
Generalisation and Sharing in Triplet Convnets for Sketch based Visual Search

Tu Bui, John Collomosse
University of Surrey

Guildford, Surrey, UK
t.bui,j.collomosse@surrey.ac.uk

Leonardo Ribeiro, Moacir Ponti
University of Sao Paulo

Butanta, Sao Paulo, Brazil
l.ribeiro,ponti@usp.br

Abstract

We propose and evaluate several triplet CNN architec-
tures for measuring the similarity between sketches and
photographs, within the context of the sketch based image
retrieval (SBIR) task. In contrast to recent fine-grained
SBIR work, we study the ability of our networks to gener-
alise across diverse object categories from limited training
data, and explore in detail strategies for weight sharing,
pre-processing, data augmentation and dimensionality re-
duction. We exceed the performance of pre-existing tech-
niques on both the Flickr15k category level SBIR bench-
mark by 18%, and the TU-Berlin SBIR benchmark by ∼
10Tb, when trained on the 250 category TU-Berlin clas-
sification dataset augmented with 25k corresponding pho-
tographs harvested from the Internet.

1. Introduction
Sketches are an intuitive and concise modality for com-

municating everyday concepts; abstract visual depictions
pre-date the written language of our early ancestors, and
drawings are one of the earliest communication mediums
employed by children. With the advent of modern touch-
screen based devices, gestural forms of interaction are of
increasing interest as a means for navigating visual me-
dia. This paper addresses the particular problem of sketch
based image retrieval (SBIR); searching a collection of pho-
tographs (images) for a particular visual concept using a
free-hand sketched query.

The principal contribution of this paper is to explore
SBIR from the perspective of a cross-domain modelling
problem, in which a low dimensional embedding is learned
between the space of sketches and photographs. Histor-
ically, SBIR has been addressed using sparse feature ex-
traction and dictionary learning approaches, following the
successful application of the same to object recognition
and the measurement of visual similarity in natural im-
ages [14, 9, 15]. Deep convolutional neural networks (con-
vnets/CNNs) have since gained traction as a powerful and
flexible tool for tackling a diverse range of machine percep-

tion problems [18], and very recently have also been ex-
plored for SBIR within the context of fine-grain retrieval,
e.g. to find a specific shoe within a dataset of only shoes
[30, 24]. Our work is aligned with the larger body of SBIR
work addressing the problem of category-level retrieval, in
which a user sketches a kind of object with particular at-
tributes (e.g. a specific furniture form, a spotted dog, or a
building with particular structure), seeking images that con-
form to that structure rather than a specific single image
[10, 9, 15, 23, 22]. Acknowledging the complementarity
and value in both perspectives, this paper for the first time
explores deep learning for category-level SBIR; compati-
ble with the inherent ambiguity of sketch and the common
use case of sketching an unseen prototypical object ‘from
the mind’s eye’ (e.g. web search), rather than to recall a
previous observation of a specific object to the last detail.
Specifically this paper explores appropriate convnet archi-
tectures, weight sharing schemes and training methodolo-
gies to learn a low-dimensional embedding for the repre-
sentation of both sketches and photographs — in practical
terms, a space amenable to fast approximate nearest neigh-
bour (ANN) search (e.g. L2 norm) for high performance
SBIR. We explore several important questions around ef-
fective deep learning of such representations.

1. Generalisation: Given the diversity of visual con-
cepts in the wild (∼ 105 categories) and the challenges of
annotating large sketch datasets (current best, ∼ 102 cat-
egories [9]) how well can a CNN generalise beyond its
training concepts to represent unseen sketched object cate-
gories? Are class diversity and volume of exemplars equally
important?

2. Input Modality: SBIR and the related task of
sketched image classification variously employ edge extrac-
tion as a pre-processing step to align the statistics of sketch
and photo distributions. Is this a beneficial strategy when
learning a SBIR feature embedding?

3. Architecture: Recent exploration of SBIR has indi-
cated triplet loss CNNs as a promising archetype for SBIR
embedding, however what kind of loss objective should be
considered and where, and which weight sharing strategies
are most effective? What is the best way to enforce a low
dimensional embedding for efficient SBIR indexing?
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2. Related Work
Sketch based Image Retrieval (SBIR) began to gain mo-

mentum in the early nineties with colour-blob based query
systems such as Flickner et al.’s QBIC [12] that matched
coarse attributes of colour, shape and texture using re-
gion adjacency graphs. Several global image descriptors
for matching blob based queries were subsequently pro-
posed, using spectral signatures derived from Haar Wavelets
[16] and the Short-Time Fourier Transform [25]. This
early wave of SBIR systems was complemented in the late
nineties by algorithms accepting line-art sketches, more
closely resembling the free-hand sketches casually gener-
ated by lay users in the act of sketching a throw-away query
[7]. Such systems are characterised by their optimisation
based matching approach; fitting the sketch under a de-
formable model to measure the support for sketched struc-
ture within each photograph in the database [3, 6]. Despite
good accuracy, such approaches are slow and scale at best
linearly. It was not until comparatively recently that global
image descriptors were derived from line-art sketches, en-
abling more scalable indexing solutions.

2.1. SBIR with shallow features

Mirroring the success of gradient domain features and
dictionary learning methods to photo retrieval, both Hu et
al. [14] and Eitz et al. [11] extended the Bag of Visual
Words (BoVW) pipeline to SBIR, notably also proposing
the Flickr15k dataset which became a defacto benchmark
for category-level SBIR [15]. Sparse features including
the Structure Tensor [10], SHoG [11], Gradient Field His-
togram of Oriented Gradients (GF-HOG) [15] and its ex-
tended version [4] are extracted from images pre-processed
via Canny edge detection. Mid-level features were also
explored through the HELO and key-shapes schemes of
Saavedra and Bebustos [23, 22], which although not index-
able via BoVW could be matched via Hungarian algorithm.
Mid-level structures were also explored in the Mindfinder
system of Cao et al. [5] who were the first to propose in-
verse index structure for scalable SBIR. Such systems score
around 10-15% on the Flickr15k dataset often failing in the
presence of edge clutter. Recently, Qi et al. employed an al-
ternative edge detection pre-process raising the state of the
art to 18% over Flickr15k. Their Perceptual Edge [20] filter
simplifies the edge map prior to HoG/BoVW delivering a
performance gain in cluttered scenes.

2.2. SBIR with deep networks

The use of deep networks to obtain data-driven represen-
tations can potentially overcome the challenges of learn-
ing from different domains. An example of single net-
work model is the SketchANet [31], a smaller version of
AlexNet optimised for sketch recognition only. However,
while learning from a single domain is straightforward —
provided enough data — mapping between a sketch and a

photograph often requires multi-branch networks for cross-
domain mapping. In this context, it is possible to learn
representations for each domain independently, or perform
a multi-domain learning by sharing knowledge across the
different – but related – domains. Triplet convnets are espe-
cially interesting in this scenario since they employ three
branches [28]: an anchor branch, which models the ref-
erence object, one branch representing positive examples
(which should be similar to the anchor) and another mod-
eling negative examples (which should be as different as
possible to the anchor). The triplet loss function is respon-
sible to guide the training stage considering the relationship
between the three models. This method was used for photo-
graphic queries by Wang et al. [28] and for sketched queries
in order to refine search within a specific object class (e.g. a
dataset of shoes) [30]. Similarly, a fine-grained approach to
SBIR was adopted by the recent Sketchy system of Sangk-
loy et al. [24] in which careful reproduction of stroke detail
is invited for instance-level search.

In Yu et al. [30], the authors train one model for each
target category, the sketch is matched against the edgemap
extracted from a well-behaved image (without clutter, of-
ten with constant background). They report that using
a fully-shared network was better than use two networks
without weight sharing. However, in category-level prob-
lem it may be beneficial to avoid sharing all layers to en-
courage generalisation (c.f. in Sec. 4.4). Wang et al. [29]
used a two-branch network with contrastive loss for sketch-
based 3D shape retrieval without sharing weights, indi-
cating that when two domains are very different sharing
knowledge may not be ideal. Therefore, questions re-
main around training methodology including architecture,
weight-sharing strategies, and loss functions, as well as the
generalisation capability of such models. Our work ex-
plores these questions, and broadens the investigation of
deep learning to SBIR beyond intra-class or instance level
search to retrieval across multiple object categories. To
avoid confusion we hereafter refer as no-share or Hetero-
geneous those multi-branch networks for which there are
no shared weights between layers [29]; as full-share or
Siamese those for which all layers have shared weights in
all layers [30, 28]; and half-share or Hybrid those for which
only a subset of layers are shared.

3. Methodology

We propose and investigate several triplet network de-
signs, comparing the Siamese architecture with the Hetero-
geneous and a Hybrid design. Triplet networks are com-
monly used to learn joint embeddings from data distribu-
tions, and have been recently applied to photographic visual
search [13, 21]. In an image retrieval context, a query image
is presented to the anchor branch, and relevant/irrelevant
images are presented to the positive and negative branches
respectively. The positive and negative branches share their



weights because they represent the same domain (e.g. pho-
tos). The anchor branch represents a different domain
(sketch) and differences in design arise from the degree to
which layers within the anchor branch share weights with
the other branches. One or several fully-connected (FC)
layers unifying the branches may be installed, as may loss
functions pre- and post- unification. In this section we ex-
plore several permutations of this design, evaluating their
performance in Sec. 4 with the aim of testing the generali-
sation capability of the network across categories, and iden-
tifying the best performing architecture (CNN architecture,
loss) and training strategy to optimise retrieval accuracy.

3.1. Network architecture
Whilst some SBIR techniques perform feature extraction

directly from image pixels, several pre-process images into
edge-maps [30, 27]. We explore both strategies through two
base architectures in our experiments.

Sketch-edgemap matching : we utilise the SketchANet
architecture [31] for both sketch and edgemap (posi-
tive/negative) branches, adopting similar branch design on
the assumption that a photo’s edgemap is statistically closer
to a sketch. The SketchANet network is similar to AlexNet
[18] but 8 times smaller and optimised for sketch, which is
ideal for applications that require fast processing time like
SBIR. Fig. 1 depicts three weight sharing variants explored
in this work. The full-share network (Siamese) has three
identical branches. The no-share network (Heterogeneous)
allows the anchor branch to be learned independently. The
half-share network (Hybrid) has part of the anchor branch
shared with the two others. Since the top layers of a CNN
network learn high-level concepts we shared the top 4 layers
among the 3 branches.

Sketch-photo matching : we utilise the AlexNet CNN
for the photo branches, and a hybrid CNN combining
AlexNet and SketchANet for the sketch branch that shares
layers 6-7 between the sketch and photo branches (see
Fig. 2). Specifically, layers 1-3 have SketchANet architec-
ture, layers 6-7 mirror AlexNet while the middle layers 4-5
we have modified from SketchANet as a hybridisation of
the two designs. We configure fewer shareable layers than
sketch-edgemap’s because the domain gap between sketch
and photo is larger. Nevertheless, layers 6 and 7 alone ac-
count for more than 90% of the parameters of both net-
works. To the best of our knowledge, this is the first triplet
network presented for visual search that has different archi-
tecture for the anchor and the positive/negative branches.

3.2. Dimensionality reduction
It is desirable in visual search to have a compact repre-

sentation of images. Dimensionality reduction is generally
within a CNN by adding an intermediate fully-connected

Figure 2. Half-share triplet network for sketch-photo direct map-
ping hybridised from the AlexNet and SketchANet designs. Lay-
ers with the same colour indicate weight sharing.The dimensional-
ity reduction layer FCR(red) is not associated with any activation
function. The 4 FC layers can alternatively be configured unshared
for a Heterogeneous network. When training this network the soft-
max loss layer is only activated during the training phase 2.

(FC) layer with a lower number of nodes. In a classifi-
cation network, this number is constrained by number of
categories i.e. intermediate FC layer should be larger than
the final D-way FC layer where D is class number. An
advantage of the triplet network is that the dimensionality
of the output embedding can be freely set, since the triplet
loss function only compares the output features of the three
branches, and does not take into account labels of the in-
put. In all experiments we fix the embedding dimension
D = 128, regardless of network design or number of cate-
gories in the training set. This allows us to encode the whole
Flickr15K dataset using just 7MB memory.

Even when classification loss must be integrated in the
network during certain training phases (see Sec. 3.3), we
propose an unique way to overcome the problem as illus-
trated in Fig. 2. Here we add an embedding layer FCR

(D = 128) between layer FC7 (D = 4096) and FC8
(D = 250) without being followed by an activation (ReLU)
layer. This prevents the embedding layer becoming a bot-
tleneck in the network, since from the perspective of the
softmax-loss layer the connection from FC7 to FC8 is lin-
ear. We empirically verify that during training the perfor-
mance of the classification layer is not affected whether
FCR is integrated or not.



Figure 1. Three triplet network designs evaluated for sketch-edgemap matching and the corresponding visualisation of its first convolutional
layer. Arrows/same colour indicates sharing of weights. For simplicity we omit the negative branch. Note the effect of integrating
classification loss into the Heterogeneous network (middle), resulting in a learned convolution layer contrasting with the Siamese (left) and
half-share (right) networks.

3.3. Training procedure

We now describe the different training strategies for dif-
ferent network designs. Practically we observed that diffi-
culties in achieving convergence increase from full-share,
half-share to no-share, and that due to the domain gap,
learning a sketch-photo mapping is more challenging that
the sketch-edgemap case. In all experiments, we steer away
from using classification loss to prevent affecting the gener-
alisation capability of the network. Nevertheless we found
that integrating softmax-loss, even if only at an early phase,
is unavoidable for the training to converge in some cases.
– Full-share sketch-edgemap: this configuration was
trainable using standard triplet loss in a single step.
– Half-share sketch-edgemap: this configuration encoun-
ters the so called “gradient vanishing problem”. We pro-
posed a new loss function to overcome it (Sec. 3.4).
– No-share sketch-edgemap: we conduct a two-step train-
ing process: (i) pre-train the sketch and edgemap branches
separately using softmax-loss; (ii) remove softmax-loss and
train the network further with the triplet-loss.

Given the instantiation of existing networks with
branches of the triplet CNN, an opportunity exists to ex-
ploit a prior trained models. Although we leverage fine-
tuning in our experiments training sketch-photo networks,
(subsec. 4.4) we train all networks from scratch during our
generalisation experiments (subsec. 4.3).

Sketch-photo i.e. cross-domain learning requires more
effort to achieve good convergence. We use the following

multi-step training strategy:
– Phase 1: Classification train the sketch and photo
branches independently using a softmax-loss at FC8.
– Phase 2: Classification + regression for the half-share
network only. We form a double-branch network, freeze
the unshared layers which were already learnt during phase
1. Next, we use contrastive loss together with softmax-
loss to train the sharing layers. The use of softmax-loss
in such double-branch network helps the sharing layers to
learn discriminative features from both sketch and edgemap
domains, whilst contrastive-loss provides an early step of
regression to bring the two domains together.
– Phase 3: Regression Remove softmax-loss and its asso-
ciated fully-connected layer, unfreeze all frozen layers and
train the network with triplet loss.
– Phase 4 (optional) Any auxiliary sketch-photo datasets
available can be used to further refine the model.

In the above training procedure, classification loss is
used to guide the training during the early phases. With-
out it the training would not converge. The latter phases
purely use regression to deliver the embedding for SBIR.

Data augmentation plays an important role in prevent-
ing overfitting, especially when training data is limited. In
all experiments we apply the following augmentation tech-
niques for both sketch/edgemap and photo: random crop
(sketch/edgemap crop size 225x225 for SketchANet, photo
crop size 224x224 for Alexnet), random rotation in range



[−5, 5] degrees, random scaling in range [0.9, 1.1] and ran-
dom horizontal flip.

We also propose an augmentation method applicable for
sketches only. For sketches with at least N strokes (N = 10
in our experiments) we divide them into four equal groups
of strokes in drawing order. The first group contains the
most important strokes — related to the more coarse struc-
ture of the object — and it is always kept. A new sketch is
created by randomly discarding some of the other groups.
This technique is inspired by Yu et al. [31, 30] who observe
that people tend to draw sketches in stages at distinct lev-
els of abstraction. We observed a ∼ 1% mAP improvement
across the board using this random stroke removal augmen-
tation method on the Flickr15k benchmark.

3.4. The gradient vanishing problem
The gradient vanishing problem [28] manifests itself dur-

ing the training of several of the above network designs
where the vectors output from the three network branches
fall very close to each other. In this scenario, instead of
pushing the negative feature point away while bringing the
positive point closer to the anchor point, the training ends
up equalising distance between all three points (Fig. 3-left).
Consequently the standard triplet loss flattens at half of the
margin and stops learning (its derivative w.r.t each input
becomes zero). We hypothesise that the training probably
falls to a “saddle” space and unable to move down the ei-
ther way (illustrated in Fig. 3-middle). We adopt a modified
loss function to prevent “saddle” from being created at the
outset of training:

L(a, p, n) = 1

2N

∑
N

max
[
0,m+ |2a− p|2 − |2a− n|2

]
(1)

where a, p and n are output features from the anchor, pos-
itive and negative branches respectively; m is the margin
and N is size of the training mini-batch.

Under this loss, forcing sketch feature to be relatively
half of the edgemap feature will break that balance, thus
creating a “slope” for gradient descent to converge (Fig. 3-
right). At query time, the sketch (query) feature is scaled by
2.0 to match the scale of features extracted from the photos.

4. Experiments
We now evaluate the variants of our proposed triplet ar-

chitecture and weight sharing schemes to determine best
performance embedding for SBIR. In particular we evalu-
ate the ability of the network to generalise beyond the cat-
egories to which it is exposed during training. This is im-
portant for SBIR in the wild, where one cannot reasonably
train with a sufficiently diverse sample of potential query
images. We also investigate the impact of volume of sketch
data used to train the network, and the impact of using pho-
tos or their edge-maps during training (in addition to the
various weight sharing variants).

4.1. Datasets

We train and evaluate our networks using four sketch
datasets: the TU-Berlin datasets for classification [9] and
SBIR [11], the Flickr15K benchmark dataset for SBIR [15],
and the Sketchy [24] dataset:

– TU-Berlin-Class [9] (used here for training) for sketch
classification comprising 250 categories of sketches, 80 per
category, crowd-sourced from 1350 different non-expert
participants with diverse drawing styles;

– TU-Berlin-Retr [11] (used here for testing) takes into
account not only the category of the retrieved images but
also the relative order of the relevant images. The dataset
consists of 31 sketches and 40 ranked images for each
sketch (1240 total images), mixed with a set of 100,000 dis-
tracting Flickr photos. The authors propose a Kendal score
as the evaluation method;

– Sketchy [24] (used here for model fine-tuning) is a
recent fine-grained dataset in which each photo image has
∼ 5 instance-level matching sketches drawn by different
subjects. The dataset has only 125 categories but over 500
sketches per category;

– Flickr15K [15] (used for testing) has labels for 33 cat-
egories of sketches, 10 sketches per category. It also has
a different number of photo images per category totalling
15,024 images. The Flickr15K has only four categories that
are similar to the ones in TU-Berlin-Class dataset: “swan”,
“flowers”, “bicycle” and “airplane”. Those two datasets
also differ in the concept of some categories, for example
TU-Berlin has a general “bridge” category while Flickr15K
distinguishes “London bridge”, “Oxford bridge” and “Syd-
ney bridge”. Also, their sketch depiction is different, moti-
vating a need for good generalisation beyond training.

As TU-Berlin-Class comprises only sketches, in order
to obtain our training triplets we automatically generate
per-category photograph sets by querying the 250 cate-
gory names on Creative Commons image repositories. The
Flickr API was used to download images from 184 cate-
gories. Google and Bing engines were used for the remain-
ing 66 categories which are mainly human body parts (e.g.
brain, tooth, skeleton) and fictional objects (e.g. UFO, mer-
maid, dragon) where Flickr content was sparse. We man-
ually selected the 100 most relevant photos per category to
form our training data.

4.2. Experimental settings

We use the TU-Berlin-Class as the training sketch set.
Sketches are skeletonised to be consistent with the photo’s
edgemap. For the sketch-edgemap experiments, we ex-
tracted the edgemaps of the photo dataset using a state-of-
the-art non-deep learning detector, gPb [1], after [20]. Hys-
teresis thresholding is applied on the resulting gPb soft-edge
as per Canny edge detection to remove weak edges as well
as isolated edge pixels.

As test set, we use the category-level SBIR Flicrk15K



Figure 3. The gradient vanishing problem: (left) a training failure case where loss flattens at half of the margin; (middle top) a saddle
created in the loss space when anchor, positive and negative points are very close to each other; (middle bottom) modified loss slope ideal
for gradient descent when anchor point is far from positive and negative points; (right) successful training of the half-share network with
new loss function 1. Note: the validation mAP is the retrieval score when querying the validation sketch set against the training photos.

benchmark [15]. Additionally, we also tested our models
on the TU-Berlin-Retr [11]. Note that this dataset is com-
pletely different from TU-Berlin-Class [9] (subsec. 4.1).
While the performance metric for the Flickr15K benchmark
is retrieval Mean Average Precision (mAP), the TU-Berlin-
Retr benchmark supports labels for the order of relevance
of the returned photos so the Kendall’s rank correlation co-
efficient was employed.

A series of experiments was carried out, starting with
a subset of 20 random training categories and 20 sketches
per category, up to the whole training dataset. As the TU-
Berlin-Class has 80 sketches per category, the remaining
sketches of the chosen categories are used for validation.
We use Caffe the deep-learning library [17] for the train-
ing tasks. When training the triplet network, positive and
negative photo samples are selected randomly.

4.3. Generalisation and weight sharing

We first report the results of generalisation capability of
our sketch-edgemap triplet network with varying amount of
training data. Fig. 4 (top) shows that the performance is
benefited by increasing the number of training categories.
All three network designs achieve near-linear improvement
of retrieval performance against Flickr15k benchmark (dis-
carding the four intersecting categories with the training set)
with exposure to more diverse category set during training.
The mAP of all models jumps from ∼ 9% to 18-22% when
raising training data from 20 to 250 categories.

Fig. 4 (top) also indicates the superior performance of the
half-share triplet architecture against the others in sketch-
edgemap matching. Although all three perform the same
with 20-categories training data, the half-share model out-
performs the alternatives by ∼ 3% mAP when more cat-
egories are available. Additionally, the no-share network,
despite being pretrained (via step 1 of our training process,
c.f. subsec 3.1) with softmax loss, outperforms the Siamese
configuration by ∼ 1% mAP. This implies that (i) sketch

Figure 4. Top: performance of the 3 different weight sharing
(sketch-edgemap) strategies on Flickr15K, with the half-sharing
scheme outperforming the others. Number of training sketches
per category: 20. Bottom: generalisation with respect to number
of training sketches per category using 250 training categories.

and photo’s edgemap, although assumed statistically simi-
lar, should be treated as two different domains; (ii) sharing
the top layers of the two branches can deliver a significant
improvement when the two input domains are similar.

Next, we test the performance with different number of
sketches per category during training. To do so we fix the
number of training categories at 250, and vary the number
of training sketches per category from 20 to 80 samples
while keeping the other settings. All models benefit from



Method mAP (%)
Triplet (fine-tuned final model) 36.17
Triplet (sketch-photo, no-share) 32.87
Triplet (sketch-photo, half-share) 31.38
Triplet (sketch-edgem, half-share) 24.45
Perceptual Edge [20] 18.37
Extended GF-HoG [4] 18.20
GF-HoG [15] 12.22
SHoG [11] 10.93
SSIM [26] 9.57
SIFT [19] 9.11
Shape Context [2] 8.14
Structure Tensor [10] 7.98

Table 1. SBIR comparison results (mAP) on the Flickr15K bench-
mark. The final model is achieved by fine-tuning the best model
(sketch-photo, no-share) over the Sketchy dataset.

using more sketches, with a more notable boost for half and
no-share models. In Fig. 4 (bottom) we observe an improve-
ment of 2.5% on the half-share model, which is significant
given that with 250 training categories this model had al-
ready achieved a high mAP.

4.4. Modality: Sketch-photo vs. Sketch-edgemap

We tested two network designs as depicted in Fig. 2: one
sharing all FC layers (half-share), and another without shar-
ing any layers (no-share). The training procedure for the
two networks differs only during the second phase as de-
scribed in Sec. 3.3. Table 1 reports the mAP scores when
compared with the best score of the sketch-edgemap net-
work and other baselines on the Flickr15K benchmark. Ob-
serve that: (i) All the deep-learning methods outperform the
traditional methods using shallow-features by a large mar-
gin. (ii) There is also a dramatic improvement in perfor-
mance of the sketch-photo networks over sketch-edgemap
configurations. (iii) In the sketch-photo case, the no-share
network now beats the half-share by ∼ 1% mAP. Our third
observation contrasts with the results of the sketch-edgemap
evaluations (Fig. 4) where the half-share network performs
more strongly. One explanation may be the significant dif-
ference between sketch and photo domains; the high-level
concepts represented by the higher layers might not coin-
cide (e.g. a sketched cat is different from a cat photo) due
to abstraction, or caricaturing in the sketch itself.

Fine-tuned final model : our learned models so far were
trained through the first 3 phases outlined in subsec. 3.3,
in which the training sketches and photos from TU-Berlin-
Class have only class labels. In phase 4, we create the final
model by fine-tuning our best trained model (i.e. sketch-
photo, no-share triplet) using the recently released Sketchy
dataset. Note that we do not require alignment between
the category sets of Sketchy and TU-Berlin-Class since we

Figure 6. PR curve of the proposed triplet CNN (sketch-photo,
c.f. Table 1) compared with a state-of-the-art non-deep learning
method [15].

perform regression using the triplet (not classification) loss
only at this stage. This 4th stage adds fine-grained level
of regression: each epoch is a pass-through of the training
photos, for each photo image entering the positive branch
we choose a random instance-level matching sketch enter-
ing the anchor branch and a random photo of the same cat-
egory for the negative branch. The use of the Sketchy data
delivers a final boost to our best case model of 3% mAP on
the standard Flickr15K benchmark (Fig. 1).

4.5. Performance over SBIR benchmarks

It appears that the fine-grain labels of the Sketchy dataset
(in contrast to the class-level labels already provided by the
training set) allow our model to learn deeper representation
of photos and sketches as well as their cross-domain map-
ping. The improvement can be seen clearer in Fig. 6, where
we plot the Precision/Recall (PR) curves of the sketch-
photo no-share triplet model (snapshot after phase 3 train-
ing, denoted as Tsp), the final model (Tsp finetuned with the
Sketchy dataset, denoted as Tf ) and one of the state-of-the-
art non-deeplearning methods whose implementation code
publicly available: extended GF-HoG [4] or Sgf . While
the triplet sketch-photo no-share has higher mAP (blue line,
mAP 32.87%) than the extended GF-HoG (green line, mAP
18.20%), the precision score of the first few retrieval results
is actually lower for Tsp. After finetuning with the Sketchy
dataset, our final model Tf is able to surpass the precision
score of the Sgf at every recall point.

We also evaluated over TU-Berlin-Retr, using the metric
Tb (Table 2) as proposed by [11]. Interestingly the sketch-
edgemap underperforms their proposed method SHoG, ac-
cording to the new metric. We believe this is because TU-
Berlin-Retr images are noisier than the ones on Flickr15K,
which may have negative effects on the gPb edge extraction.
Nevertheless, the final sketch-photo models outperform the
baseline method SHoG by a significant margin.



Figure 5. Representative SBIR results on Flickr15K using (left) sketches and (right) images as queries. For each query, two sets of results
are returned, one for intra-domain and the other for cross domain search. Non-relevant retrieved objects are outlined in red.

Method Tb
Triplet (fine-tuned final model) 37.4
Triplet (sketch-photo) 33.3
SHoG [11] 27.7
Triplet (sketch-edgemap) 22.3
HoG (global) [11] 22.3
Structure Tensor [10] 22.3
Spark [11] 21.7
HoG (local) [8] 17.5
Shape Context [2] 16.1

Table 2. SBIR comparison results (using Kendal’s rank correlation
coefficient, Tb) on TU-Berlin-Retr dataset [11]. The triplet sketch-
edgemap model has much lower score, likely due to poor gPb edge
extraction (dataset is more cluttered than Flickr15K).

5. Conclusion

We described the first deep learning algorithm for cat-
egory level SBIR, comprising a triplet convnet trained us-
ing a query sketch anchor accompanied by positive and
negative training photos harvested from the web. We pre-
sented comprehensive experiments exploring variants of our
triplet convnet, contrasting appropriate strategies for weight
sharing, dimensionality reduction, and training data pre-
processing and reporting on the generalisation capabilities
of the network. We reported the half-sharing triplet per-
forms the best when learning matching between two close
domains such as sketch-edgemap, while the no-share net-
work is more suitable for sketch-photo learning. Our best
performing variant yielded a performance of 36.2% mAP
over the Flickr15k dataset and 37.4Tb on the TU-Berlin

dataset; the twin international benchmarks for category
level SBIR [11, 15]. These scores exceed the state of the art
by∼ 20% mAP and∼ 10Tb respectively. Training sketches
were derived from the two largest available sketch datasets:
the TU-Berlin dataset of Eitz et al. and the Sketchy dataset
of Sangkloy et al. [24]. Further work might build upon
this significant performance gain exploring multi-domain
learning, for example sketch-photo-3D models mapping or
multi-style work-art retrieval.

5.1. Limitations and Future Work

The limited class diversity and volume of sketch
databases prevents us from exploring our generalisation test
further than the most diverse i.e. 250 category dataset avail-
able (TU-Berlin-Class). Also, because of the unbalanced
sketch and photo sets the sketch branch seems to be less
discriminative than the photo branch. Fig. 5 depicts several
intra- and cross-domain visual search examples where false
positives often occur on sketch side. Unfortunately it is dif-
ficult to control the generalisation, discrimination and over-
fitting of an individual branch during training of the triplet
network during regression of our SBIR embedding.

Finally, although deep learning method proves far bet-
ter than the methods using shallow features, it comes with
its own cost. It is a supervised learning method which
require expensive labelled training data, as opposed to a
free shallow-feature extractor. A deep network that can
learn cross-domain mapping with minimal or no supervi-
sion is highly desirable, especially given the content diver-
sity faced by SBIR “in the wild”.
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