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Abstract

Knowledge Graph (KG) embeddings are essen-001
tial for link prediction over KGs. Compared002
to triplets, hyper-relational facts consisting of003
a base triplet and an arbitrary number of key-004
value pairs, can better characterize real-world005
facts and have aroused various hyper-relational006
embedding techniques recently. Nevertheless,007
existing works seldom consider the ontology008
of KGs, which is beneficial to link prediction009
tasks. A few studies attempt to incorporate the010
ontology information, by either utilizing the011
ontology as constraints on entity representa-012
tions or jointly learning from hyper-relational013
facts and the ontology. However, existing ap-014
proaches mostly overlook the ontology hier-015
archy and suffer from the dominance issue016
of facts over ontology, resulting in subopti-017
mal performance. Against this background,018
we propose a universal contrastive learning019
framework for hyper-relational KG embed-020
dings (HyperCL), which is flexible to inte-021
grate different hyper-relational KG embedding022
methods and effectively boost their link predic-023
tion performance. HyperCL designs relation-024
aware Graph Attention Networks to capture025
the hierarchical ontology and a concept-aware026
contrastive loss to alleviate the dominance is-027
sue. We evaluate HyperCL on three real-world028
datasets in different link prediction tasks. Ex-029
perimental results show that HyperCL consis-030
tently boosts the performance of state-of-the-031
art baselines with an average improvement of032
3.1-7.4% across the three datasets.033

1 Introduction034

Knowledge Graphs (KGs) which represent a net-035

work of real-world entities and exhibit the rela-036

tionship between them, have empowered a wide037

range of applications, such as question answering038

(Yih et al., 2015) or recommender systems (Zhang039

et al., 2016). KGs are generally expressed as a set040

of triplets; each triplet denoted by (head, relation,041

tail), or (h, r, t) for short, encodes the connection042

from a head entity to a tail entity, such as (Apple, 043

headquarters location, Cupertino) shown in Fig. 1. 044

To better illustrate real-world facts, hyper-relational 045

facts are developed in Freebase (Bollacker et al., 046

2008) and Wikidata (Wikidata, 2022), which con- 047

sist of not only a base triplet (h, r, t), but also an 048

arbitrary number of key-value pairs (k, v) further 049

describing the base triplet, represented as (h, r, t, 050

k1, v1, ...). Fig. 1 presents an example of hyper- 051

relational facts on Wikidata (Apple, industry, soft- 052

ware industry, of, computer program, of, operating 053

system). 054

To effectively make use of hyper-relational facts, 055

recent studies have proposed various embedding 056

methods to solve link prediction tasks over KGs. 057

Most of them learn to capture the structural infor- 058

mation encoded in hyper-relational facts with Con- 059

volutional Neural Networks (CNNs) (Rosso et al., 060

2020), Graph Neural Networks (GNNs) (Galkin 061

et al., 2020), or Transformer (Wang et al., 2021). 062

However, they often neglect the importance of mod- 063

eling ontology in KGs, which has shown to be sig- 064

nificantly useful (Rosso et al., 2021). For example, 065

the entities computer program and operating sys- 066

tem in Fig. 1 are hard to differentiate and tend to 067

have similar representations by current embedding 068

methods since they are affiliated to the same hyper- 069

relational fact and have a common key of. Never- 070

theless, they can be more distinguishable through 071

the ontology. As shown in Fig. 2, computer pro- 072

gram and operating system respectively belong to 073

different concepts program and system. Hence, it is 074

beneficial to incorporate the ontology information 075

into entity representations. 076

In this context, existing hyper-relational KG em- 077

bedding methods employ the ontology information 078

of KGs as type constraints or joint learning. Specif- 079

ically, most specific concepts for entities are con- 080

sidered as entity types and used to compute the 081

similarity between entities (Liu et al., 2021). The 082

most specific concepts for entities are identified by 083
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Figure 1: A real-world example of (hyper-relational)
facts from Wikidata.

the ontology relation instance_of in Fig. 2. For ex-084

ample, enterprise and brand are two entity types for085

the entity Apple. However, these existing methods086

do not model the hierarchical structure of the ontol-087

ogy and thus fail to capture the semantic relations088

between entity types, which is a strong clue for089

entity representations. For example, two specific090

concepts program and system in Fig. 2 belong to a091

common abstract concept software, which indicates092

the semantic relatedness between entities computer093

program and operating system. On the other hand,094

joint learning methods combine hyper-relational095

facts with the ontology of KGs, formulating a joint096

model to learn the representations of both entities097

and concepts (Lu et al., 2023; Luo et al., 2023a).098

Yet, they are either inflexible to accommodate the099

hierarchical ontology as the type constraint meth-100

ods or lack consideration of the dominance issue101

of hyper-relational facts over the ontology. Specif-102

ically, due to the highly imbalanced numbers of103

entities and concepts (the latter is usually much104

less than the former), the learning process is domi-105

nated by learning from the facts rather than from106

ontology (using GNNs for example), resulting in107

the information of ontology barely encoded into en-108

tities and thus causing the suboptimal performance109

(as evidenced by our experiments below that ad-110

dressing the dominance issue can boost the link111

prediction performance by 2.5-5.8%).112

Against this background, we propose a uni-113

versal contrastive learning framework for hyper-114

relational KG modeling (HyperCL), which is flex-115

ible to integrate different hyper-relational KG em-116

bedding methods. Specifically, we inherit the most117

prominent encoder-decoder architecture (Galkin118

et al., 2020; Luo et al., 2023b) as the backbone of119

Figure 2: A hierarchical ontology of partial entities in
Fig. 1. Yello blocks denote concepts. There are two
kinds of ontology triplets, (entity, instance_of, concept)
and (concept, subclass_of, concept).

our framework and devise a Concept-aware Con- 120

trastive Learning (CCL) module to enhance hyper- 121

relational KG embedding methods of this architec- 122

ture (four state-of-the-art encoder-decoder models 123

are selected to verify the effectiveness of HyperCL 124

in the experiments). The CCL module first cap- 125

tures the hierarchical structure of ontology; we use 126

relation-aware Graph Attention Networks (GATs) 127

to encode the sophisticated concept information, 128

which accounts for the heterogeneous relationships 129

between concepts and incorporates the heterogene- 130

ity into entity and concept representations. After- 131

ward, it builds two views (i.e., an instance view for 132

hyper-relational facts and an ontology view for the 133

hierarchical ontology) of KGs. Finally, it develops 134

a concept-aware contrastive loss to enforce the rep- 135

resentations of the same entities across two views 136

to be close to each other while those of different 137

but semantically similar entities to be apart. This 138

design thereby alleviates the dominance issue of 139

hyper-relational facts by first decoupling the learn- 140

ing process from the facts and ontology and then 141

connecting them via our contrastive loss. HyperCL 142

is trained using a multi-task learning strategy, being 143

able to accelerate the optimization process. Our 144

contributions can be summarized as follows: 145

• We revisit the existing approaches that employ 146

the ontology of KGs for hyper-relational KG em- 147

beddings, and discover two key limitations: 1) 148

the ignorance of the ontology hierarchy; and 2) 149

the dominance issue of facts over ontology. 150

• We propose HyperCL framework to subtly model 151

both hyper-relational facts and the hierarchical 152

ontology of KGs. A CCL module is designed, 153

where the relation-aware GATs are used to cap- 154

ture the hierarchical structure of ontology while 155
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the concept-aware contrastive loss is employed156

to alleviate the dominance issue, both of which157

enhance the hyper-relational KG embeddings.158

• We conduct a thorough evaluation of HyperCL to159

demonstrate its effectiveness in boosting the link160

prediction performance of four hyper-relational161

KG embedding methods on three real-world KGs.162

Results show that HyperCL can consistently163

boost the performance of these methods with164

an average improvement of 3.1-7.4% across the165

three datasets.166

2 Related Work167

2.1 Hyper-Relational Facts Modeling168

The triple representation of a KG oversimplifies the169

intricate structure of information stored in the KG170

(Guan et al., 2019), especially for hyper-relational171

facts where each fact is composed of multiple en-172

tities and relations. Some recent works employed173

an n-ary representation for hyper-relational facts,174

i.e., a set of relation-entity pairs (Wen et al., 2016;175

Zhang et al., 2018; Guan et al., 2019; Fatemi et al.,176

2021; Liu et al., 2021; Wang et al., 2023a). Upon177

such n-ary representations, these approaches learn178

either relatedness between relation-entity pairs or179

relatedness among all entities in a fact. How-180

ever, recent studies (Rosso et al., 2020) discov-181

ered that the base triplet of a hyper-relational fact182

preserves the essential information, and advised183

directly learning from hyper-relational facts. Fol-184

lowing this suggestion, HINGE (Rosso et al., 2020),185

NeuInfer (Guan et al., 2020), and ShrinkE (Xiong186

et al., 2023) separately model base triplets and187

key-value pairs. GRAN (Wang et al., 2021) pro-188

poses a heterogeneous graph to distinguish between189

the relation-entity connections in base triplets and190

those in key-value pairs. MSeaHKG (Di and Chen,191

2021), StarE (Galkin et al., 2020), HyT (Yu and192

Yang, 2021), QUAD (Shomer et al., 2022), and193

HAHE (Luo et al., 2023b) design GNNs to repre-194

sent the base triplets together with key-value pairs.195

Our work focuses on a different perspective to196

improve current hyper-relational KG embedding197

methods by subtly incorporating the ontology of198

KGs. To the best of our knowledge, this is the199

first universal framework for modeling both hyper-200

relational facts and ontology information.201

2.2 Ontology of KGs202

The ontology of a KG provides rich descriptions203

of the semantics of entities, which promotes the204

representation of the KG (Krompaß et al., 2015). 205

Some recent studies utilized the concepts in ontol- 206

ogy as entity types to constrain the representation 207

of entities (Krompaß et al., 2015; Xie et al., 2016; 208

Niu et al., 2020; Cui et al., 2021; Rosso et al., 2021; 209

Li et al., 2023). RAM (Liu et al., 2021) extends 210

the type-constraint mechanism to encompass hyper- 211

relational facts, representing entity types through 212

linear combinations of latent vectors. However, it 213

is unable to capture the semantic relations between 214

entity types and fails to accommodate the hierar- 215

chical structure of ontology. To address the above 216

limitations, JOIE (Hao et al., 2019) and DGS (Iyer 217

et al., 2022) develop a joint learning architecture to 218

learn from both triplets and ontology. sHINGE (Lu 219

et al., 2023), tNaLP (Guan et al., 2021), and DHGE 220

(Luo et al., 2023a) follow this fashion, using two 221

pipelines to represent hyper-relational facts and the 222

ontology, respectively. Nevertheless, sHINGE and 223

tNaLP parallelly learn from multiple types for an 224

entity, also neglecting the hierarchical nature of 225

ontology; DHGE overlooks the dominance issue 226

of facts over ontology, rendering the model train- 227

ing dominated by hyper-relational facts while the 228

ontology information is barely encoded into entity 229

representations. 230

We argue that the above concerns can be well 231

addressed by our HyperCL framework. 232

3 Preliminaries 233

In this section, we introduce some important no- 234

tions about the Hyper-relational Knowledge Graph 235

(HKG) and present the latest encoder-decoder ar- 236

chitecture for HKG embedding. 237

3.1 Hyper-Relational Knowledge Graphs 238

We formalize two views of the HKG and present 239

the definition of the link prediction task on it. 240

Instance view of the HKG. The instance view 241

of the HKG consists of an entity set E and an in- 242

stance relation set RI . A hyper-relational fact 243

from the instance view can be represented as a 244

base triplet (h, rI , t) with a set of associated key- 245

value pairs {(ki, vi)}ni=1, where h, t, vi ∈ E and 246

rI , ki ∈ RI . 247

Ontology view of the HKG. The ontology view 248

of the HKG is comprised of the same entity set E , 249

a concept set C and an ontology relation set RO. 250

The ontology relation set can be further divided 251

into two subsets ROe and ROc, representing entity- 252

concept relations and concept-concept relations, 253
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respectively. Accordingly, there exist two kinds254

of triplets in the ontology view, (e, rOe, c) ∈ E ×255

ROe × C and (ci, rOc, cj) ∈ C ×ROc × C.256

Link prediction on the HKG. The task of link257

prediction on the HKG is to predict a missing el-258

ement from hyper-relational facts in the instance259

view. For a hyper-relational fact, the missing one260

can be any entity in {h, t, v1, v2, . . . , vn} or any261

relation in {rI , k1, k2, . . . , kn}.262

Since the ontology view only contains triplets,263

the term “hyper-relational fact” is specifically used264

to denote the facts in the instance view throughout265

this paper.266

3.2 Encoder-Decoder Architecture for HKGs267

The encoder-decoder architecture is the most preva-268

lent and widely adopted framework for HKG em-269

bedding, which proves to be effective in link pre-270

diction (Galkin et al., 2020; Luo et al., 2023b). As271

shown in Fig. 3, this architecture (the grey part) is272

composed of a graph encoder and a decoder (mostly273

Transformers). Specifically, the graph encoder cap-274

tures the intricate relationship between entities E275

and relations RI in the instance view, encoding276

the structural information to obtain the updated277

embeddings Ê and R̂I . The decoder extends the278

capabilities of the architecture by capturing the se-279

mantic correlation between entities and relations280

within each hyper-relational fact, generating the281

final output for link prediction.282

In this work, we inherit the encoder-decoder ar-283

chitecture as the backbone of our framework, and284

integrate multiple state-of-the-art HKG embedding285

methods to validate the effectiveness of our frame-286

work in the experiments.287

4 Methodology288

This section introduces our universal con-289

trastive learning framework (HyperCL), for hyper-290

relational KG embeddings. As shown in Fig. 3, our291

Concept-aware Contrastive Learning (CCL) mod-292

ule is proposed to be universally compatible with293

any encoder-decoder architecture. Specifically, our294

CCL consists of two key components: 1) relation-295

aware graph attention networks to obtain the up-296

dated entity embeddings in the ontology view Ẽ ;297

2) a concept-aware contrastive loss function that298

captures the shared information by both views to299

get the final entity representations E . In the follow-300

ing, we elaborate on the above two components and301

present a multi-task learning approach for model302

training. 303

4.1 Relation-Aware Graph Attention Layers 304

For the ontology view, we also employ a graph 305

encoder to capture the sophisticated hierarchical 306

concept information and encode it into high-order 307

entity embeddings. Since the vanilla Graph Neu- 308

ral Networks (GNNs) fail to accommodate the di- 309

verse ontology relation types, we refine the origi- 310

nal Graph Attention Networks (GATs) (Veličković 311

et al., 2017) with relation type embeddings to adap- 312

tively incorporate the heterogeneous relationships 313

into node representations. 314

Specifically, the ontology view can be regarded 315

as a graph GO, where each entity or concept is 316

associated with a node in GO. Without loss of 317

generality, we depict a single relation-aware graph 318

attention layer in the following. Given a node i, its 319

neighbors are denoted by Ni. The aggregation of 320

the first-hop structural information of i can be ex- 321

pressed as a linear combination of its neighboring 322

nodes’ representations: 323

hNi =
∑
j∈Ni

αijhj (1) 324

where hj refers to the representation of node j and 325

αij denotes the attention score from node i to node 326

j, which is computed by: 327

αij =
exp

(
a
[
WOhi∥WOhj∥Wbbr(i,j)

])∑
k∈Ni

exp
(
a
[
WOhi∥WOhk∥Wbbr(i,k)

])
(2) 328

where a represents the attention mechanism that ap- 329

plies a single layer of feed-forward neural network 330

with the LeakyReLU activation function. WO and 331

Wb are learnable parameters. r(i, j) denotes the 332

relation type between node i and node j and br(i,j) 333

denotes the embedding of r(i, j). Then the repre- 334

sentation of node i is updated by: 335

h
(l)
i = σ

(
W

(l)
l

(
h
(l−1)
i + h

(l−1)
Ni

))
(3) 336

where W
(l)
l is the learnable parameter at the l- 337

th layer and σ refers to the activation function. 338

Through multi-layer message passing and infor- 339

mation aggregation, we can obtain the final embed- 340

dings of entities in the ontology view Ẽ . 341

4.2 Concept-Aware Contrastive Loss 342

After receiving the updated entity embeddings Ê 343

and Ẽ from the instance and ontology views respec- 344

tively, a concept-aware contrastive loss is devel- 345

oped to pull the representations of the same entity 346
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Figure 3: Overview of our HyperCL framework. Solid lines denote the pipeline of the encoder-decoder architecture
while dotted lines represent the pipeline of our Concept-aware Contrastive Learning (CCL) module. The detail of
the contrastive learning is depicted in the bottom right.

across two views together while separates apart347

those of different but semantically similar entities,348

thereby strengthening the distinction between en-349

tity representations and alleviating the dominance350

of instance view information.351

Specifically, a concept-aware batch selection352

strategy is proposed, ensuring all entities in a batch353

belong to a common concept. For a concept in the354

ontology view, the Breadth-First Search (BFS) al-355

gorithm is used to collect entities belonging to the356

concept. As shown in Fig. 4, the BFS starts from357

the three concepts ci, cj and ck, and attains their358

corresponding entity sets {ei, ej}, {ek, em, ep} and359

{ei, ej , ek, em, ep}, respectively. Then batches are360

selected from these entity sets while meeting the361

requirement that one batch can only be randomly362

sampled from one entity set. To prevent overfitting,363

we implement a size threshold to select batches364

from entity sets whose sizes are larger than the365

threshold. Compared to the traditional random366

sampling-based batch selection, our strategy has367

two advantages: 1) enforces contrastive learning368

to focus on separating entities with similar seman-369

tics (common concepts), thereby facilitating the370

distinct representation of each entity; 2) sets up371

a size threshold to concentrate on those hard to372

be distinguished entities, thus improving the effi-373

ciency of contrastive learning. For each entity ei374

in a batch, we hold the two views of the same en-375

tity as a positive pair (êi, ẽi). On the other hand,376

any other entity ej in the same batch is deemed a377

negative entity and is used to construct the negative378

pairs (êi, ẽj) and (êj , ẽi). Finally, an extended In-379

Figure 4: An example of the entity sets obtained by the
Breadth-First Search (BFS) algorithm. Different colors
indicate different concepts and their corresponding en-
tity sets.

foNCE loss (Wang et al., 2023b) is utilized as the 380

contrastive loss: 381

LCL(i) =

− log
exp

(
s(êi,ẽi)

τcl

)
∑

j∈Hi∪{i}

(
exp

(
s(êi,ẽj)

τcl

)
+ exp

(
s(êj ,ẽi)

τcl

))
(4) 382

where s(·) is a cosine similarity metric to measure 383

the similarity between two vectors, Hi is the set of 384

negative entities for ei and τcl is the temperature hy- 385

perparameter controlling the strength of penalties 386

on negative entities. 387

4.3 Multi-task Training 388

The CCL module subtly connects entity embed- 389

dings in both views in a self-supervised manner. 390

To ensure the separability and flexibility of CCL, 391

only the updated entity representations in the in- 392

stance view are fed into the subsequent modules 393

in HyperCL for link prediction, generating a link 394
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Dataset Entities Relations Concepts Training Test Facts (Hyper%) Arity
JF17K 28,645 501 748 76,379 24,568 100,947 (45.9%) 2-6
WikiPeople 34,839 178 5,396 294,439 37,712 332,151 (2.6%) 2-7
WD50K 47,156 532 9,370 166,435 46,159 212,594 (13.6%) 2-67

Table 1: Statistics of the datasets. The columns respectively denote the number of entities, relations, concepts,
training facts, test facts, all facts (the ratio of hyper-relational facts), and the range of arity.

prediction loss LLP , similar to previous HKG em-395

bedding methods. Hence, the overall loss function396

is defined as:397
L = LLP + λLCL (5)398

where λ is a hyperparameter trading off the two399

losses.400

Given the difficulty in identifying the most suit-401

able λ, we employ a multi-task training strategy by402

alternating the training procedures of link predic-403

tion and contrastive learning. The corresponding404

parameters in the two pipelines are updated alter-405

natively until the link prediction pipeline reaches406

convergence. Note that during the training phase407

of the contrastive learning pipeline, any entity in408

the same batch can be used as the negative entity409

for others.1410

5 Experiments411

In this section, we present the experimental setup,412

results, and discussion, answering the following413

questions. RQ1: Can HyperCL consistently boost414

the link prediction performance of different hyper-415

relational KG embedding methods? RQ2: What’s416

the impact of the concept-aware contrastive loss417

on link prediction performance? RQ3: What’s the418

impact of modeling the hierarchical structure of419

ontology on link prediction performance?420

5.1 Experimental Setup421

5.1.1 Datasets422

We conduct experiments on three commonly used423

hyper-relational KG datasets JF17K (Wen et al.,424

2016), WikiPeople (Guan et al., 2019), and425

WD50K (Galkin et al., 2020), where the data426

provider already splits the training and test datasets.427

As these datasets do not contain ontology informa-428

tion, we crawl concepts from their corresponding429

data sources (Freebase and Wikidata). For Free-430

base, we extract concepts directly from the entity431

node depicted as "/type/object", where the hier-432

archical concepts for an entity are also exhibited.433

For Wikidata, we first collect concepts through434

the property "instance_of" for each entity and then435

1The code of HyperCL will be open-sourced upon the
acceptance of the paper.

extract deeper concepts through the property "sub- 436

class_of" for each concept, until no deeper con- 437

cepts are found. Table 1 shows the statistics of our 438

datasets. 439

5.1.2 Baselines 440

We consider a sizeable collection of state-of-the-art 441

techniques from two categories. The first category 442

includes model learning from hyper-relational facts 443

only: m-TransH (Wen et al., 2016); RAE (Zhang 444

et al., 2018); NaLP (Guan et al., 2019); NeuInfer 445

(Guan et al., 2020); HINGE (Rosso et al., 2020); 446

ShrinkE (Xiong et al., 2023); GRAN (Wang et al., 447

2021); MSeaHKG (Di and Chen, 2021); StarE 448

(Galkin et al., 2020); HyT (Yu and Yang, 2021); 449

QUAD (Shomer et al., 2022); HAHE (Luo et al., 450

2023b). The second category includes model learn- 451

ing from both hyper-relational facts and ontology 452

of KGs: RAM (Liu et al., 2021); tNaLP (Guan 453

et al., 2021); sHINGE (Lu et al., 2023); DHGE 454

(Luo et al., 2023a). Detailed descriptions of base- 455

lines are in Appendix A. 456

Among these baselines, we instantiate our Hy- 457

perCL with four state-of-the-art encoder-decoder 458

techniques StarE, HyT, QUAD, and HAHE to vali- 459

date its effectiveness. 460

5.1.3 Evaluation Metrics 461

Link prediction is a typical task for evaluating the 462

performance of KG embedding. For the missing 463

entity (or relation) in a test fact, a ranking list of 464

entities (or relations) is predicted. In this ranking 465

list, in addition to the ground truth from the test 466

fact, other entities (or relations) might also be true; 467

we thus adopt the filtered setting (Bordes et al., 468

2013) to remove them from the ranking list. Mean 469

Reciprocal Rank (MRR), Hits@1, and Hits@10 are 470

used as evaluation metrics. We report the average 471

results in predicting all entities and all relations 472

separately. 473

5.1.4 Hyperparameters and Environment 474

Our HyperCL is trained for 300 epochs with 475

early stopping on the benchmark hardware (In- 476

tel Xeon5320@2.20GHz, 256GB RAM@3200Hz, 477

NVIDIA GeForce RTX 3090 24GB, Ubuntu 22.04). 478
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Method
JF17K WikiPeople WD50K

All entities All relations All entities All relations All entities All relations
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

m-TransH 0.124 0.081 0.193 N/A 0.167 0.162 0.354 N/A 0.074 0.072 0.198 N/A
RAE 0.307 0.211 0.486 N/A 0.193 0.175 0.388 N/A 0.132 0.118 0.243 N/A
NaLP 0.364 0.287 0.519 0.827 0.729 0.896 0.327 0.265 0.449 0.875 0.838 0.929 0.223 0.162 0.337 0.775 0.702 0.896
NeuInfer 0.489 0.418 0.625 0.889 0.793 0.922 0.349 0.281 0.506 0.906 0.852 0.954 0.235 0.178 0.355 0.816 0.759 0.924
HINGE 0.519 0.445 0.682 0.903 0.865 0.959 0.367 0.305 0.488 0.935 0.895 0.976 0.245 0.181 0.362 0.878 0.812 0.963
ShrinkE 0.554 0.459 0.702 N/A 0.472 0.415 0.589 N/A 0.336 0.259 0.478 N/A
GRAN 0.652 0.579 0.798 0.996 0.993 0.999 0.496 0.426 0.619 0.959 0.944 0.976 0.361 0.287 0.504 0.945 0.917 0.983
MSeaHKG 0.579 0.481 0.718 0.932 0.887 0.979 0.393 0.301 0.562 0.836 0.792 0.953 0.324 0.239 0.481 0.825 0.778 0.917
StarE 0.584 0.504 0.741 N/A 0.394 0.290 0.593 N/A 0.315 0.240 0.458 N/A
HyT 0.592 0.513 0.750 N/A 0.399 0.298 0.588 N/A 0.314 0.241 0.453 N/A
QUAD 0.585 0.504 0.747 N/A 0.379 0.272 0.583 N/A 0.316 0.245 0.451 N/A
HAHE 0.657 0.585 0.798 0.996 0.994 0.999 0.495 0.421 0.623 0.959 0.944 0.977 0.379 0.305 0.521 0.940 0.914 0.977
RAM 0.394 0.328 0.572 N/A 0.461 0.402 0.569 N/A 0.287 0.226 0.425 N/A
tNaLP 0.370 0.292 0.528 0.834 0.733 0.906 0.333 0.272 0.457 0.886 0.842 0.937 0.230 0.169 0.344 0.789 0.715 0.912
sHINGE 0.528 0.459 0.701 0.918 0.876 0.973 0.372 0.312 0.499 0.947 0.905 0.984 0.248 0.185 0.370 0.885 0.819 0.971
DHGE 0.556 0.467 0.718 0.927 0.884 0.979 0.457 0.406 0.572 0.918 0.872 0.964 0.305 0.231 0.501 0.896 0.847 0.958
HyperCL+StarE 0.602 0.528 0.768 N/A 0.415 0.309 0.618 N/A 0.336 0.266 0.487 N/A
HyperCL+HyT 0.617 0.534 0.778 N/A 0.419 0.316 0.615 N/A 0.338 0.263 0.488 N/A
HyperCL+QUAD 0.605 0.529 0.776 N/A 0.396 0.288 0.605 N/A 0.339 0.268 0.498 N/A
HyperCL+HAHE 0.673 0.604 0.818 0.997 0.995 0.999 0.509 0.437 0.644 0.963 0.947 0.984 0.395 0.321 0.539 0.956 0.930 0.993

Table 2: Overall link prediction performance (All entities and All relations). "N/A" denotes the case that the method
cannot be applied to the task (namely m-TransH, RAE, ShrinkE, StarE, HyT, QUAD, and RAM are unable to predict
missing relations). All baselines are implemented in our environment with their original hyperparameter settings.

The hyperparameter settings for each dataset are479

shown in Appendix B and the training details are480

presented in Appendix C. Note that HyperCL only481

incurs a marginal computational overhead of up to482

10.4% in the training time, compared to the base-483

line models (see Appendix C for details).484

5.2 Overall Performance (RQ1)485

Table 2 shows the overall performance on all three486

datasets and we highlight the best-performing re-487

sult on each task and for each dataset. We observe488

that HyperCL+HAHE consistently outperforms all489

baselines, achieving 3.4% and 0.6% improvement490

on average over the best-performing baselines in491

predicting entities and relations, respectively.492

Notably, we observe that our HyperCL frame-493

work consistently improves the link prediction per-494

formance of the corresponding base KG embed-495

ding methods StarE, HyT, QUAD, and HAHE in496

all tasks on all datasets, which demonstrates the497

effectiveness of HyperCL. In particular, HyperCL498

enhances the performance of the above four base-499

lines with an average improvement of 3.1-7.4%500

across different datasets in predicting entities. An-501

other interesting observation is that while tNaLP502

and sHINGE are extensions of NaLP and HINGE503

with the consideration of the ontology of KGs, they504

only achieve a little improvement since they neglect505

the hierarchical structure of the ontology. More-506

over, DHGE considers the hierarchical ontology507

but still yields suboptimal performance compared508

to HyperCL-enhanced baselines. This is attributed509

to its joint modeling of hyper-relational facts and510

the hierarchical ontology, which introduces the511

dominance issue as illustrated in Section 1. The 512

above observation further verifies that properly in- 513

corporating ontology is critical for performance 514

improvement, which is the key merit of HyperCL. 515

5.3 Ablation Study 516

The concept-aware contrastive loss and relation- 517

aware GATs are two essential components of our 518

HyperCL. We consider three variants to quantify 519

their impact on link prediction performance and 520

demonstrate their utility. Each variant is tuned in- 521

dividually with different optimal hyperparameters 522

(see Appendix B for details) and the best prediction 523

results are reported. 524

5.3.1 Impact of the Concept-Aware 525

Contrastive Loss (RQ2) 526

We devise two variants of HyperCL to demonstrate 527

the effectiveness of the concept-aware contrastive 528

loss and its concept-aware batch selection strategy, 529

respectively. The first variant removes the whole 530

contrastive loss and directly integrates the ontology 531

into the original graph encoder with relation-aware 532

GATs, thus generating a joint model for knowl- 533

edge embedding while maintaining the hierarchical 534

structure of the ontology. This variant is denoted as 535

w/o loss. The second variant replaces the concept- 536

aware batch selection in the contrastive loss with 537

random sampling-based batch selection, denoted 538

as w/o concept. 539

Table 3 presents the results. We observe that 540

the concept-aware contrastive loss and the concept- 541

aware batch selection strategy both contribute to 542

the link prediction improvement. In particular, the 543
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Method
JF17K WikiPeople WD50K

All entities All relations All entities All relations All entities All relations
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

HyperCL+StarE 0.602 0.528 0.768 N/A 0.415 0.309 0.618 N/A 0.336 0.266 0.487 N/A
w/o loss 0.589 0.510 0.750 N/A 0.401 0.295 0.607 N/A 0.322 0.246 0.467 N/A
w/o concept 0.595 0.519 0.761 N/A 0.409 0.305 0.614 N/A 0.331 0.262 0.475 N/A
w/o hierarchy 0.593 0.517 0.760 N/A 0.408 0.305 0.611 N/A 0.329 0.261 0.468 N/A
HyperCL+HyT 0.617 0.534 0.778 N/A 0.419 0.316 0.615 N/A 0.338 0.263 0.488 N/A
w/o loss 0.598 0.515 0.760 N/A 0.405 0.303 0.597 N/A 0.318 0.247 0.459 N/A
w/o concept 0.610 0.530 0.765 N/A 0.414 0.311 0.607 N/A 0.335 0.260 0.479 N/A
w/o hierarchy 0.612 0.531 0.771 N/A 0.415 0.313 0.608 N/A 0.335 0.261 0.477 N/A
HyperCL+QUAD 0.605 0.529 0.776 N/A 0.396 0.288 0.605 N/A 0.339 0.268 0.498 N/A
w/o loss 0.588 0.505 0.753 N/A 0.384 0.275 0.591 N/A 0.315 0.243 0.455 N/A
w/o concept 0.599 0.525 0.766 N/A 0.394 0.287 0.598 N/A 0.336 0.267 0.489 N/A
w/o hierarchy 0.596 0.520 0.764 N/A 0.395 0.288 0.601 N/A 0.334 0.258 0.494 N/A
HyperCL+HAHE 0.673 0.604 0.818 0.997 0.995 0.999 0.509 0.437 0.644 0.963 0.947 0.984 0.395 0.321 0.539 0.956 0.930 0.993
w/o loss 0.659 0.587 0.800 0.996 0.995 0.998 0.497 0.425 0.621 0.957 0.941 0.978 0.383 0.309 0.522 0.945 0.920 0.981
w/o concept 0.664 0.594 0.806 0.997 0.995 0.999 0.507 0.436 0.640 0.962 0.946 0.983 0.387 0.313 0.531 0.952 0.927 0.986
w/o hierarchy 0.663 0.592 0.803 0.997 0.995 0.999 0.507 0.436 0.639 0.963 0.947 0.983 0.390 0.317 0.531 0.953 0.928 0.988

Table 3: Ablation results. Three HyperCL variants are combined with four encoder-decoder architecture-based
baselines (namely StarE, HyT, QUAD, and HAHE).

concept-aware contrastive loss enhances the per-544

formance of four baselines with an average im-545

provement of 2.5-5.8% across different datasets,546

accounting for 75% performance improvement of547

the complete HyperCL framework (compared to548

the average improvement of 3.1-7.4% by the com-549

plete HyperCL framework in Section 5.2). This550

implies that the dominance issue is a key factor551

resulting in the suboptimal performance of joint552

learning models, which can be largely mitigated by553

our HyperCL. In addition, the concept-aware batch554

selection strategy also improves the performance555

of baselines, implying that separating semantically556

similar entities indeed benefits contrastive learning.557

5.3.2 Impact of the Hierarchical Ontology558

(RQ3)559

We further devise a variant of HyperCL to ver-560

ify the effectiveness of the hierarchical ontology,561

where only the most specific concepts are reserved562

while other deeper concepts are discarded. Thus,563

the ontology of KGs loses its hierarchical informa-564

tion, denoted by w/o hierarchy.565

As shown in Table 3, the hierarchical structure of566

ontology facilitates the hyper-relational knowledge567

embedding of baselines and thus improves their568

link prediction performance. To intuitively demon-569

strate the advantage of modeling the hierarchical570

ontology, we conduct a case study of predicting the571

missing value of a hyper-relational fact in Fig. 5.572

The missing entity should possess similar seman-573

tics with computer program since they are affiliated574

with the same base triplet (Apple, industry, software575

industry) and have the common key of. The ground-576

truth entity is operating system, which is correctly577

predicted by HyperCL+HAHE. However, the w/o578

hierarchy variant answers expert system since it579

Figure 5: Case study on the importance of the hierar-
chical ontology on link prediction on a hyper-relational
fact. The question mark denotes the missing value (en-
tity). The lower part is a partial hierarchical ontology
related to this fact.

belongs to the same specific concept program with 580

computer program. This implies that the loss of the 581

hierarchical ontology narrows the view of HyperCL 582

and makes it overlook possible candidates for link 583

prediction, such as the entity operating system that 584

belongs to the same high-level concept software as 585

computer program does. 586

6 Conclusion 587

In this paper, we propose HyperCL, a universal 588

contrastive learning framework for hyper-relational 589

knowledge graph embedding, which considers the 590

hierarchical structure of the ontology of KGs and 591

alleviates the dominance issue of hyper-relational 592

facts over the ontology. Experimental results 593

show that HyperCL consistently boosts the per- 594

formance of state-of-the-art baselines with an aver- 595

age improvement of 3.1-7.4% across three datasets, 596

demonstrating the effectiveness of HyperCL. 597

In the future, we plan to further extend HyperCL 598

to other KG embedding architectures and investi- 599

gate graph augmentation techniques for concept- 600

aware contrastive learning. 601
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7 Limitations602

As shown in the experiments, HyperCL is more603

powerful in predicting entities than relations. Be-604

sides the reason that the problem space of relations605

is usually much smaller than that of entities, this606

is also partially attributed to the current framework607

not taking into account the contrastive learning of608

relations. In the future, we will consider extending609

our framework to contrastive relations as a unified610

architecture.611

8 Ethics Statement612

This paper investigates the problem of knowledge613

graph link prediction, aiming at hyper-relational614

knowledge graph completion with ontology infor-615

mation to empower a wide range of web applica-616

tions, such as question answering, recommender617

systems, and query expansion. The KG datasets618

used in this paper are all publicly available. There-619

fore, we believe it does not raise any ethical issues.620
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Appendix782

A Baseline Details783

The first category includes model learning from784

hyper-relational facts only: m-TransH (Wen et al.,785

2016) models the interaction between entities in-786

volved in each n-ary fact; RAE (Zhang et al.,787

2018) extends m-TransH by explicitly consider-788

ing the pairwise relatedness between entities in789

n-ary facts; NaLP (Guan et al., 2019) learns the790

relatedness between relation-entity pairs under791

the n-ary representation of hyper-relational facts;792

NeuInfer (Guan et al., 2020) models both primary793

triplet and its associated key-value pairs; HINGE794

(Rosso et al., 2020) captures both the triple-wise795

and quintuple-wise relatedness between elements796

in hyper-relational facts; ShrinkE (Xiong et al.,797

2023) models the primary triplets as a spatial-798

functional transformation from the head into a799

relation-specific box; GRAN (Wang et al., 2021)800

represents the hyper-relational facts as a hetero-801

geneous graph and captures the inter-vertex inter-802

actions via self-attention mechanism; MSeaHKG803

(Di and Chen, 2021) develops a generic message-804

passing function to encode hyper-relational facts;805

StarE (Galkin et al., 2020) transforms a hyper-806

relational fact into a directed heterogeneous graph807

and extract the inter-vertex interaction using a808

GNN encoder; HyT (Yu and Yang, 2021) ex-809

tends StarE substituting the graph encoder by a810

light-weight relation/entity embedding technique;811

QUAD (Shomer et al., 2022) also extends StarE812

by adopting two separate aggregators to encode813

the primary triplets and associated key-value pairs,814

respectively; HAHE (Luo et al., 2023b) adopts815

global and local hypergraph attention to represent816

hyper-relational facts. The second category in-817

cludes model learning from both hyper-relational818

facts and ontology of KGs: RAM (Liu et al., 2021)819

captures the latent compatibility between the meta-820

relation and all involved entities by a pattern matrix;821

tNaLP (Guan et al., 2021) extends NaLP with the822

consideration of schema information; sHINGE (Lu823

et al., 2023) models the hyper-relational schema in-824

formation to enhance link prediction performance;825

DHGE (Luo et al., 2023a) jointly learns from826

hyper-relational facts and the hierarchical ontol-827

ogy of KGs.828

B Hyperparameter Settings829

Three key hyperparameters of HyperCL are the830

number of relation-aware graph attention layers L,831

Method JF17K WikiPeople WD50K
L β τcl L β τcl L β τcl

HyperCL+StarE 2 4096 0.7 2 4096 0.7 2 4096 0.7
w/o loss 2 4096 0.7 2 4096 0.7 2 4096 0.7
w/o concept 2 4096 0.7 2 4096 0.7 2 4096 0.7
w/o hierarchy 2 4096 0.7 2 4096 0.7 2 4096 0.7
HyperCL+HyT 2 4096 0.7 2 8192 0.7 2 4096 0.7
w/o loss 2 4096 0.7 2 8192 0.7 2 4096 0.7
w/o concept 2 4096 0.7 2 8192 0.7 2 4096 0.7
w/o hierarchy 2 4096 0.7 2 8192 0.7 2 4096 0.7
HyperCL+QUAD 3 4096 0.6 3 8192 0.7 3 4096 0.6
w/o loss 3 4096 0.6 3 8192 0.7 3 4096 0.6
w/o concept 3 4096 0.6 3 8192 0.7 3 4096 0.6
w/o hierarchy 3 4096 0.6 3 8192 0.7 3 4096 0.6
HyperCL+HAHE 2 8192 0.7 2 8192 0.7 2 8192 0.7
w/o loss 2 8192 0.7 2 8192 0.7 2 8192 0.7
w/o concept 2 8192 0.8 2 8192 0.8 2 8192 0.7
w/o hierarchy 2 8192 0.8 2 8192 0.8 2 8192 0.7

Table 4: The optimal hyperparameter settings for all
HyperCL-combined baselines and their variants.

the threshold of concept-aware batch selection β, 832

and the temperature of contrastive loss τcl. We use 833

the grid search method to identify the optimal hy- 834

perparameter setting for each HyperCL-combined 835

model. The range of candidate values for hyperpa- 836

rameters L, β, and τcl are {1, 2, 3, 4, 5}, {1024, 837

2048, 4096, 8192, 12288}, and {0.5, 0.6, 0.7, 0.8, 838

0.9}, respectively. Afterward, the optimal hyperpa- 839

rameter setting of a model is selected from exhaus- 840

tive hyperparameter combinations by comparing 841

the link prediction performance under the different 842

combinations. The final hyperparameter settings 843

for all models are shown in Table 4. 844

C Training Details 845

All models in Table 4 are trained 300 epochs with 846

early stopping on each dataset with their corre- 847

sponding optimal hyperparameter settings. The 848

average increased training time due to HyperCL 849

on three datasets JF17K, WikiPeople, and WD50K 850

is 1.2h, 2.9h, and 1.9h, respectively. In compar- 851

ison, the training time of the most efficient base- 852

line HAHE on JF17K, WikiPeople, and WD50K 853

is 11.5h, 28.4h, and 22.5h, respectively. Therefore, 854

HyperCL only incurs a marginal computational 855

overhead (up to 10.4% in training time). 856
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