better regret bound, as it averages

the estimator of losses and gradients over M clients, thereby reducing the variance of estimators by a
factor of M. However, it is imperative to establish a lower bound on the regret of any noncooperative
algorithm in order to demonstrate the necessity of federated learning for OSLR-DecD.

6.3 LOWER BOUND ON THE REGRET OF ANY NONCOOPERATIVE ALGORITHM

Theorem 4 (Lower Bound). Letd > 4, b = 1 and d > V' > 1. The regret of any, possibly
randomized, noncooperative algorithm for OSLR-DecD satifies

>
max Reg(w)| > TR

sup
wEeEW;

E { ] OM /dT
(x) y) te[T],j€[M]

where the expectation is taken over the internal randomness of algorithm.

Compared with the upper bound in Theorem 3] in the case of d = o(M) (or M = w(d)), the lower
bound is larger than the upper bound. Thus FedAMRO is better than all noncooperative algorithms,
demonstrating that federated learning is indeed necessary for OSLR-DecD.

To prove Theorem [4] we establish a non-trivial reduction from OSLR to prediction with limited
advice (Seldin et al.l 2014) and prove the first lower bound for OSLR. By this lower bound, we
further establish the lower bound on the regret of any noncooperative algorithm for OSLR-DecD.

7 EXPERIMENTS

In this section, we aim to verify the following two goals.

G1 For OSLR, AMRO enjoys better prediction performance than all of previous algorithms.
G2 In the case of M = w(d), federated learning is necessary for OSLR-DecD.

We download 6 regression datasets shown in Table 2} from WEKA (Hall et al., 2009)), LIBSVM
and UCIP| We normalize the datasets by setting y < % and x < min{1, ”xﬁ} - X.

All algorithms are implemented in R on a Windows machine with 2.8 GHz Core(TM) i7-1165G7
CPU. We execute each experiment 10 times with random permutation of all datasets.

7.1 RESULTS OF OSLR

We compare AMRO with Algl (Foster et al.,2016),  Taple 2: Datasets used in the experiments
Alg2 (Ito et al., 2017) and Alg3 (Kale et al., [2017).

/

The three baseline algorithms use b attributes to Datasets | #Sample #Feature b b
_ .. , parkinson 5,875 16 2 4

make predictions, and observes additional ' — b at- cpusmall 8190 2 2 4
tributes. The values of b and b’ for each dataset are  .javators 16:590 18 2 4
given in Table P} For Algl, there are two learn- calhousing 14,000 8 2 4
ing rates nuepge = cqv/In(d)/T and nogp =  bank 8,192 32 1 3
(b'—b)(b'—b—1) ailerons 13,750 40 1 3

cq/1/T where ¢ = da—1) - The original
paper sets ¢ = 1, while we tune ¢ € {0.1,0.5,1,5, 10,100, 500}. For Alg2, there is a learning rate
At = c\/t/q. The original paper sets ¢ = 8, while we tune ¢ € {0.05,0.1,0.5,1,4,8,16}. For Alg3,
there is a batch size B = ¢; | (T/d)% | and a learning rate = ¢51/21In(d)/[T/B]. The original
paper sets ¢; = ¢ = 1, while we tune ¢; € {1,10,50,100} and ¢ € {0.1,0.5,1,5,10,50}. For
FedAMRO, all of the hyperparameters follow Theorem and 0y ,, follows @I) Besides we multiple
by 4 on 7. For Algl, Alg2 and AMRO, we tune U € {0.1,0.5,1}.

'https://waikato.github.io/weka-wiki/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
*http://archive.ics.uci.edu/datasets


https://waikato.github.io/weka-wiki/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://archive.ics.uci.edu/datasets
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Table 3: Experimental Results on OSLR.

. elevators (b = 2) parkinson (b = 2) bank (b = 1)
Algorithm | er 07 Time (5) | MSEx107 Time(s) | MSEx10? Time (s)
Algl 258 £ 0.01 2359 | 6.44 £0.09 992 | 3.07 £0.01 2.94
Alg2 1.06 + 0.01 1.82 | 5.80 +0.02 071 | 3.00+0.02 0.74
Alg3 1.68 +0.11 033 | 10.67 4 0.67 0.15 | 2.82 4 0.04 021
AMRO 089+012 2126 | 5.84+0.02 6.66 | 2.35+0.07 233

. cpusmall (b = 2) calhousing (b = 2) ailerons (b = 1)
Algorithm —Cree 07 Time (5) | MSEx10? Time (s) | MSEx10? Time (s)
Algl 832+ 022 722 | 933 £ 0.06 595 | 7.0 £ 057 524
Alg2 3.86 4 0.49 0.61 | 6.08+0.05 1.14 | 16.15 +2.97 1.00
Alg3 3.61 + 031 020 | 5.79 4 0.58 030 | 7.1840.83 0.31
AMRO 2.82 + 0.48 461 | 3.60 +0.23 438 | 5354+ 0.76 5.44

By Table 3] AMRO enjoys the smallest MSE on all datasets. AMRO naturally outperforms Algl
and Alg3 as it enjoys a smaller regret bound. Alg2 has a smaller regret bound than AMRO but
performs worse, likely due to the additional assumptions required by Alg2 are not satisfied on the
datasets. Although AMRO has a longer running time compared to Alg2 and Alg3, our focus is
not on computationally efficient algorithms for OSLR, but the necessity of federated learning for
OSLR-DecD. The experimental results verify G1.

7.2 RESULTS OF OSLR-DECD

We compare Fed AMRO with two noncooperative algorithms, i.e, INndAMRO and IndAlg3 which in-
dependently runs AMRO and Alg3 on each client without collaboratiton, respectively. We exclude
Algl and Alg2 due to their unsatisfactory performance for OSLR. Let M = L%d%j In this case,
FedAMRO is better than all of noncooperative algorithms. For each dataset, we remove some exam-
ples such that T' = L%J - M, and uniformly divide the examples onto the M clients. For FedAMRO,
all of the hyperparameters follow Theorem except that §&; = max{0.01, max;< s r<¢—1 ¢-;}. Let
5t(J,)n follow @) and 0\/) = 0.8 for all j € [M]. Due to the data normalization, we set Y = X = 1,
C = 0.5. We multiple by 4 on 7, and tune U € {0.1,0.5, 1} for IndAMRO and FedAMRO.

Table @l summaries the re- Table 4: Experimental Results OSLR-DecD.

sults. FedAMRO is signif-

icantly better than the two Algorithm elevators (b 1\7[5212 parkinson (b ;52]:3 bank (b 1\7[5112
noncooperative algorithms,  —;qA753—0.0205 £ 0.0006 | 0.1637 £ 0.0024 | 0.0297 = 0.0004
demonstrating the necessi-  [ndAMRO | 0.0228 +0.0003 | 0.0721 = 0.0012 | 0.0298 = 0.0002
ty of federated learning for ~ FedAMRO | 0.0119 + 0.0015 |  0.0657 & 0.0023 | 0.0260 + 0.0003
OSLR-DecD. Besides, the ) ;

MSE of Fed AMRO is also Algorithm cpusmall (b 1\25212 calhousing (b 1\7152]:3 ailerons (b = 1)
comparable with the MSE - — 4330475 £0.0068 | 0.0750 £ 0.0030 | 0.1270 £ 0.0077
of AMRO in Table[3} show-  1pdAMRO | 0.0526 +0.0024 | 0.0544 £ 0.0016 | 0.0887 = 0.0026
ing that collaboration can  FedAMRO | 0.0344 + 0.0033 |  0.0460 = 0.0037 | 0.0731 + 0.0049

compensate the degenera-

tion of learning performance induced by decentralizing data. The experimental results verify G2.
We give more experimental results in the supplementary material.

8 CONCLUSION

In this paper, we have proved that federated learning is necessary for OSLR-DecD, contrasting with
the pessimistic result that federated learning is unnecessary for OLR-DecD in full information set-
ting. We proposed a federated algorithm for DecD-OSLR, and proved that its regret bound is smaller
than the lower bound of any noncooperative algorithm in the case of d = o(M). The experimen-
tal results also verify our theoretical findings. Our work demonstrates that federated learning is
necessary for online learning with decentralized data in the case of limited resource.

In the future, it would be interesting to close the gap between the lower and upper bounds on the
regret, and explore whether the condition d = o(M) can be relaxed, such as for any value of d > b.

10
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A ALGORITHM FOR SOLVING P¢11

At any round ¢, p;1 is updated as follows,

Pt+1 =argmin {(¢;, p) + By, (P, Pt)},

PEAL N
N1
Ay ={peAn:pi>NT"B,ic[N]}, u(p)=) pilnp:
i=1 1t
For any p, q, the Bregman divergence is
1N b1 N 1N
By, (pa) == piln=" —=>"pi+—> q. (12)
[t U et Ul
We use the Lagrangian multiplier method to solve p; ;.
N | N D
min Ctipi + — In —-,
PEAL N ; tibi Nt ;Pz Dt
N
s.t. Zpl = 1,
i=1
B

Di = N’W € [N].

The Lagrangian function is

N LN 4 N N 3
L :Zét,ipi + EZpiln Pl A <ZP1 - 1) +Z% (]\; Pi> .
=1 i=1 i—1 =1

Dt.i
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The KKT conditions are 4L .
a, = 0,Vi e [N],
Zz‘]\;1 pi =1,
A £ 0,
Yi Z 07

By the first two conditions, we have
N
pi =priexp (— (Ci + A —vi)ne — 1), Zpt,i exp (= (Gri +A—v)ne—1) =1
i=1

Solving for exp (—An; — 1) yields
1
exp (— A — 1) = . .
D20y pri exp (= (Fr = i) )

Thus we have B
Pt,i €XP (— (Ct,i — i) Nt)

~ — .
Ej:l pjexp (= (Cj —v5) me)
Note that there is not a analytical solution. Next we construct a feasible solution.

bi =

Initializing ; = O forall ¢ = 1, ..., N. Then we have
- Pr,i €xp (—C,ime)

i — .

N ~
=1 Pr.j exp (—=Cejn)

If p; > B¢ for all i € [N], then

pi:ﬁh Vi = 1,...,N.
Let A={i €[N]:p; < %} and A™ ={1,..., N} \ A. Forall i € A, we increase the value of 7;
such that

Dri €xp (— (Cri — Vi) M) =24,
2t B

> jea- Py exp (=G yne) + Al - 2 N

Solving for z; gives

Bt D jeanPtjexp (—Crjnt)

Zt =

(N —|A]- B)
i :%, Vi€ A,
Pri exp (—Crimy) . Vi€ AT

pi = :
Z ZjeAﬁ Pt,j exp (=G jme) + Al - 2

If there are some 7 € A~ such that p; < % then we update
- B
A<+ AU Z€A7pi<N s

then we repeat the above precess.

We obtain p;; by setting p;+1,; = p; for all i € [N]. The pseudo-code is shown in Algorithm

B PROOF OF LEMMA [II
Proof. For any m € Sy,, we have %4 ,, = x4, and

~ r xtm_ét.m >,
Vm ¢ Sy, E[Fm]=Plme B [Zm =% 5 ) 1 (1-Plme B]) - Srm = Tom.
# S0, Elionl = Pime Bl (TSR 15 ) + (1-Bm € Bl) -G =
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Thus E [X;] = x;. The expectation is taken over B, and B;. We can also prove that E [X;] = x;.
Recalling that,
Vi€ [N], G =w. %X/ [Si, Silwei — yewy (Re[Si] + %[Si])
:(WtT,iit [Si] — yt) - (WtT,if(t[Si] — ) — v,
Vii =2%:%] [Si, Silwei — ye(X: + %4)[Si]

=(w, X [Si] — ye)%e[Si] + (W[ % [Si] — ye)%e[Si].
‘We first show that the estimators are unbiased.
E[é:) =cii - Lizr, + E 6] - Lize,

=cri iz, + Ep, [(WLikelSi] —ye)] - B, [(WLikelSi] = 9e)] - Lier, — 97 - Lz,
=ct - Li=g, + [(WLXt[Si] — yt)2 - yf} i,

=Ct,i,
where the first equality comes from the fact X; is independent of x;. Similarly, we can prove

E [@t,z} = 2(WtT,iXt [Si] — ye) - x¢[Si] - Lizy, +2E [(W;fct [Si] — we) - % [Si]] - Liver, = Vi

Next we analyze the second order moment.

E([&;] =¢; - Lizr, + E[&,] - Liny,

5 2 . 2
:CtQ,i “Limp, + Eét |:(W1Iixt[5i] - yt) ] 'EBt {(WZiXt[Si] - yt) } 'Hiyélt—
2
2 (w % [Si) = )" v - Ligr, + v - i,

We just need to analyze E 5 [(th X¢[Si] — yt)g} . For simplicity, let

Et,m = Tt,m — 6t,m-
Then

B, [(wl5l5] - u)’]

_TR . 2 ~2
_EBt [ E Wi im * Tt,m

meS;

+Eg, Z WeimWeinTe,mTen | — 20Ep, [W;f{t[szﬂ +y7
m#n€eS;

d—0>
2 2 2 2 2
< E Wy im * (2 b — bgt,m + 2§t,m5t,m + 5tml + § Wy im * xt,m+
meS;\Sr, meS;NSy,

T 2
E Wi i mWt,inTt,mTt,n — 2tht7¢Xt[Si] + y;

m#n€eS;
2d—b —b 2
= b —b Z th,i,m ' E?,m + (WZiXt [Sl] - yt)
mES-;\SIt
2d—b —b 2
< v —b Z th,i,m : E?,m + (Wt—l,—zxt[sl] - yt)
mesS;
- 2
:Uzit,i + (wzixt [Si] — yt) )
where od—t — b o
— - - 2 ~ —
Sp= 2 . PlmeB| =
g Vb W;S‘E’*m mEBY = 5a—y)
Thus

E[&2,;] TLigr, < (UzEm + (w/lix[Si] — yt)2>2 Tizr, = 2(Wexe[Si] = yo)?u7 - Tigr, +y¢ - Lier,
< (U4Et27i +2U02(UX +Y)?Ey;) - Ligr, + C?,i Lizr,,
E[&,] <¢i; Li=r, +E[&, - Lizr,
<UE2, 4+ 2U2(UX +Y)*Ep, + &,
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which recoveries the first statement.

The analysis for the estimator of gradient is similar.

E {H@m j =|Veil2 Lier, + E M@m z] i,
=[|Veill3 - Lizr, + E [H(Wziit[sﬂ — yo)Xe[Si] + (W) % [S] — ye)%e[Si] } Lizr,
3 Lo, +4E [ (Wi &[S - %0811} - T,
V0l Limr, +4Eg, [(wl %[5 = )°] - B, [I%u[SI] - s,

<V} - Limr, +4 (U2 + (wlixe[S) = 11)°) - Eg, [I%e[SI3] - Lir

Note that
Ep, [I%:[S]l3] = lz un m]
mesS;
2(d—b
- Z ( é/ b)stz,m + 267577”67577” + 6t2,m>
meS;
=i + [|x[Si]l3
Ht 7 + X
Thus

~ 2 —_

E[IV2l] <IVeill - Limr, +4 (U210 + (wlixilSi] = 90)) - (B + X2) - Lig,
<A(UPE], +2(UX +Y)’E; + X2(UX +Y)?)
<AUPE +8(UX + Y)* (2 + X?),

which concludes the proof. O

C SOME PROPERTIES OF OMD

Lemma 2 (Boyd & Vandenberghel 2004). Assuming that V() : Q — R is a convex and differential
Sfunction, and () is a convex domain. Let f* = argmin feQ"I’( Then

)-
VgeQ, (VU(f*),g—f")>0.

C.1 UPDATING SAMPLING PROBABILITY

We rewrite the updating of p;4; as follows

Pt+1 = argmin ‘I’t(P), ‘I’t(P) = <ét7 P> + B'é[)t (P»Pt).
PEAL N

Taking derivation w.r.t. p;11 gives

VU (Pi41) = € + Vii(Pig1) = Vi (pe). (13)
By Lemma[2] we have

Vae Ayn, (VU¢(Pt+1), Pe41 —u) < 0.
C.2 UPDATING HYPOTHESES
We rewrite the updating of w1 ; as follows

Vi € [N], wyy1,; = argmin ¥y ;(w), U, (w) = <@t,i,w> + By, (W, Wy ;).
wew

16
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Let ¢ ;(w) = 2)\t |w|3. Then

1
By, (W, Wy;) = 2)\ HW Wi 1”2
We use the Lagrangian multiplier method to obtain WH_M.

U

Vi € [N], Wiy1,; = min {1, } “Wit1,is Wil = Wi — A i Vi

D TECHNICAL LEMMAS

In this section, we give some technical lemmas.

Lemma 3 (Lemma 3.5 in|Auer et al.[(2002)). Let o1, 02, ..., o and & be non-negative real-number.
Then

T T
<206+ o —2V/E
;\/fJFZT 107 ; t

Lemmad. Let 01,09,...,0r be non-negative real-number. Then

T
<2 fT—f—ZUu

T
;\/5 +Z 107_ t=1

Proof. For any a > 0 and b > 0, we have 2\/6\/5 <a+b Leta =& + Zi:l orand b =
&+ Zt;:ll o,. Then we have

t—1 t
2 €t+zar' £t+ZUT <2 (&+ZOT> — 0.
T7=1 T=1

Dividing by 1/a and rearranging terms yields

where §; = maX,<; 0.

t—1 t t—1
1 Ot
R o ST RN IR STAPN [N PN [ONEE S P
ft + 27:1 Or T7=1 T=1 T7=1 T=1

Summing overt = 1,...,7', we obtain

T T

PR SR P o P WE e

t=11/& + ZT 10r =1
which concludes the proof. O
Lemma 5. Foranyz € (—1,1),

exp(—z) <1 -z + 22
Forany x > —1,
In(1+42z) <x.

Lemma 6. Let 0 < B; < 1. Forany i € [N], let

vin N
\/maxrét,je[l\/] ;N + 23:1 Zj\le PriCy

Be . . N-1
utEAt,NZ{Ut,jZ]\;,3752,%,2‘:1— Bi ¢ s

N
A, = {je [V], YHLd > “tJ}
Tt+1 Tt

m =

)

Then it must be

17
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(a) i € Ay,
(b)

- Mt

jeA, Nt+1 ui Mt+1

Proof. Since Bi41 < P, we have uyy1,; > up . By i1 < 1, We can obtain

Ut+1,4 Ut
Nt+1 Mt

> 0.

Thus ¢ € A;. For the second statement, we have

A — Ayl — _
) <ut+1u‘ _““') P B 41 - M A+ 1 - ML,

jea, Nt+1 ui Ne+1 n
N -1 |At| — 1) ) ( 1 1 )
<[1- . I
N ( ( N P N+l M
1 1
S R
Nt+1 Tt
where we use the fact | A;| < N. O

Lemma 7. Let 5; = % and u; be defined in Lemma@ Then

T T
Z(ut,ct Z Cti <HlaXCt] InT.
t=1 t=1

Proof. Substituting into u; gives,

T T T N
E <utact> - E Ctq = E E Ut,jCt,5 — Ct,i
t=1 t=1 j=1

t=1

t=1 \ j#i

N B N-1

= Z Z th i~ 7ﬁtct,i
t=1 VE)
T

< Z n max ¢y
t=1

which concludes the proof. O

Lemma 8. Let ¢, = 77 ZJ 10jInpj, pr € Ay N and vy be defined in Lemma@ Assuming that
N1 < Mg forallt > 1, then

T

N 1
E : Bl/’t ut7pt Bwt(uhpﬂrl)] < ln( ) .
t=1 Br) nr

18
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Proof. By the definition of Bregman divergence, we have

T

(12)
Z By, (us, pr) — By, (0, pry1)] =
t=1

MH

— Ut - — U lln
LS LSt
T/ 11 1
Z — Uy ;10 — —u;ln

uiz Pti Tt Dt+1,i

&~
Il
—

F”ﬂ%

o
I
—

N
Ut1s Ut (% 1
< In |———-—]4+—In
; ; DPt+1,i ( Tt+1 Tt ) m pl,i]
T—
Upr1,i Ugyg In N
< In R LA [ Sp——
z:: .ezA;t Dt41,i ( Me+1 Tt ) m
T-1
<In (ﬂ) (_ — i) + In N (Lemmal[6])
Br) =\ M
(5) 5
<In|-—) —
B nr’
which concludes the proof. O

E PROOF OF THEOREM 2]

We first explain how the core part of the regret analysis of AMRO is different from previous work
(Shalev-Shwartz] 2012} [Foster et al}[2016])). There are two core parts in the regret analysis of AMRO.
The first one is to analyze the regret defined w.r.t. a sequence of time-variant competitors, i.e.,
u € Ajn,up € Ag v, ..., ur € Ap  owing to the utilization of time-varying decision sets
A n,...,Ar . To this end, we require a crucial lemma that carefully controls the sum of the
difference of Bregman divergence (please see Lemma(g), i.e.,

T
Z By, (ue, pe) — By, (ug, Prs1)]-
t=1

The analysis differs from standard analysis of OMD with constant decision A and constant learn-
ing rate (Shalev-Shwartz} [2012)), which just controls a easier term defined as follows,

T
> [By(u,ps) = By(u,pey1)] = By(u, p1) — By(w, pri1) < By(u, pr).
t=1

The second core part in the regret analysis is to bound the variances of estimators of gradient and loss
(please see Lemma[T), enabling our algorithm to improve the regret bound in [Foster et al] (2016)
by a factor at least O(d/b) and adapt to certain benign environments. We aim to prove that the
variances depending on ||x; — d;||3 where §; is an optimistic estimator of x; using x1,Xa, ..., X;_1.
The variance bounds in Lemma(I]are data-dependent.

Proof. For any w € W, there exists aw € W and i € [IN] such that
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With out loss of generality, assuming that the competitor w’ € W, uses the attributes indexed by
elements in .S; to make predictions. We decompose the regret as follows

T T
Reg(w) =Y (0 —u)* = >_((w,xi[Si]) — wn)?

(W1, %:[S]) = we)? = (Wea, x4 [Si]) = we)?] +

-

~
Il
—

[((wei xe[Si) = 9e)® = (W, xe[Si]) — )]

[M]=

ﬁ
Il
_

Ra

T
= lce,1, — Cui Jrz (Wti, %¢[S >*yt)2*(<Wxt[S]>*yt)],

Ry
where ¢; ; = wzi(xtx;r [S:, Si])we; — Qythixt [Si].

ANALYZING R,

We first analyze an approximation of Rj, that is
T

Z(Pt -, ¢yp),

t=1

where uy, us, . .., ur follow Lemmal6]
To start with, we analyze the instantaneous regret
(Pt —uy, &) + (Pt — ug, ¢ — €)

<Pt - U-t,Ct> =
— Pt+1,C) +(Pr — wg, ¢r — C4).

= (Pt4+1 — ug, &) + (py

(1]

1,2

[1]

1,1

Vii(Pes1), Pe1 — Uy)
Vi (Pi4+1) — €, Pe41 — Uy)

(VU(Pts1), Pra1 — uy)
(Lemmal2)

Next we give an upper bound on = ;
By, (az, pt) = By, (ut, Pr+1) — By, (Pr+1, Pr) =V (pr) —
(€ + Vibe(pr) —
2 (@ prt — ug) —
(c

Ct, Pt+1 — ut>

|v ‘@ I

where p+1 € Ay vy and u; € Ay .

|

Similarly, =1 o can be rewritten by
By, (Pt Pt) = By, (Pt, Pr+1) — By, (Pr+1, Pt) =(VYi(Pt) — Vi (Pi+1), Pr+1 — Pr)
=(Ct, Pt+1 — Pt)-
Taking expectation w.r.t. { By, B;}T_, gives
[T
E Z(Pt —u,cy)
Lt=1
rT T T
<E Z [B’lﬂt (utv pt) - Bwt (ut7 Pt+1)] + E Z B’l/)t (pta pt+1) + ZE [<p Uz, C¢
Lt=1 t=1 t=1
In (Bﬂ) T
<E TT +E Z By, (pt, pt+1)] ,  (Lemmal)
T t=1

20
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in which E[¢;] = ¢;. We further analyze the second term. Let

Vi (Pr41) = Ve (pr) — €.

Then p;+1 can be equivalently defined as follows

Pi+1 = arg min By, (P, f’t+1)-
PEAL N

By Lemma 5] we can obtain

T rr
E ZBwt(Pt;PtH)] <E ZB¢t(ptaf)t+1)
t=1 Lt=1
o [T L (X o N
SE D | pils e — 1+ hey
| t=1 L et Pi+1,j =
[ L (X N
=B\ Y — D primén; — 1+ Y pijexp(—miés;)
| t=1 e\ = j=1
[T N = 22
1Dt (L= +mici i) — 1 -
<E ZZ] 1 tJ( NeCt,5 T M t,_]) + (P, &)
| i=1 nt
T N
<D M Pl
t=1  j=1
where

vin N
m = )
~ N ~
\/maXTSt,jE[N] ;N + D 2 j—1PriCs
xS = ue) — vi-

Et’j = (WZJit[SJ] - yt) . ( t,j
By Lemmad] we have
T
E [Z<pt - ut,Ct>]
t=1
In(NT) 3 T N i
<3 . E 2 1 N =2 .
S N thTI,ljan[N] Ci ;10 + ;;pt,]cm
T N
In(NT
<3 n(l N) A @UX +Y) N+ 3 S p B @]
N t=1 j=1

In(NT) | o=
<3In(NT) (uUX +Y)* +3 DD e (UER +2U2(UX + )25 +c2,),
Vin N t=1 j=1

/
where 1 = 4d;,b_g3b and

~2 4 4
E [KITI}?EX[N] cw} <E {(ulUX+Y) } < (umUX +Y)".

21



Under review as a conference paper at ICLR 2025

By Lemrna taking expectation w.r.t. {I;}_; gives

T T
E[R,] =E Z<Pt7Ct> - Ct,i‘|
t=1 t=1
T
=E Z<pt —ug, ) + Z(unct) - th,z
t=1 t=1 =1

In(NT
<3 EZZ}n]UHM F(UX Y2+ 3I(NT) - (uUX +Y) 4

ANALYZING R»

Similar to the analysis of Ry, we can obtain

R

™)

-

(Vii, Wei — W)

o~
Il
-

%q

T
(VeisWei = W)+ Y (Wi — W, Vi — Vi)
=1

o~
I
-

Me

T T
By (W, wii) = By, (W, wii1)] + D By, (W Wig1) + D (Wi — w, Vi = Vi),
t=1 t=1

o~
Il
—

Recalling that
U

At,v = S = .
NEES ST

By Lemma 3] we have

T

T
)\tz
> By, (Wi, Wig1i) = Z 2)\ (Wi = Wiz < Z IVealls <U Z IVeall3,

t=1 t=1 t=1

and

— W = wip1il3

IIMH

T
Z [By.., (W, wii) — By, . (W, Wit1,) D

tyi
t=1

’

§< o 1)+||WW1,2'|§
At+1,i A A1

202
<
T Aty

T
=20, |1+ > |IV-il3.

T=1

Taking expectation w.r.t. By, By, t=1,...,T gives

T T
E[Ry] <3U,| Y E [Wt,illé] +2U <3UL | > (U222, + 8(UX +Y)2(Ze; + X?)) +2U,
t=1

t=1

where the last inequality comes from Lemma [I]

22
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Combining the upper bound on E[R;] and E[R2] gives

E[Reg(w)]
T
<BUL | Y (AU%E2, + 8(UX +Y)2(Er: + X2))+
t=1

—~

In(NT)
VIn N Zzpm U2E ; + (UX+Y)2)2+
t=1 j=1

3I(NT) - (uUX +Y)*> +(UX +Y)? - InT 42U

T T In (NT)
=0 U222, + (UX +Y)2X2T + ,|U* =224+ (UX +Y)4T +
Z t,i ) ; ;ptd t,j ( ) m
MU2X2 In(NT) + (UX +Y)2-InT
= b>2
In(NT)
= U4 =2 (UX +Y)AT +
d—
((b, b)) U?X%2In(NT) + (UX +Y)%. mT) ,
which concludes the proof. O

F PROOF OF THEOREM [3]

F.1 TECHNICAL LEMMAS

We first introduce some technical lemmas.
. . N2
Lemma 9 (Theorem 1 in|Li et al, (2024)). Assuming that 1\%) (w) = ( Tx[s;] — (J)) te

[T],7 € [M]. Let thl) = Vuw,, zl(])(wt ;) and V, j) be an estimator of V' ) At any round t € (T,
let qiy1 and ry4 1 be two auxlllary decisions deﬁned as follows,

M vij) v(J)
Va1 Vei(@i+1) =Vw, Vri(We i) — 2 Z -

M
Vrt+1¢t,i(1‘t+1) th ﬂ/Jt (Wi 7, Z (])-

Then FedAMRO guarantees that,
T M l(] L l(a)( )

wweo, YOyl

t=1 j=1

a By (Weistis1) = By (Wi Qusr)
0 B i) B (i 4 30 Zo ) 5 B

T M ' ,
Z Z <@7(5-,72) - VE,JZ'); Wi — W> .

t=1 j=

=[-

Lemma 10. Assuming that 1" (p) = (p,e{’’), t € [T],j € [M], where p € Ay . Let & be

an estimator of ct7) At any round t € [T, let Qt11 and ryy1 be two auxiliary decisions defined as

23
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follows,

é%]) C(j)
Vo (@) =Vp,tr(py) =2 ————,

Jj=1

Ve ®ie(regr1) =V, e (pe) ZC(J).

Then FedAMRO guarantees that,

T M
V{ut S At N}t 15 ZZ

t=1 j=1

j) J) —l(])( )

IN
Mq

B’/’t (ptv rt+1):| +

By, (ug, pr) — By, (g, Prg1) + 5

T M
1 )
(Pt, dit1) Z Z < ) ét] p; — ut> '

1 t=1 j=1

t=1

M;

t

Proof of Lemma[I0} Let ¢, = 37 Ls M =1 € ~(] and

\Ilt(p) _<ct7p> + Bﬂ)t (pa pt)7

pr+1 =argmin U, (p).
PEALN

For any u; € A¢ v,
(€, Pev1 — W) =(VUi(Pit1) — VPi(Pit1) + Vi (Pr), Pr1 — W)
<(VYie(pt) — VUi (Pit1), Per1 — uy)
=By, (us, pt) — By, (U, Pr41) — By, (Pe+1, Pt)-
Then we give a lower bound.

<ét7 pt+1 —w)

M Z [<Ct yPe41 — ut> + <6§J) - CEJ), Pi+1 — ut>}

M M

S G i<ct Bt =B+ 5 (e — o pren — ),

Jj=1

1 =2

[

where pgj ) = Pt
Next we analyze Z; and =5.

To analyze =, we introduce an auxiliary variable r;; defined as follows

M

2 .

Vi ¥e(res1) = Vp, i (pe) — MZC?)-
j=1

SIEH .

1
D) <Vut¢t(Pt) ~ Vi ¥e(Te41), Peyt — Pr)

:Bwt (Pt41,Te41) — Bwt (Pt+1,Pt) — Bwt (Pt, Te41)
2

Then we have

1

1
> — 3 (By, (Pt+1,Pt) + By, (Pt Te11)) -

24
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Before analyzing =2, we also introduce an auxiliary variable q;; defined as follows

M
2 (4 .
Vo ¥ie(dir1) = Ve, i (pe) — M (CEJ) - CEJ)) :

Now we can analyze Z,. We have

1/2& 5 G -
52_2<MZ<6§J)_C§”) Pt+1 — > < Z( m) pt—llt>

j=1 Jj=1

(11
w

1 —
=3 (Vp,¥t(Pt) = Vauur e (A1), Pe1 — Pt) + E3

:Bwt (pt+1, Qt+1) - Bwt (pt+17 pt) - Bwt (Pt, Qt+1)
2

+ E3

1 =
= (B(/}t (Pt+1,Pt) + By, (Pt Qt+1)) + Es.

Combining the lower bound and upper bound gives

i <C§j)7p§j> _ ut>

M

=, By(p:, By (pt,r
< By, (ug, pt) — By, (0, pry1) — Zs + w(pt2qt+1)+ ¢(Pt2 t+1).

Jj=1

Using the convexity of z§j ) concludes the proof. O

Next we give a similar result with Lemmal[I]
Lemma 11. Ler ) ) ) )
Dtj = (ﬂt,]m)mesI(j) y Dtj = (ﬁt]m>m€S (7') . (14)

d b

Assuming that maxy (x ) £(f(x),y) < C. Let iy = . Forany i € [N],
E |:C§Jz) — ci(tjz)7
E [Vg :Vg,jz')7

E [(aﬁ{})i 162U X + 85U X2C + (C — Y?)?,

. 2
E[Hv§322
) (J) ()

The expectation is taken on the elements in B}’

<32u3U°X* + (2u2 + 1) X2C.

and y( 7)

Proof of Lemmal[I1] For any 119 € [N], we have,
‘ 29 50 4
Vi € 8,0, E |20, =Pl = 1] [ -2t 4 50 ) 4 (1= P, = 11) o0, = 20,
I ’ P ~(4) =1 ’
[ t,m - ]
vm ¢ 5w, |:I§17)71:| =af).

Thus E {igﬂ )} = x,gj ), Similarly, it can be proved that E {5{5/] )} = xgj ). Next we show that the
estimators are unbiased.

], e (WS )] e (w50 )] -

N2 , .
(WHXE”[SI] yf”) —y -y

()

761517

25
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where the first equality comes from that igj ) is independent of &gj ), Similarly, we can prove
E[VE)] = 2B [(w 181 - yi7) - %3] = V).

Then we analyze the second order moment.
s[er]= g [(Tasi )] e (s -al?) ] -
2wl x5 = u”)w”) + )"

For simplicity, let
(4) @) _ s0)

Et m xt m t,m-
Then
N2
" {<wmxy>[s,,] ym
BEJ)ﬂ;éJ)
~(7) (J) ~(7)
: + d,mWtiin n
B(7) 59) Z Whim e B Bt(j])E::ﬁt('” 7;63 WeimWeindtm P
2 E {Wt Z18] + 9y
B(J) —(J)
—b) L _
< Y whin | B 2 4 200+ G +
meS;
> wiimwninzne) — 200 wlx (8] + ()2
m#nES;
2d—b —-b , N2
=T Y i () + (w81 - o)
meS;
2d—b —b N 2
A=+ (wlx (5] - y”)
2d -V —b
<4———U?X?*+C.
= v —b +
Thus

. — / — 2

E[@7)?] < <42db,fbbU2X2 + 0> —20Y? 4y

(2d—V — 07 4 s 2=V =

TP 7Y iy a“-v -0
w—nz U Vb

The analysis for the gradient is similar.
2
)

e[|
. {(W”,zgwm ye >)2] B [Ik21s113]

=16 U?X2C + (C - Y?)>2

] <4E, [H (WIED[S] - g[S

2d — b —
<« e o) v (10
B(J)

b —b 50
2d—-b -0 2d—-b —b
44—~ ‘p2x? ==~ 4 1) x?
oty +c) < —_— +)
2d—b — b) x4, 2d —b —b 9
:327UX 2— +1) X°C
(Y —b)? o —b + ’

which concludes the proof.
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Proof of Theorem 2. We decompose the regret as follows

M T ) .2 M T ) )
Reg(w) =3_ 3 (37 —ut”) = 3237 (twxi1i) — ui”)

Jj=1t=1 Jj=1t=1

M T
=30 | (o —%)2 — (wlx18i] - ) } +

=1t=1

J]\/[ T 9

S (st =) = (wals) =

j=1t=1 "

]M T M T ) )
:ZZ Cz(f?l)t - Cg?z):| + Z [(W;rzxt[s] - yt) - (WTXt[S] - yt) :|7

Jj=1t=1 j=1t=1

Ry Ro

where gij ) = (Wt I, x§] ) [S1,] — yt) Next we separately analyze %y and R».

F.2 ANALYZING R,

Let u = (u1,...,uq) in which v; = 1 and u, = O for all & # 9. Let uy = (up1,...,Utq)
where u; ), = N~1p; for all k # i and u; = 1 — %Bt. Taking expectation w.r.t.

{Dt(j)7 ﬁt(j)7 ng), BA’t(j)}je[M],te[T} (see ) yields

M T

1 A
2|35 el
j=1t=1
RIS () M T (’)
(Pt —uy, ¢ (u; —u,ci’”)
s |soy el |y )
[i=1t=1 M j=1t=1 M
(Lemma[I0]+ Lemma[7)

XT: Bda (Pu Qt+1)
2

t,2

By, (pe,r
SE ZBwt(ut’pt) - Bwt(utapt+1) + W] +]E

+ max c( D InT
L t=1 b
(Lemma[)
1
—E
+ 2

<In(NT)E {1] + %E +(UX+Y)* InT,
nr

T
Z Bwt (ptv rt+1)
t=1

T
Z By, (Pt; at+1)
t=1

where the first inequality also uses the following fact,

l e N el &) _
U ZZ<Ct , Pt —ut> =0.

t=1 j=1

We just need to analyze E [Zthl By, (pt, rt+1)] and E [By, (pt, q¢+1)]. By Lemma , we intro-
duce two new notations
M- j (9)

2 <~ () — ct
= th , Zy =2 Z
Jj=1
It is obvious that
—2Y? <y <20 —2Y?,
— 23U X% 4+ 2uUXY) — 20 +2Y2% < 2,
2 < 20U X2 + 2 UXY),
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%ﬁ;?’b. We define 7, as follows

_ vin N
TG N fa.t
(C— Y2)2 . 2,LL§U4X4 +u2U2XQC+ (C*Ez/z)z
4 M ’
& =4(C—Y?+ 12U X + 20 UXY)”.

where (1 =

o =

We further analyze

T r N
(12) Pt,i
E|> By, (pe, Pt+1)] Bg Z m (Zpt iIn —— o —1+ ) Tt-i—l,i)]

t=1 Lt=1 ‘ i=1

(T (X N

=E Z - Zpt,intvt,j -1+ Zpt,i exp(—nvt,;)
L= e = i=1
(Lemmaf)

[ i pra (1 — meves +no2,) — 1
=
t=1 it

+ <pt7 vt>]

and

Qt+1

T - rT
E [Z Bwt (ptvqt+1)] E Z (Zpt i1n

t=1 Lt= 1

-1 + Z qt+1 1>]
s
=E Z % <Z ptineze; — 1+ Zpt’i eXp(—ﬁ%m))]
i=1 i=1

Lt=1

(Lemmal5)

<E _XT: vazl P (L= nezes + 77?2’,527i) -1
Lt=1 Mt

T N
=E Znt Zptzzfz]
Lt=1 =1
[T N 4 M A
=E Znt'zpt,im Z C“ ; +
[t=1 =1 i=1

+ <pt>Zt>‘|

4p i (i I\~
ZE me = | D@ =)@l — )
k]
M

- - 4 FONE
=[S Y (3 () -

t=1 i=1 j=1
(Lemmal[TT)

T 4y74 2 v2 2
<Z 16p3U4 X4 + 8us U2 X2C + (C — Y).

M
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Substituting into the two upper bounds yields

M T
1 (3) 2
17 E ;;@t—u,ct )| <E +82 ma| +UX+Y)2-InT
(LemmaB])
In(NT)
< InN +aT +16VaTInN + (UX +Y)*-InT
In(NT)
<VEIM(NT)+ (UX 4+Y) InT+ 17 val.
) Vin N
Taking expectation w.r.t. {It(j )}th,je[ ) yields
M T
1 1 ) 9 In(NT)
—E[R;] = —E —ucj <AVEIMNT)+UX+Y)"InT + 17 vaoT.

F.3 ANALYZING R

Taking expectation w.r.t. {Dt(j ), ﬁt(j ), Bt(j ), ij)}te[T],jE[M] gives

1
—E[R
77 ElE]
T
B T B Pt )
[Z Bwt W, Wy l) B%’i(w,wﬂ_l’i)} +E ZW_&.Z%W +
t=1 t=1
1 M . )
E Z Z Vgﬁ) - foi), Wi — W> (Lemmal[9))
t=1 j=1
20 Z By, (Wi, Tt+1) n By, (Wi, diq1) .
)\T,z =1 2 2

We define ), ; as follows

U
Ati =

El )
b (2ug+1)X2C
X2 2uiU2X44 2R2T 2T

\/ 1 2 M 16 : \/E

2d-bV —b

He ="y,
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‘We further have

T T
E Z By, (Wi, Tey1) + Z By, . (Wi, I‘t+1)1

t=1 t=1
= fwei = vl [We.i — qeal3
_g |S IWei —renlls | ti — Aern
et 2Atz Z )\tz
- - 2 2
T M M () (@)
1 i Vi — Vi
=2E Z)\m MZVEJR + Z%
t=1 j=1 9 Jj=1 2
[ [ vagg Sy H@EJZ_) ()
S SR SN o Ml )
t=1 j=1 M j=1 M
T 1 , ,
23 E M- 5z 2 (V) - 98)) (V1) - viR)
t=1 £k
T
) (J)
<8 |3, MzH MQZHVM
(Lemmal[TT)
T (2u2+1)X3%C
CX2  23U%X* 4 GuatlX*C
<32 At 18
SRl
(Lemma [3))
X2 2,2U2X4 4 GuetDH)X2C
§64U\/C4 + tw L — . VT.

Substituting into the upper bound of E[Ry] yields

1 22 CX2  22U%X4 + Cpat)X2C
—E[Ry] < 4 16 AT
M [ 2] _/\TJ‘ + 6 U\/ 1 + T \/—

VT.

2 21202 X4 (2u2+1)X2C
<66U\/Cf L 2mY L 16

F.4 COMBINING R; AND Ry

Taking expectation w.r.t. {It(j)}th, jeln yields
L E[Reg(w)] = B[R] + B[R]
pp B = pR g p R

<VEWNT) + (UX + ¥ T+ 172 o7y

vin N
OX2  22U2X% + (2p2+1)X2C
66U\/ : Mt 1 VT

Note that C' = O(U X + Y')2. Omitting the constant terms concludes the proof.

G PROOF OF THEOREM [4]

We first prove a lower bound on the regret of OSLR, and then prove Theorem 4]
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G.1 LOWER BOUND OF ANY ALGORITHM FOR OSLR

Letb = 1 and d > b > b. Assuming that the h-th attribute is the optimal one. We construct
(xP,yM),t =1,...,T as follows.

v2#h5€?127
xth yt'b7
3 1 15
P[yt =1] :P[?J?ZO]:?, (as)
Ploy = 1] =~ 4+, Bloy=0] = =
t — D) g, t = =35 g,

where € < % Let A be any algorithm that only uses one attribute to make prediction, i.e., b = 1, but
can observe additional b’ — 1 attributes. At each round ¢, denote by I; € [d] the index of attributes
selected by .A. The algorithm uses the constant predictor wy , to give a prediction w; 7,z I,

Forany i € [d], let [(wy;) = (wy iz}, — yth)2 be the loss of w; ;. By , it is easy to prove

Pll(wy;) = 1] =Pi(wy;) = 0] = % Vi # h,

Wwyp) =(wepby — 1) < (whxt n =),

where w; = 1. We can also prove

* 1
Pl(wyzty, —yt)? = 0] =Pl = 1] =5 +-e,

2
1
h hy\2
P[(w;xmh —y)” =1 =P[b, = 0] 25 —¢&.
For any wy r,,wa2r,,...,wr, generated by A, it is easy to construct another predictors
W1,1,, W2, 1, - - -, W11, Which are never worse than {w; r,}7_;. To be specific, we define w; s,
as follows,
_ _ U)t7[t lf It 7é h,
We.1, = { w; =1 otherwise. (16)
It is easy to prove that
T T
h : Toh 2
max Reg(w) =Y (wy g,z L~ y)? — min (wxP—yh
weEW, = weWr o
T
h h\2 . h hy\2
> ;(wt,wt,h —yr)? - gg&Z(th,h )
T T
I 2
> Z(wt Itl“t I~ Z WyTY ) — y
t=1 t=1
Thus we just need to prove the lower bound of regret induced by w1 1., W2 15, - . . , W, 1. It is easy

to show that
(wt’lt xt I — Yt ) = y1527 VI 75 hv Wy 1, € R,
(wt’lt : mﬁlt — Y ) = (bt - 1)25 It = h.

The loss is independent of the value of w; ;,, but only depends on the index I;. The algorithm can
observe additional b’ — 1 attributes, implying observing additional b’ — 1 losses.

Next we reduce OSLR to a problem of prediction with limited advice (Seldin et al.,[2014; Thune &
Seldin, 2018). Let each coordinate ¢ € [d] be an arm and l; ; be the loss induced by selecting the ¢-th
arm, defined by

lt,i :yt2 c {07 1}7 V’L 7é h7
L =(by — 1)? € {0,1}.
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It is obvious that
1
P[lt,i = 1] :P[Zt,i = O] = 5’ V2 ;é h7
1 1
[lth_o] +5 P[lt7h:1]:§_€_

h is the unknown and optimal arm. At each round ¢, any algorithm selects an arm I; € [d] and suffers
the loss I¢ 1. After that the algorithm selects additional ' — 1 arms, denoted by I} 1, I} 5, ..., I{ 11,
and observe their losses.

We mainly follow the proof of Theorem 2 in [Seldin et al.| (2014). At each round ¢, let O; =
e, 11, It 55 s I 1} Assuming that the algorithm is deterministic, that is, Oy is determined
by {O,}.Z} and the observed losses. To start with, we uniformly sample the best arm h € [d].
Let Ep[] and P[] separately be the expectation and probability operator conditioned on the h-th

attribute being the optimal one. Let Ny ; = Zthl I;,—;andq = (q1, g2, ..., q4) in which ¢; = N; .

We random sample an arm J ~ q. Then we have P,[J = h] = E;,,[N;i ]. Under the condition of h
is the best arm, the expected regret satisfies

T T
_ h h x _h h
En lZ(wt,Itxt,It — Y )2 - Z(whxt,h — Y )2

t=1 t=1

=¢ - (T — En [N1,n])
T (1—P,[J = h]).

Taking expectation w.r.t. h yields
1 T 1
P S il — b — Yty 2| =T ( 2Pl = h)
h=1 t=1 t=1 h=1

Next we aim to prove an upper bound on % 22:1 Py, [J = h).

We define a fictitious 0-th arm. If i = 0, then we define
1
Pl =1] =Pll,; = 0] = 5 Vi€ [d].

Let Py[-] and Eq[-] separately be the expectation and probability operator conditioned on the 0-th
arm being the optimal one. By Pinsker’s inequality we have:

13 1
a2 =S g

By the proof of Theorem 2 in|Seldin et al.| (2014}, we have

HM&
&\»—‘
M&

“e
r‘
=
=
s

SN
+
=Y
M&

>~
—
=
=

L(Po,P,) < KL( ) VT < 4T

HM&

Lete = 4\/& . We have

a

d d
1 1 1
. _ - — >cT . [
T (1 ; h§:1j Py [J h]) 2T |1~ J 5 > KL(Po, Py)
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Then the worst-case regret of any deterministic algorithm for OSLR satisfies

sup max Reg(w) > sup max Reg(w)
(xc.ye) € [T] WEWA held). (xb il te(T) W EW
T T
SR SCYERRTIE yE
he[d],(x?,y?),tE[T] t=1 t=1

T T
SN SCYERRE yE T
S

held], (x}yg t=1 t=1

T
33t~ - et -t
t=1
1 d
>eT-|1—-= PplJ=h
- ( dh;"[ )

d
>0.09¢/ 5T

G.2 LOWER BOUND OF ANY NONCOOPERATIVE ALGORITHM FOR OSLR-DECD

We uniformly sample a same h € [d] for all clients, and construct (x; @), ,h G )) following . In

this way, the optimal attribute is same for the data on all clients. Let w 10 wY )(,>, e ,w(J ) *
2,1 T,1Y

be the predictors generated by A on the j-th client. We also construct another predictors

wij;(j) , m;jgm, . ,w;f)I(J) following 1} which are never worse than {w(])m }T_,. Following
IR 42 T

the proof in previous subsection, it is easy to prove that

sup max Reg(w)
(2 w2 el ™S

T M T
_ (49) ( ) ()2 T ()2
= sup ZZ tjlm tjlm — ) - wnel% ZZ(W x;” —y”)
{7y ielM] | =1 t=1 s t=1
M T M T
(J) s () h (J) hy(j) h,(4)\2
> sup Z Wy 10Ty @ ~ Y ZZ BT Y )
hACe Py OB =1 t=1 i=1i=1
jE[M]
M T M T ) .
h,(j j h,(j)\2
= ()E() ZZ Im ”m_yt Z —y)?
RAGE YL [ =1 t=1 j=1t=1
JE[M]

M

T
1 j hi( j h
IS by O R MR M]
h=1 t=1 t=1

)

J
/d
>0.09M yT.

We can obtain a randomized algorithm by sampling from a class of deterministic algorithms. Thus
the same lower bound holds for any algorithm, that is,

/d
sup E [vlvré%l Reg(w) } > 0.09M ET,
jE[M]

SRRy ARNIS

where the expectation is taken over the internal randomness of algorithm. Up to now, we conclude
the proof.
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Table 5: Experimental Results on Verifying the Efficiency of Estimators of x;.

. elevators (b = 2) parkinson (b = 2) bank (b = 1)
Algorithm MSE MSE MSE
AMRO-zero 0.0134 + 0.0036 0.0586 + 0.0004 | 0.0235 + 0.0004
AMRO-random | 0.0136 + 0.0049 0.0588 + 0.0013 | 0.0241 + 0.0008
AMRO 0.0089 + 0.0012 0.0584 + 0.0002 | 0.0235 + 0.0007

. cpusmall (b = 2) | calhousing (b = 2) ailerons (b = 1)
Algorithm MSE MSE MSE
AMRO-zero 0.0478 + 0.0068 0.0470 + 0.0036 | 0.0544 + 0.0128

AMRO-random
AMRO

0.0532 £ 0.0085
0.0282 £ 0.0048

0.0491 +£ 0.0088
0.0360 -+ 0.0023

0.0621 £ 0.0225
0.0535 £ 0.0076

Table 6: Experimental Results on Verifying the Efficiency of 60,

. elevators (b = 2) parkinson (b = 2) bank (b = 1)
Algorithm MSE MSE MSE
FedAMRO-0.9 | 0.0118 4+ 0.0010 0.0655 + 0.0028 | 0.0263 £ 0.0005
FedAMRO-0.5 | 0.0125 £ 0.0021 0.0674 + 0.0055 | 0.0263 £ 0.0005
FedAMRO-0.1 | 0.0125 4 0.0021 0.0679 £ 0.0068 | 0.0262 + 0.0004

. cpusmall (b = 2) | calhousing (b = 2) ailerons (b = 1)
Algorithm MSE MSE MSE
FedAMRO-0.9 | 0.0336 4+ 0.0029 0.0447 £+ 0.0025 | 0.0729 £ 0.0038
FedAMRO-0.5 | 0.0333 £ 0.0031 0.0466 + 0.0054 | 0.0724 £ 0.0036
FedAMRO-0.1 | 0.0358 4+ 0.0024 0.0483 + 0.0023 | 0.0723 £ 0.0045

H MORE EXPERIMENTS

We verify that our estimators in can induce better performance in certain benign environment.
To be specific, we instantiate AMRO with three types of d; ., i.e.,

e AMRO: §; ,,, follows @) ie,

6t,m = Z

r<t,meB,UB,

m’T,m

Hr <t:me B, UB,}|

o AMRO-zero: ¢, =0
e AMRO-random: We first sample d; ,,, € [—0.5,0.5] for allm = 1, .., d. Then we normalize

5fby
0t < mi {1 4 } é
min , T ¢ - Ot.
' [

The other hyper-parameters of AMRO-zero and AMRO-random follow AMRO.

The results are shown in Table 5] Overall, AMRO performs best on most of datasets, verifying
that it is possible to estimate the value of each attribute using the observed values of each attribute.
Especially, on the elevators, cpusmall and calhousing datasets, AMRO is much better than AMRO-
zero and AMRO-random. On the parkinson, bank and ailerons datasets, the three algorithms enjoy
similar prediction performance, showing that it is hard to precisely estimate the values of each
attribute without any prior information. In other words, if we can obtain some prior information, it
is possible to construct better estimator than the estimators in (9). The experimental results verify
the superiority of our estimators in ().

We further verify that how the values of o), j € [M] influence the learning performance of
FedAMRO. To be specific, we instantiate FedAMRO with three types of o ie.,

e FedAMRO-0.9: ¢() = 0.9.
e FedAMRO-0.5: ¢(¥) = 0.5.
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e FedAMRO-0.1: ¢() = 0.1.

The other hyper-parameters of FedAMRO keep unchanged.

The results are shown in Table[6] Overall, as the value of increases, Fed AMRO’s prediction perfor-
mance improves. Recalling that

,m ,m
t‘?m = 50 . ]If/g)n + 5t,jm» VYm € Slgj>.
as the value of increases, :E”n would contain more information of x,gj,)n, which may increase the risk
of privacy leaking. Thus o balances the privacy and utility of FedAMRO.
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